WO2020207100A1 - 有机电子器件封装中同时具有提高封装效率和检测封装效果的结构 - Google Patents
有机电子器件封装中同时具有提高封装效率和检测封装效果的结构 Download PDFInfo
- Publication number
- WO2020207100A1 WO2020207100A1 PCT/CN2020/073207 CN2020073207W WO2020207100A1 WO 2020207100 A1 WO2020207100 A1 WO 2020207100A1 CN 2020073207 W CN2020073207 W CN 2020073207W WO 2020207100 A1 WO2020207100 A1 WO 2020207100A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- packaging
- layer
- electronic device
- organic
- organic electronic
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/84—Passivation; Containers; Encapsulations
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
Definitions
- the invention belongs to the technical field of organic electronic device packaging, and particularly relates to a structure in the organic electronic device packaging that has both improved packaging efficiency and detection packaging effect.
- New organic electronic devices organic light emitting, organic optoelectronic devices, organic detectors and organic field effect tubes are used in display and solid-state lighting, energy sources, detectors, mobile phones, wearables due to their own advantages of lightness, energy saving, self-luminescence, and power generation.
- the field has broad application prospects. Its excellent characteristics will affect the development of next-generation display electronic products and are the main force of flexible electronic displays.
- the purpose of the present invention is to provide a structure for improving the packaging efficiency and detecting the packaging effect in the packaging of organic electronic devices, so as to overcome the above-mentioned defects in the prior art.
- the present invention provides a structure for improving the packaging efficiency and detecting the packaging effect in the organic electronic device packaging, including: an organic electronic device or an organic functional layer prepared on a substrate, and an organic electronic device or an organic functional layer
- the substrate is selected from hard materials such as metal, quartz, silicon oxide, glass, silicon wafers, etc., and can also be various flexible plastics, polymers, and resin materials.
- the organic electronic device and the organic functional layer are selected from the group consisting of organic light-emitting device OLED, quantum light-emitting device GLED, polymer light-emitting device PLED, organic small molecule, polymer, perovskite photoelectric device, photodetector And solar cells, as well as organic and polymer field effect transistors.
- the material of the protective insulating layer is selected from metal oxides, electrodeless insulating materials, metal salts and the like.
- the active metal layer is selected from calcium, magnesium, aluminum, sodium, etc.
- the active metal layer can be coated by plasma, electronic sputtering, thermal evaporation and the like.
- the thickness of the nano-active metal layer may range from 10-500 nm, and the width may range from 10 microns to 5 mm.
- the area of the protective insulating layer is larger than the active metal layer to ensure that the active metal layer will not affect the electrical properties of the organic device and the functional layer, such as short circuit, leakage, etc.
- the other encapsulation layer may be a covering single layer oxide, an encapsulation curing resin, an encapsulation curing glue/polymer layer, or a multilayer composite encapsulation structure of the above materials.
- the other encapsulation layer may also be a cover plate, which is selected from high water and oxygen barrier metal, glass, silicon wafer, silicon oxide, metal oxide, and high water and oxygen barrier flexible film, base sheet.
- the protective insulating layer and the active metal layer, as well as other packaging layers thereon can be packaged around the boundary of the organic device or can be fully covered.
- the external connection electrodes of the active metal layer may be formed in a single pair or multiple configurations to detect the resistance value of each part of the metal layer.
- the material can be selected from metals or transparent conductive materials.
- the dual-function package design is suitable for various boundary, partial and overall package structures and designs.
- the first step is to prepare the glass or high-barrier flexible PET substrate to be used.
- the surface can be cleaned and placed in a vacuum drying box to remove excess moisture and oxygen.
- OLED devices After the OLED device is prepared, a 100-nanometer LiF insulating layer is directly deposited on the OLED device in the vacuum evaporation chamber, and then a 150-nanometer calcium ring-shaped metal layer is evaporated on it. Part of it is connected and conductive with the ITO electrode on the substrate;
- the sample is transferred into a nitrogen glove box with a temperature of 20 degrees, water and oxygen less than 1 ppm; a layer of thermosetting resin is coated by a spin coating process, about 2-10 microns thick;
- the third step is to cover the cleaned package cover glass or high barrier flexible PET cover plate on the second step device;
- the packaged device is introduced and placed on the UV curing table, the substrate and device are on the bottom, the UV curing resin and the packaging cover film are on the top; the entire device is also placed in a nitrogen glove box;
- the fifth step on the basis of the fourth step, turn on the UV lamp to irradiate the entire sample to cure the packaging coating, and complete the device curing after 2-4 minutes;
- the seventh step is to put the device into the life test system, maintain a constant test current, and detect the curve of the luminous efficiency of the device and the conductance failure of the active metal layer.
- the basic principle of the present invention is based on using a nano active metal intercalation layer at the device boundary, instead of covering the entire upper part of the device, so that the active metal layer surrounds the entire organic device.
- the water/oxygen must pass through the surrounding active metal layer before penetrating into the device from the boundary.
- the nano-scale active metal is very easy to chemically react with water/oxygen, and produce insulating metal oxide or metal salt. This part of the reaction consumes most of the infiltrated water/oxygen molecules until the entire metal layer is completely reacted.
- the material produced by the reaction is nanometer-sized, and the reaction product will stay in the original position, not only will no longer migrate, but also will prevent the subsequent water/oxygen from entering the device area.
- This process can greatly reduce the process and amount of water/oxygen entering the device area from the boundary, thereby improving the effect of boundary packaging.
- the reaction of the active metal and water/nutrition will consume the thickness or width of the metal layer, causing the resistance value of the metal layer to increase until the open circuit is insulated.
- the package structure has basically failed, and the device may have been damaged by the infiltrated water/oxygen.
- the coating of the entire active metal layer is carried out in a vacuum coating machine ( ⁇ 10 -4 Pa), and other packaging and curing processes are all completed in an inert atmosphere, such as nitrogen, argon and other inert gas glove boxes.
- the water and oxygen content in the glove box should be less than 1ppm.
- the substrate used in the packaging process is a flexible substrate with glass and high water and oxygen barriers, and organic electronic devices use organic small molecule light-emitting devices (OLEDs) that are sensitive to water, oxygen and heat.
- the upper encapsulation layer uses a composite encapsulation structure of UV curing resin and glass or a flexible substrate with high water and oxygen barrier. At the same time, multiple pairs of ITO electrodes are connected to the active metal layer.
- a 150nm thick and 1mm wide metal calcium layer is evaporated around the organic device area as an active metal insertion layer.
- Figure 1 is a schematic diagram of a comprehensive coverage package structure
- Figure 2 is a schematic diagram of a partial or boundary package structure.
- OLED devices are prepared on test substrate (silicon wafer, glass) 1, protective insulating layer 2, active metal insertion layer 3, upper encapsulation layer (including cured adhesive layer) 4, organic device or organic functional layer 5, ring The coating cures the bonding layer 6.
- An organic electronic device encapsulation has a structure that improves the encapsulation efficiency and detects the encapsulation effect at the same time. It includes: an organic electronic device or organic functional layer prepared on a substrate, a protective insulating layer on the organic electronic device or organic functional layer, The nano active metal layer plated on the insulating layer, and other packaging layers on the nano active metal layer, wherein the active metal layer can be connected to external electrodes.
- the substrate is selected from hard materials such as metal, quartz, silicon oxide, glass, silicon wafers, etc., and can also be various flexible plastics, polymers, and resin materials.
- organic electronic devices and organic functional layers are selected from organic light-emitting devices OLED, quantum light-emitting devices GLED, polymer light-emitting devices PLED, organic small molecules, polymers, perovskite photoelectric devices, photodetectors and Solar cells, and organic, polymer field effect transistors.
- the material of the protective insulating layer is selected from metal oxides, electrodeless insulating materials, metal salts and the like.
- the active metal layer is selected from calcium, magnesium, aluminum, sodium, etc.
- the active metal layer can be coated by plasma, electronic sputtering, thermal evaporation, etc.
- the thickness of the nano-active metal layer can range from 10-500 nm, and the width can range from 10 microns to 5 mm.
- the area of the protective insulating layer is larger than the active metal layer to ensure that the active metal layer will not affect the electrical properties of the organic device and the functional layer, such as short circuit, leakage, etc.
- the other encapsulation layer may be a covered single-layer oxide, encapsulation curing resin, encapsulation curing glue/polymer layer, or a multilayer composite encapsulation structure of the above materials.
- the other encapsulation layer may also be a cover plate, which is selected from high water and oxygen barrier metal, glass, silicon wafer, silicon oxide, metal oxide, and high water and oxygen barrier flexible film and substrate.
- the protective insulating layer and the active metal layer, as well as other packaging layers thereon can be packaged around the boundary of the organic device, or can be fully covered.
- the external connection electrodes of the active metal layer may be formed in a single pair or multiple configurations to detect the resistance value of each part of the metal layer.
- the material can be selected from metals or transparent conductive materials.
- the dual-function package design is suitable for various boundary, partial and overall package structures and designs.
- one of the factual solutions is to adopt the following steps:
- the glass or high-barrier flexible PET substrate In the first step, prepare the glass or high-barrier flexible PET substrate to be used, and the surface can be cleaned. And put it into a vacuum drying box to remove excess adsorbed water vapor and oxygen. Put glass or high barrier flexible PET substrate into organic light emitting diode equipment to grow and prepare OLED device. After completing the preparation of the OLED device, the OLED device is directly vapor-deposited with a 100-nm LiF insulating layer in the vacuum evaporation chamber, and then a 150-nm calcium ring metal layer is vapor-deposited on it, partly with the ITO on the substrate The electrode connection is conductive.
- the sample is transferred into a nitrogen glove box with water and oxygen less than 1ppm at 20 degrees.
- a layer of thermosetting resin is applied by spin coating process, about 2-10 microns thick.
- the third step is to cover the cleaned package cover glass or high barrier flexible PET cover plate on the second step device.
- the packaged device is transferred and placed on the UV curing table, the substrate and device are on the bottom, and the UV curing resin and packaging cover film are on the top.
- the entire equipment is also placed in a nitrogen glove box.
- the fifth step on the basis of the fourth step, turn on the UV lamp to irradiate the entire sample to cure the packaging coating, and complete the device curing after 2-4 minutes.
- the seventh step is to put the device into the life test system, maintain a constant test current, and detect the curve of the luminous efficiency of the device and the conductance failure of the active metal layer.
- the basic principle of the present invention is based on using a nano active metal intercalation layer at the device boundary, instead of covering the entire upper part of the device, so that the active metal layer surrounds the entire organic device.
- the water/oxygen must pass through the surrounding active metal layer before penetrating into the device from the boundary.
- the nano-scale active metal is very easy to chemically react with water/oxygen, and produce insulating metal oxide or metal salt. This part of the reaction consumes most of the infiltrated water/oxygen molecules until the entire metal layer is completely reacted.
- the material produced by the reaction is nanometer-sized, and the reaction product will stay in the original position, not only will no longer migrate, but also will prevent the subsequent water/oxygen from entering the device area.
- This process can greatly reduce the process and amount of water/oxygen entering the device area from the boundary, thereby improving the effect of boundary packaging.
- the reaction of the active metal and water/nutrition will consume the thickness or width of the metal layer, causing the resistance value of the metal layer to increase until the open circuit is insulated.
- the package structure has basically failed, and the device may have been damaged by the infiltrated water/oxygen.
- the coating of the entire active metal layer is carried out in a vacuum coating machine ( ⁇ 10 -4 Pa), and other packaging and curing processes are all completed in an inert atmosphere, such as nitrogen, argon and other inert gas glove boxes.
- the water and oxygen content in the glove box should be less than 1ppm.
- the substrate used in the packaging process is a flexible substrate with glass and high water and oxygen barriers, and organic electronic devices use organic small molecule light-emitting devices (OLEDs) that are sensitive to water, oxygen and heat.
- the upper encapsulation layer uses a composite encapsulation structure of UV curing resin and glass or a flexible substrate with high water and oxygen barrier. At the same time, multiple pairs of ITO electrodes are connected to the active metal layer.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Description
测试样品 | 普通封装寿命 | 本发明封装寿命 | 金属层失效 |
OLED玻璃器件 | 1156小时 | 1340小时 | 第1320小时 |
OLED玻璃/柔性盖板 | 1050小时 | 1180小时 | 第1150小时 |
OLED柔性器件 | 860小时 | 1005小时 | 第980小时 |
Claims (14)
- 一种有机电子器件封装中同时具有提高封装效率和检测封装效果的结构,其特征在于,包括:制备在基底上的有机电子器件或有机功能层,在有机电子器件或有机功能层上的保护绝缘层,在保护绝缘层上镀的纳米活泼金属层,在纳米活泼金属层上的其他封装层,其中活泼金属层可连接外部的电极。
- 根据权利要求1所述的有机电子器件封装中同时具有提高封装效率和检测封装效果的结构,其特征在于,基底,其选自金属,石英,氧化硅,玻璃,硅片等硬质材料,也可以是各种柔性塑料,聚合物,树脂材料。
- 根据权利要求1所述的有机电子器件封装中同时具有提高封装效率和检测封装效果的结构,其特征在于,有机电子器件和有机功能层,其选自有机发光器件OLED,量子发光器件GLED,聚合物发光器件PLED,有机小分子,聚合物,钙钛矿光电器件,光电探测器和太阳能电池,以及有机,聚合物场效应管。
- 根据权利要求1所述的有机电子器件封装中同时具有提高封装效率和检测封装效果的结构,其特征在于,保护绝缘层,其材料选自金属氧化物,无极绝缘材料,金属盐类等。
- 根据权利要求1所述的有机电子器件封装中同时具有提高封装效率和检测封装效果的结构,其特征在于,活泼金属层,其选自钙,镁,铝,钠等.
- 根据权利要求1所述的有机电子器件封装中同时具有提高封装效率和检测封装效果的结构,其特征在于,活泼金属层,可以通过等离子,电子溅射,热蒸发等方式镀膜。
- 根据权利要求1所述的有机电子器件封装中同时具有提高封装效率和检测封装效果的结构,其特征在于,纳米活泼金属层,其厚度可以从10-500纳米,其宽度可以在10微米到5毫米区间。
- 根据权利要求1所述的有机电子器件封装中同时具有提高封装效率和检测封装效果的结构,其特征在于,保护绝缘层面积要大于活泼金属层,保证活泼金属层不会影响有机器件和功能层的电学性质。
- 根据权利要求1所述的有机电子器件封装中同时具有提高封装效率和检测封装效果的结构,其特征在于,其他封装层,可以是覆盖的单层氧化物,封 装固化树脂,封装固化胶/聚合物层,或者是上述材料的多层复合封装结构。
- 根据权利要求1所述的有机电子器件封装中同时具有提高封装效率和检测封装效果的结构,其特征在于,其他封装层,也可以是盖板,其选自高水氧阻挡的金属,玻璃,硅片,氧化硅,金属氧化物,以及高水氧阻挡的柔性薄膜,基片。
- 根据权利要求1所述的有机电子器件封装中同时具有提高封装效率和检测封装效果的结构,其特征在于,保护绝缘层和活泼金属层,以及其上的其他封装层,可以是有机器件边界环绕封装,也可以全覆盖封装。
- 根据权利要求1所述的有机电子器件封装中同时具有提高封装效率和检测封装效果的结构,其特征在于,活泼金属层的外部连接电极,可以是单对或者多个构成,用以检测金属层各部分电阻值。其材料可以选自金属或者透明导电材料。
- 根据权利要求1所述的有机电子器件封装中同时具有提高封装效率和检测封装效果的结构,其特征在于,双重功能的封装设计适用于各种边界,部分和全面的封装结构与设计。
- 一种有机电子器件封装中同时具有提高封装效率和检测封装效果的生产工艺,其特征在于,按照如下步骤进行:第一步,准备好待用玻璃或高阻隔柔性PET衬底,可对表面进行清洗。并放入真空干燥箱去除多余吸附的水汽和氧气。将玻璃或高阻隔柔性PET衬底放入有机发光二极管设备生长和制备OLED器件。完成OLED器件的制备后,直接将OLED器件在真空蒸镀腔内蒸镀一层100纳米的LiF绝缘层,其后再上面蒸镀150纳米的钙环形金属层,其部分与衬底上的ITO电极连接导通;第二步,将样品传入到20度,水,氧小于1ppm的氮气手套箱内;通过旋涂工艺涂膜一层热固化树脂,大约2-10微米厚;第三步,在第二步的器件上覆盖清理过的封装覆盖用的玻璃或高阻隔柔性PET覆盖板;第四步,将封装好的器件传入放置在UV固化台上,基板和器件在下,UV固化树脂和封装覆盖膜在上;整个设备也是放置在氮气手套箱内;第五步,在第四步基础上,打开UV灯照射整个样品固化封装涂层,2-4分钟后完成器件固化;第七步,将器件放入寿命测试系统中,保持恒定的测试电流,检测器件发光效率的曲线和活泼金属层的电导失效情况。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910292613.X | 2019-04-12 | ||
CN201910292613.XA CN110061146A (zh) | 2019-04-12 | 2019-04-12 | 有机电子器件封装中同时具有提高封装效率和检测封装效果的结构 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020207100A1 true WO2020207100A1 (zh) | 2020-10-15 |
Family
ID=67317718
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/073207 WO2020207100A1 (zh) | 2019-04-12 | 2020-01-20 | 有机电子器件封装中同时具有提高封装效率和检测封装效果的结构 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110061146A (zh) |
WO (1) | WO2020207100A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112467017A (zh) * | 2020-11-16 | 2021-03-09 | 福建华佳彩有限公司 | 一种新型Mini LED的柔性封装结构及其制备方法 |
CN112467016A (zh) * | 2020-11-16 | 2021-03-09 | 福建华佳彩有限公司 | 一种Mini LED的柔性封装散热结构及其制造方法 |
CN112467015A (zh) * | 2020-11-16 | 2021-03-09 | 福建华佳彩有限公司 | 一种柔性Mini LED的封装结构及其制备方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110061146A (zh) * | 2019-04-12 | 2019-07-26 | 南京福仕保新材料有限公司 | 有机电子器件封装中同时具有提高封装效率和检测封装效果的结构 |
CN112599696B (zh) * | 2020-12-11 | 2022-12-06 | 深圳市华星光电半导体显示技术有限公司 | 一种显示面板的封装结构及显示装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002367772A (ja) * | 2001-06-12 | 2002-12-20 | Nisshin Steel Co Ltd | ステンレス鋼製有機el素子用封止缶 |
CN1602122A (zh) * | 2004-09-30 | 2005-03-30 | 清华大学 | 一种有机电致发光器件 |
CN107768533A (zh) * | 2016-08-18 | 2018-03-06 | 上海和辉光电有限公司 | 一种amoled的封装结构及方法 |
CN108448005A (zh) * | 2018-03-12 | 2018-08-24 | 武汉华星光电半导体显示技术有限公司 | 显示设备及显示设备阻水效果的测试方法 |
CN110061146A (zh) * | 2019-04-12 | 2019-07-26 | 南京福仕保新材料有限公司 | 有机电子器件封装中同时具有提高封装效率和检测封装效果的结构 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101582489A (zh) * | 2009-05-26 | 2009-11-18 | 上海大学 | 有机电致发光器件的复合封装结构和方法 |
CN102709486B (zh) * | 2012-06-11 | 2015-02-04 | 四川虹视显示技术有限公司 | LiF膜的用途及OLED封装结构及封装方法 |
-
2019
- 2019-04-12 CN CN201910292613.XA patent/CN110061146A/zh active Pending
-
2020
- 2020-01-20 WO PCT/CN2020/073207 patent/WO2020207100A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002367772A (ja) * | 2001-06-12 | 2002-12-20 | Nisshin Steel Co Ltd | ステンレス鋼製有機el素子用封止缶 |
CN1602122A (zh) * | 2004-09-30 | 2005-03-30 | 清华大学 | 一种有机电致发光器件 |
CN107768533A (zh) * | 2016-08-18 | 2018-03-06 | 上海和辉光电有限公司 | 一种amoled的封装结构及方法 |
CN108448005A (zh) * | 2018-03-12 | 2018-08-24 | 武汉华星光电半导体显示技术有限公司 | 显示设备及显示设备阻水效果的测试方法 |
CN110061146A (zh) * | 2019-04-12 | 2019-07-26 | 南京福仕保新材料有限公司 | 有机电子器件封装中同时具有提高封装效率和检测封装效果的结构 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112467017A (zh) * | 2020-11-16 | 2021-03-09 | 福建华佳彩有限公司 | 一种新型Mini LED的柔性封装结构及其制备方法 |
CN112467016A (zh) * | 2020-11-16 | 2021-03-09 | 福建华佳彩有限公司 | 一种Mini LED的柔性封装散热结构及其制造方法 |
CN112467015A (zh) * | 2020-11-16 | 2021-03-09 | 福建华佳彩有限公司 | 一种柔性Mini LED的封装结构及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110061146A (zh) | 2019-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020207100A1 (zh) | 有机电子器件封装中同时具有提高封装效率和检测封装效果的结构 | |
Xiao et al. | Ternary organic solar cells offer 14% power conversion efficiency | |
Weerasinghe et al. | Influence of moisture out-gassing from encapsulant materials on the lifetime of organic solar cells | |
TWI503050B (zh) | 用於透光裝置的導電結構 | |
Grover et al. | New organic thin-film encapsulation for organic light emitting diodes | |
Shao et al. | Vacuum-free laminated top electrode with conductive tapes for scalable manufacturing of efficient perovskite solar cells | |
CN101359722A (zh) | 一种顶发射有机电致发光器件的封装方法 | |
CN102437288A (zh) | 有机电致发光器件的封装结构 | |
CN102270742B (zh) | 一种有机光电器件封装器及器件封装方法 | |
Steinmann et al. | Encapsulation requirements to enable stable organic ultra-thin and stretchable devices | |
CN103730598A (zh) | 一种有机电致发光器件及其制备方法 | |
Dollinger et al. | Laminated aluminum thin-films as low-cost opaque moisture ultra-barriers for flexible organic electronic devices | |
Subbarao et al. | Laboratory thin-film encapsulation of air-sensitive organic semiconductor devices | |
CN109950412A (zh) | 一种基于紫外共混蒸镀工艺钙钛矿发光二极管及制备方法 | |
KR101047396B1 (ko) | 유기 태양전지 및 그 제조 방법 | |
CN101859872B (zh) | 一种有机光电子器件的封装对位装置及其封装方法 | |
CN103730595A (zh) | 一种有机电致发光器件及其制备方法 | |
CN103855315A (zh) | 一种有机电致发光器件及其制备方法 | |
CN103855316B (zh) | 一种有机电致发光器件及其制备方法 | |
CN103427038A (zh) | 一种有机电致发光器件及其制备方法 | |
CN103855320B (zh) | 一种有机电致发光器件及其制备方法 | |
CN103855321A (zh) | 一种有机电致发光器件及其制备方法 | |
CN103855308B (zh) | 一种有机电致发光器件及其制备方法 | |
Su | Encapsulation Technology | |
KR20130113216A (ko) | 다층 투명 전극을 구비하는 인버티드 유기 태양전지의 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20788599 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20788599 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20788599 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08.06.2022) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20788599 Country of ref document: EP Kind code of ref document: A1 |