WO2020207100A1 - 有机电子器件封装中同时具有提高封装效率和检测封装效果的结构 - Google Patents

有机电子器件封装中同时具有提高封装效率和检测封装效果的结构 Download PDF

Info

Publication number
WO2020207100A1
WO2020207100A1 PCT/CN2020/073207 CN2020073207W WO2020207100A1 WO 2020207100 A1 WO2020207100 A1 WO 2020207100A1 CN 2020073207 W CN2020073207 W CN 2020073207W WO 2020207100 A1 WO2020207100 A1 WO 2020207100A1
Authority
WO
WIPO (PCT)
Prior art keywords
packaging
layer
electronic device
organic
organic electronic
Prior art date
Application number
PCT/CN2020/073207
Other languages
English (en)
French (fr)
Inventor
林群
Original Assignee
南京福仕保新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京福仕保新材料有限公司 filed Critical 南京福仕保新材料有限公司
Publication of WO2020207100A1 publication Critical patent/WO2020207100A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the invention belongs to the technical field of organic electronic device packaging, and particularly relates to a structure in the organic electronic device packaging that has both improved packaging efficiency and detection packaging effect.
  • New organic electronic devices organic light emitting, organic optoelectronic devices, organic detectors and organic field effect tubes are used in display and solid-state lighting, energy sources, detectors, mobile phones, wearables due to their own advantages of lightness, energy saving, self-luminescence, and power generation.
  • the field has broad application prospects. Its excellent characteristics will affect the development of next-generation display electronic products and are the main force of flexible electronic displays.
  • the purpose of the present invention is to provide a structure for improving the packaging efficiency and detecting the packaging effect in the packaging of organic electronic devices, so as to overcome the above-mentioned defects in the prior art.
  • the present invention provides a structure for improving the packaging efficiency and detecting the packaging effect in the organic electronic device packaging, including: an organic electronic device or an organic functional layer prepared on a substrate, and an organic electronic device or an organic functional layer
  • the substrate is selected from hard materials such as metal, quartz, silicon oxide, glass, silicon wafers, etc., and can also be various flexible plastics, polymers, and resin materials.
  • the organic electronic device and the organic functional layer are selected from the group consisting of organic light-emitting device OLED, quantum light-emitting device GLED, polymer light-emitting device PLED, organic small molecule, polymer, perovskite photoelectric device, photodetector And solar cells, as well as organic and polymer field effect transistors.
  • the material of the protective insulating layer is selected from metal oxides, electrodeless insulating materials, metal salts and the like.
  • the active metal layer is selected from calcium, magnesium, aluminum, sodium, etc.
  • the active metal layer can be coated by plasma, electronic sputtering, thermal evaporation and the like.
  • the thickness of the nano-active metal layer may range from 10-500 nm, and the width may range from 10 microns to 5 mm.
  • the area of the protective insulating layer is larger than the active metal layer to ensure that the active metal layer will not affect the electrical properties of the organic device and the functional layer, such as short circuit, leakage, etc.
  • the other encapsulation layer may be a covering single layer oxide, an encapsulation curing resin, an encapsulation curing glue/polymer layer, or a multilayer composite encapsulation structure of the above materials.
  • the other encapsulation layer may also be a cover plate, which is selected from high water and oxygen barrier metal, glass, silicon wafer, silicon oxide, metal oxide, and high water and oxygen barrier flexible film, base sheet.
  • the protective insulating layer and the active metal layer, as well as other packaging layers thereon can be packaged around the boundary of the organic device or can be fully covered.
  • the external connection electrodes of the active metal layer may be formed in a single pair or multiple configurations to detect the resistance value of each part of the metal layer.
  • the material can be selected from metals or transparent conductive materials.
  • the dual-function package design is suitable for various boundary, partial and overall package structures and designs.
  • the first step is to prepare the glass or high-barrier flexible PET substrate to be used.
  • the surface can be cleaned and placed in a vacuum drying box to remove excess moisture and oxygen.
  • OLED devices After the OLED device is prepared, a 100-nanometer LiF insulating layer is directly deposited on the OLED device in the vacuum evaporation chamber, and then a 150-nanometer calcium ring-shaped metal layer is evaporated on it. Part of it is connected and conductive with the ITO electrode on the substrate;
  • the sample is transferred into a nitrogen glove box with a temperature of 20 degrees, water and oxygen less than 1 ppm; a layer of thermosetting resin is coated by a spin coating process, about 2-10 microns thick;
  • the third step is to cover the cleaned package cover glass or high barrier flexible PET cover plate on the second step device;
  • the packaged device is introduced and placed on the UV curing table, the substrate and device are on the bottom, the UV curing resin and the packaging cover film are on the top; the entire device is also placed in a nitrogen glove box;
  • the fifth step on the basis of the fourth step, turn on the UV lamp to irradiate the entire sample to cure the packaging coating, and complete the device curing after 2-4 minutes;
  • the seventh step is to put the device into the life test system, maintain a constant test current, and detect the curve of the luminous efficiency of the device and the conductance failure of the active metal layer.
  • the basic principle of the present invention is based on using a nano active metal intercalation layer at the device boundary, instead of covering the entire upper part of the device, so that the active metal layer surrounds the entire organic device.
  • the water/oxygen must pass through the surrounding active metal layer before penetrating into the device from the boundary.
  • the nano-scale active metal is very easy to chemically react with water/oxygen, and produce insulating metal oxide or metal salt. This part of the reaction consumes most of the infiltrated water/oxygen molecules until the entire metal layer is completely reacted.
  • the material produced by the reaction is nanometer-sized, and the reaction product will stay in the original position, not only will no longer migrate, but also will prevent the subsequent water/oxygen from entering the device area.
  • This process can greatly reduce the process and amount of water/oxygen entering the device area from the boundary, thereby improving the effect of boundary packaging.
  • the reaction of the active metal and water/nutrition will consume the thickness or width of the metal layer, causing the resistance value of the metal layer to increase until the open circuit is insulated.
  • the package structure has basically failed, and the device may have been damaged by the infiltrated water/oxygen.
  • the coating of the entire active metal layer is carried out in a vacuum coating machine ( ⁇ 10 -4 Pa), and other packaging and curing processes are all completed in an inert atmosphere, such as nitrogen, argon and other inert gas glove boxes.
  • the water and oxygen content in the glove box should be less than 1ppm.
  • the substrate used in the packaging process is a flexible substrate with glass and high water and oxygen barriers, and organic electronic devices use organic small molecule light-emitting devices (OLEDs) that are sensitive to water, oxygen and heat.
  • the upper encapsulation layer uses a composite encapsulation structure of UV curing resin and glass or a flexible substrate with high water and oxygen barrier. At the same time, multiple pairs of ITO electrodes are connected to the active metal layer.
  • a 150nm thick and 1mm wide metal calcium layer is evaporated around the organic device area as an active metal insertion layer.
  • Figure 1 is a schematic diagram of a comprehensive coverage package structure
  • Figure 2 is a schematic diagram of a partial or boundary package structure.
  • OLED devices are prepared on test substrate (silicon wafer, glass) 1, protective insulating layer 2, active metal insertion layer 3, upper encapsulation layer (including cured adhesive layer) 4, organic device or organic functional layer 5, ring The coating cures the bonding layer 6.
  • An organic electronic device encapsulation has a structure that improves the encapsulation efficiency and detects the encapsulation effect at the same time. It includes: an organic electronic device or organic functional layer prepared on a substrate, a protective insulating layer on the organic electronic device or organic functional layer, The nano active metal layer plated on the insulating layer, and other packaging layers on the nano active metal layer, wherein the active metal layer can be connected to external electrodes.
  • the substrate is selected from hard materials such as metal, quartz, silicon oxide, glass, silicon wafers, etc., and can also be various flexible plastics, polymers, and resin materials.
  • organic electronic devices and organic functional layers are selected from organic light-emitting devices OLED, quantum light-emitting devices GLED, polymer light-emitting devices PLED, organic small molecules, polymers, perovskite photoelectric devices, photodetectors and Solar cells, and organic, polymer field effect transistors.
  • the material of the protective insulating layer is selected from metal oxides, electrodeless insulating materials, metal salts and the like.
  • the active metal layer is selected from calcium, magnesium, aluminum, sodium, etc.
  • the active metal layer can be coated by plasma, electronic sputtering, thermal evaporation, etc.
  • the thickness of the nano-active metal layer can range from 10-500 nm, and the width can range from 10 microns to 5 mm.
  • the area of the protective insulating layer is larger than the active metal layer to ensure that the active metal layer will not affect the electrical properties of the organic device and the functional layer, such as short circuit, leakage, etc.
  • the other encapsulation layer may be a covered single-layer oxide, encapsulation curing resin, encapsulation curing glue/polymer layer, or a multilayer composite encapsulation structure of the above materials.
  • the other encapsulation layer may also be a cover plate, which is selected from high water and oxygen barrier metal, glass, silicon wafer, silicon oxide, metal oxide, and high water and oxygen barrier flexible film and substrate.
  • the protective insulating layer and the active metal layer, as well as other packaging layers thereon can be packaged around the boundary of the organic device, or can be fully covered.
  • the external connection electrodes of the active metal layer may be formed in a single pair or multiple configurations to detect the resistance value of each part of the metal layer.
  • the material can be selected from metals or transparent conductive materials.
  • the dual-function package design is suitable for various boundary, partial and overall package structures and designs.
  • one of the factual solutions is to adopt the following steps:
  • the glass or high-barrier flexible PET substrate In the first step, prepare the glass or high-barrier flexible PET substrate to be used, and the surface can be cleaned. And put it into a vacuum drying box to remove excess adsorbed water vapor and oxygen. Put glass or high barrier flexible PET substrate into organic light emitting diode equipment to grow and prepare OLED device. After completing the preparation of the OLED device, the OLED device is directly vapor-deposited with a 100-nm LiF insulating layer in the vacuum evaporation chamber, and then a 150-nm calcium ring metal layer is vapor-deposited on it, partly with the ITO on the substrate The electrode connection is conductive.
  • the sample is transferred into a nitrogen glove box with water and oxygen less than 1ppm at 20 degrees.
  • a layer of thermosetting resin is applied by spin coating process, about 2-10 microns thick.
  • the third step is to cover the cleaned package cover glass or high barrier flexible PET cover plate on the second step device.
  • the packaged device is transferred and placed on the UV curing table, the substrate and device are on the bottom, and the UV curing resin and packaging cover film are on the top.
  • the entire equipment is also placed in a nitrogen glove box.
  • the fifth step on the basis of the fourth step, turn on the UV lamp to irradiate the entire sample to cure the packaging coating, and complete the device curing after 2-4 minutes.
  • the seventh step is to put the device into the life test system, maintain a constant test current, and detect the curve of the luminous efficiency of the device and the conductance failure of the active metal layer.
  • the basic principle of the present invention is based on using a nano active metal intercalation layer at the device boundary, instead of covering the entire upper part of the device, so that the active metal layer surrounds the entire organic device.
  • the water/oxygen must pass through the surrounding active metal layer before penetrating into the device from the boundary.
  • the nano-scale active metal is very easy to chemically react with water/oxygen, and produce insulating metal oxide or metal salt. This part of the reaction consumes most of the infiltrated water/oxygen molecules until the entire metal layer is completely reacted.
  • the material produced by the reaction is nanometer-sized, and the reaction product will stay in the original position, not only will no longer migrate, but also will prevent the subsequent water/oxygen from entering the device area.
  • This process can greatly reduce the process and amount of water/oxygen entering the device area from the boundary, thereby improving the effect of boundary packaging.
  • the reaction of the active metal and water/nutrition will consume the thickness or width of the metal layer, causing the resistance value of the metal layer to increase until the open circuit is insulated.
  • the package structure has basically failed, and the device may have been damaged by the infiltrated water/oxygen.
  • the coating of the entire active metal layer is carried out in a vacuum coating machine ( ⁇ 10 -4 Pa), and other packaging and curing processes are all completed in an inert atmosphere, such as nitrogen, argon and other inert gas glove boxes.
  • the water and oxygen content in the glove box should be less than 1ppm.
  • the substrate used in the packaging process is a flexible substrate with glass and high water and oxygen barriers, and organic electronic devices use organic small molecule light-emitting devices (OLEDs) that are sensitive to water, oxygen and heat.
  • the upper encapsulation layer uses a composite encapsulation structure of UV curing resin and glass or a flexible substrate with high water and oxygen barrier. At the same time, multiple pairs of ITO electrodes are connected to the active metal layer.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明公开了一种有机电子器件封装中同时具有提高封装效率和检测封装效果的结构,包括:制备在基底上的有机电子器件或有机功能层,在有机电子器件或有机功能层上的保护绝缘层,在保护绝缘层上镀的纳米活泼金属层,在纳米活泼金属层上的其他封装层,其中活泼金属层可连接外部的电极。本发明的基本原理是基于利用纳米活泼金属插入层在器件边界处,让活泼金属层环绕整个有机器件。完成封装后,水/氧在从边界渗透进入器件之前,一定先通过四周环绕的活泼金属层。由于纳米量级的活泼金属极易与水/氧发生化学反应,并生成绝缘的金属氧化物或金属盐。这部分反应会消耗绝大部分渗透进来的水/氧分子,直至整个金属层完全反应完毕。

Description

有机电子器件封装中同时具有提高封装效率和检测封装效果的结构 技术领域:
本发明属于有机电子器件封装技术领域,特别涉及一种有机电子器件封装中同时具有提高封装效率和检测封装效果的结构。
背景技术:
新型的有机电子器件,有机发光,有机光电器件,有机探测器和有机场效应管由于其自身轻薄、节能并且自发光,发电等优点,在显示和固态照明,能源,探测器,手机,可穿戴领域有着广阔的应用前景。其优秀的特性将影响下一代显示电子产品的开发,是柔性电子显示的主力。
然而根据长期,大量有机电子学的研究表明,空气中的水汽和氧气成分对有机电子器件有着致命的影响,其原因主要有水汽和氧气分子对有机及其他各纳米薄膜层有各种不同的反应和影响,从而对整体器件寿命有很大的危害。如果能对有机光电器件能进行有效的封裝,阻挡水汽/氧气接触到各有机功能层,就可以大大提高器件寿命。
随着很多新颖的封装涂层材料和直接复合封装结构被发明和采用,有机电子器件的封装得到了巨大的促进,而且现有的高封装,长寿命的有机电子显示屏已经面世。但是有机电子器件过于轻薄,造成其封装技术和要求的非常苛刻,特别是边界封装具有很大难度和挑战,例如OLED显示器对边界的宽度要求越来越窄,导致可封装的区域减少,封装效果将大打折扣。此外由于有机电子器件,特别是柔性器件厚度非常薄,其封装结构将无法采用上部的面封装结构。如何提高边界封装效果,同时不会影响器件整体表面封装结构,是一个非常具有难度和挑战性的工作。同时如果能够检测水/氧在封装层或者结构中的渗透过程及封装持续效果,那对延长有机电子器件的寿命和工作情况更有帮助。
公开于该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域一般技术人员所公知的现有技术。
发明内容:
本发明的目的在于提供一种有机电子器件封装中同时具有提高封装效率和检测封装效果的结构,从而克服上述现有技术中的缺陷。
为实现上述目的,本发明提供了一种有机电子器件封装中同时具有提高封装效率和检测封装效果的结构,包括:制备在基底上的有机电子器件或有机功能层,在有机电子器件或有机功能层上的保护绝缘层,在保护绝缘层上镀的纳米活泼金属层,在纳米活泼金属层上的其他封装层,其中活泼金属层可连接外部的电极。
本发明进一步限定的技术方案为:
优选地,上述技术方案中,基底选自金属,石英,氧化硅,玻璃,硅片等硬质材料,也可以是各种柔性塑料,聚合物,树脂材料。
优选地,上述技术方案中,有机电子器件和有机功能层,其选自有机发光器件OLED,量子发光器件GLED,聚合物发光器件PLED,有机小分子,聚合物,钙钛矿光电器件,光电探测器和太阳能电池,以及有机,聚合物场效应管。
优选地,上述技术方案中,保护绝缘层,其材料选自金属氧化物,无极绝缘材料,金属盐类等。
优选地,上述技术方案中,活泼金属层,其选自钙,镁,铝,钠等.
优选地,上述技术方案中,活泼金属层,可以通过等离子,电子溅射,热蒸发等方式镀膜。
优选地,上述技术方案中,纳米活泼金属层,其厚度可以从10-500纳米,其宽度可以在10微米到5毫米区间。
优选地,上述技术方案中,保护绝缘层面积要大于活泼金属层,保证活泼金属层不会影响有机器件和功能层的电学性质,如短路,漏电等。
优选地,上述技术方案中,其他封装层,可以是覆盖的单层氧化物,封装固化树脂,封装固化胶/聚合物层,或者是上述材料的多层复合封装结构。
优选地,上述技术方案中,其他封装层,也可以是盖板,其选自高水氧阻挡的金属,玻璃,硅片,氧化硅,金属氧化物,以及高水氧阻挡的柔性薄膜, 基片。
优选地,上述技术方案中,保护绝缘层和活泼金属层,以及其上的其他封装层,可以是有机器件边界环绕封装,也可以全覆盖封装。
优选地,上述技术方案中,活泼金属层的外部连接电极,可以是单对或者多个构成,用以检测金属层各部分电阻值。其材料可以选自金属或者透明导电材料。
优选地,上述技术方案中,双重功能的封装设计适用于各种边界,部分和全面的封装结构与设计。
一种有机电子器件封装中同时具有提高封装效率和检测封装效果的生产工艺,按照如下步骤进行:
第一步,准备好待用玻璃或高阻隔柔性PET衬底,可对表面进行清洗,并放入真空干燥箱去除多余吸附的水汽和氧气,将玻璃或高阻隔柔性PET衬底放入有机发光二极管设备生长和制备OLED器件,完成OLED器件的制备后,直接将OLED器件在真空蒸镀腔内蒸镀一层100纳米的LiF绝缘层,其后再上面蒸镀150纳米的钙环形金属层,其部分与衬底上的ITO电极连接导通;
第二步,将样品传入到20度,水,氧小于1ppm的氮气手套箱内;通过旋涂工艺涂膜一层热固化树脂,大约2-10微米厚;
第三步,在第二步的器件上覆盖清理过的封装覆盖用的玻璃或高阻隔柔性PET覆盖板;
第四步,将封装好的器件传入放置在UV固化台上,基板和器件在下,UV固化树脂和封装覆盖膜在上;整个设备也是放置在氮气手套箱内;
第五步,在第四步基础上,打开UV灯照射整个样品固化封装涂层,2-4分钟后完成器件固化;
第七步,将器件放入寿命测试系统中,保持恒定的测试电流,检测器件发光效率的曲线和活泼金属层的电导失效情况。
本发明的基本原理是基于利用纳米活泼金属插入层在器件边界处,而不是整个覆盖在器件上部,让活泼金属层环绕整个有机器件。完成封装后,水/氧在 从边界渗透进入器件之前,一定先通过四周环绕的活泼金属层。由于纳米量级的活泼金属极易与水/氧发生化学反应,并生成绝缘的金属氧化物或金属盐。这部分反应会消耗绝大部分渗透进来的水/氧分子,直至整个金属层完全反应完毕。其反应产生的物质是纳米量级,反应产物会停留在原有位置,不但不再迁移,而且还会阻挡后面的水/氧继续进入器件区域。此过程可以极大的降低水/氧从边界进入器件区域的过程和数量,从而提高边界封装的效果。同时,活泼金属与水/养的反应会消耗金属层的厚度或宽度,导致金属层的电阻值上升,直至开路绝缘。这时说明薄膜金属环中部分或者整体被反应,水/氧已经通过某个区域进入到了有机器件。那么也就同时判断出封装结构已经基本失效,器件已可能受到渗透进入的水/氧破坏。整个活泼金属层的镀膜是在真空镀膜机中进行(<10 -4Pa),其他封装和固化过程全部实在惰性气氛中完成,如氮气、氩气等惰性气体的手套箱內完成。手套箱內水and氧气含量應小于1ppm。封装过程中采用的基底是玻璃和高水氧阻挡的柔性基底,有机电子器件采用对水氧和热敏感的有机小分子发光器件(OLED)。上部封装层使用UV固化树脂和玻璃玻璃或高水氧阻挡的柔性基底复合封装结构。同时多对ITO电极连接在活泼金属层上。
具体的封装结构与封装重点如下:
1.我们在真空蒸发腔内蒸镀100纳米LiF在器件上形成完整的绝缘保护层。
2.在绝缘保护层上,环绕有机器件区域再蒸镀150nm厚,1mm宽的金属钙层作为活泼金属插入层。
3.传样品进入到氮气手套箱内,覆盖UV固化胶在封装衬底上。
4.将封装衬底覆盖在OLED器件上,整体覆盖活泼金属层。
5.将器件放在UV灯下固化完成封装和粘接。
附图说明:
图1为全面覆盖封装结构示意图;
图2为部分或边界封装结构示意图。
图中:OLED器件制备在测试衬底(硅片,玻璃)1,保护绝缘层2,活泼金属插入层3,上部封装层(包括固化粘接层)4,有机器件或有机功能层5,环形涂层固化粘结层6。
具体实施方式:
下面对本发明的具体实施方式进行详细描述,但应当理解本发明的保护范围并不受具体实施方式的限制。
除非另有其它明确表示,否则在整个说明书和权利要求书中,术语“包括”或其变换如“包含”或“包括有”等等将被理解为包括所陈述的元件或组成部分,而并未排除其它元件或其它组成部分。
一种有机电子器件封装中同时具有提高封装效率和检测封装效果的结构,包括:制备在基底上的有机电子器件或有机功能层,在有机电子器件或有机功能层上的保护绝缘层,在保护绝缘层上镀的纳米活泼金属层,在纳米活泼金属层上的其他封装层,其中活泼金属层可连接外部的电极。
作为一种优选方案,基底选自金属,石英,氧化硅,玻璃,硅片等硬质材料,也可以是各种柔性塑料,聚合物,树脂材料。
作为一种优选方案,有机电子器件和有机功能层,其选自有机发光器件OLED,量子发光器件GLED,聚合物发光器件PLED,有机小分子,聚合物,钙钛矿光电器件,光电探测器和太阳能电池,以及有机,聚合物场效应管。
作为一种优选方案,保护绝缘层,其材料选自金属氧化物,无极绝缘材料,金属盐类等。
作为一种优选方案,活泼金属层,其选自钙,镁,铝,钠等.
作为一种优选方案,活泼金属层,可以通过等离子,电子溅射,热蒸发等方式镀膜。
作为一种优选方案,纳米活泼金属层,其厚度可以从10-500纳米,其宽度可以在10微米到5毫米区间。
作为一种优选方案,保护绝缘层面积要大于活泼金属层,保证活泼金属层不会影响有机器件和功能层的电学性质,如短路,漏电等。
作为一种优选方案,其他封装层,可以是覆盖的单层氧化物,封装固化树脂,封装固化胶/聚合物层,或者是上述材料的多层复合封装结构。
作为一种优选方案,其他封装层,也可以是盖板,其选自高水氧阻挡的金属,玻璃,硅片,氧化硅,金属氧化物,以及高水氧阻挡的柔性薄膜,基片。
作为一种优选方案,保护绝缘层和活泼金属层,以及其上的其他封装层,可以是有机器件边界环绕封装,也可以全覆盖封装。
作为一种优选方案,活泼金属层的外部连接电极,可以是单对或者多个构成,用以检测金属层各部分电阻值。其材料可以选自金属或者透明导电材料。
作为一种优选方案,双重功能的封装设计适用于各种边界,部分和全面的封装结构与设计。
根据发明的设计和工艺,其中一个事实方案是采用如下步骤:
第一步,准备好待用玻璃或高阻隔柔性PET衬底,可对表面进行清洗。并放入真空干燥箱去除多余吸附的水汽和氧气。将玻璃或高阻隔柔性PET衬底放入有机发光二极管设备生长和制备OLED器件。完成OLED器件的制备后,直接将OLED器件在真空蒸镀腔内蒸镀一层100纳米的LiF绝缘层,其后再上面蒸镀150纳米的钙环形金属层,其部分与衬底上的ITO电极连接导通。
第二步,将样品传入到20度,水,氧小于1ppm的氮气手套箱内。通过旋涂工艺涂膜一层热固化树脂,大约2-10微米厚。
第三步,在第二步的器件上覆盖清理过的封装覆盖用的玻璃或高阻隔柔性PET覆盖板。
第四步,将封装好的器件传入放置在UV固化台上,基板和器件在下,UV固化树脂和封装覆盖膜在上。整个设备也是放置在氮气手套箱内。
第五步,在第四步基础上,打开UV灯照射整个样品固化封装涂层,2-4分钟后完成器件固化。
第七步,将器件放入寿命测试系统中,保持恒定的测试电流,检测器件发光效率的曲线和活泼金属层的电导失效情况。
具体的封装结构与封装重点如下:
我们在真空蒸发腔内蒸镀100纳米LiF在器件上形成完整的绝缘保护层。在绝缘保护层上,环绕有机器件区域再蒸镀150nm厚,1mm宽的金属钙层作为活泼金属插入层。传样品进入到氮气手套箱内,覆盖UV固化胶在封装衬底上。将封装衬底覆盖在OLED器件上,整体覆盖活泼金属层。将器件放在UV灯下固化完成封装和粘接。其中封装过程和测试过程中温度不超过40C,RH不超过60%的环境测量。
实例测试结果:
测试样品 普通封装寿命 本发明封装寿命 金属层失效
OLED玻璃器件 1156小时 1340小时 第1320小时
OLED玻璃/柔性盖板 1050小时 1180小时 第1150小时
OLED柔性器件 860小时 1005小时 第980小时
,表格中,已有机发光器件1000cd/m2的情况下,测试器件寿命到50%时的衰减时间。对比普通常用封装结果,采用本发明金属插入层后有机发光器件寿命提高12-17%。同时注意到在金属层探测到电阻过大,开路后,整个器件在20小时后迅速衰减,说明封装开始失效。
本发明的基本原理是基于利用纳米活泼金属插入层在器件边界处,而不是整个覆盖在器件上部,让活泼金属层环绕整个有机器件。完成封装后,水/氧在从边界渗透进入器件之前,一定先通过四周环绕的活泼金属层。由于纳米量级的活泼金属极易与水/氧发生化学反应,并生成绝缘的金属氧化物或金属盐。这部分反应会消耗绝大部分渗透进来的水/氧分子,直至整个金属层完全反应完毕。其反应产生的物质是纳米量级,反应产物会停留在原有位置,不但不再迁移,而且还会阻挡后面的水/氧继续进入器件区域。此过程可以极大的降低水/氧从边界进入器件区域的过程和数量,从而提高边界封装的效果。同时,活泼金属与水/养的反应会消耗金属层的厚度或宽度,导致金属层的电阻值上升,直至开路绝缘。这时说明薄膜金属环中部分或者整体被反应,水/氧已经通过某个区域进入到了有机器件。那么也就同时判断出封装结构已经基本失效,器件已可能受到渗透进入的水/氧破坏。整个活泼金属层的镀膜是在真空镀膜机中进行(<10 -4Pa),其他封装和固化过程全部实在惰性气氛中完成,如氮气、氩气 等惰性气体的手套箱內完成。手套箱內水and氧气含量應小于1ppm。封装过程中采用的基底是玻璃和高水氧阻挡的柔性基底,有机电子器件采用对水氧和热敏感的有机小分子发光器件(OLED)。上部封装层使用UV固化树脂和玻璃玻璃或高水氧阻挡的柔性基底复合封装结构。同时多对ITO电极连接在活泼金属层上。
前述对本发明的具体示例性实施方案的描述是为了说明和例证的目的。这些描述并非想将本发明限定为所公开的精确形式,并且很显然,根据上述教导,可以进行很多改变和变化。对示例性实施例进行选择和描述的目的在于解释本发明的特定原理及其实际应用,从而使得本领域的技术人员能够实现并利用本发明的各种不同的示例性实施方案以及各种不同的选择和改变。本发明的范围意在由权利要求书及其等同形式所限定。

Claims (14)

  1. 一种有机电子器件封装中同时具有提高封装效率和检测封装效果的结构,其特征在于,包括:制备在基底上的有机电子器件或有机功能层,在有机电子器件或有机功能层上的保护绝缘层,在保护绝缘层上镀的纳米活泼金属层,在纳米活泼金属层上的其他封装层,其中活泼金属层可连接外部的电极。
  2. 根据权利要求1所述的有机电子器件封装中同时具有提高封装效率和检测封装效果的结构,其特征在于,基底,其选自金属,石英,氧化硅,玻璃,硅片等硬质材料,也可以是各种柔性塑料,聚合物,树脂材料。
  3. 根据权利要求1所述的有机电子器件封装中同时具有提高封装效率和检测封装效果的结构,其特征在于,有机电子器件和有机功能层,其选自有机发光器件OLED,量子发光器件GLED,聚合物发光器件PLED,有机小分子,聚合物,钙钛矿光电器件,光电探测器和太阳能电池,以及有机,聚合物场效应管。
  4. 根据权利要求1所述的有机电子器件封装中同时具有提高封装效率和检测封装效果的结构,其特征在于,保护绝缘层,其材料选自金属氧化物,无极绝缘材料,金属盐类等。
  5. 根据权利要求1所述的有机电子器件封装中同时具有提高封装效率和检测封装效果的结构,其特征在于,活泼金属层,其选自钙,镁,铝,钠等.
  6. 根据权利要求1所述的有机电子器件封装中同时具有提高封装效率和检测封装效果的结构,其特征在于,活泼金属层,可以通过等离子,电子溅射,热蒸发等方式镀膜。
  7. 根据权利要求1所述的有机电子器件封装中同时具有提高封装效率和检测封装效果的结构,其特征在于,纳米活泼金属层,其厚度可以从10-500纳米,其宽度可以在10微米到5毫米区间。
  8. 根据权利要求1所述的有机电子器件封装中同时具有提高封装效率和检测封装效果的结构,其特征在于,保护绝缘层面积要大于活泼金属层,保证活泼金属层不会影响有机器件和功能层的电学性质。
  9. 根据权利要求1所述的有机电子器件封装中同时具有提高封装效率和检测封装效果的结构,其特征在于,其他封装层,可以是覆盖的单层氧化物,封 装固化树脂,封装固化胶/聚合物层,或者是上述材料的多层复合封装结构。
  10. 根据权利要求1所述的有机电子器件封装中同时具有提高封装效率和检测封装效果的结构,其特征在于,其他封装层,也可以是盖板,其选自高水氧阻挡的金属,玻璃,硅片,氧化硅,金属氧化物,以及高水氧阻挡的柔性薄膜,基片。
  11. 根据权利要求1所述的有机电子器件封装中同时具有提高封装效率和检测封装效果的结构,其特征在于,保护绝缘层和活泼金属层,以及其上的其他封装层,可以是有机器件边界环绕封装,也可以全覆盖封装。
  12. 根据权利要求1所述的有机电子器件封装中同时具有提高封装效率和检测封装效果的结构,其特征在于,活泼金属层的外部连接电极,可以是单对或者多个构成,用以检测金属层各部分电阻值。其材料可以选自金属或者透明导电材料。
  13. 根据权利要求1所述的有机电子器件封装中同时具有提高封装效率和检测封装效果的结构,其特征在于,双重功能的封装设计适用于各种边界,部分和全面的封装结构与设计。
  14. 一种有机电子器件封装中同时具有提高封装效率和检测封装效果的生产工艺,其特征在于,按照如下步骤进行:
    第一步,准备好待用玻璃或高阻隔柔性PET衬底,可对表面进行清洗。并放入真空干燥箱去除多余吸附的水汽和氧气。将玻璃或高阻隔柔性PET衬底放入有机发光二极管设备生长和制备OLED器件。完成OLED器件的制备后,直接将OLED器件在真空蒸镀腔内蒸镀一层100纳米的LiF绝缘层,其后再上面蒸镀150纳米的钙环形金属层,其部分与衬底上的ITO电极连接导通;
    第二步,将样品传入到20度,水,氧小于1ppm的氮气手套箱内;通过旋涂工艺涂膜一层热固化树脂,大约2-10微米厚;
    第三步,在第二步的器件上覆盖清理过的封装覆盖用的玻璃或高阻隔柔性PET覆盖板;
    第四步,将封装好的器件传入放置在UV固化台上,基板和器件在下,UV固化树脂和封装覆盖膜在上;整个设备也是放置在氮气手套箱内;
    第五步,在第四步基础上,打开UV灯照射整个样品固化封装涂层,2-4分钟后完成器件固化;
    第七步,将器件放入寿命测试系统中,保持恒定的测试电流,检测器件发光效率的曲线和活泼金属层的电导失效情况。
PCT/CN2020/073207 2019-04-12 2020-01-20 有机电子器件封装中同时具有提高封装效率和检测封装效果的结构 WO2020207100A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910292613.XA CN110061146A (zh) 2019-04-12 2019-04-12 有机电子器件封装中同时具有提高封装效率和检测封装效果的结构
CN201910292613.X 2019-04-12

Publications (1)

Publication Number Publication Date
WO2020207100A1 true WO2020207100A1 (zh) 2020-10-15

Family

ID=67317718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/073207 WO2020207100A1 (zh) 2019-04-12 2020-01-20 有机电子器件封装中同时具有提高封装效率和检测封装效果的结构

Country Status (2)

Country Link
CN (1) CN110061146A (zh)
WO (1) WO2020207100A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112467015A (zh) * 2020-11-16 2021-03-09 福建华佳彩有限公司 一种柔性Mini LED的封装结构及其制备方法
CN112467016A (zh) * 2020-11-16 2021-03-09 福建华佳彩有限公司 一种Mini LED的柔性封装散热结构及其制造方法
CN112467017A (zh) * 2020-11-16 2021-03-09 福建华佳彩有限公司 一种新型Mini LED的柔性封装结构及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110061146A (zh) * 2019-04-12 2019-07-26 南京福仕保新材料有限公司 有机电子器件封装中同时具有提高封装效率和检测封装效果的结构
CN112599696B (zh) * 2020-12-11 2022-12-06 深圳市华星光电半导体显示技术有限公司 一种显示面板的封装结构及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002367772A (ja) * 2001-06-12 2002-12-20 Nisshin Steel Co Ltd ステンレス鋼製有機el素子用封止缶
CN1602122A (zh) * 2004-09-30 2005-03-30 清华大学 一种有机电致发光器件
CN107768533A (zh) * 2016-08-18 2018-03-06 上海和辉光电有限公司 一种amoled的封装结构及方法
CN108448005A (zh) * 2018-03-12 2018-08-24 武汉华星光电半导体显示技术有限公司 显示设备及显示设备阻水效果的测试方法
CN110061146A (zh) * 2019-04-12 2019-07-26 南京福仕保新材料有限公司 有机电子器件封装中同时具有提高封装效率和检测封装效果的结构

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101582489A (zh) * 2009-05-26 2009-11-18 上海大学 有机电致发光器件的复合封装结构和方法
CN102709486B (zh) * 2012-06-11 2015-02-04 四川虹视显示技术有限公司 LiF膜的用途及OLED封装结构及封装方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002367772A (ja) * 2001-06-12 2002-12-20 Nisshin Steel Co Ltd ステンレス鋼製有機el素子用封止缶
CN1602122A (zh) * 2004-09-30 2005-03-30 清华大学 一种有机电致发光器件
CN107768533A (zh) * 2016-08-18 2018-03-06 上海和辉光电有限公司 一种amoled的封装结构及方法
CN108448005A (zh) * 2018-03-12 2018-08-24 武汉华星光电半导体显示技术有限公司 显示设备及显示设备阻水效果的测试方法
CN110061146A (zh) * 2019-04-12 2019-07-26 南京福仕保新材料有限公司 有机电子器件封装中同时具有提高封装效率和检测封装效果的结构

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112467015A (zh) * 2020-11-16 2021-03-09 福建华佳彩有限公司 一种柔性Mini LED的封装结构及其制备方法
CN112467016A (zh) * 2020-11-16 2021-03-09 福建华佳彩有限公司 一种Mini LED的柔性封装散热结构及其制造方法
CN112467017A (zh) * 2020-11-16 2021-03-09 福建华佳彩有限公司 一种新型Mini LED的柔性封装结构及其制备方法

Also Published As

Publication number Publication date
CN110061146A (zh) 2019-07-26

Similar Documents

Publication Publication Date Title
WO2020207100A1 (zh) 有机电子器件封装中同时具有提高封装效率和检测封装效果的结构
Xiao et al. Ternary organic solar cells offer 14% power conversion efficiency
Weerasinghe et al. Influence of moisture out-gassing from encapsulant materials on the lifetime of organic solar cells
Jeong et al. Highly reliable hybrid nano-stratified moisture barrier for encapsulating flexible OLEDs
TWI503050B (zh) 用於透光裝置的導電結構
Grover et al. New organic thin-film encapsulation for organic light emitting diodes
Shao et al. Vacuum-free laminated top electrode with conductive tapes for scalable manufacturing of efficient perovskite solar cells
CN101359722A (zh) 一种顶发射有机电致发光器件的封装方法
Xu et al. Enhanced lifetime of organic light-emitting diodes using soluble tetraalkyl-substituted copper phthalocyanines as anode buffer layers
CN102437288A (zh) 有机电致发光器件的封装结构
CN102270742B (zh) 一种有机光电器件封装器及器件封装方法
Steinmann et al. Encapsulation requirements to enable stable organic ultra-thin and stretchable devices
CN103730598A (zh) 一种有机电致发光器件及其制备方法
Dollinger et al. Laminated aluminum thin-films as low-cost opaque moisture ultra-barriers for flexible organic electronic devices
Subbarao et al. Laboratory thin-film encapsulation of air-sensitive organic semiconductor devices
CN109950412A (zh) 一种基于紫外共混蒸镀工艺钙钛矿发光二极管及制备方法
KR101047396B1 (ko) 유기 태양전지 및 그 제조 방법
CN101859872B (zh) 一种有机光电子器件的封装对位装置及其封装方法
CN103730595A (zh) 一种有机电致发光器件及其制备方法
CN103855315A (zh) 一种有机电致发光器件及其制备方法
CN103855316B (zh) 一种有机电致发光器件及其制备方法
CN103427038A (zh) 一种有机电致发光器件及其制备方法
CN103855320B (zh) 一种有机电致发光器件及其制备方法
CN103855321A (zh) 一种有机电致发光器件及其制备方法
CN103855308B (zh) 一种有机电致发光器件及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20788599

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20788599

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20788599

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08.06.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20788599

Country of ref document: EP

Kind code of ref document: A1