CN101862966A - Two-degree-of-freedom parallel decoupling micro-motion platform - Google Patents
Two-degree-of-freedom parallel decoupling micro-motion platform Download PDFInfo
- Publication number
- CN101862966A CN101862966A CN 201010216326 CN201010216326A CN101862966A CN 101862966 A CN101862966 A CN 101862966A CN 201010216326 CN201010216326 CN 201010216326 CN 201010216326 A CN201010216326 A CN 201010216326A CN 101862966 A CN101862966 A CN 101862966A
- Authority
- CN
- China
- Prior art keywords
- platform
- hinge
- halfpace
- side chain
- decoupling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000919 ceramic Substances 0.000 claims abstract description 15
- 238000006073 displacement reaction Methods 0.000 abstract description 31
- 230000008878 coupling Effects 0.000 abstract description 10
- 238000010168 coupling process Methods 0.000 abstract description 10
- 238000005859 coupling reaction Methods 0.000 abstract description 10
- 230000003071 parasitic effect Effects 0.000 abstract description 5
- 150000001875 compounds Chemical class 0.000 abstract description 2
- 230000007246 mechanism Effects 0.000 description 9
- 239000002131 composite material Substances 0.000 description 6
- 230000001186 cumulative effect Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 238000005452 bending Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000011949 advanced processing technology Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
Images
Landscapes
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
Description
技术领域technical field
本发明涉及的是一种微机电系统技术领域的装置,具体是一种基于压电陶瓷驱动器和柔性铰链的二自由度平动并联解耦微动平台。The invention relates to a device in the technical field of micro-electromechanical systems, in particular to a two-degree-of-freedom parallel decoupling micro-motion platform based on a piezoelectric ceramic driver and a flexible hinge.
背景技术Background technique
在微机电系统、扫描探测显微镜、超精密加工、光学元件制造以及生物医学工程等领域中,具有纳米精度的微动平台是核心部件。目前,大多数采用具有压电陶瓷驱动器的柔性铰链运动工作台。而目前,商业上常用的二自由度微动平台大多采用两个一维的运动平台垂直叠加在一起或者以串联的方式将某一方向的运动平台嵌套在另外一个方向平台内,实现二维运动。但是采用这种连接方式的二维微动平台会因为叠加而产生累积误差、寄生位移、固有频率降低、两个运动方向动态特性不同并且体积庞大等缺点。因此,为克服以上缺点,发明具有高精度、低惯量、高固有频率、二自由度结构对称、输入输出解耦和小体积的二维微动平台对于实际应用具有较大的意义。In the fields of micro-electro-mechanical systems, scanning detection microscopes, ultra-precision machining, optical component manufacturing, and biomedical engineering, micro-motion platforms with nanometer precision are the core components. Currently, most employ flexible hinged motion stages with piezoceramic drivers. At present, most of the two-degree-of-freedom micro-motion platforms commonly used in business use two one-dimensional motion platforms vertically superimposed together or nested in a certain direction within another direction platform in a series manner to achieve a two-dimensional sports. However, the two-dimensional micro-motion platform using this connection method will have shortcomings such as cumulative error, parasitic displacement, natural frequency reduction, different dynamic characteristics of the two motion directions, and large volume due to superposition. Therefore, in order to overcome the above shortcomings, the invention of a two-dimensional micro-motion platform with high precision, low inertia, high natural frequency, two-degree-of-freedom structural symmetry, decoupling input and output, and small volume has great significance for practical applications.
经过对现有技术文献的检索发现,中国专利申请号200510023219.4,公开号CN1644329A,名称为“微型二维解耦工作台”的专利申请,公开了一种微型二维解耦工作台。但该技术中,构型比较复杂,加工成本比较高。中国专利申请号200810636287.2,公开号CN101413902A,名称为“一种扫描电镜原位观察的全柔性三平移混联微动装置”的专利申请,其中的二自由度部分给出了一种二自由度全柔性平面并联机构。但该技术中,如果当只驱动某一个自由度上的驱动器时,另外一个自由度上的驱动器需要承受较大的弯矩和侧向力,容易造成驱动器的损坏,即不能很好的实现压电驱动器的输入解耦。中国专利申请号200710114743.1,公开号CN101176995A,名称为“一种具有冗余支链的二平动微动平台”的专利申请,提供了一种具有冗余支链的二平动微动平台。但该技术中采用的单平行四杆机构运动时具有耦合位移,不能实现二维运动的完全解耦。After searching the prior art documents, it is found that the Chinese patent application number 200510023219.4, the publication number CN1644329A, and the patent application titled "miniature two-dimensional decoupling workbench" disclose a miniature two-dimensional decoupling workbench. However, in this technology, the configuration is relatively complicated and the processing cost is relatively high. Chinese patent application number 200810636287.2, publication number CN101413902A, a patent application titled "a fully flexible three-translation hybrid micro-motion device for in-situ observation by scanning electron microscope", in which the two-degree-of-freedom part provides a two-degree-of-freedom full Flexible planar parallel mechanism. However, in this technology, if only the driver on a certain degree of freedom is driven, the driver on the other degree of freedom needs to bear a large bending moment and lateral force, which is likely to cause damage to the driver, that is, it cannot be well realized. The input of the electric drive is decoupled. Chinese patent application number 200710114743.1, publication number CN101176995A, a patent application titled "a two-translation micro-motion platform with redundant branch chains", provides a two-translation micro-motion platform with redundant branch chains. However, the single parallel four-bar mechanism used in this technology has coupling displacement when moving, and cannot achieve complete decoupling of two-dimensional motion.
发明内容Contents of the invention
本发明针对现有技术存在的上述不足,提供一种二自由度平动并联解耦微动平台,依靠复合双平行直板铰链的解耦功能、刚度特性以及平台整体结构的对称性,从而达到消除耦合和寄生位移的功能,实现运动平台的二维运动。Aiming at the above-mentioned deficiencies in the prior art, the present invention provides a two-degree-of-freedom translational parallel decoupling micro-motion platform, relying on the decoupling function, stiffness characteristics and symmetry of the overall structure of the platform to eliminate The function of coupling and parasitic displacement realizes the two-dimensional movement of the motion platform.
本发明是通过以下技术方案实现的,本发明包括:压电陶瓷驱动器、两个驱动支链及其对应的辅助支链、工作平台以及固定机架,其中:两个驱动支链及其对应的辅助支链分别两两对称分布在工作平台的X方向和Y方向。The present invention is achieved through the following technical solutions. The present invention includes: a piezoelectric ceramic driver, two drive branch chains and their corresponding auxiliary branch chains, a working platform and a fixed frame, wherein: two drive branch chains and their corresponding auxiliary branch chains The auxiliary branch chains are symmetrically distributed in pairs in the X direction and the Y direction of the working platform.
所述的驱动支链包括:输入解耦平台、驱动支链中间平台、一级驱动铰链中间平台、二级驱动铰链中间平台和柔性铰链,其中:输入解耦平台与驱动支链中间平台通过柔性铰链活动连接,一级驱动铰链中间平台分别与驱动支链中间平台和固定机架通过柔性铰链活动连接,二级驱动铰链中间平台分别与工作平台和驱动支链中间平台通过柔性铰链活动连接。The drive branch chain includes: an input decoupling platform, a drive branch chain intermediate platform, a primary drive hinge intermediate platform, a secondary drive hinge intermediate platform and a flexible hinge, wherein: the input decoupling platform and the drive branch intermediate platform are connected through a flexible The hinges are movably connected, the middle platform of the primary driving hinge is respectively connected with the middle platform of the driving branch chain and the fixed frame through flexible hinges, and the middle platform of the secondary driving hinge is respectively connected with the working platform and the middle platform of the driving branch chain through flexible hinges.
所述的辅助支链包括:辅助支链中间平台、一级辅助铰链中间平台、二级辅助铰链中间平台和柔性铰链,其中:一级辅助铰链中间平台分别与辅助支链中间平台和固定机架通过柔性铰链活动连接,二级辅助铰链中间平台分别与工作平台和辅助支链中间平台通过柔性铰链活动连接。The auxiliary branch chain includes: auxiliary branch chain intermediate platform, first-level auxiliary hinge intermediate platform, second-level auxiliary hinge intermediate platform and flexible hinge, wherein: the first-level auxiliary hinge intermediate platform is connected with the auxiliary branch intermediate platform and the fixed frame respectively The intermediate platform of the secondary auxiliary hinge is respectively connected with the working platform and the intermediate platform of the auxiliary branch chain through flexible hinges.
所述的压电陶瓷驱动器的头部与驱动支链内的输入解耦平台相接触并施加力于输入解耦平台,压电陶瓷驱动器的底部与固定机架固定连接。The head of the piezoelectric ceramic driver is in contact with the input decoupling platform in the drive branch chain and exerts force on the input decoupling platform, and the bottom of the piezoelectric ceramic driver is fixedly connected with the fixed frame.
所述的驱动支链及其对应的辅助支链、工作平台以及固定机架等都是采用一体式结构,即在一块金属材料板上,采用先进加工工艺加工而成,无需装配,结构紧凑,体积小,有效避免了装配误差的产生,满足了高精度的要求。The drive branch chain and its corresponding auxiliary branch chain, working platform and fixed frame all adopt an integrated structure, that is, it is processed on a piece of metal material board with advanced processing technology, no assembly is required, and the structure is compact. The small size effectively avoids assembly errors and meets the requirements of high precision.
本发明通过以下方式进行工作:以Y方向运动为例,压电陶瓷驱动器施加力于Y方向驱动支链内的输入解耦平台以使驱动支链中间平台朝Y方向运动,通过柔性铰链的协调变形,并且由于柔性铰链轴向刚度较大,从而带动工作平台和Y方向辅助支链整体朝Y方向运动。同时也带动了X方向的驱动支链内的二级驱动铰链中间平台和辅助支链内的的二级辅助铰链中间平台朝Y方向运动。由于柔性铰链轴向刚度较大,故工作平台的位移基本上与压电陶瓷驱动器的输出位移即驱动支链中间平台得位移基本相同。The present invention works in the following way: Taking the movement in the Y direction as an example, the piezoelectric ceramic driver applies force to the input decoupling platform in the drive branch chain in the Y direction to drive the intermediate platform of the branch chain to move in the Y direction, and through the coordination of the flexible hinge deformation, and due to the high axial stiffness of the flexible hinge, the working platform and the auxiliary branch chain in the Y direction are driven to move in the Y direction as a whole. Simultaneously, it also drives the intermediate platform of the secondary drive hinge in the drive branch chain in the X direction and the secondary auxiliary hinge intermediate platform in the auxiliary branch chain to move in the Y direction. Due to the high axial stiffness of the flexible hinge, the displacement of the working platform is basically the same as the output displacement of the piezoelectric ceramic driver, that is, the displacement of the middle platform of the driving branch chain.
本发明与现有的技术相比,具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
(1)本发明采用复合双平行直板铰链相比于单平行和双平行铰链具有大位移,低应力集中以及无耦合位移等优点,并且当某一方向驱动器运动时,由于该铰链具有较大的轴向刚度,另一个方向的驱动器承受较小的弯矩和侧向载荷。而且采用的直板铰链相对于直角圆铰链具有结构形状简单,便于加工,加工成本低等优点。(1) Compared with single-parallel and double-parallel hinges, the present invention adopts composite double-parallel straight hinges, which have the advantages of large displacement, low stress concentration and no coupling displacement, and when the driver moves in a certain direction, because the hinge has a larger Axial rigidity, the drive in the other direction bears small bending moments and side loads. Moreover, compared with the right-angle round hinge, the straight hinge used has the advantages of simple structure and shape, convenient processing, and low processing cost.
(2)本发明采用对称约束结构,从而有效消除了轴间输出耦合的位移,累积误差以及工作平台旋转等寄生位移的产生,保证了运动平台的二自由度平动,同时也增加了结构的刚度、承载能力和固有频率。(2) The present invention adopts a symmetrical constraint structure, thereby effectively eliminating the displacement of the output coupling between the axes, the cumulative error, and the generation of parasitic displacements such as the rotation of the working platform, ensuring the two-degree-of-freedom translation of the motion platform, and also increasing the structure. Stiffness, load carrying capacity and natural frequency.
(3)本发明采用的并联机构相比于简单叠加的串联机构具有高刚度,低惯量,高承载能力,精度高,无累积误差,两个方向的动力学特性相同以及结构对称紧凑,体积小等优点。(3) The parallel mechanism adopted in the present invention has high rigidity, low inertia, high load-carrying capacity, high precision, no cumulative error, the same dynamic characteristics in two directions, symmetrical and compact structure, and small volume compared to the simply superimposed series mechanism Etc.
附图说明Description of drawings
图1为本发明的系统结构框图。Fig. 1 is a system structure block diagram of the present invention.
图2为Y方向机构变形原理简图。Figure 2 is a schematic diagram of the deformation principle of the Y-direction mechanism.
图3为工作平台X方向位移与两轴所施加的力的关系图。Fig. 3 is a diagram showing the relationship between the X-direction displacement of the working platform and the forces applied by the two axes.
图4为工作平台旋转角度与两轴所施加的力的关系图。Fig. 4 is a diagram showing the relationship between the rotation angle of the working platform and the force applied by the two axes.
具体实施方式Detailed ways
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。The embodiments of the present invention are described in detail below. This embodiment is implemented on the premise of the technical solution of the present invention, and detailed implementation methods and specific operating procedures are provided, but the protection scope of the present invention is not limited to the following implementation example.
如图1和图2所示,本实施例包括:压电陶瓷驱动器1、两个相同的驱动支链8和11及其对应的两个相同的辅助支链9和10、工作平台7以及固定机架2,其中:辅助支链9、10与驱动支链8、11两两对称分布在工作平台7的X+、X-、Y+、Y-四个平面坐标轴方向上。As shown in Figures 1 and 2, this embodiment includes: a piezoelectric
所述的驱动支链11包括:输入解耦平台14、驱动支链中间平台12、一级驱动铰链中间平台3、二级驱动铰链中间平台5和柔性铰链4、6和13,其中:输入解耦平台14与驱动支链中间平台12通过柔性铰链13活动连接,一级驱动铰链中间平台3分别与驱动支链中间平台5和固定机架2通过柔性铰链4活动连接,二级驱动铰链中间12平台分别与工作平台7和驱动支链中间平台5通过柔性铰链6活动连接。The
所述的辅助支链9包括:辅助支链中间平台25、一级辅助铰链中间平台22、二级辅助铰链中间平台24和柔性铰链21和23,其中:一级辅助铰链中间平台22分别与辅助支链中间平台25和固定机架2通过柔性铰链21活动连接,二级辅助铰链中间平台24分别与工作平台7和辅助支链中间平台25通过柔性铰链23活动连接。Described
所述的工作平台7通过四个方向上的柔性铰链6、15、23和30分别活动连接到XY两个方向的驱动支链11和8上的二级驱动铰链中间平台12和16以及对应辅助支链9和10上的二级辅助铰链中间平台24和27上。The working
所述的固定机架2通过柔性铰链4、20、21和28与XY两个方向的驱动支链11和8上的一级驱动铰链中间平台3和18以及对应辅助支链9和10上的一级辅助铰链中间平台22和29活动连接。The
所述的驱动支链8和11及其对应的辅助支链9和10、工作平台7以及固定机架2都是采用一体式结构,即在一块金属材料板上,采用先进加工工艺加工而成,无需装配,结构紧凑,体积小,有效避免了装配误差的产生,满足了高精度的要求。The
本实例通过以下方式进行工作:以Y方向运动为例,压电陶瓷驱动器1施加力于Y方向驱动支链11内输入解耦平台14以使驱动支链中间平台5朝Y方向运动,通过柔性铰链4、15、21和30的协调变形,并且由于柔性铰链6和23轴向刚度较大,从而带动工作平台7和Y方向辅助支链9整体朝Y方向运动。同时也带动了X方向的驱动支链8内的二级驱动铰链中间平台16和辅助支链10内的的二级辅助铰链中间平台27朝Y方向运动。由于柔性铰链6刚度较大,故工作平台7的位移基本上与压电陶瓷驱动器1的输出位移即驱动支链中间平台5得位移基本相同。This example works in the following way: Taking the movement in the Y direction as an example, the piezoelectric
由于柔性铰链4和21采用复合双平行结构,Y方向驱动支链11上的一级驱动铰链中间平台3在Y方向上的位移为驱动支链中间平台5的一半,Y方向辅助支链9的一级辅助铰链中间平台22在Y方向上的位移为辅助支链中间平台25的一半,故柔性铰链4和21内的单个直板铰链的末端扰度为驱动支链中间平台12和辅助支链中间平台25在Y方向上位移的一半,同时由于柔性铰链15和30也采用复合双平行结构,二级驱动铰链中间平台16和二级辅助铰链中间平台27的位移为工作平台7位移的一半,故柔性铰链15和30内的单个直板铰链末端扰度也为工作平台7的一半,故系统采用的复合双平行结构能较好的降低柔性铰链的最大应力。Since the
当只有Y方向的压电陶瓷驱动器1产生位移时,由于系统采用复合双平行四杆机构,以及整体结构的对称性,所以工作平台7在X方向无输出耦合位移,并且由于柔性铰链20和28轴向刚度较大,故X方向的驱动支链8上的驱动支链中间平台19在Y方向产生的位移很小,同时在Y方向压电驱动器1的输入端加入了输入解耦平台14,从而有效减少了Y方向压电驱动器1所承受的弯矩和侧向力,避免了压电陶瓷驱动器1的损坏。When only the piezoelectric
如图3所示,工作平台7的X方向位移与X方向输入力呈线性关系,而与Y方向的输入力基本无关,从而消除了因为Y方向上输入力的变化所引起的X方向的耦合位移,同时也消除了运动过程中所引起的累积误差。As shown in Figure 3, the X-direction displacement of the
如图4所示,由于采用对称性结构和复合双平行四杆机构,工作平台7在运动过程中的所产生的旋转角度趋于零,相比于X和Y方向上的位移可以忽略不计,从而有效消除了工作平台7的转动角度。As shown in Figure 4, due to the use of a symmetrical structure and a composite double parallel four-bar mechanism, the rotation angle of the
本装置与现有的技术相比,具有以下有益效果:Compared with the existing technology, the device has the following beneficial effects:
(1)本装置采用复合双平行直板铰链4,6,15,20,21,23,28,30相比于单平行和双平行铰链具有大位移,低应力集中以及无耦合位移等优点,并且当某一方向驱动器运动时,由于该铰链具有较大的轴向刚度,另一个方向的驱动器承受较小的弯矩和侧向载荷。而且采用的直板铰链相对于直角圆铰链具有结构形状简单,便于加工,加工成本低等优点。(1) This device adopts composite double parallel
(2)本装置采用对称约束结构,从而有效消除了轴间输出耦合的位移,累积误差以及工作平台旋转等寄生位移的产生,保证了运动平台的二自由度平动,同时也增加了结构的刚度、承载能力和固有频率。(2) The device adopts a symmetrical constraint structure, which effectively eliminates the displacement of the output coupling between the axes, the cumulative error, and the generation of parasitic displacements such as the rotation of the working platform, ensuring the two-degree-of-freedom translation of the motion platform, and also increasing the structure. Stiffness, load carrying capacity and natural frequency.
(3)本装置采用的并联机构相比于简单叠加的串联机构具有高刚度,低惯量,高承载能力,精度高,无累积误差,两个方向的动力学特性相同以及结构对称紧凑,体积小等优点。(3) Compared with the simple stacked series mechanism, the parallel mechanism adopted by this device has high rigidity, low inertia, high load capacity, high precision, no cumulative error, the same dynamic characteristics in two directions, symmetrical and compact structure, and small volume Etc.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010216326XA CN101862966B (en) | 2010-07-02 | 2010-07-02 | Two freedom-degree translational parallel decoupling micromotion platform |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010216326XA CN101862966B (en) | 2010-07-02 | 2010-07-02 | Two freedom-degree translational parallel decoupling micromotion platform |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101862966A true CN101862966A (en) | 2010-10-20 |
CN101862966B CN101862966B (en) | 2012-02-15 |
Family
ID=42954991
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201010216326XA Expired - Fee Related CN101862966B (en) | 2010-07-02 | 2010-07-02 | Two freedom-degree translational parallel decoupling micromotion platform |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101862966B (en) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102380788A (en) * | 2011-11-08 | 2012-03-21 | 浙江师范大学 | Double-parallel-flexible-hinge-based tool rest driving platform of super-precision machining lathe |
CN102581828A (en) * | 2012-02-10 | 2012-07-18 | 合肥工业大学 | Two-dimensional micro-displacement worktable without coupled motion |
CN102637462A (en) * | 2012-05-17 | 2012-08-15 | 合肥工业大学 | 12-rod two-dimensional no-coupling micrometric displacement workbench |
CN102664045A (en) * | 2012-05-17 | 2012-09-12 | 合肥工业大学 | 16-bartwo-dimensional no-coupling micro displacement worktable |
CN102664046A (en) * | 2012-05-17 | 2012-09-12 | 合肥工业大学 | 24-bar two-dimensional no-coupling micro-displacement workbench |
CN102664047A (en) * | 2012-05-17 | 2012-09-12 | 合肥工业大学 | 20-bar two-dimensional non-coupling micro-displacement stage |
CN103030103A (en) * | 2012-12-10 | 2013-04-10 | 山东理工大学 | 3-PRR micro-displacement platform based on symmetrical variable cross-section compliant mechanism |
CN103056868A (en) * | 2012-12-24 | 2013-04-24 | 苏州大学 | Two-dimensional micro positioner based on displacement sensor |
CN103143732A (en) * | 2013-03-01 | 2013-06-12 | 天津大学 | Displacement sensor type piezoceramic driver based on flexible mechanism |
CN103217133A (en) * | 2012-01-19 | 2013-07-24 | 昆山思拓机器有限公司 | Stand-column type manual thickness measuring equipment for surface mounted technology (SMT) stencil |
CN103226342A (en) * | 2013-04-28 | 2013-07-31 | 清华大学 | High-rigidity parallel double-drive motion decoupling servo control platform |
CN103568005A (en) * | 2013-11-18 | 2014-02-12 | 山东理工大学 | Dual-translation orthogonal decoupling parallel micro-positioning platform |
CN104196952A (en) * | 2014-07-14 | 2014-12-10 | 西安电子科技大学 | Two-freedom-degree micro type flexible hinge vibration attenuation platform and vibration attenuation method |
CN104595642A (en) * | 2015-01-06 | 2015-05-06 | 山东大学 | Two-degree-of-freedom piezoelectric driving nanometer positioning platform |
CN105196300A (en) * | 2015-11-11 | 2015-12-30 | 山东理工大学 | Self-coordination driving type two-rotation micro-operation robot |
CN105643592A (en) * | 2016-03-15 | 2016-06-08 | 河北工业大学 | Symmetrical decoupling and single degree of freedom flexible operation mechanism |
CN106514278A (en) * | 2016-11-08 | 2017-03-22 | 江西理工大学 | Two-dimensional high-frequency micro-amplitude vibrator based on flexible parallel mechanism |
CN107017031A (en) * | 2017-05-02 | 2017-08-04 | 清华大学 | Two-dimensional nano compliant motion platform |
CN107052829A (en) * | 2017-03-03 | 2017-08-18 | 上海交通大学 | Active milling and vibration-damping platform |
CN107617890A (en) * | 2017-10-18 | 2018-01-23 | 北京交通大学 | It is a kind of that there is the redundantly driven parallel bed executing agency for evading Strange properties |
CN107833594A (en) * | 2017-09-13 | 2018-03-23 | 南京航空航天大学 | A kind of two-dimentional Three Degree Of Freedom micromotion platform structure for being used for high accuracy positioning and measurement |
CN109176420A (en) * | 2018-07-10 | 2019-01-11 | 天津大学 | Linear joint formula flexibility decoupling precision positioning structure is set in one kind |
CN110361928A (en) * | 2018-04-11 | 2019-10-22 | 长春工业大学 | A kind of imprinting apparatus and method of two dimension ancillary vibration |
CN110355988A (en) * | 2018-04-11 | 2019-10-22 | 长春工业大学 | A kind of roller of two-dimension vibration auxiliary is to plane hot stamping device and method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060119818A1 (en) * | 2003-07-09 | 2006-06-08 | Nikon Corporation | Exposure apparatus and method for manufacturing device |
CN2790663Y (en) * | 2005-04-13 | 2006-06-28 | 浙江大学 | Space four degree-of-freedom platform mechanism |
CN100376361C (en) * | 2005-01-11 | 2008-03-26 | 同济大学 | Miniature two-dimensional decoupling workbench |
WO2010022982A1 (en) * | 2008-08-30 | 2010-03-04 | Scuola Superiore Di Studi Universitari S. Anna | Method for remote mechanism actuation and exoskeleton aptic interface based thereon |
JP2010123613A (en) * | 2008-11-17 | 2010-06-03 | Murata Mfg Co Ltd | Ceramic electronic component and mounting structure of the same |
CN101750885A (en) * | 2010-01-06 | 2010-06-23 | 天津大学 | Two-degree of freedom precise positioning work table |
-
2010
- 2010-07-02 CN CN201010216326XA patent/CN101862966B/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060119818A1 (en) * | 2003-07-09 | 2006-06-08 | Nikon Corporation | Exposure apparatus and method for manufacturing device |
CN100376361C (en) * | 2005-01-11 | 2008-03-26 | 同济大学 | Miniature two-dimensional decoupling workbench |
CN2790663Y (en) * | 2005-04-13 | 2006-06-28 | 浙江大学 | Space four degree-of-freedom platform mechanism |
WO2010022982A1 (en) * | 2008-08-30 | 2010-03-04 | Scuola Superiore Di Studi Universitari S. Anna | Method for remote mechanism actuation and exoskeleton aptic interface based thereon |
JP2010123613A (en) * | 2008-11-17 | 2010-06-03 | Murata Mfg Co Ltd | Ceramic electronic component and mounting structure of the same |
CN101750885A (en) * | 2010-01-06 | 2010-06-23 | 天津大学 | Two-degree of freedom precise positioning work table |
Non-Patent Citations (1)
Title |
---|
《光学精密工程》 20060228 田延岭等 《二自由度微定位平台的研制》 94-99 1-4 第14卷, 第1期 2 * |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102380788A (en) * | 2011-11-08 | 2012-03-21 | 浙江师范大学 | Double-parallel-flexible-hinge-based tool rest driving platform of super-precision machining lathe |
CN103217133A (en) * | 2012-01-19 | 2013-07-24 | 昆山思拓机器有限公司 | Stand-column type manual thickness measuring equipment for surface mounted technology (SMT) stencil |
CN102581828A (en) * | 2012-02-10 | 2012-07-18 | 合肥工业大学 | Two-dimensional micro-displacement worktable without coupled motion |
CN102581828B (en) * | 2012-02-10 | 2014-06-25 | 合肥工业大学 | Two-dimensional micro-displacement worktable without coupled motion |
CN102664045A (en) * | 2012-05-17 | 2012-09-12 | 合肥工业大学 | 16-bartwo-dimensional no-coupling micro displacement worktable |
CN102664047A (en) * | 2012-05-17 | 2012-09-12 | 合肥工业大学 | 20-bar two-dimensional non-coupling micro-displacement stage |
CN102664046A (en) * | 2012-05-17 | 2012-09-12 | 合肥工业大学 | 24-bar two-dimensional no-coupling micro-displacement workbench |
CN102637462A (en) * | 2012-05-17 | 2012-08-15 | 合肥工业大学 | 12-rod two-dimensional no-coupling micrometric displacement workbench |
CN103030103A (en) * | 2012-12-10 | 2013-04-10 | 山东理工大学 | 3-PRR micro-displacement platform based on symmetrical variable cross-section compliant mechanism |
CN103030103B (en) * | 2012-12-10 | 2015-04-29 | 山东理工大学 | 3-PRR micro-displacement platform based on symmetrical variable cross-section compliant mechanism |
CN103056868A (en) * | 2012-12-24 | 2013-04-24 | 苏州大学 | Two-dimensional micro positioner based on displacement sensor |
CN103143732A (en) * | 2013-03-01 | 2013-06-12 | 天津大学 | Displacement sensor type piezoceramic driver based on flexible mechanism |
CN103226342A (en) * | 2013-04-28 | 2013-07-31 | 清华大学 | High-rigidity parallel double-drive motion decoupling servo control platform |
CN103226342B (en) * | 2013-04-28 | 2016-01-20 | 清华大学 | High Stiffness is two drives mobile decoupling servo control platform |
CN103568005B (en) * | 2013-11-18 | 2015-07-15 | 山东理工大学 | Dual-translation orthogonal decoupling parallel micro-positioning platform |
CN103568005A (en) * | 2013-11-18 | 2014-02-12 | 山东理工大学 | Dual-translation orthogonal decoupling parallel micro-positioning platform |
CN104196952A (en) * | 2014-07-14 | 2014-12-10 | 西安电子科技大学 | Two-freedom-degree micro type flexible hinge vibration attenuation platform and vibration attenuation method |
CN104196952B (en) * | 2014-07-14 | 2016-01-13 | 西安电子科技大学 | Two-degree-of-freedom micro-flexible hinge damping platform and vibration damping method |
CN104595642A (en) * | 2015-01-06 | 2015-05-06 | 山东大学 | Two-degree-of-freedom piezoelectric driving nanometer positioning platform |
CN105196300A (en) * | 2015-11-11 | 2015-12-30 | 山东理工大学 | Self-coordination driving type two-rotation micro-operation robot |
CN105196300B (en) * | 2015-11-11 | 2020-03-13 | 山东理工大学 | Self-coordination driving type two-rotation micro-operation robot |
CN105643592A (en) * | 2016-03-15 | 2016-06-08 | 河北工业大学 | Symmetrical decoupling and single degree of freedom flexible operation mechanism |
CN106514278A (en) * | 2016-11-08 | 2017-03-22 | 江西理工大学 | Two-dimensional high-frequency micro-amplitude vibrator based on flexible parallel mechanism |
CN107052829A (en) * | 2017-03-03 | 2017-08-18 | 上海交通大学 | Active milling and vibration-damping platform |
CN107017031B (en) * | 2017-05-02 | 2019-07-02 | 清华大学 | Two-dimensional nano-flexible motion platform |
CN107017031A (en) * | 2017-05-02 | 2017-08-04 | 清华大学 | Two-dimensional nano compliant motion platform |
CN107833594A (en) * | 2017-09-13 | 2018-03-23 | 南京航空航天大学 | A kind of two-dimentional Three Degree Of Freedom micromotion platform structure for being used for high accuracy positioning and measurement |
CN107833594B (en) * | 2017-09-13 | 2020-02-21 | 南京航空航天大学 | A two-dimensional three-degree-of-freedom micro-movement platform structure for high-precision positioning and measurement |
CN107617890A (en) * | 2017-10-18 | 2018-01-23 | 北京交通大学 | It is a kind of that there is the redundantly driven parallel bed executing agency for evading Strange properties |
CN107617890B (en) * | 2017-10-18 | 2019-11-19 | 北京交通大学 | A Redundant Drive Parallel Machine Tool Actuator with Singularity Avoidance |
CN110361928A (en) * | 2018-04-11 | 2019-10-22 | 长春工业大学 | A kind of imprinting apparatus and method of two dimension ancillary vibration |
CN110355988A (en) * | 2018-04-11 | 2019-10-22 | 长春工业大学 | A kind of roller of two-dimension vibration auxiliary is to plane hot stamping device and method |
CN109176420A (en) * | 2018-07-10 | 2019-01-11 | 天津大学 | Linear joint formula flexibility decoupling precision positioning structure is set in one kind |
CN109176420B (en) * | 2018-07-10 | 2021-08-06 | 天津大学 | A central movable joint type flexible decoupling precision positioning structure |
Also Published As
Publication number | Publication date |
---|---|
CN101862966B (en) | 2012-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101862966A (en) | Two-degree-of-freedom parallel decoupling micro-motion platform | |
CN103225728B (en) | Two-dimensional parallel micromotion platform driven by piezoceramic | |
CN104595642B (en) | A kind of two degrees of freedom Piezoelectric Driving nanopositioning stage | |
CN102962683B (en) | Two-degree of freedom translational parallel high-bandwidth micro-motion platform | |
CN202428438U (en) | Six-freedom-degree parallel connection micro robot | |
CN101286369B (en) | X-Y-Z three freedom degree tandem type nanometer grade microposition workstation | |
CN101417424B (en) | A three-dimensional translational micro-manipulator | |
CN101531002B (en) | Micro-nano working platform of four-dimensional mobile orthogonal structure | |
CN103216711B (en) | Flexible micro-positioning platform | |
CN106981316B (en) | A micro-displacement positioning platform with three-stage amplification mechanism | |
CN109176420B (en) | A central movable joint type flexible decoupling precision positioning structure | |
CN105904443B (en) | A kind of two-freedom compliant parallel mechanism of mobile decoupling | |
CN103557412A (en) | Bipolar two-dimensional fully flexible high-precision servo platform | |
CN103021472A (en) | Plane parallel type three-freedom-degree precise positioning work table | |
CN107481767B (en) | Driving assembly and flexible precision positioning platform | |
CN106920578A (en) | Two-dimensional constant force mechanism and the locating platform with the mechanism | |
CN113464780B (en) | A flexible positioning platform with three translational degrees of freedom in space | |
CN101157216A (en) | Three-degree-of-freedom micro-manipulation robot | |
CN101837586B (en) | Two-dimensional micromotion stage | |
Dong et al. | A stick-slip piezoelectric actuator with suppressed backward motion achieved using an active locking mechanism (ALM) | |
CN103486413A (en) | Three-freedom-degree decoupling large-stroke micro-positioning platform | |
CN104896268B (en) | A kind of Three Degree Of Freedom big stroke flexible nano locating platform | |
CN110010190B (en) | Three-dimensional constant force parallel flexible micro-positioning platform | |
CN103036474B (en) | Two degrees of freedom flexible micro operator in parallel connection | |
CN102059693B (en) | Dual-translation microoperating platform comprising quadrate elastic pair |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C41 | Transfer of patent application or patent right or utility model | ||
TR01 | Transfer of patent right |
Effective date of registration: 20161101 Address after: 215300 Suzhou City, Kunshan Province, Yushan City, the town of Yuan Feng Road, No. 232 robot Industrial Park Patentee after: JIANGSU HUAHANG WEITAI ROBOT TECHNOLOGY Co.,Ltd. Address before: 200240 Dongchuan Road, Shanghai, No. 800, No. Patentee before: Shanghai Jiao Tong University |
|
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120215 |