CN101866979B - 太阳能电池的制造方法 - Google Patents

太阳能电池的制造方法 Download PDF

Info

Publication number
CN101866979B
CN101866979B CN2009102540376A CN200910254037A CN101866979B CN 101866979 B CN101866979 B CN 101866979B CN 2009102540376 A CN2009102540376 A CN 2009102540376A CN 200910254037 A CN200910254037 A CN 200910254037A CN 101866979 B CN101866979 B CN 101866979B
Authority
CN
China
Prior art keywords
semiconductor layer
laser
transparency conducting
layer
junction semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2009102540376A
Other languages
English (en)
Other versions
CN101866979A (zh
Inventor
李正禹
朴成基
沈敬珍
金泰润
朴元绪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Display Co Ltd
Original Assignee
LG Display Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Display Co Ltd filed Critical LG Display Co Ltd
Publication of CN101866979A publication Critical patent/CN101866979A/zh
Application granted granted Critical
Publication of CN101866979B publication Critical patent/CN101866979B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03921Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/078Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier including different types of potential barriers provided for in two or more of groups H01L31/062 - H01L31/075
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • H01L31/182Special manufacturing methods for polycrystalline Si, e.g. Si ribbon, poly Si ingots, thin films of polycrystalline Si
    • H01L31/1824Special manufacturing methods for microcrystalline Si, uc-Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

一种制造太阳能电池的方法,其包括如下步骤:通过在室温下沉积透明导电氧化物,在衬底上形成透明导电层;通过使用第一激光器将激光束照射到该透明导电层上,使该透明导电层结晶;选择性地腐蚀该结晶的透明导电层,以在该透明导电层的表面形成凸起和凹陷的图案;通过对具有该凸起和凹陷的图案的该透明导电层进行构图,形成各单元电池中的各透明电极;在各透明电极上形成p-n结半导体层并对该p-n结半导体层进行构图;以及通过形成金属材料层并对该金属材料层进行构图,在该构图后的p-n结半导体层上形成各背电极,各背电极对应于各单元电池。

Description

太阳能电池的制造方法
本申请要求享有于2009年4月17日提交的韩国专利申请No.10-2009-0033806的权益,此处通过引用包含其全部内容。
技术领域
本发明涉及一种太阳能电池,且更特别地,涉及一种制造太阳能电池的方法,其提高电光性质并使太阳能电池的效率最大化。
背景技术
太阳能电池是将太阳能转换为电能的半导体装置。太阳能电池包括将p型半导体与n型半导体接触接合在一起形成的结,并具有二极管的基本结构。
通常,太阳能电池包括p-n结半导体层的结构,其中,p型半导体层和n型半导体层设置在相对的电极之间。
对于太阳能电池的光伏能量转换,电子非对称地存在于p-n结半导体层结构中。即,在p-n结半导体层的结构中,n型半导体层具有高电子浓度和低空穴浓度,而p型半导体层具有低电子浓度和高空穴浓度。因此,在热平衡状态下,由p-n结半导体层内载流子的不同浓度引起的扩散导致电荷的不平衡。由此,产生了电场,且不再有载流子的扩散。此时,当具有比带隙能量更大能量的光照射到p-n结半导体层时,接收到该能量的电子从价带激发到导带,价带中产生空穴,其中带隙能量是导带和价带之间的能量差。激发到导带的电子自由地运动。可以将如上所述产生的自由电子和空穴称作过剩载流子(excess carrier),而且过剩载流子由于在价带或导带中的浓度的差异而扩散。这里,过剩载流子,即p型半导体层中的受激发的电子和产生于n型半导体层中的空穴,被定义为少数载流子,而在接合之前p型和n型半导体层中的载流子,即p型半导体层中的空穴和n型半导体层中的电子,被定义为多数载流子。因该电场而引起的能量势垒阻挡了多数载流子的流动。然而,p型半导体层中的少数载流子,上述电子,能运动到n型半导体层。这些少数载流子的扩散在p-n结半导体层中引起电位降(potentialdrop)。当p-n结半导体层连接到外部电路时,由于在p-n结半导体层的两端产生的电动势的缘故,这就能用作电池。
因此,太阳能电池还包括在p-n结半导体层外表面处的透明电极和背电极。透明电极具有不平坦的表面以使来自外部光源的光有效地供给到p-n结半导体层。
图1A至1F是图解了根据现有技术制造太阳能电池的方法的各步骤中的太阳能电池的视图。
图1A中,通过使用溅射设备(未示出)在300至600摄氏度的温度下沉积透明导电氧化物(TCO),在透明绝缘衬底1的实质上整个表面上形成透明导电层4。透明导电层4具有平坦的表面。此时,在高温下用溅射方法进行的透明导电氧化物的沉积伴随有局部结晶,且透明导电层4包括结晶部分之间的非晶部分和随机微结晶部分。
图1B中,通过将包括透明导电层4的衬底1浸入盛装有腐蚀剂的腐蚀槽(未示出)中,该腐蚀剂与透明导电氧化物发生化学反应,或通过将腐蚀剂喷射到透明导电层4上,在透明导电层4的表面形成凸起和凹陷的图案6。这里,适当地控制透明导电层4暴露于腐蚀剂的时间,透明导电层4不被完全腐蚀掉。透明导电层4表面的一些部分被腐蚀掉,而透明导电层4表面的其他部分未被腐蚀掉,由此,在透明导电层4的表面形成凸起和凹陷的图案6。此外,由于结晶部分和非晶部分之间的差异,凸起和凹陷的图案6更加凸起或凹陷。
图1C中,通过使用一激光器(未示出)将激光束照射到包括凸起和凹陷的图案6的透明导电层4,对图1B所示的透明导电层4进行构图,由此在每个单元电池(unit cell)中形成透明电极8。一个单元电池中的透明电极8与下一个单元电池中的透明电极间隔开。
图1D中,通过沉积具有n型杂质的半导体材料,在包括透明电极8的衬底1的实质上整个表面上形成n型半导体层10。随后,通过沉积具有p型杂质的半导体材料,在n型半导体层10上形成p型半导体层15。n型半导体层10和p型半导体层15构成p-n结半导体层20。
图1E中,通过使用一激光器(未示出)将激光束照射到p-n结半导体层20上,对p-n结半导体层20进行构图。
图1F中,通过将金属材料沉积在整个表面上并对其进行构图,在构图后的p-n结半导体层20上形成背电极30。由此,完成太阳能电池50。
然而,在这种太阳能电池50中,凸起和凹陷的图案6小且不规则。
图2是现有技术太阳能电池的放大部分的截面图。图2中,通过利用在沉积透明导电材料时形成的结晶部分和非晶部分的不同腐蚀速率腐蚀透明导电层4,形成凸起和凹陷的图案6。这里,结晶部分是随机设置的,并且进行微结晶。因此,各个凸起的图案6非常小,并且各个凸起的图案6的侧面相对于衬底1的角度是不规则的。由此,穿过衬底1表面的入射光不能被高效地散射,太阳能电池50的效率降低。
发明内容
因此,本发明涉及一种制造太阳能电池的方法,其在相当程度上消除了由于现有技术的限制和缺点所带来的一个或多个问题。
本发明的一个目的是提供制造有效吸收外部光并使太阳能电池的效率最大化的太阳能电池的方法。
本发明另外的特征和优点将在接下来的描述中进行阐述,而且其部分将能根据该描述而明白,或者可以从本发明的实践中得到。通过在文字描述和这里所要求保护的技术方案以及附图中特别指出的结构,将实现和获得本发明的这些和其他优点。
为了实现这些和其他优点并与本发明的该目的相一致,如所具体化和宽泛地描述的那样,一种制造太阳能电池的方法包括以下步骤:通过在室温下在衬底上沉积透明导电氧化物,在该衬底上形成透明导电层;通过使用第一激光器将激光束照射到该透明导电层上,使该透明导电层结晶;选择性地腐蚀结晶的透明导电层,从而在该结晶的透明导电层的表面形成凸起和凹陷的图案;通过对具有这些凸起和凹陷的图案的该结晶的透明导电层进行构图,形成各单元电池中的各透明电极;在各透明电极上形成p-n结半导体层并对该p-n结半导体层进行构图;以及通过在该构图后的p-n结半导体层上形成金属材料层并对该金属材料层进行构图,在该构图后的p-n结半导体层上形成各背电极,各背电极对应于各单元电池。
可以理解,前述的概要描述和随后的详细描述都是示例性和解释性的,且意在提供对如所要求保护的本发明的更进一步的解释。
附图说明
被包括进来提供本发明的进一步理解,且结合进来组成此说明书的一部分的附图,描绘了本发明的实施方式,并与说明书文字一起用于解释本发明的原理。
图1A至1F是图解根据现有技术的制造太阳能电池的方法的各步骤中的太阳能电池的视图。
图2是现有技术的太阳能电池的放大部分的截面图。
图3A至3G是图解根据本发明的典型实施方式的制造太阳能电池的方法的各步骤中的太阳能电池的视图。
图4是根据本发明的太阳能电池的放大部分的截面图。
具体实施方式
现在详细参考本发明的实施方式,其实例描绘于附图中。
图3A至3G是图解根据本发明的典型实施方式的制造太阳能电池的方法的各步骤中的太阳能电池的视图。
图3A中,通过在室温下使用溅射设备(未示出)沉积透明导电氧化物(TCO),在透明绝缘衬底101的实质上整个表面上形成透明导电层104。透明导电层104具有平坦的表面。透明导电氧化物可包括SnO:X或ZnO:X,其中X是诸如锂、镁、镍、铝等之类的金属材料。衬底101可以是玻璃衬底或塑料衬底。
即,虽然,在现有技术中,在300至600摄氏度的高温下形成透明导电层,使得透明导电层的表面具有结晶部分和非晶部分,但是在本发明中,在室温下通过溅射方法形成透明导电层104。这就是为什么透明导电层104的表面将在随后发生结晶。
图3B中,将激光器190设置在透明导电层104上方,且在室温下将激光束LB照射到透明导电层104的表面上。使透明导电层104从其表面以预定厚度熔化,然后使其凝固(solidify),透明导电层104被部分结晶。这里,激光器190有利地可以是IR(红外)激光器,从而能瞬时熔化透明导电材料。IR激光器190的激光束LB可以具有1064nm的波长,且IR激光器190可以具有5W至10W的功率以及40KHz至60KHz的频率。如果IR激光器190的功率大于10W,则激光束LB可能在每单位面积内具有过强的功率,透明导电层104可能在透明导电层104的表面结晶之前就被蒸发(vaporize)和去除。
如此,将具有最优化后的条件的激光束LB照射到透明导电层104的表面,使透明导电层104的表面结晶以形成晶粒(grain)(未示出)。晶粒可在透明导电层104的表面全部具有均一(uniform)的尺寸。
图3C中,通过将包括具有结晶表面的透明导电层104的衬底101浸入盛装有腐蚀剂的浸蚀槽(未示出)中,其中腐蚀剂与透明导电氧化物发生反应,或通过将腐蚀剂喷射到透明导电层104的结晶表面上,在透明导电层104的表面形成凸起和凹陷的图案106。这里,适当地控制将透明导电层104暴露于腐蚀剂的时间,透明导电层104不被完全腐蚀掉。透明导电层104表面的一些部分被腐蚀,而透明导电层104表面的其他部分未被腐蚀,由此,在透明导电层104的表面形成凸起和凹陷的图案106。晶粒之间边界的腐蚀速率不同于晶粒的腐蚀速率。边界比晶粒被腐蚀得更快。以每个晶粒的中心为基础,腐蚀逐渐朝向该晶粒的边缘进行,在实质上各个具有均一尺寸的晶粒中形成凸起的图案106。凸起的图案106可以具有均一的尺寸。
参考图4,其是根据本发明的太阳能电池的放大部分的截面图,与图2的凸起的图案6相比,该凸起的图案大而且均一。另外,凸起的图案106的侧面相对于衬底101的角度是均一的。由此,有效地避免了光被完全反射。增强了光散射,提高了光吸收。
其间,通过控制透明导电层104暴露于腐蚀剂的时间,能够调节凸起的图案106的高度以及凸起的图案106的侧面相对于衬底101的角度。在现有技术中,由于在高温下形成透明导电层且包括微结晶部分和非晶部分,因此,通过腐蚀微结晶部分和非晶部分形成的凸起的图案具有不同的尺寸。因此,难以通过控制腐蚀时间来调整凸起的图案的侧面相对于衬底的角度。然而,在本发明中,由于用图3B的IR激光器190结晶的晶粒具有均一的尺寸,因此可以通过控制腐蚀时间来调整凸起的图案106的侧面相对于衬底101的角度。
图3D中,通过使用一激光器(未示出)将激光束照射到包括凸起和凹陷的图案106的透明导电层104上,图3C的透明导电层104被部分去除并被构图,由此在每个单元电池内形成透明电极108。一个单元电池内的透明电极108与下一个单元电池内的透明电极间隔开。这里,该激光器可以是IR激光器,并且,在这种情况下,该IR激光器可以具有12W至20W的功率。当该激光器具有小于12W的功率时,尤其是具有小于10W的功率时,可能使透明导电层104熔化和结晶,并且透明导电层104可能不能被去除。
图3E中,通过沉积具有n型杂质的半导体材料,在包括透明电极108的衬底101的实质上整个表面上形成n型半导体层110。随后,通过沉积具有p型杂质的半导体材料,在n型半导体层110上形成p型半导体层115。n型半导体层110和p型半导体层115构成p-n结半导体层120。此时,在n型半导体层110和p型半导体层115之间可以进一步形成本征非晶半导体层,例如,本征非晶硅层。
图3F中,通过使用一激光器(未示出)将激光束(未示出)照射到p-n结半导体层120上,对p-n结半导体层120进行构图。构图后的p-n结半导体层120具有与透明电极108的端部不一致(coincide)的端部,且在相邻的p-n结半导体层120之间使透明电极108露出,如标记123所示。即,透明电极108的边界不与p-n结半导体层120的边界重叠且与p-n结半导体层120的边界不同。用于对p-n结半导体层120进行构图的激光器具有比用于对透明导电层104进行构图的激光器的功率更大的功率。用于对p-n结半导体层120进行构图的激光器的激光束可具有190nm至308nm的波长。用于对p-n结半导体层120进行构图的激光器可以是准分子激光器或Nd-YAG激光器。因为透明电极108吸收具有一不同波长的激光束,所以具有190nm至308nm波长的准分子激光器或Nd-YAG激光器的激光束可以不影响透明电极108。
图3G中,通过将金属材料沉积在整个表面上并对其进行构图,在构图后的p-n结半导体层120上形成背电极130。该金属材料可以是具有相对高反射率的铝或铝合金。由此完成太阳能电池50。
这里,通过照射激光束或通过执行光刻工艺,可对沉积后的金属材料进行构图,该光刻工艺包括将光致抗蚀剂施加到薄膜上、使光致抗蚀剂曝光、将曝光后的光致抗蚀剂显影、以及蚀刻薄膜。
其间,当对背电极130进行构图时,p-n结半导体层120也被构图,露出透明电极108。背电极130被如图所示构图以使得单元电池内由外部光产生的电动势被串联起来。太阳能电池150包括许多单元电池,每个单元电池内的电动势非常低且不足以用于电子装置。因此,将一个单元电池的背电极130连接到下一个单元电池的透明电极108。各单元电池的电动势被串联连接,能够使用相对高的电压。
在本发明的太阳能电池中,由于与现有技术相比透明电极的凸起和凹陷的图案具有均一的和大的尺寸,因此有效地避免了入射光的全反射,并由此使入射到p-n结半导体层上的光量最大。此外,使吸收光的能力最大,且提高了太阳能电池的效率。另外,由于透明电极因其结晶的表面而具有改进的透过率和内电阻以及接触电阻,所以进一步提高了太阳能电池的效率。
在不脱离本发明精神和范围的情况下,可以在本发明中作出各种修改和变化,这对于本领域技术人员而言是显而易见的。因此,倘若本发明的修改和变化在所附要求保护的技术方案及其等同物的范围内,意在使本发明覆盖这些修改和变化。

Claims (13)

1.一种制造太阳能电池的方法,该方法包括:
通过在室温下在衬底上沉积透明导电氧化物,在所述衬底上形成透明导电层;
通过使用第一激光器将激光束照射到所述透明导电层上,使所述透明导电层结晶以形成在透明导电层的表面全部具有均一的尺寸的晶粒;
选择性地腐蚀结晶的透明导电层,以在所述结晶的透明导电层的表面形成凸起和凹陷的图案;
通过对具有所述凸起和凹陷的图案的所述结晶的透明导电层进行构图,形成各单元电池中的各透明电极;
在所述各透明电极上形成p-n结半导体层并对所述p-n结半导体层进行构图;以及
通过在构图后的p-n结半导体层上形成金属材料层并对所述金属材料层进行构图,在所述构图后的p-n结半导体层上形成各背电极,所述各背电极对应于所述各单元电池。
2.根据权利要求1所述的方法,其中,所述透明导电氧化物包括SnO:X或ZnO:X中的一种,其中X是金属材料。
3.根据权利要求1所述的方法,其中,所述第一激光器是具40KHz至60KHz的频率、5W至10W的功率及产生具有1064nm的波长的激光束的红外激光器。
4.根据权利要求1所述的方法,其中,对所述结晶的透明导电层进行构图包括使用具有大于12W的功率的第二激光器照射激光束。
5.根据权利要求4所述的方法,其中,所述第二激光器是红外激光器。
6.根据权利要求4所述的方法,其中,对所述p-n结半导体层进行构图包括使用具有比所述第二激光器的功率大的功率的第三激光器照射激光束。
7.根据权利要求6所述的方法,其中,所述第三激光器是产生具有190nm至308nm的波长的激光束的Nd-YAG激光器和准分子激光器中的一种。
8.根据权利要求1所述的方法,其中,对所述p-n结半导体层进行构图包括使所述透明电极在相邻的构图后的p-n结半导体层之间露出。
9.根据权利要求8所述的方法,其中,对所述金属材料层进行构图包括选择性地去除所述构图后的p-n结半导体层以及使所述透明电极在相邻的背电极之间露出。
10.根据权利要求9所述的方法,其中,一个单元电池中的背电极接触下一个单元电池中的透明电极。
11.根据权利要求1所述的方法,其中,形成所述p-n结半导体层包括在所述各透明电极上形成p型半导体层以及在所述p型半导体层上形成n型半导体层。
12.根据权利要求11所述的方法,其中,形成所述p-n结半导体层还包括在所述p型半导体层和所述n型半导体层之间形成本征非晶半导体层。
13.根据权利要求1所述的方法,其中,对所述金属材料层进行构图包括照射激光束和执行光刻工艺之一,所述光刻工艺包括将光致抗蚀剂施加到薄膜、使所述光致抗蚀剂曝光、将曝光后的光致抗蚀剂显影、以及蚀刻所述薄膜的步骤。
CN2009102540376A 2009-04-17 2009-12-15 太阳能电池的制造方法 Expired - Fee Related CN101866979B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0033806 2009-04-17
KR1020090033806A KR20100115193A (ko) 2009-04-17 2009-04-17 태양전지의 제조방법

Publications (2)

Publication Number Publication Date
CN101866979A CN101866979A (zh) 2010-10-20
CN101866979B true CN101866979B (zh) 2012-05-23

Family

ID=42958614

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009102540376A Expired - Fee Related CN101866979B (zh) 2009-04-17 2009-12-15 太阳能电池的制造方法

Country Status (5)

Country Link
US (1) US8173483B2 (zh)
JP (1) JP5474525B2 (zh)
KR (1) KR20100115193A (zh)
CN (1) CN101866979B (zh)
TW (1) TWI413271B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8563351B2 (en) * 2010-06-25 2013-10-22 Taiwan Semiconductor Manufacturing Co., Ltd. Method for manufacturing photovoltaic device
EP2469603A1 (en) * 2010-12-27 2012-06-27 Centre National de la Recherche Scientifique Improved method for manufacturing a photovoltaic device comprising a TCO layer
KR20120085571A (ko) * 2011-01-24 2012-08-01 엘지이노텍 주식회사 태양 전지
KR101283140B1 (ko) * 2011-01-26 2013-07-05 엘지이노텍 주식회사 태양전지 및 이의 제조방법
KR101774278B1 (ko) * 2011-07-18 2017-09-04 엘지디스플레이 주식회사 플렉서블 표시장치의 제조방법
KR101517077B1 (ko) * 2014-05-23 2015-05-04 인천대학교 산학협력단 고성능 투명 전극 소자 및 그 제조 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101297380A (zh) * 2005-10-28 2008-10-29 旭硝子株式会社 带有薄膜的透明衬底和使用这类带有薄膜的透明衬底用于制造带有电路图案的透明衬底的方法
CN101404307A (zh) * 2008-10-29 2009-04-08 中山大学 一种多晶硅太阳电池绒面制作方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0831611B2 (ja) * 1987-04-15 1996-03-27 三洋電機株式会社 光起電力装置の製造方法
JPH04242931A (ja) * 1990-12-29 1992-08-31 Kyocera Corp 半導体素子の製造方法
JP2974485B2 (ja) * 1992-02-05 1999-11-10 キヤノン株式会社 光起電力素子の製造法
JPH06140650A (ja) * 1992-09-14 1994-05-20 Sanyo Electric Co Ltd 透光性導電酸化膜の改質方法とこれを用いた光起電力装置の製造方法
DE4315959C2 (de) * 1993-05-12 1997-09-11 Max Planck Gesellschaft Verfahren zur Herstellung einer strukturierten Schicht eines Halbleitermaterials sowie einer Dotierungsstruktur in einem Halbleitermaterial unter Einwirkung von Laserstrahlung
JP3819632B2 (ja) * 1999-04-07 2006-09-13 三洋電機株式会社 光電変換素子及びその製造方法
US6509204B2 (en) * 2001-01-29 2003-01-21 Xoptix, Inc. Transparent solar cell and method of fabrication
JP4183394B2 (ja) * 2001-03-13 2008-11-19 三洋電機株式会社 光起電力装置の製造方法
JP4438381B2 (ja) * 2003-11-05 2010-03-24 株式会社ブリヂストン 結晶性ito膜、ito膜の結晶化方法、透明導電性フィルム、タッチパネル及び色素増感型太陽電池
WO2007072950A1 (ja) * 2005-12-22 2007-06-28 Mitsui Mining & Smelting Co., Ltd. 酸化亜鉛系透明導電膜のパターニング方法
JP5068475B2 (ja) * 2006-04-24 2012-11-07 昭和電工株式会社 窒化ガリウム系化合物半導体発光素子の製造方法及び窒化ガリウム系化合物半導体発光素子、並びにランプ
JP4231967B2 (ja) * 2006-10-06 2009-03-04 住友金属鉱山株式会社 酸化物焼結体、その製造方法、透明導電膜、およびそれを用いて得られる太陽電池
US8420978B2 (en) * 2007-01-18 2013-04-16 The Board Of Trustees Of The University Of Illinois High throughput, low cost dual-mode patterning method for large area substrates
FR2923221B1 (fr) * 2007-11-07 2012-06-01 Air Liquide Procede de depot par cvd ou pvd de composes de bore
KR100882140B1 (ko) * 2008-03-19 2009-02-06 한국철강 주식회사 마이크로결정 실리콘 태양전지 및 제조방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101297380A (zh) * 2005-10-28 2008-10-29 旭硝子株式会社 带有薄膜的透明衬底和使用这类带有薄膜的透明衬底用于制造带有电路图案的透明衬底的方法
CN101404307A (zh) * 2008-10-29 2009-04-08 中山大学 一种多晶硅太阳电池绒面制作方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
D.Ganz,et al.Laser Sintering of SnO2 : Sb Sol-Gel Coatings.《Journal of Sol-Gel Science and Technology》.1998,第13卷(第1-3期), *
JP特开2000-77692A 2000.03.14
薛俊明等.ZnO:AI绒面透明导电薄膜性能研究.《兵工学报》.2008,第29卷(第4期), *
谭天亚等.ZnO基透明导电薄膜制备方法研究进展.《辽宁大学学报》.2007,第3卷(第4期),第334页-第338页. *

Also Published As

Publication number Publication date
JP5474525B2 (ja) 2014-04-16
US8173483B2 (en) 2012-05-08
TWI413271B (zh) 2013-10-21
TW201039460A (en) 2010-11-01
CN101866979A (zh) 2010-10-20
JP2010251704A (ja) 2010-11-04
KR20100115193A (ko) 2010-10-27
US20100267193A1 (en) 2010-10-21

Similar Documents

Publication Publication Date Title
CN101866979B (zh) 太阳能电池的制造方法
CN101970131B (zh) 采用多层高速喷墨打印生成太阳能电池的方法
CN102640263B (zh) 在半导体应用上的结晶处理
CN106898658B (zh) 太阳能电池及其制造方法
US4517403A (en) Series connected solar cells and method of formation
EP0422511A2 (en) Photovoltaic device and process for manufacturing the same
JP2010278441A (ja) 集積型薄膜太陽電池及びその製造方法
US7883924B2 (en) Method for producing a photovoltaic module using an IR laser
US10043923B2 (en) Laser doping of crystalline semiconductors using a dopant-containing amorphous silicon stack for dopant source and passivation
CN105103293A (zh) 具有通过印刷导体串联连接的印刷光伏电池的光伏模块
US20110011453A1 (en) Solar cell module and method for manufactuirng the same
US8329500B2 (en) Method of manufacturing photovoltaic device
JP2001266654A (ja) 透明電極及び透明電極のパターニング方法及びそれを用いた半導体素子の製造方法
JPH0851229A (ja) 集積型太陽電池およびその製造方法
US20100180927A1 (en) Affixing method and solar decal device using a thin film photovoltaic and interconnect structures
JP2004273887A (ja) 結晶薄膜半導体装置及び太陽電池素子
CN102097536A (zh) 制造一体化光伏模块的方法
KR102378492B1 (ko) 반투명 박막 태양광 모듈
JP7124068B2 (ja) 半透明薄膜ソーラーモジュール
CN203150568U (zh) 太阳能电池元件
JP2000124488A (ja) 薄膜太陽電池の製造方法
CN115004378B (zh) 制造光伏器件的方法
RU2444088C2 (ru) Полупроводниковый фотоэлектрический преобразователь и способ его изготовления (варианты)
US8466447B2 (en) Back contact to film silicon on metal for photovoltaic cells
JPH09135036A (ja) 光起電力装置の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120523

Termination date: 20201215

CF01 Termination of patent right due to non-payment of annual fee