CN101858961A - 一种双参数、高灵敏度的有机小分子半导体薄膜磁性传感器 - Google Patents

一种双参数、高灵敏度的有机小分子半导体薄膜磁性传感器 Download PDF

Info

Publication number
CN101858961A
CN101858961A CN 201010162269 CN201010162269A CN101858961A CN 101858961 A CN101858961 A CN 101858961A CN 201010162269 CN201010162269 CN 201010162269 CN 201010162269 A CN201010162269 A CN 201010162269A CN 101858961 A CN101858961 A CN 101858961A
Authority
CN
China
Prior art keywords
magnetic sensor
alq3
organic
thickness
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 201010162269
Other languages
English (en)
Inventor
熊祖洪
陈平
雷衍连
张巧明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest University
Original Assignee
Southwest University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest University filed Critical Southwest University
Priority to CN 201010162269 priority Critical patent/CN101858961A/zh
Publication of CN101858961A publication Critical patent/CN101858961A/zh
Pending legal-status Critical Current

Links

Images

Abstract

本发明提出一种双参数、高灵敏度的有机小分子半导体薄膜磁性传感器,其是基于有机电致发光材料Alq3的有机半导体薄膜器件,所述磁性传感器为层状薄膜结构,结构由下至上为:衬底、导电透明阳极ITO、有机材料功能层和LiF/Al阴极;所述有机材料功能层依次由一空穴传输层NPB、一传感层Alq3:掺杂剂3%DCM和一电子传输层Alq3组成;所述磁性传感器的电致发光强度由一个硅光电探头测得并通过数字万用表输出,所得信号最后由计算机通过数据采集模块进行采集。本发明既延续了目前流行的MR传感器的低功耗、高灵敏度和小尺寸等诸多优势,而且还能够实现双参数(即磁电阻和磁发光)响应,同时还具有良好热稳定性,使传感器的可靠性大大增强。

Description

一种双参数、高灵敏度的有机小分子半导体薄膜磁性传感器
技术领域
本发明与有机半导体器件有关,涉及磁性传感器技术领域。
背景技术
磁性传感器通常使用于小型磁铁工作的物体上,通过捕获磁场的强度及其变化,为检测物体的接近、移动或旋转等行为提供了一种独特的手段。使用磁性传感器的历史相当久远,一些传统的应用:例如,利用齿轮传感器测量齿轮的转速,应用线圈型传感器来触发埋在道路中的红绿灯信号的电路回路,以及用霍尔装置制作旋转位置传感器和电流传感器等,由于价格、尺寸和可靠性多方面因素的不足,这些传统的磁性传感器在市场规模上已经呈现饱和状态。
进入21世纪后,由于在小型化方面取得了巨大进展,全集成型的磁性传感器需求量正在急剧增大。目前市面上广泛流行的是磁电阻(MR)传感器,其原理是:当在铁磁合金薄带的长度方向施加一个电流时,如果在垂直于电流的方向再施加磁场,铁磁性材料中就有磁阻的非均质现象出现,从而引起合金带自身的阻值变化。此类传感器通常由各向异性磁电阻(AMR)材料和巨磁电阻(GMR)材料制作而成,前者通常是由一长条铁磁薄膜(如透磁合金镍铁合金),并用半导体技术将这些薄膜熔制在硅片上;而后者的结构则是数层很薄(25~50埃)的铁磁层和非磁层交替生长(FM/NM/FM/NM/FM…)在半导体基底上(如硅等)而形成。理论预言,若将其用在小型化和微型化高密度记录读出头、随机存取存储器中可使存储密度获得极大的提高(约为100倍)。
迄今为止,人们在磁传感器的材料选择上还主要集中在无机的磁性金属材料上,而用不含任何磁性层的有机材料研制的半导体薄膜磁性传感器,目前还处于研究状态。由于有机半导体材料,较传统的AMR和GMR材料,拥有材料选择范围宽、电子自旋扩散长度长、电子结构易调节、所需工艺简单以及能够制作成柔性衬底器件等诸多优势,因此国际上目前正在积极研制有机半导体高灵敏度磁传感器,但至今尚未实现产业化。
发明内容
本发明的目的在于针对传统技术存在的上述不足,在现有技术的基础上,研制出一种全新理念的磁性传感器,即基于有机小分子半导体材料的薄膜磁性传感器。
本发明的技术方案如下:
一种双参数、高灵敏度的有机小分子半导体薄膜磁性传感器,所述磁性传感器是基于有机电致发光材料tris(8-hydroxyquinolato)aluminum(Alq3)的有机半导体薄膜器件,所述磁性传感器的结构由下至上为:衬底、导电透明阳极indium tin oxide(ITO)、有机材料功能层和lithium fluoride(LiF)/Al阴极,所述有机材料功能层依次由一空穴传输层N,N′-bis(naphthalen-1-y)-N,N′-bis(phenyl)benzidine(NPB),一传感层Alq3:3%4-dicyanomethylene-2-methyl-6-p-dimethylaminostyryl-4H-pyran(DCM)和一电子传输层Alq3组成。所述磁性传感器的电致发光强度由一个硅光电探头测得并通过数字万用表输出,所得信号最后由计算机通过数据采集模块进行采集。
其中有机材料Alq3、NPB和DCM的化学分子式如下:
Figure GSA00000109819100021
所述磁性传感器在垂直一维方向上的总厚度为340nm。
所述导电透明阳极ITO的厚度为100nm,有机材料功能层的厚度为140nm,LiF/Al阴极的厚度为100nm;阳极、有机材料功能层和阴极的厚度比为5∶7∶5。
所述有机材料功能层的中空穴传输层NPB的厚度为60nm、传感层Alq3:3%DCM的厚度为50nm,电子传输层Alq3的厚度为30nm;NPB、Alq3:DCM和Alq3的厚度比例为6∶5∶3。
所述掺杂剂采用红色荧光染料DCM,掺杂浓度即掺杂剂占发光层的质量百分比为3%。
所述衬底采用柔性衬底或普通玻璃衬底。
本发明首创性地将有机小分子发光材料(八羟基喹啉铝Tris-(8-Hydroxy)QuinolineAluminum(Alq3))应用在磁传感器上,开发出一种全新的半导体器件。在该方案中,申请人充分考虑了产品在实际使用情况下,可能存在的问题(包括产品的能耗、实际操作和可靠性等),同时把设备的稳定性放在首要位置上,也兼顾了实现产业化的成本投入。
该有机半导体薄膜磁性传感器,较先前的磁传感器而言,其特点在于:i)它既可以通过测量电学信号、同时也可以通过测量光学信号来反映传感器周围的磁场情况,故而从工作原理上看它是一种“双参数”的新型磁性传感器;ii)对所需的有机材料和制备工艺的要求低,而且器件结构简单,可进行大规模产业化生产;iii)该产品拥有良好的热稳定性,环境适应性强;iv)该产品的测量结果在探测区域内不随着外磁场的方向变化而变化,为实际操作提供了人性化帮助。
另外,该发明拥有目前MR传感器的优势:i)采用了先进的层状薄膜结构,尺寸上满足制备纳米级微电子元件的要求;ii)功耗低效率高,是新一代节能环保型电子产品的选择;iii)测量精度高,测量范围宽,可以实现非接触测量。
在信息飞速发展的时代,小尺寸和环保节能成为新一代电子产品的又一挑战。本发明尺寸小(一维尺寸仅为340nm),完全可以集成在其它的电子传感器元件/电子线路板(甚至是柔性衬底)上来满足小区域范围内精确磁场探测的要求。比较与传统的磁性传感器,本发明在该方面有无可比拟的优势,而且测量范围宽、测量精度高,完全符合目前国内外市场的实际需求。
而且作为新一代的磁性传感器,本发明还考虑进了更多的市场因素来填补目前流行的MR传感器的缺陷。例如:制备该产品所需的有机材料可以通过简单的化学合成来获得和改进,选择范围宽、优化潜力大;制膜手段相对简单、成本低廉,易于实现规模化生产;能够提供多种的测量手段(利用双参数测量),结果可靠性高;可以全方位地探测磁场的大小,为使用者在实际操作过程中提供人性化帮助;节能环保、环境适应性强,符合实现未来绿色产品的要求。
可见,本发明既延续了目前流行的MR传感器的低功耗、高灵敏度和小尺寸等诸多优势,而且还能够实现双参数(即磁电阻和磁发光)响应,同时还具有良好热稳定性,使传感器的可靠性大大增强。
附图说明
图1、双参数、高灵敏度的有机半导体磁性传感器的结构示意图;
图2、该磁性传感器的电流-亮度-电压(I-B-V)特性曲线;
图3、该磁性传感器的电致发光光谱。
图4(a)、该磁性传感器在室温下,驱动电压为11.7V、13.8V、14.8V和15.9V时的磁电导随磁场的变化关系。
图4(b)、该磁性传感器在室温下,驱动电压为11.7V、13.8V、14.8V和15.9V时的磁发光随磁场的变化关系。
图5(a)、该磁性传感器在恒定驱动条件下(驱动电流~150μA)、不同温度时(15K~室温)的磁电导随磁场的变化关系。
图5(b)、该磁性传感器在恒定驱动条件下(驱动电流~150μA)、不同温度时(15K~室温)的磁发光随磁场的变化关系。
具体实施方式
如图1所示,本有机半导体磁性传感器的结构由下至上为:玻璃衬底1(可用柔性衬底代替)、导电透明阳极(ITO)2、有机材料功能层3和LiF/Al阴极4。有机材料功能层3又由一个靠近阳极的空穴传输层NPB 31,一个发光层Alq3:3%掺杂剂(DCM)32和一个靠近阴极的电子传输层Alq3 33组成。其中有机材料Alq3、NPB和DCM皆商购于美国Adrich公司,纯度>99.99%;亦可通过化学手段合成获得。
磁性传感器在垂直一维方向上的总厚度为340nm。所述导电透明阳极ITO的厚度为100nm,有机材料功能层的厚度为140nm,LiF/Al阴极的厚度为100nm。有机材料功能层的中空穴传输层NPB的厚度为60nm、传感层Alq3:3%DCM的厚度为50nm,电子传输层Alq3的厚度为30nm。
掺杂剂采用红色荧光染料DCM,掺杂浓度即掺杂剂占发光层的质量百分比为3%。
本有机半导体磁性传感器可由干电池提供直流驱动电压。
整个传感器器件由有机分子束外延和热阻蒸发工艺制备而成,制备过程如下:
在沉积有机功能层之前,先后使用清洗液(Decon 90,浓度4%,水浴温度60℃)、去离子水对ITO玻璃基片反复超声清洗,最后用乙醇、丙酮脱水后,传入超高真空有机分子束沉积系统,本底真空度优于2.2×10-7Pa。NPB、Alq3的生长速率为~0.1nm/s。50nm厚的掺杂层采用共蒸发方法获得,掺杂浓度控制在3%左右,以获得最佳的发光--磁场关系曲线。50nm厚掺杂层位于60nm厚的空穴传输层NPB和30nm厚的电子传输层Alq3之间。用来提高电子注入效率的LiF插在电子传输层Alq3和负电极Al之间,其厚度为0.7nm。生长速率及膜厚采用INFICON公司的膜厚监测仪(XTM/2)进行原位测。制备Al电极是在与有机室相连的热阻蒸发室中进行(本底真空度优于3.0×10-4Pa),并通过金属掩膜板沉积在有机功能层上。器件的有效发光面积为1×3mm2。电致发光强度由一个硅光电探头测得并通过数字万用表输出,所得信号最后由计算机通过数据采集模块进行采集。
以下以程控电磁铁(Lakeshore EM647)产生的磁场(0-500mT)为磁场源列举该有机半导体磁性传感器的相关结果。
参见图2,从电流-亮度-电压(I-B-V)特性曲线上看,该有机半导体磁性传感器在室温下工作所需的启亮电压很低(仅~10伏),并呈现出典型的半导体二极管特性。
由图3所示,从光谱上看,器件工作时发光位于可见光范围内(红光,发光峰~605nm),且发光峰位几乎不随外界条件(如驱动电压、外界温度和外加磁场)的改变发生变化。这种光谱峰位的稳定性为光收集提供了可靠的保证,在理论上为实现该器件在磁性传感器上的应用奠定了基础。
参见图4(a),该磁性传感器在室温下,驱动电压为11.7V、13.8V、14.8V和15.9V时的磁电导随磁场的变化关系,实线为拟合曲线。驱动电压越大,饱和磁场越大、灵敏度越高。
参见图4(b),该磁性传感器在室温下,驱动电压为11.7V、13.8V、14.8V和15.9V时的磁发光随磁场的变化关系。实线为拟合曲线。驱动电压越大,饱和磁场越大、灵敏度越高。
参见图5(a),该磁性传感器在恒定驱动条件下(驱动电流~150μA)、不同温度时(15K~室温)的磁电导随磁场的变化关系。磁电导几乎不随着温度发生变化。
参见图5(b),该磁性传感器在恒定驱动条件下(驱动电流~150μA)、不同温度时(15K~室温)的磁发光随磁场的变化关系。磁发光几乎不随着温度发生变化。
由此可见,这种双参数、高灵敏的有机半导体薄膜磁性传感器的工作原理是基于有机磁电阻(OMR)效应和磁致有机发光(MEL)效应。在磁场作用下,它既可以反映磁电导变化,也可以反映磁发光的变化,故而是一种集电信号响应和光信号响应于一体的双参数新型磁性传感器。磁电导的定义为:ΔI/I=(I(B)-I(0))/I(0);磁发光的定义为,ΔEL/EL=(EL(B)-EL(0))/EL(0)。在恒定电压驱动下,该器件的“磁电导--磁场”和“磁发光--磁场”关系曲线如图所示。在0-45mT范围内,电流和发光都随着磁场的增加而迅速增大;随着磁场的进一步增大(>45mT),电流增加变缓并逐渐趋于饱和,而发光却呈现指数下降趋势。电流和发光随磁场的相对变化规律可以用两个经验公式来拟合:
ΔI / I = A I - C I e - | B | / B 0 - D I e - | B | / B 1 - - - ( 1 )
ΔEL / EL = A EL - C EL e - | B | / B ′ 0 + D EL e - | B | / B ′ 1 - - - ( 2 )
其中,AI、CI、DI、AEL、CEL和DEL为拟合参数,附图中给出了室温环境下,几个不同驱动电压下的拟合实例。
Figure GSA00000109819100053
Figure GSA00000109819100061
表一.驱动电压11.7V、13.8V、14.8V和15.9V下公式(1)和(2)的拟合参数表
根据标定的经验公式,我们可以通过直接读取磁电阻/磁致发光的数值来确定外磁场的大小。标定的经验公式也可以反映出该有机半导体薄膜磁性传感器的性能参数,即饱和磁场值(量程)和灵敏度。此外,器件的饱和磁场和探测灵敏度都会随着驱动电压的增大而变大。当驱动电压为15.9V(注入电流为200μA)时,饱和磁场为1500mT,灵敏度为10Gs。
一般而言,外界温度的变化往往会引起传感器器件磁电阻的变化,这种外界影响会给传感器的测量精度带来较大的误差。温度变化同样会给不掺杂的Alq3器件的有机磁电阻(OMR)效应和有机磁致发光(MEL)带来影响。针对以上问题,如果利用共蒸发技术,往主体材料Alq3中掺入少量的“深能级”的荧光染料掺杂剂作为发光客体,如红光染料DCM,利用其“激子捕获”效应就可以有效地抑制外界热扰动带来的影响。申请人在实验室条件下测量了15K~室温范围内掺杂器件的“磁电导--磁场”、“磁发光--磁场”关系曲线。理论预言,掺杂剂带宽越窄,抑制外界热扰动的效果就越好(热稳定性越佳)。红光染料DCM较其它染料而言,其带宽窄,而且价格低廉、易于合成,因此是一种理想的应用在有机半导体磁性传感器中的染料掺杂剂。实验验证,3%为器件的最佳掺杂浓度,此时传感器的饱和磁场和灵敏度达到最大;当浓度超过3%时,就会引起发光层强烈的“聚集效应”,导致发光淬灭,使器件的工作效率大大降低。

Claims (5)

1.一种双参数、高灵敏度的有机小分子半导体薄膜磁性传感器,其特征在于:所述磁性传感器是基于有机电致发光材料Alq3的有机半导体薄膜器件,所述磁性传感器为层状薄膜结构,结构由下至上为:衬底、导电透明阳极ITO、有机材料功能层和LiF/Al阴极;所述有机材料功能层依次由一空穴传输层NPB、一传感层Alq3:掺杂剂3%DCM和一电子传输层Alq3组成;所述磁性传感器的电致发光强度由一个硅光电探头测得并通过数字万用表输出,所得信号最后由计算机通过数据采集模块进行采集;
所述导电透明阳极、有机材料功能层和LiF/Al阴极的厚度比为5∶7∶5;
所述中空穴传输层NPB、传感层Alq3:3%DCM和电子传输层Alq3的厚度比例为6∶5∶3。
2.根据权利要求1所述的双参数、高灵敏度的有机小分子半导体薄膜磁性传感器,其特征在于:所述磁性传感器在垂直一维方向上的总厚度为340nm;
所述导电透明阳极ITO的厚度为100nm,有机材料功能层的厚度为140nm,LiF/Al阴极的厚度为100nm;
所述有机材料功能层的中空穴传输层NPB的厚度为60nm、传感层Alq3:3%DCM的厚度为50nm,电子传输层Alq3的厚度为30nm。
3.根据权利要求2所述的双参数、高灵敏度的有机小分子半导体薄膜磁性传感器,其特征在于:所述掺杂剂采用红色荧光染料DCM,掺杂浓度即掺杂剂占发光层的质量百分比为3%。
4.根据权利要求2所述的双参数、高灵敏度的有机小分子半导体薄膜磁性传感器,其特征在于:所述衬底采用柔性衬底或普通玻璃衬底。
5.根据权利要求2所述的双参数、高灵敏度的有机小分子半导体薄膜磁性传感器,其特征在于:所述有机功能层的制备工艺采用有机分子束外延技术,LiF/Al阴极的制备采用热阻蒸发技术。
CN 201010162269 2010-05-04 2010-05-04 一种双参数、高灵敏度的有机小分子半导体薄膜磁性传感器 Pending CN101858961A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010162269 CN101858961A (zh) 2010-05-04 2010-05-04 一种双参数、高灵敏度的有机小分子半导体薄膜磁性传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010162269 CN101858961A (zh) 2010-05-04 2010-05-04 一种双参数、高灵敏度的有机小分子半导体薄膜磁性传感器

Publications (1)

Publication Number Publication Date
CN101858961A true CN101858961A (zh) 2010-10-13

Family

ID=42944978

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010162269 Pending CN101858961A (zh) 2010-05-04 2010-05-04 一种双参数、高灵敏度的有机小分子半导体薄膜磁性传感器

Country Status (1)

Country Link
CN (1) CN101858961A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102692548A (zh) * 2012-07-06 2012-09-26 上海科润光电技术有限公司 一种电致发光电压传感器
CN103187521A (zh) * 2011-12-31 2013-07-03 兰州大学 一种有机磁敏二极管
CN103554954A (zh) * 2013-11-15 2014-02-05 烟台澳土复合材料有限公司 一种新型有机发光二极管用发红光荧光染料及其制备方法
CN104952995A (zh) * 2015-05-05 2015-09-30 湘能华磊光电股份有限公司 一种iii族半导体发光器件的倒装结构
WO2018214595A1 (zh) * 2017-05-23 2018-11-29 京东方科技集团股份有限公司 磁感应强度检测装置及终端设备
CN113933764A (zh) * 2021-09-30 2022-01-14 杭州电子科技大学 基于铁磁薄膜与法布里珀罗腔的磁场传感系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2291695Y (zh) * 1996-04-04 1998-09-16 张志林 长寿命有机薄膜电致发光屏
CN1568108A (zh) * 2003-06-18 2005-01-19 铼宝科技股份有限公司 有机电激发光组件及其制造方法
CN101354945A (zh) * 2008-05-21 2009-01-28 复旦大学 具有磁电阻效应的磁性复合有机纳米颗粒膜及其制备方法
CN101427395A (zh) * 2006-04-26 2009-05-06 西门子公司 具有磁阻效应的装置及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2291695Y (zh) * 1996-04-04 1998-09-16 张志林 长寿命有机薄膜电致发光屏
CN1568108A (zh) * 2003-06-18 2005-01-19 铼宝科技股份有限公司 有机电激发光组件及其制造方法
CN101427395A (zh) * 2006-04-26 2009-05-06 西门子公司 具有磁阻效应的装置及其应用
CN101354945A (zh) * 2008-05-21 2009-01-28 复旦大学 具有磁电阻效应的磁性复合有机纳米颗粒膜及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
《物理学报》 20070530 王振 磁场对有机电致发光的影响 2979-2984 1-5 第56卷, 第5期 *
《硕士学位论文》 20090301 王鹏 白光有机小分子电致发光器件的研究 1-5 , *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103187521A (zh) * 2011-12-31 2013-07-03 兰州大学 一种有机磁敏二极管
CN102692548A (zh) * 2012-07-06 2012-09-26 上海科润光电技术有限公司 一种电致发光电压传感器
CN103554954A (zh) * 2013-11-15 2014-02-05 烟台澳土复合材料有限公司 一种新型有机发光二极管用发红光荧光染料及其制备方法
CN103554954B (zh) * 2013-11-15 2015-05-20 烟台澳土复合材料有限公司 一种新型有机发光二极管用发红光荧光染料及其制备方法
CN104952995A (zh) * 2015-05-05 2015-09-30 湘能华磊光电股份有限公司 一种iii族半导体发光器件的倒装结构
CN104952995B (zh) * 2015-05-05 2017-08-25 湘能华磊光电股份有限公司 一种iii族半导体发光器件的倒装结构
WO2018214595A1 (zh) * 2017-05-23 2018-11-29 京东方科技集团股份有限公司 磁感应强度检测装置及终端设备
US10921479B2 (en) 2017-05-23 2021-02-16 Boe Technology Group Co., Ltd. Magnetic induction intensity detection device and terminal equipment
CN113933764A (zh) * 2021-09-30 2022-01-14 杭州电子科技大学 基于铁磁薄膜与法布里珀罗腔的磁场传感系统
CN113933764B (zh) * 2021-09-30 2023-09-08 杭州电子科技大学 基于铁磁薄膜与法布里珀罗腔的磁场传感系统

Similar Documents

Publication Publication Date Title
CN101858961A (zh) 一种双参数、高灵敏度的有机小分子半导体薄膜磁性传感器
Alias et al. Optical characterization and properties of polymeric materials for optoelectronic and photonic applications
Fang et al. Resolving weak light of sub‐picowatt per square centimeter by hybrid perovskite photodetectors enabled by noise reduction
CN107290084B (zh) 一种压力传感器及其制作方法、电子器件
Guo et al. Functional organic field‐effect transistors
US8077152B2 (en) Magneto resistive elements and methods for manufacture and use of same
CN103038906B (zh) 在有机供体‑受体异质结处提高激子解离的方法
Kaihovirta et al. Doping-induced self-absorption in light-emitting electrochemical cells
US8710611B2 (en) High sensitivity stress sensor based on hybrid materials
WO2020207100A1 (zh) 有机电子器件封装中同时具有提高封装效率和检测封装效果的结构
Yang et al. 1, 1-Bis [(di-4-tolylamino) phenyl] cyclohexane for fast response organic photodetectors with high external efficiency and low leakage current
Pereira et al. Application of Fe-doped SnO2 nanoparticles in organic solar cells with enhanced stability
CN101055205A (zh) 有机紫外光探测器
US8901678B2 (en) Light-assisted biochemical sensor
Xu et al. High-performance flexible organic thin-film transistor nonvolatile memory based on molecular floating-gate and pn-heterojunction channel layer
CN102290530A (zh) 一种高磁场响应的有机发光二极管
Wang et al. Electron transport mechanism in colloidal SnO2 nanoparticle films and its implications for quantum-dot light-emitting diodes
Li et al. In situ growth of a 2D assisted passivation layer enabling high-performance and stable 2D/3D stacked perovskite photodetectors for visible light communication applications
CN100553006C (zh) 基于磷光材料光伏二极管的有机紫外光光学传感器
Wilkinson et al. Evidence for charge-carrier mediated magnetic-field modulation of electroluminescence in organic light-emitting diodes
CN102668041B (zh) 有机半导体器件的接触结构的制作方法以及有机半导体器件的接触结构
El Mouedden et al. A cost-effective, long-lifetime efficient organic luminescent solar concentrator
KR20130012431A (ko) 광 다이오드 및 이를 포함하는 광 센서
CN105047814A (zh) 一种硅基低磁场巨磁阻磁传感器件及制备与性能测试方法
CN102891256B (zh) 基于Cu(I)配合物的可见盲区有机紫外光探测器件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20101013