CN101911206A - 使用金属氧化物的大容量一次性可编程存储单元 - Google Patents

使用金属氧化物的大容量一次性可编程存储单元 Download PDF

Info

Publication number
CN101911206A
CN101911206A CN200880122646XA CN200880122646A CN101911206A CN 101911206 A CN101911206 A CN 101911206A CN 200880122646X A CN200880122646X A CN 200880122646XA CN 200880122646 A CN200880122646 A CN 200880122646A CN 101911206 A CN101911206 A CN 101911206A
Authority
CN
China
Prior art keywords
metal oxide
state
resistivity
forward bias
resistivity states
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200880122646XA
Other languages
English (en)
Other versions
CN101911206B (zh
Inventor
T·库玛尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delphi International Operations Luxembourg SARL
Original Assignee
SanDisk 3D LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SanDisk 3D LLC filed Critical SanDisk 3D LLC
Publication of CN101911206A publication Critical patent/CN101911206A/zh
Application granted granted Critical
Publication of CN101911206B publication Critical patent/CN101911206B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5685Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using storage elements comprising metal oxide memory material, e.g. perovskites
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5692Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency read-only digital stores using storage elements with more than two stable states
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0007Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising metal oxide memory material, e.g. perovskites
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C17/00Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
    • G11C17/14Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM
    • G11C17/16Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM using electrically-fusible links
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C17/00Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
    • G11C17/14Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM
    • G11C17/16Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM using electrically-fusible links
    • G11C17/165Memory cells which are electrically programmed to cause a change in resistance, e.g. to permit multiple resistance steps to be programmed rather than conduct to or from non-conduct change of fuses and antifuses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • G11C2013/0078Write using current through the cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • G11C2013/009Write using potential difference applied between cell electrodes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/30Resistive cell, memory material aspects
    • G11C2213/31Material having complex metal oxide, e.g. perovskite structure
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/30Resistive cell, memory material aspects
    • G11C2213/32Material having simple binary metal oxide structure
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/71Three dimensional array
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/72Array wherein the access device being a diode

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Memories (AREA)

Abstract

一种编程非易失性存储器件的方法,包括(i)提供包含有与至少一个金属氧化物串联的二极管的非易失性存储单元,(ii)施加第一正向偏置,将金属氧化物的电阻率状态从第一状态变化到第二状态;(iii)施加第二正向偏置,将金属氧化物的电阻率状态从第二状态变化到第三状态;以及(iv)施加第三正向偏置,将金属氧化物的电阻率状态从第三状态变化到第四状态。第四电阻率状态高于第三电阻率状态,第三电阻率状态低于第二电阻率状态,而第二电阻率状态低于第一电阻率状态。

Description

使用金属氧化物的大容量一次性可编程存储单元
相关专利申请的交叉引用
该申请要求于2007年12月27日递交的美国专利申请No.12/005,277的优先权,其全文在此通过引用合并于此。
背景技术
本发明涉及一种非易失性存储阵列。
即使当装置的电源关闭时,非易失性存储阵列也可以保存其数据。在一次性可编程阵列中,每个存储单元以最初的未编程的状态形成,并且能被转化成编程状态。这种变化是永久性的,并且这种单元是不可擦除的。在其它种类的存储器中,存储单元是可擦除的,可多次被重写。
单元还可以在每个单元所能实现的数据状态数目方面变化。通过改变单元的所能检测到的一些特征,如在给定的施加电压下流过单元的电流或者单元内晶体管的阈值电压,可以存储数据状态。一个数据状态是单元的独特的值,如数据“0”或者数据“1”。
获得可擦除或者多状态单元的一些方案是复杂的。例如浮栅和SONOS存储单元通过存储电荷来工作,其中存在存储的电荷、不存在存储的电荷或者存储的电荷的数量改变晶体管的阈值电压。这些存储单元是三端器件,制造相对困难,在很小的空间范围内操作也相对困难,而这在现代集成电路中是获得竞争力所需的。
其它的存储单元通过改变相对特殊材料(如硫族化合物)的电阻率来工作。氧族化合物不容易加工,在大多数半导体加工设备上都存在挑战性。
因此,人们希望获得具有可擦除的或者多状态存储单元的非易失性存储阵列,所述存储单元在结构上使用半导体材料形成、可以很容易地制成很小的尺寸并且具有大于1比特/单元(例如≥2比特/单元)的容量。
发明内容
本发明的一个实施例提供了编程非易失性存储器件的方法,包括(i)提供包含与至少一个金属氧化物串联的二极管的非易失性存储单元,(ii)施加第一正向偏置将金属氧化物的电阻率状态从第一状态改变为第二状态;(iii)施加第二正向偏置将金属氧化物的电阻率状态从第二状态改变为第三状态;和(iv)施加第三正向偏置将金属氧化物的电阻率状态从第三状态改变为第四状态。第四电阻率状态高于第三电阻率状态,第三电阻率状态低于第二电阻率状态,第二电阻率状态低于第一电阻率状态。
附图说明
图1是图示存储阵列中的存储单元之间实现电绝缘所需要的电路图。
图2是根据本发明的优选实施例形成的存储单元的透视图。
图3(a)-3(b)是图示存储单元的两个实施例的侧截面图。
图4(a)-4(d)是图示根据本发明的实施例的可替代的二极管结构的侧截面视图。
图5示出了将单元置于正向偏置下的偏置方案的电路图。
图6是示出了存储单元从第一状态1到第二状态2、从第二状态2到第三状态3、从第三状态3到第四状态4转变的概率关系曲线图。
具体实施方式
众所周知,通过施加电脉冲,可以修整由掺杂的多晶硅形成的电阻器的电阻,在稳定的电阻状态之间对其进行调整。这种可修整的电阻器已经用做集成电路中的元件。
然而,制备多晶硅电阻器的存储阵列是有困难的。如果将电阻器作为存储单元用于大型交叉点阵列,则当向选中的单元施加电压时,将会有不希望的漏电流通过整个阵列中半选择的和未选择的单元。例如,参考图1,假定在位线B和字线A之间施加电压,以设置、重置或者感测所选择的单元S。电流规定为流过选择的单元S。然而,一些漏电流可能流过多条交错路径,例如位线B和字线A之间通过未选择的单元U1、U2和U3的路径。可能存在很多这样的交错路径。
使用二极管形成各个存储器可以显著减小漏电流。二极管具有非线性I-V特性,在开启电压以下允许非常小的电流流过,而在开启电压以上则允许更大得多的电流流过。一般来说,二极管也可以作为一个单向阀门,允许电流在一个方向的流动比另外一个方向的流动容易得多。这样,只要选择偏置方案,确保只有选中的单元在开启电压以上被施加正向电流,就可以大大地减小沿不希望路径(例如图1中的潜在路径U1-U2-U3)的漏电流。
在本文的讨论中,从较高到较低电阻率状态的转换被称为设置转换,该转换受设置电流、设置或者编程电压或者设置或者编程脉冲的影响;而从较低到较高电阻率状态的反向的转换被称为重置转换,该转换受重置电流、重置电压或者重置脉冲的影响,其将二极管置于未编程的状态。
在优选实施例中,存储单元包括位置与圆柱形的金属氧化物层或者薄膜串联的圆柱形半导体二极管。二极管和薄膜位于两个电极之间,如图2所示。氧化物层或者薄膜的数量不需要限定为一个;例如,可以是两个或者更多。如果需要,二极管和金属氧化物薄膜可以具有除圆柱形以外的其它形状。有关包括二极管和金属氧化物的存储单元的设计的详细说明,请参照例如于2005年5月9日递交的美国专利申请No.11/125,939(与Herner等的美国公开申请No.2006/0250836对应)和于2006年3月31日递交的美国专利申请No 11/395,995(与herner等的美国公开申请No.2006/0250837对应),二者均通过引用合并于此。在本发明的优选实施例中,金属氧化物薄膜作为存储单元的电阻率转换元件,二极管作为存储单元的换向元件。
图2示出了根据本发明的优选实施例形成的存储单元的透视图。底部导体101由导电材料形成(例如钨)并沿着第一方向延伸。势垒层(barrierlayer)和粘结层(如TiN层)可包括在底部导体101内。半导体二极管110具有底部重掺杂n型区112、非有意掺杂的本征区114以及顶部重掺杂p型区116,但是二极管的取向可以是反向的,如图4a到4d所示。不考虑其取向,这种二极管被称为p-i-n二极管或者仅仅被称为二极管。二极管上沉积有金属氧化物层118,在二极管110的p型区116之上或在n型区112以下,如图3(a)和图3(b)中所示。顶部导体100可以通过与底部导体101相同的方式和相同的材料形成,并且沿着不同于第一方向的第二方向延伸。半导体二极管110垂直地置于底部导体101和顶部导体100之间。二极管可以包括任何单晶、多晶或无定形半导体材料,例如硅、锗或者硅-锗合金。
在优选的实施例中,二极管110包含三个不同的区112、114、116。在本文的讨论中,非有意掺杂的半导体材料区被称为本征区114,如图2和图3(a)-(b)中所示。然而本领域技术人员应该理解,本征区实际上可以包括低浓度的p型或者n型掺杂物。掺杂物会从邻近的n型或者p型掺杂区(分别为示于图3(a)和图3(b)中的112和116)扩散到本征区,或者在沉积过程中由于之前的沉积产生的污染物而存在于沉积腔中。还应该理解,沉积的本征半导体材料(例如硅)会含有缺陷,这些缺陷使其表现为似乎轻度n型掺杂。使用术语“本征”来描述硅、锗、硅-锗合金或者某种其它的半导体材料并不是为了暗示该区域不含任何的掺杂物,也不是为了暗示这样的区域就是完全电中性的。二极管也并不需要限于上述p-i-n设计;相反,二极管可含有不同区域的组合,每个区域都具有不同的掺杂浓度,如图4(a)-4(d)中所示。
Herner等人于2006年6月8日递交的题为“Nonvolatile Memory CellOperating by Increasing Order in Polycrystalline Semiconductor Material”的美国专利申请No.11/148,530和Herner等人于2004年9月29日递交的题为“Memory Cell Comprising a Semiconductor Junction Diode CrystallizedAdjacent to a Silicide”的美国专利申请No.10/954,510描述了对邻近合适硅化物的多晶硅的结晶化影响多晶硅的性质,两个申请均为本发明的受让人所有,并且均通过引用并入本文。特定的金属硅化物(如硅化钴和硅化钛)的晶格结构与硅非常接近。当无定形的或微晶的硅与这些硅化物之一接触晶化时,在结晶的过程中硅化物的晶格为硅提供了一个模板。产生的多晶硅将是高度有序的、缺陷率相对低。当使用导电性增强的掺杂物掺杂时,这种高质量的多晶硅具有与形成时一样的相对高的导电性。这样的二极管优选用作存储单元的换向元件,因为当向其施加足以转换金属氧化物薄膜的电阻率状态的某些电压脉冲时,这种二极管的电阻率不会改变。
相反,当无定形的或者微晶的硅材料不接触与其具有优良的晶格适配性的硅化物被晶化时,例如当硅只与例如二氧化硅和氮化钛等与其具有很大的晶格不适配性的材料接触被晶化时,产生的多晶硅将具有更多的缺陷,并且通过这种方式晶化的掺杂多晶硅的导电性相比形成时更差。当施加偏置时,这种二极管会改变电阻率状态。在这种情况下,二极管也可以作为存储单元的电阻率转换元件和换向元件。
金属氧化物薄膜可以是任何电阻率转换金属氧化物薄膜,如钙钛矿,例如CaTiO3或(Ba,Sr)TiO3或NiO、Nb2O5、TiO2、HfO2、Al2O3、MgO、CrO2、ZnO2、ZrO2、VO或Ta2O5。本发明的优选实施例中的金属氧化物的厚度优选为约20-
Figure BPA00001165699400051
更优选为约40-
Figure BPA00001165699400052
或更优选为约70-
Figure BPA00001165699400053
存储单元最初开始于高电阻率、低读取电流的状态(称为未编程或者原始状态)。可通过施加高的正向偏置电压脉冲使单元进入编程的、低电阻率状态,优选在制备单元的工厂、产品售出之前进行,其中能耗不属于考虑因素。一旦产品售出,单元随后通过后续的正向偏置编程脉冲进入一种或者更多其它状态。未编程状态和编程状态的读取电流之差构成存储单元的“窗口”。考虑到制造的鲁棒性,通常希望该窗口尽可能地大。本发明的发明人认识到,被编程单元的读取电流窗口和每个单元的比特数可通过下面的编程方法增加。
可通过施加合适的电脉冲使金属氧化物的电阻率在稳定状态之间变化。在优选实施例中,设置和重置转换使用金属氧化物在正向偏置下实施。可以使用一个以上的编程脉冲。例如,向单元施加多个正向偏置脉冲将金属氧化物从高电阻率、未编程的状态转换到低电阻率、编程的状态。
不希望被特定的理论束缚,可以改变金属氧化物的导电性或者相反改变金属氧化物的电阻率,因为氧化物的导电性在很大程度上受氧空穴运动的影响。例如,空穴移出氧化物薄膜的表面造成的氧空穴局部消耗可造成导电性增强,或者相反地导致电阻率降低。关于非易失性存储单元应用中金属氧化物的特性的更多详细描述,请参见例如Sim等人的IEEE ElectronDevice Letters,2005,26,p292;Lee等人的IEEE Electron Device Letters,2005,26,p719;Sakamoto等人的Applied Physics Letters,2007,91,p092110-1,其通过参考整体并入本文。
因此,本发明实施例中的存储单元的不同数据状态对应于与二极管串联的金属氧化物的电阻率状态。存储单元可通过一系列不同的正向偏置进入独特的数据状态,正向偏置优选为1到20V,特别优选为2到10V,更特别优选为3到8V。优选地,在任何一个独特的数据状态和任何不同的独特的数据状态之间流过单元的电流相差至少两个数量级,从而允许状态之间的差别容易地被检测到。
下面将提供几个优选实施例的示例。然而需要理解,这些示例不是为了限制。本领域技术人员很清楚,编程包含二极管和金属氧化物的存储单元器件的其它方法也落入本发明的范围。
在本发明的一个优选实施例中,由多晶半导体材料形成的二极管和至少一个金属氧化物布置为串联。该器件用作一次性可编程多级单元,在优选实施例中具有四种独特的数据状态。术语“一次性可编程”意味着单元能够被不可逆地编程为多达四种不同的状态。
在本发明的实施例的编程方法中,施加到单元的正向偏置的大小大于编程该单元所需要的最小电压。图5示出了向存储单元阵列的一部分施加正向偏置。例如,如果编程单元所需要的最小电压是4V,则向选择的单元施加5V或者更高的编程正向偏置,例如大约8V到大约12V,例如10V。正向偏置将单元从相对高电阻率的、未编程的状态转换到相对低的电阻率的、编程的状态。如果希望,可以施加而不损坏二极管的最大电压可以用作编程电压。
图6是示出了不同状态下存储单元在2V电压下的读取电流的概率曲线图。在本发明的一个实施例中,施加了连续的3个正向偏置。第一正向偏置电流限制电压(V1→2)(即上述编程脉冲)降低了金属氧化物的电阻率,并将单元的电阻率状态从第一状态1改变到第二状态2。第二个较高的电流限制正向偏置电压(V2→3)进一步降低氧化物的电阻率,将单元的电阻率状态从第二状态2变为第三状态3。最后,第三个更高的电流限制正向偏置(V3 →4)增加了金属氧化物的电阻率,将单元的电阻率状态从第三状态3变为第四状态4。这样,使用预定的电流限制下的预定电压获得了状态2。然后,以比状态2更高的电流限制和更高的电压获得了状态3。以比状态3更低的电压但在比状态3更高的电流限制下获得状态4(即获得状态4的电流限制是四种状态中最高的电流限制)。这些不同状态的连续的电流限制可以确保通过施加正向偏置电压就可以获得状态2,而不需要直接移至经过状态2的状态3或者4。氧化物的这四种电阻率状态与二极管的状态是不同的,二极管在优选实施例中用作换向元件,并且对单元电阻率的改变几乎没有影响。
当施加第一电正向偏置脉冲V1→2时,初始读取电流在1×10-13到2×10-13A之间。脉冲的量值(magnitude)大于编程该单元所需要的最小电压。施加的电压可以是大约10V。脉冲的宽度可以在大约100和大约500毫微秒之间。第一电脉冲将金属氧化物从第一电阻率状态1转换到第二电阻率状态2,第二状态具有比第一状态小的电阻率;该转换在图6中标识为“1→2”。最终的F状态的读取电流在大约2×10-6到11×10-6A之间。然后,施加第二正向偏置脉冲V2→3,V2→3大于V1→2,进一步降低氧化物的电阻率。产生的单元的读取电流在大约2×10-5到10×10-5A之间。最后,施加第三正向偏置脉冲V3→4,V3→4小于V2→3,增大了氧化物的电阻率。产生的读取电流在大约0.7×10-7到4×10-7A之间。
一般地,用来编程存储单元的器件是位于存储单元之下、之上或者邻近存储单元的驱动电路。该电路可以具有单片集成结构,或者封装在一起或者紧密连接或者冲模连结(die-bonded)在一起的多个集成器件。关于驱动电路的详细描述,可参见Cleeves的美国专利申请No.10/185,508;Knall的美国专利申请No.09/560,626;以及Gudensen等的美国专利No.6,055,180,所述专利申请均通过引用合并于此。
存储单元优选为一次性可编程单元,但是它也可以用作可重写存储单元,并且可具有两种、三种、四种或者更多种独特的数据状态。在优选实施例中,金属氧化物的电阻率大于二极管的电阻率。所以,使用金属氧化物作为电阻率转换元件、二极管作为换向元件的存储单元可具有至少2比特/单元的存储容量。
可使用任何合适的方法制造存储单元。例如,可使用于2005年5月9日递交的美国专利申请No.11/125,939(对应于Herner等人的美国公开申请No.2006/0250836)以及于2006年3月31日递交的美国专利申请No.11/395,995(对应于Herner等人的美国公开申请No.2006/0250837)描述的方法,二者通过引用合并于此。
上文中记载的图2中所示的存储单元可位于一级存储器器件(onememory level device)内。如果需要,在第一级存储器上也可以形成其它级存储器,以形成单片式三维存储阵列。在一些实施例中,可以在多级存储器之间共用导体,也就是图2中所示的顶部导体100可以用作下一级存储器的底部导体。在其它实施例中,在第一级存储器上形成级间介电层(未示出),其表面被平面化,第二级存储器构建在该平面化的级间介电层上,不共用导体。
单片三维存储阵列是一种不需要居间的衬底而在单个衬底上形成多级存储器的阵列,单个衬底例如为晶片。形成一级存储器的多个层沉积在现有的一级或多级的多层上或者直接在现有的一级或多级的多层上生长。相反,栈式存储器通过将存储级形成在分离的衬底上、之后将这些存储级在顶部彼此粘连在一起实现构造,如Leedy的美国专利No.5,915,167,“Threedimensional structure memory”记载的。在接合以前衬底可以减薄或者从存储级上移除,但是由于这些存储级最初是形成在分离的衬底上的,因此这种存储器不是真正的单片三维存储阵列。
形成在一个衬底上的单片三维存储阵列包括至少以第一高度形成在衬底上的第一级存储器和以不同于第一高度的第二高度形成的第二级存储器。可以以这种多级阵列的方式在衬底上形成三、四、八或者实际上任何数量的存储器级。
上述的内容只记载了本发明可以呈现的很多形式中的一部分,因此,这些记载只是为了说明,而不是用于限制。只有所附权利要求书,包括所有等效物,可以限制本发明的保护范围。

Claims (20)

1.一种编程非易失性存储单元的方法,包括:
提供包括与至少一个金属氧化物串联的二极管的非易失性存储单元;
施加第一正向偏置,将所述金属氧化物的电阻率状态从第一状态改变到第二状态;
施加第二正向偏置,将所述金属氧化物的电阻率状态从第二状态改变到第三状态;以及
施加第三正向偏置,将所述金属氧化物的电阻率状态从第三状态改变到第四状态;
其中所述第四电阻率状态高于所述第三电阻率状态,所述第三电阻率状态低于所述第二电阻率状态,所述第二电阻率状态低于所述第一电阻率状态。
2.如权利要求1所述的方法,其中所述二极管包括换向元件,并且所述金属氧化物包括电阻率转换元件。
3.如权利要求1所述的方法,其中所述存储单元是一次性可编程单元,并且二极管包括p-i-n多晶二极管。
4.如权利要求1所述的方法,其中所述金属氧化物包括钙钛矿、NiO、Nb2O5、TiO2、HfO2、Al2O3、MgO、CrO2、ZnO2、ZrO2、VO或Ta2O5
5.如权利要求4所述的方法,其中金属氧化物是钙钛矿,包括CaTiO3或(Ba,Sr)TiO3
6.如权利要求1所述的方法,其中所述金属氧化物具有比所述二极管高的电阻率。
7.如权利要求1所述的方法,其中所述金属氧化物的厚度为大约20到大约
Figure FPA00001165699300021
8.如权利要求1所述的方法,其中所述金属氧化物的厚度为大约40到大约
9.如权利要求1所述的方法,其中存储单元包括非易失性存储单元的单片三维阵列的一部分。
10.如权利要求1所述的方法,其中所述第一正向偏置小于所述第二正向偏置。
11.如权利要求10所述的方法,其中所述第二正向偏置大于所述第三正向偏置。
12.如权利要求1所述的方法,其中
所述第二正向偏置大于所述第一或所述第三正向偏置;
所述第二正向偏置在比所述第一正向偏置大的电流限制下施加;
并且
所述第三正向偏置在比所述第二正向偏置大的电流限制下施加。
13.如权利要求1所述的方法,其中所述第四电阻率状态在所述第一和第二电阻率状态之间。
14.如权利要求1所述的方法,其中所述第一、第二和第三正向偏置的范围在1到20V之间。
15.如权利要求1所述的方法,其中所述第一、第二和第三正向偏置的范围在2到10V之间。
16.如权利要求1所述的方法,其中所述第一、第二和第三正向偏置的范围在3到8V之间。
17.一种器件,包括:
至少一个非易失性存储单元,其包括位于与金属氧化物电阻率转换元件串联位置的二极管换向元件;以及
用于编程的装置,其通过施加第一正向偏置将所述金属氧化物的电阻率状态从第一状态改变到第二状态,施加第二正向偏置将所述金属氧化物的电阻率状态从第二状态改变到第三状态,以及通过施加第三正向偏置将所述金属氧化物的电阻率状态从第三状态改变到第四状态对所述至少一个非易失性存储单元编程,其中所述第四电阻率状态高于所述第三电阻率状态,所述第三电阻率状态低于所述第二电阻率状态,并且所述第三电阻率状态低于所述第一电阻率状态。
18.如权利要求17所述的器件,其中:
所述金属氧化物具有高于所述二极管的电阻率;以及
所述用于编程的装置包括驱动电路。
19.如权利要求17所述的器件,其中所述器件包括非易失性存储单元的单片三维阵列。
20.权利要求17所述的器件,其中:
所述存储单元是一次性可编程单元;
所述二极管包括p-i-n多晶硅二极管;以及
所述金属氧化物包括钙钛矿、NiO、Nb2O5、TiO2、HfO2、Al2O3、MgO、CrO2、ZnO2、ZrO2、VO或者Ta2O5
CN200880122646.XA 2007-12-27 2008-11-05 使用金属氧化物的大容量一次性可编程存储单元 Expired - Fee Related CN101911206B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/005,277 US7706169B2 (en) 2007-12-27 2007-12-27 Large capacity one-time programmable memory cell using metal oxides
US12/005,277 2007-12-27
PCT/US2008/012478 WO2009085076A1 (en) 2007-12-27 2008-11-05 Large capacity one-time programmable memory cell using metal oxides

Publications (2)

Publication Number Publication Date
CN101911206A true CN101911206A (zh) 2010-12-08
CN101911206B CN101911206B (zh) 2014-04-02

Family

ID=40293907

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200880122646.XA Expired - Fee Related CN101911206B (zh) 2007-12-27 2008-11-05 使用金属氧化物的大容量一次性可编程存储单元

Country Status (7)

Country Link
US (1) US7706169B2 (zh)
EP (1) EP2232499B1 (zh)
JP (1) JP5190520B2 (zh)
KR (1) KR20100097738A (zh)
CN (1) CN101911206B (zh)
TW (1) TW200929220A (zh)
WO (1) WO2009085076A1 (zh)

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8284597B2 (en) * 2010-05-06 2012-10-09 Macronix International Co., Ltd. Diode memory
US8946046B1 (en) 2012-05-02 2015-02-03 Crossbar, Inc. Guided path for forming a conductive filament in RRAM
US9601692B1 (en) 2010-07-13 2017-03-21 Crossbar, Inc. Hetero-switching layer in a RRAM device and method
US9570678B1 (en) 2010-06-08 2017-02-14 Crossbar, Inc. Resistive RAM with preferental filament formation region and methods
US9012307B2 (en) 2010-07-13 2015-04-21 Crossbar, Inc. Two terminal resistive switching device structure and method of fabricating
US8441835B2 (en) 2010-06-11 2013-05-14 Crossbar, Inc. Interface control for improved switching in RRAM
US8198144B2 (en) 2010-06-11 2012-06-12 Crossbar, Inc. Pillar structure for memory device and method
US8374018B2 (en) 2010-07-09 2013-02-12 Crossbar, Inc. Resistive memory using SiGe material
US8947908B2 (en) 2010-11-04 2015-02-03 Crossbar, Inc. Hetero-switching layer in a RRAM device and method
US8467227B1 (en) 2010-11-04 2013-06-18 Crossbar, Inc. Hetero resistive switching material layer in RRAM device and method
US8168506B2 (en) 2010-07-13 2012-05-01 Crossbar, Inc. On/off ratio for non-volatile memory device and method
US8569172B1 (en) 2012-08-14 2013-10-29 Crossbar, Inc. Noble metal/non-noble metal electrode for RRAM applications
US8884261B2 (en) 2010-08-23 2014-11-11 Crossbar, Inc. Device switching using layered device structure
US9401475B1 (en) 2010-08-23 2016-07-26 Crossbar, Inc. Method for silver deposition for a non-volatile memory device
US8492195B2 (en) 2010-08-23 2013-07-23 Crossbar, Inc. Method for forming stackable non-volatile resistive switching memory devices
US8404553B2 (en) 2010-08-23 2013-03-26 Crossbar, Inc. Disturb-resistant non-volatile memory device and method
US8889521B1 (en) 2012-09-14 2014-11-18 Crossbar, Inc. Method for silver deposition for a non-volatile memory device
US8391049B2 (en) 2010-09-29 2013-03-05 Crossbar, Inc. Resistor structure for a non-volatile memory device and method
US8558212B2 (en) 2010-09-29 2013-10-15 Crossbar, Inc. Conductive path in switching material in a resistive random access memory device and control
USRE46335E1 (en) 2010-11-04 2017-03-07 Crossbar, Inc. Switching device having a non-linear element
US8502185B2 (en) 2011-05-31 2013-08-06 Crossbar, Inc. Switching device having a non-linear element
US8088688B1 (en) 2010-11-05 2012-01-03 Crossbar, Inc. p+ polysilicon material on aluminum for non-volatile memory device and method
US8930174B2 (en) 2010-12-28 2015-01-06 Crossbar, Inc. Modeling technique for resistive random access memory (RRAM) cells
US8815696B1 (en) 2010-12-31 2014-08-26 Crossbar, Inc. Disturb-resistant non-volatile memory device using via-fill and etchback technique
US8791010B1 (en) 2010-12-31 2014-07-29 Crossbar, Inc. Silver interconnects for stacked non-volatile memory device and method
US9153623B1 (en) 2010-12-31 2015-10-06 Crossbar, Inc. Thin film transistor steering element for a non-volatile memory device
US8934292B2 (en) 2011-03-18 2015-01-13 Sandisk 3D Llc Balanced method for programming multi-layer cell memories
US8450710B2 (en) 2011-05-27 2013-05-28 Crossbar, Inc. Low temperature p+ silicon junction material for a non-volatile memory device
US8394670B2 (en) * 2011-05-31 2013-03-12 Crossbar, Inc. Vertical diodes for non-volatile memory device
US9620206B2 (en) 2011-05-31 2017-04-11 Crossbar, Inc. Memory array architecture with two-terminal memory cells
US8619459B1 (en) 2011-06-23 2013-12-31 Crossbar, Inc. High operating speed resistive random access memory
US9166163B2 (en) 2011-06-30 2015-10-20 Crossbar, Inc. Sub-oxide interface layer for two-terminal memory
US8946669B1 (en) 2012-04-05 2015-02-03 Crossbar, Inc. Resistive memory device and fabrication methods
US8659929B2 (en) 2011-06-30 2014-02-25 Crossbar, Inc. Amorphous silicon RRAM with non-linear device and operation
US9564587B1 (en) 2011-06-30 2017-02-07 Crossbar, Inc. Three-dimensional two-terminal memory with enhanced electric field and segmented interconnects
US9627443B2 (en) 2011-06-30 2017-04-18 Crossbar, Inc. Three-dimensional oblique two-terminal memory with enhanced electric field
EP2735028A4 (en) 2011-07-22 2015-05-06 Crossbar Inc SEALING LAYER FOR SILICON-GERMANIUM P + MATERIAL FOR REMAINING MEMORY DEVICE AND ASSOCIATED METHOD
US9729155B2 (en) 2011-07-29 2017-08-08 Crossbar, Inc. Field programmable gate array utilizing two-terminal non-volatile memory
US8866121B2 (en) 2011-07-29 2014-10-21 Sandisk 3D Llc Current-limiting layer and a current-reducing layer in a memory device
US10056907B1 (en) 2011-07-29 2018-08-21 Crossbar, Inc. Field programmable gate array utilizing two-terminal non-volatile memory
US8674724B2 (en) 2011-07-29 2014-03-18 Crossbar, Inc. Field programmable gate array utilizing two-terminal non-volatile memory
US8659001B2 (en) 2011-09-01 2014-02-25 Sandisk 3D Llc Defect gradient to boost nonvolatile memory performance
KR20130043533A (ko) * 2011-10-20 2013-04-30 삼성전자주식회사 도전성 버퍼 패턴을 갖는 비-휘발성 메모리소자 및 그 형성 방법
US8698119B2 (en) 2012-01-19 2014-04-15 Sandisk 3D Llc Nonvolatile memory device using a tunnel oxide as a current limiter element
US8686386B2 (en) 2012-02-17 2014-04-01 Sandisk 3D Llc Nonvolatile memory device using a varistor as a current limiter element
US8716098B1 (en) 2012-03-09 2014-05-06 Crossbar, Inc. Selective removal method and structure of silver in resistive switching device for a non-volatile memory device
US9087576B1 (en) 2012-03-29 2015-07-21 Crossbar, Inc. Low temperature fabrication method for a three-dimensional memory device and structure
US9685608B2 (en) 2012-04-13 2017-06-20 Crossbar, Inc. Reduced diffusion in metal electrode for two-terminal memory
US8658476B1 (en) 2012-04-20 2014-02-25 Crossbar, Inc. Low temperature P+ polycrystalline silicon material for non-volatile memory device
US8796658B1 (en) 2012-05-07 2014-08-05 Crossbar, Inc. Filamentary based non-volatile resistive memory device and method
US20130292634A1 (en) * 2012-05-07 2013-11-07 Yung-Tin Chen Resistance-switching memory cells having reduced metal migration and low current operation and methods of forming the same
US8765566B2 (en) 2012-05-10 2014-07-01 Crossbar, Inc. Line and space architecture for a non-volatile memory device
US9741765B1 (en) 2012-08-14 2017-08-22 Crossbar, Inc. Monolithically integrated resistive memory using integrated-circuit foundry compatible processes
US9583701B1 (en) 2012-08-14 2017-02-28 Crossbar, Inc. Methods for fabricating resistive memory device switching material using ion implantation
US8946673B1 (en) 2012-08-24 2015-02-03 Crossbar, Inc. Resistive switching device structure with improved data retention for non-volatile memory device and method
US9312483B2 (en) 2012-09-24 2016-04-12 Crossbar, Inc. Electrode structure for a non-volatile memory device and method
US9576616B2 (en) 2012-10-10 2017-02-21 Crossbar, Inc. Non-volatile memory with overwrite capability and low write amplification
US11068620B2 (en) 2012-11-09 2021-07-20 Crossbar, Inc. Secure circuit integrated with memory layer
US8982647B2 (en) 2012-11-14 2015-03-17 Crossbar, Inc. Resistive random access memory equalization and sensing
US9412790B1 (en) 2012-12-04 2016-08-09 Crossbar, Inc. Scalable RRAM device architecture for a non-volatile memory device and method
US9406379B2 (en) 2013-01-03 2016-08-02 Crossbar, Inc. Resistive random access memory with non-linear current-voltage relationship
US9324942B1 (en) 2013-01-31 2016-04-26 Crossbar, Inc. Resistive memory cell with solid state diode
US9112145B1 (en) 2013-01-31 2015-08-18 Crossbar, Inc. Rectified switching of two-terminal memory via real time filament formation
US8934280B1 (en) 2013-02-06 2015-01-13 Crossbar, Inc. Capacitive discharge programming for two-terminal memory cells
US20140241031A1 (en) 2013-02-28 2014-08-28 Sandisk 3D Llc Dielectric-based memory cells having multi-level one-time programmable and bi-level rewriteable operating modes and methods of forming the same
US9627057B2 (en) 2013-03-15 2017-04-18 Crossbar, Inc. Programming two-terminal memory cells with reduced program current
US10290801B2 (en) 2014-02-07 2019-05-14 Crossbar, Inc. Scalable silicon based resistive memory device
KR101646017B1 (ko) * 2015-06-16 2016-08-05 고려대학교 산학협력단 크로스바 어레이 구조의 메모리 장치 및 이의 제조 방법
US20180137927A1 (en) * 2016-04-16 2018-05-17 Chengdu Haicun Ip Technology Llc Three-Dimensional Vertical One-Time-Programmable Memory Comprising No Separate Diode Layer
US10297312B1 (en) 2017-12-06 2019-05-21 Sandisk Technologies Llc Resistive memory cell programmed by metal alloy formation and method of operating thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007038709A1 (en) * 2005-09-28 2007-04-05 Sandisk 3D Llc Method for using a memory cell comprising switchable semiconductor memory element with trimmable resistance
WO2007062022A1 (en) * 2005-11-23 2007-05-31 Sandisk 3D Llc Reversible resistivity-switching metal oxide or nitride layer with added metal

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5915167A (en) * 1997-04-04 1999-06-22 Elm Technology Corporation Three dimensional structure memory
NO972803D0 (no) * 1997-06-17 1997-06-17 Opticom As Elektrisk adresserbar logisk innretning, fremgangsmåte til elektrisk adressering av samme og anvendelse av innretning og fremgangsmåte
US7081377B2 (en) * 2002-06-27 2006-07-25 Sandisk 3D Llc Three-dimensional memory
US6834008B2 (en) * 2002-08-02 2004-12-21 Unity Semiconductor Corporation Cross point memory array using multiple modes of operation
US7071008B2 (en) * 2002-08-02 2006-07-04 Unity Semiconductor Corporation Multi-resistive state material that uses dopants
US20050226067A1 (en) * 2002-12-19 2005-10-13 Matrix Semiconductor, Inc. Nonvolatile memory cell operating by increasing order in polycrystalline semiconductor material
US7660181B2 (en) * 2002-12-19 2010-02-09 Sandisk 3D Llc Method of making non-volatile memory cell with embedded antifuse
US7800932B2 (en) * 2005-09-28 2010-09-21 Sandisk 3D Llc Memory cell comprising switchable semiconductor memory element with trimmable resistance
US7176064B2 (en) * 2003-12-03 2007-02-13 Sandisk 3D Llc Memory cell comprising a semiconductor junction diode crystallized adjacent to a silicide
US6873543B2 (en) * 2003-05-30 2005-03-29 Hewlett-Packard Development Company, L.P. Memory device
KR100773537B1 (ko) * 2003-06-03 2007-11-07 삼성전자주식회사 한 개의 스위칭 소자와 한 개의 저항체를 포함하는비휘발성 메모리 장치 및 그 제조 방법
US6847544B1 (en) * 2003-10-20 2005-01-25 Hewlett-Packard Development Company, L.P. Magnetic memory which detects changes between first and second resistive states of memory cell
US6999366B2 (en) * 2003-12-03 2006-02-14 Hewlett-Packard Development Company, Lp. Magnetic memory including a sense result category between logic states
US7224013B2 (en) * 2004-09-29 2007-05-29 Sandisk 3D Llc Junction diode comprising varying semiconductor compositions
US20060250836A1 (en) * 2005-05-09 2006-11-09 Matrix Semiconductor, Inc. Rewriteable memory cell comprising a diode and a resistance-switching material
US7812404B2 (en) * 2005-05-09 2010-10-12 Sandisk 3D Llc Nonvolatile memory cell comprising a diode and a resistance-switching material
US20060273298A1 (en) * 2005-06-02 2006-12-07 Matrix Semiconductor, Inc. Rewriteable memory cell comprising a transistor and resistance-switching material in series
US7800934B2 (en) * 2005-09-28 2010-09-21 Sandisk 3D Llc Programming methods to increase window for reverse write 3D cell
US7834338B2 (en) * 2005-11-23 2010-11-16 Sandisk 3D Llc Memory cell comprising nickel-cobalt oxide switching element
US7570523B2 (en) * 2006-07-31 2009-08-04 Sandisk 3D Llc Method for using two data busses for memory array block selection
US7542370B2 (en) * 2006-12-31 2009-06-02 Sandisk 3D Llc Reversible polarity decoder circuit
US8072791B2 (en) * 2007-06-25 2011-12-06 Sandisk 3D Llc Method of making nonvolatile memory device containing carbon or nitrogen doped diode
US20090086521A1 (en) * 2007-09-28 2009-04-02 Herner S Brad Multiple antifuse memory cells and methods to form, program, and sense the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007038709A1 (en) * 2005-09-28 2007-04-05 Sandisk 3D Llc Method for using a memory cell comprising switchable semiconductor memory element with trimmable resistance
WO2007062022A1 (en) * 2005-11-23 2007-05-31 Sandisk 3D Llc Reversible resistivity-switching metal oxide or nitride layer with added metal

Also Published As

Publication number Publication date
US20090168486A1 (en) 2009-07-02
CN101911206B (zh) 2014-04-02
TW200929220A (en) 2009-07-01
EP2232499B1 (en) 2014-07-16
JP2011508360A (ja) 2011-03-10
EP2232499A1 (en) 2010-09-29
KR20100097738A (ko) 2010-09-03
JP5190520B2 (ja) 2013-04-24
WO2009085076A1 (en) 2009-07-09
US7706169B2 (en) 2010-04-27

Similar Documents

Publication Publication Date Title
CN101911206B (zh) 使用金属氧化物的大容量一次性可编程存储单元
EP1657753B1 (en) Nonvolatile memory device including one resistor and one diode
US7450414B2 (en) Method for using a mixed-use memory array
US7447056B2 (en) Method for using a multi-use memory cell and memory array
US8649206B2 (en) Multi-bit resistance-switching memory cell
US7486537B2 (en) Method for using a mixed-use memory array with different data states
CN102460585B (zh) 对具有二极管的交叉点非易失性存储器单元的写入方法
CN101711412A (zh) 利用正向偏置的二极管编程方法
US20080023790A1 (en) Mixed-use memory array
US20080025069A1 (en) Mixed-use memory array with different data states
US8270202B2 (en) Programming non-volatile storage element using current from other element
CN101720485A (zh) 用于反向写入3d单元的高正向电流二极管及其制造方法
CN101720507B (zh) 含有碳或氮掺杂的二极管的非易失性存储器件及其制造和操作方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20160531

Address after: texas

Patentee after: Sandisk Corp.

Address before: American California

Patentee before: Sandisk 3D LLC

C56 Change in the name or address of the patentee
CP01 Change in the name or title of a patent holder

Address after: texas

Patentee after: DELPHI INT OPERATIONS LUX SRL

Address before: texas

Patentee before: Sandisk Corp.

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140402

Termination date: 20161105

CF01 Termination of patent right due to non-payment of annual fee