CN101849289A - 制备三层梁的方法和设备 - Google Patents

制备三层梁的方法和设备 Download PDF

Info

Publication number
CN101849289A
CN101849289A CN200880108379A CN200880108379A CN101849289A CN 101849289 A CN101849289 A CN 101849289A CN 200880108379 A CN200880108379 A CN 200880108379A CN 200880108379 A CN200880108379 A CN 200880108379A CN 101849289 A CN101849289 A CN 101849289A
Authority
CN
China
Prior art keywords
layer
metal
deposition
etch
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200880108379A
Other languages
English (en)
Other versions
CN101849289B (zh
Inventor
肖恩·J.·坎宁安
达纳·德瑞斯
亚瑟·S.·玛瑞斯三世
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AAC Technologies Pte Ltd
Original Assignee
Wispry Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wispry Inc filed Critical Wispry Inc
Publication of CN101849289A publication Critical patent/CN101849289A/zh
Application granted granted Critical
Publication of CN101849289B publication Critical patent/CN101849289B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0064Constitution or structural means for improving or controlling the physical properties of a device
    • B81B3/0067Mechanical properties
    • B81B3/0072For controlling internal stress or strain in moving or flexible elements, e.g. stress compensating layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00095Interconnects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/07Integrating an electronic processing unit with a micromechanical structure
    • B81C2203/0707Monolithic integration, i.e. the electronic processing unit is formed on or in the same substrate as the micromechanical structure
    • B81C2203/0728Pre-CMOS, i.e. forming the micromechanical structure before the CMOS circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/07Integrating an electronic processing unit with a micromechanical structure
    • B81C2203/0707Monolithic integration, i.e. the electronic processing unit is formed on or in the same substrate as the micromechanical structure
    • B81C2203/0757Topology for facilitating the monolithic integration
    • B81C2203/0771Stacking the electronic processing unit and the micromechanical structure

Abstract

提供了用于制备三层梁的方法和设备。特别地,公开了用于通过至少绝缘层、第一金属层、梁氧化物层、第二金属层和绝缘平衡层的沉积和图形化来制备多层结构的方法和结构。

Description

制备三层梁的方法和设备
相关申请
本公开的主题要求于2007年7月23日提交的、序列号为60/961,591的美国临时专利申请以及于2007年7月23日提交的、序列号为60/961,649的美国临时专利申请的优先权,并且将其所公开的内容以引用的方式全部并入于此。本申请还涉及于2008年7月23日(与本申请同日)提交的,序列号待分配的美国实用专利申请,并也将其以引用的方式全部并入于此。
技术领域
本主题一般地涉及微电子机械系统(MEMS)方法和设备。更具体地,本主题涉及用于制备三层梁(beam)以及其他多层结构的方法和设备。
背景技术
微电子机械系统(微机械或者MEMS设备)具有广泛应用,并在商业产品中变得流行。因为它们在无线频率(RF)范围内操作具有低功率和损耗以及高绝缘和线性特性,从而MEMS设备是理想的无线设备。特别地,MEMS设备非常适于包括蜂窝电话、无线网络、通信系统和雷达系统等应用。在无线设备中,MEMS设备可用作天线转换器、模式转换器、发射/接收转换器,可调滤波器、匹配网络等。
用于MEMS设备中的结构的一个特殊实例是三层梁。该结构已显示用来在MEMS设备中提供可靠、可重复的性能。利用具有如下形成结构的基本思想的任何数量的技术来制备三层梁:具有三个功能层,即第二功能层沉积在第一功能层上,且第三功能层沉积在第二功能层上。第一和第三层可以相同,以创建成高度几何、机械和热机械对称。
发明内容
一方面,本公开主题提供了一种用于微电子机械设备的多层结构。所述多层结构可包括基底、沉积在基底上的下牺牲层、沉积在所述下牺牲层上的绝缘层、沉积在所述绝缘层上的第一金属层、沉积在所述第一金属层上的梁氧化物层、沉积在所述梁氧化物层上的第二金属层以及沉积在所述第二金属层上的绝缘平衡层。所沉积的层可以图形化并进行蚀刻以限定多层结构。
另一方面,本公开主题提供了一种制备用于微电子机械设备的多层结构的方法。所述方法可包括在基底上沉积下牺牲层,使所述下牺牲层形成隔离岛,在所述基底和所述下牺牲层上沉积绝缘层,在所述绝缘层上沉积第一金属层,在所述第一金属层上沉积梁氧化物层,在所述梁氧化物层上沉积第二金属层,在所述梁氧化物层和第二金属层上沉积绝缘平衡层,在一个或更多个沉积层上创建周边和释放孔(perimeter and release hole),并且通过所述周边和释放蚀刻孔蚀刻掉所述下牺牲层。
在又一方面,本公开主题提供了用于制备微电子机械设备的多层结构的另一种方法。所述方法可包括在基底上沉积下基础金属层,用介电层封装所述基础金属层,在所述基底上沉积下牺牲层,使所述下牺牲层形成隔离岛,在所述基底和所述下牺牲层上沉积绝缘层,在所述基底上的所述绝缘层上沉积第一金属层,在所述第一金属层上沉积梁氧化物层,在所述梁氧化物层上沉积第二金属层,在所述梁氧化物层和所述第二金属层上沉积绝缘平衡层,在一个或更多个沉积层上创建周边和释放孔,并且通过所述周边和释放蚀刻孔蚀刻掉所述下牺牲层。在这方面,可在所述基础金属层和所述第一金属层之间限定电容器。
如下文所述,将说明书结合附图进行描述,本公开主题的其它特征将变得更清楚。
附图说明
下文将参照附图对此处描述的主题进行说明,其中:
图1至12是在制备根据此处公开的主题的多层结构中可发生的渐进步骤的截面侧视图;以及
图13至36是根据此处公开的本主题的另一具体实施方式的多层结构的截面侧视图。
具体实施方式
根据本公开,提供了用于制备三层梁的方法和设备。此处所描述的三层梁可具有用于多种通信应用的MEMS设备、系统以及方法的特殊应用。
三层梁提供了相对简单的、提供温度和膜应力平衡的构造。应力平衡对于控制所制备的设备的形状非常重要,而温度平衡对低温系数来说是重要的。通过增加绝缘层(IL)和绝缘平衡层(IBL),三层梁的制备在一些情况下可变得更容易生产、更强健。在典型情况下,通过所述基本三层结构控制机械和电机机械,从而增加所附加的绝缘层和绝缘平衡层不会严重影响MEMS设备的操作。
许多方法可用于制备三层梁以形成最应力平衡和温度平衡的结构。本公开包括可用于通过实施绝缘层和绝缘平衡层来制备三层梁的特定方法的描述。这些方法也可用于其它的多层结构,因此绝缘层和绝缘平衡层的应用不限于三层结构的构造。
如上所述,三层梁的基本组成是金属-电介质-金属三明治。第一金属层可沉积在下牺牲层上,并图形化。这一步骤之后可接着进行沉积介电层和沉积第二金属层。所述第二金属层可图形化,接着对所述介电层进行图形化和蚀刻以形成该结构的基本轮廓。如果所述下牺牲层不被金属蚀刻或者不被光刻工艺损坏,简单的工艺流就足够了。当所述下牺牲层被蚀刻或者被金属蚀刻或光刻工艺损坏(即,通过金属蚀刻和光刻工艺腐蚀或蚀刻聚酰亚胺),将需要针对这些工艺对所述下牺牲层进行保护。
一种方法是将所述下牺牲层封装到不能被金属蚀刻或光刻工艺蚀刻(或最小地蚀刻)的材料中。封装材料的选择取决于所要蚀刻的金属和所使用的光刻制剂。例如,在一种特定情况下,所述下牺牲层的材料可以是聚酰亚胺。所述聚酰亚胺牺牲层可以封装到用作电容器电介质的氧化物层中。可提供绝缘层以防止调节板短路、保护该下牺牲层、部分封装该第一金属层、用作金属蚀刻的蚀刻阻挡层,并且如果所述金属可被所述牺牲释放蚀刻化学反应所蚀刻则保护用于牺牲蚀刻的该金属。然后可用氧等离子体去除聚酰亚胺,这不会腐蚀所述金属或所述电介质。
所增加的绝缘或绝缘平衡层兼容于传统互补型金属氧化物半导体(CMOS)工艺步骤,即替换金属和氧化沉积物,将所述氧化物用作电介质绝缘体和/或电容器电介质,以及将所述金属用作氧化蚀刻阻挡层(电通路终端(electrical via terminations))以及将所述氧化物用作金属蚀刻阻挡层。
此处描述的所述三层梁结构可有助于使所述三层截面的对称度达到最大,其中所述对称度依据几何、材料和工艺性能来限定。进一步地,该绝缘层的成功取决于其用作对金属蚀刻的蚀刻阻挡层、用作电容器电介质和支持最大电压降,以及用作保护金属不受所述牺牲蚀刻和环境影响的保护性封装的能力。
为了此处描述,应当理解,当诸如层或基底的元件被称为被“放置于”、“附着于”或“形成于”另一元件上,该元件可直接在其它元件上或者还可存在介入元件(例如,一个或更多个缓冲或过渡层、夹层、电极或接触)。而且,应当理解,术语“放置于”、“附着于”和“形成于”可互换地用来描述给定的元件可如何相对于另一元件定位或设置。因此,应当理解,术语“放置于”、“附着于”和“形成于”不引入对于材料传输、沉积或制备的特定方法的任何限制。
可通过溅射、CVD、蒸发或者电镀来形成多种金属的接触、互连、导电通孔、热电元件以及电极。一些金属可能需要适当的中间粘附层以防止剥落。常用的粘附材料的实例包括铬、钛或诸如钛-钨(TiW)或钛-氮化物(TiN)的合金。一些金属组合物可需要扩散屏障以防止粘附层通过金属扩散,反之亦然。
传统光刻技术可使用于根据诸如微机械的此处所描述主题中。因此,此处没有详细描述诸如光致抗蚀剂应用,光学曝光以及显影剂的使用的基本光刻工艺步骤。
类似地,通常已知的蚀刻工艺可适当地用来选择性地去除材料或材料的区域。成像的光致抗蚀层剂通常用作掩膜模板。可将图案直接蚀刻到所述基底的块中,或者然后蚀刻到用作后继蚀刻步骤的掩膜的薄膜或层中。
在特殊制备步骤(例如,依赖于湿、干、各向同性、各向异性、各向异性取向)中所使用的蚀刻工艺类型、蚀刻率以及所用的蚀刻剂类型取决于待去除材料的组成、所用的任何掩膜或蚀刻阻挡层的组成以及将形成的蚀刻区域的轮廓。
还可使用诸如等离子体-相蚀刻和反应离子蚀刻(RIE)的干蚀刻技术来去除硅及其氧化物和氮化物,以及各种金属。深度反应离子蚀刻(DRIE)可用来在整块层上各向异性地蚀刻深的、垂直沟槽。硅氧化物通常用作DRIE的蚀刻阻挡层,并因而根据本公开,可将包含例如绝缘体上覆硅的晶片的埋入式二氧化硅层的结构用作制备微结构的初始基底。
一种可替换的图形化的蚀刻工艺是本领域技术人员已知的剥离工艺。在这种情况下,对理想图案的负像可使用传统光刻工艺。该工艺常用于使金属图形化,该金属在需要粘附层和扩散阻挡层时沉积成一个连续膜或多个膜。金属沉积在待图形化的区域以及光致抗蚀剂掩膜(负像)上。除去光致抗蚀剂及其顶部的金属以留下理想的金属图案。
如此处所使用的,术语“设备”解释为具有可与术语“元件”互连的装置。如此处所使用的,术语“导电的”一般包含导电和半导材料。
根据此处公开的主题,用于制备三层梁的方法和设备的具体实施方式将参照图1至36进行描述。
一方面,本公开主题提供了如图1至12所例示的一种用于制备三层梁的方法。这个方法首先包括提供基底。所述基底可用包括硅(Si)、玻璃(硼硅酸玻璃(Pyrex))、蓝宝石、砷化镓(GaAs)、陶瓷、铝(Al)或用于制备MEMS的其他普通基底材料的任意材料制成。可选择与所述沉积温度相容的所述材料。基底可以是任何尺寸,通常使用的尺寸包括100、150和200mm。在一个特别实例中,所述基底可以是包含CMOS结构、高电压CMOS(HVCMOS)或其他已经制成的集成电路的硅基底,所述基底可包括晶体管、二极管、扩散/植入层、铝或铜连接线、氧化物/氮化物以及金属连接线。
参照图1,所述方法进一步可包括在所述基底上沉积下牺牲层S1。下牺牲层S1可以是有机聚合物(光致抗蚀剂、聚酰亚胺)、无机电介质(SG、PSG、BPSG)、金属(Al、Cu)或者用于制备MEMS或其他气隙设备的其他任何合适材料。特别地,下牺牲层S1可以是硅、多晶硅(polysilicon)或非晶硅。下牺牲层S1可以是掺杂的或未掺杂的,并且可引入所述掺杂质以提高蚀刻选择性或提供用于结构层的掺杂源。
通过包括例如且不限于旋涂、溅镀、蒸发或电镀的多种沉积技术中的任何沉积技术,下牺牲层S1可沉积到所述基底上。所用的特定方法应与以节约成本的方式下沉积理想厚度相一致。在一个实例中,下牺牲层S1可以是通过旋涂工艺沉积、软固化、光学成像以及为最终固化和除气在高温(~400摄氏度)下退火工艺的聚酰亚胺。下牺牲层S1可以沉积在单层或多层中。例如,下牺牲层S1可以沉积并图形化于两层中,并用于实现一个或更多功能目的,包括形成静电激励器气隙,形成电容气隙,形成接触隆起,和/或形成孤立的远距离的隆起。
如图2中所例示,下牺牲层S1可以在隔离岛中图形化。下牺牲层S1可以通过包括剥离(lift-off)、电镀、光掩膜和蚀刻(例如,湿或干化学蚀刻或物理蚀刻),以及光成像和显影工艺(即光致抗蚀剂显影)的多种技术中任何技术。例如,下牺牲层S1可以是通过光成像和光显影图形化的聚酰亚胺层。或者,下牺牲层S1可以是通过光掩膜和蚀刻图形化的硅层。在另一替代方式中,下牺牲层S1可以是通过光致抗蚀剂电镀模板的电镀和图形化的铜层。更进一步地,下牺牲层S1可以是通过剥离技术溅射和图形化的铜层。无论所用的是何具体方法,下牺牲层S1应该从不是隔离岛的部分的所有界面上彻底去除并清除。此外,下牺牲层S1的剩余部分可以平面化。下牺牲层S1可需要高温退火以控制应力、除气、材料性能或其他因素。
如图3所示,用于制备三层梁的方法然后可包括在基底和下牺牲层S1中一个或两者上面沉积绝缘层IL。绝缘层IL可向所述三层梁提供多种功能。第一,它可在制备三-梁结构的过程中用作形成后沉积金属层的图案的蚀刻阻挡层。在该作用下,绝缘层IL应该足够强健以经受得住上覆金属层的任何蚀刻从而制成清洁、不导电的表面以及排除或减少纵梁金属化的电位。绝缘层IL自身一般不应在下牺牲层S1上图形化或蚀刻,为下牺牲层S1提供屏障。然而,它仅在提供金属层之间的通路互连(via interconnection)时蚀刻,因此,该通路蚀刻(via etch)将常常在位于下面的金属层上终止。
第二,绝缘层IL另外还可作为下牺牲层S1的保护层。一般地,直到所有结构金属层都已经沉积和图形化后,绝缘层IL才不需要图形化或蚀刻,以暴露下牺牲层S1。因为绝缘层IL可以不图形化地保留在下牺牲层S1上,它可为绝缘层IL沉积之后的任何随后的蚀刻或光刻步骤提供保护屏障。在一些工艺中,在沉积绝缘层IL后,只要该图案不终止在下牺牲层S1上,可对其图形化和蚀刻。例如,典型的是,对位于下面的金属层图形化和蚀刻电通路连接线,但不太典型的是,图形化和蚀刻通路,终止在场氧化物中。对该层的要求可取决于所用的下牺牲层和在该工艺过程中可暴露的随后化学工艺。在一个特别实例中,绝缘层IL可与聚酰亚胺牺牲层联合使用。绝缘层IL可保护聚酰亚胺层不暴露于蚀刻工艺和任何随后的光致抗蚀剂脱模(photoresist strip)。如果不存在绝缘层IL,聚酰亚胺牺牲层将暴露于牺牲蚀刻和光致抗蚀剂脱模工艺,该光致抗蚀剂剥离工艺底切上覆的金属层并损害结构的整体性。如果存在绝缘层IL,但在下牺牲层S1上图形化或蚀刻,则也将出现这种情况。
第三,绝缘层IL可作为电容器电介质。例如,绝缘层IL可限定固定的电容器的电介质、可调/可激励电容器或者金属连接线之间的间层电介质的一些部分。在一个特别实例中,处于“开启”状态时,与0.15μm的、位于下面的金属层上的氧化物绝缘层IL和的另一氧化物层(例如,SIP氧化物)相比,电容器间隔可以通过公称2μm空气间隔来控制。处于“关闭”状态时,由于其与其他贡献者(contributor),SIP氧化物层相比的厚度,氧化物绝缘层IL可以控制电容密度。绝缘层IL的厚度通常可根据蚀刻阻挡层和防护功能确定。电容器介电层的最小厚度(即,绝缘层IL和SIP氧化物层的组合厚度)通过依据漏电和击穿的可靠性确定。电容器介电层的最大厚度通过起作用的电容密度确定。例如,绝缘层IL可包括电容器电介质的控制部分。根据电容器电介质的要求,介电层的厚度可分布在SIP氧化物层和绝缘层IL之间以最优化并简化该工艺。在一个特定实例中,如果可以除去绝缘层IL,SIP氧化物层可指定为0.15μm以去除沉积步骤并减少用来限定电容器电介质厚度的关键尺寸的步骤数量。在另一实例中,绝缘层IL的厚度为0.15μm和氧化物层的厚度为
Figure GPA00001066666800091
可优化电容密度,电容器可靠性,蚀刻阻挡能力以及牺牲层防护。
第四,绝缘层IL可提供金属层和线的封装和隔离,并可改良高电压部件的击穿。绝缘层IL可与另一层(例如,下文描述的梁氧化物层)组合使用以通过氧化物彻底封装金属层,从而限制金属暴露于任何后继步骤或环境条件。
在结构上,绝缘层IL可以是封装图形化的牺牲层的连续的、邻接的共形层。绝缘层IL的一个普通实例是诸如硅氮化物、氧化硅或其他高-k电介质或低-k电介质的电介质。作为一个特定实例,绝缘层IL可以是具有介电常数约为4,厚度约为
Figure GPA00001066666800092
Figure GPA00001066666800093
的与CMOS兼容的氧化硅。可基于一个或更多个因素选择形成的绝缘层IL的厚度,包括:1)在不存在穿透绝缘层IL达到位于下覆的下牺牲层S1的蚀刻时,用作后继金属蚀刻的蚀刻阻挡的能力;2)提供泄漏屏障并支持穿越金属层的电压(即击穿电压可有利地高于约40VDC/RF);3)为固定的电容器或可调电容器提供特定电容密度的能力;和/或4)为后继蚀刻或光刻步骤提供屏障的能力。例如,对于聚酰亚胺下牺牲层S1,绝缘层IL可有利地向附着和去除聚酰亚胺的后继光脱模(photostrip)工艺提供屏障。对于诸如硅的较坚硬的下牺牲层S1,为绝缘层IL提供防护的重要性可较小,这取决于硅蚀刻是否附着任何金属/金属覆层。
接着参照图4和5,可在基底上的绝缘层IL上沉积第一金属层M1。除对于CMOS工艺典型的诸如由钛/钛氮化物、金和/或铜组成的粘附层/扩散屏障的覆层外,第一金属层M1可以是与CMOS兼容的铝(例如,Al-0.5%Cu,Al-1%Si等)。第一金属层M1可图形化以限定激励器电极、用于固定或可调电容器的电容器电极、开关触点(具有适当的触点合金)、感应线圈、焊盘或其他金属互连结构。第一金属M1的厚度可以设计成满足导电、热和电能传导的电-热响应、机械要求(例如,固有频率和更高频率模式、转换时间)和电-机械响应(例如,接通电压、释放电压、自驱动电压)的机械要求。
在一个实例中,第一金属层M1可以是铝层(例如Al-0.5%Cu)加上任意覆层材料的0.52μm-厚度的层。第一金属层M1可以在不具有牺牲岛的基底部分上或在牺牲岛自身上图形化。如果第一金属层M1在下牺牲层S1上图形化,它可以是悬浮/可移动结构的部分或者固定结构的部分。如果它是可移动结构的部分,第一金属层M1可形成可移动的电容器板、可移动的调节板和/或可移动开关触点。第一金属层M1可通过图形化的电镀模板利用电镀图形化,这可能需要沉积种子层。或者,第一金属层M1可以通过使用适当的剥离模板的剥离、通过利用适当的蚀刻掩膜的湿蚀刻或利用适当的蚀刻掩膜的干蚀刻图形化。绝缘层IL应对湿/干金属蚀刻或掩膜脱模工艺具有出色的选择性。
如图6所示,梁氧化物层BOX可进一步沉积在第一金属层M1上。梁氧化物层BOX可以是可封装第一金属层M1的连续的、邻接的共形层。可选择梁氧化物层BOX的厚度以满足机械和电机械的要求(接通电压、自驱动、释放电压、转换时间、固有频率)。梁氧化物层BOX可以是介电层,例如氧化硅、硅氮化物、氧化铝层。例如,梁氧化物层BOX可以是厚度约为2μm的SiO层。
梁氧化物层BOX还可以图形化以蚀刻第一金属层M1和第二金属层M2(下文将进行描述)之间的电连接通路。通过第二金属层M2的共形工艺,利用通路的共形填充可完成电互连。如果梁工艺可以平面化,可通过任何填充通路技术形成通路电连接。例如,通路技术可首先包括CMP氧化物,然后先是CMP填充材料(例如,W)或电镀螺栓,接着是CMP电介质,以暴露导电螺柱。通路可制备在下牺牲层S1上并延伸出下牺牲层S1,但在第一金属层M1终止。
一般地,梁氧化物层BOX不需要充分图形化以暴露下牺牲层S1。进一步地,梁氧化物层BOX的、限定设备形状的图形化和蚀刻可推迟到第二金属层M2蚀刻和绝缘平衡层IBL沉积之后。一直等到执行这些步骤以对梁氧化物层BOX图形化和蚀刻之后,从而确保梁氧化物层BOX不仅在蚀刻第二金属层M2和后继的显影工艺过程中提供对下牺牲层S1的防护而且简化金属蚀刻,因为不需要从陡壁或深壁上去除金属。因此,绝缘层IL、梁氧化物层BOX和绝缘平衡层IBL可以同步蚀刻以限定梁的形状。这避免了许多过度绘制(overplot)设计规则并使所用面积达到最小。
参照图7和8,可在梁氧化物层BOX上沉积第二金属层M2。第二金属层M2可服务于为自由悬挂的三层梁提供与第一金属层M1对称平衡的目的。另外,第二金属层M2可通过蚀刻在梁氧化物层BOX中的通路与第一金属层M1电接触。除对CMOS工艺典型的、诸如钛/钛氮化物、金或铜的覆层(例如,粘附层/扩散屏障)外,第二金属层M2可由与CMOS兼容的铝(例如,Al-0.5%Cu,AL-1%Si等)组成。第二金属层M2可图形化以限定激励器电极、用于固定或可调电容器的电容器电极、开关触点(具有适当的触点合金)、感应线圈、焊盘或其他金属互连结构。进一步地,第二金属层M2可通过蚀刻图形化,同时梁氧化物层BOX有效地对第二金属层的蚀刻形成绝缘层。第二金属层M2的厚度可设计成满足导电、热和电能传导的电-热响应、机械要求(例如,固有频率和更高频率模式、转换时间)和电-机械响应(例如,接通电压、释放电压、自驱动电压)的功能要求。
在一个实例中,第二金属层M2可以是铝层(例如Al-0.5%Cu)加上覆层的0.52μm-厚度的层。与第一金属层M1类似,第二金属层M2可通过图形化的电镀模板利用电镀图形化,这可能需要沉积种子层。或者,第二金属层M2可以通过使用适当的剥离模板进行剥离、通过利用适当的蚀刻掩膜进行湿蚀刻或利用适当的蚀刻掩膜进行干蚀刻来图形化。绝缘层IL应对湿/干金属蚀刻或掩膜脱模工艺具有出色的选择性。
如图9所例示,可在梁氧化物层BOX和第二金属层M2上沉积绝缘平衡层IBL。如上文所指出的那样,为了梁的机械和热-机械平衡,可增加绝缘平衡层IBL,从而补偿增加的绝缘层IL。绝缘平衡层IBL可利用与绝缘层IL相同的材料和相同的厚度进行沉积,以提供可限定为几何、机械和热机械对称的高度对称性。例如,绝缘平衡层IBL可以是厚度为
Figure GPA00001066666800121
Figure GPA00001066666800122
的氧化物(例如,SiO)层。在这种形式下,绝缘平衡层IBL的首要功能性目的是与绝缘层IL匹配。
绝缘平衡层IBL的次要目的可以是封装第二金属层M2,并提供机械补偿。层沉积的积聚效应可导致可使释放时梁形状弯曲的一些应力梯度。绝缘平衡层IBL,即最后沉积的层,可因而对应力梯度和形状提供至少一些补偿。例如,覆层金属次序可以是Ti-TiN-Al-Ti-TiN,但是第二次序的Ti-TiN可以比第一次序厚,形成轻微的不对称。此外,可通过梁利用应力梯度设置其他的不对称性,这意味着绝缘平衡层IBL可以补偿诸如由共形工艺的覆层构造产生的轻微几何不对称以及应力梯度不对称的次要因素。当然,在补偿的度和对称的度之间存在权衡。
如上文所述,绝缘平衡层IBL可与绝缘层IL和梁氧化物层BOX同步图形化和蚀刻。进一步地,所有沉积层都可经受最终的高温退火处理,热暴露符合用于制备该结构的材料。这种形成多层结构的层组合例示于图10中。
可在组合层上执行光刻和蚀刻工艺以限定三层梁。图形化和蚀刻可限定可以是开关、可调电容器、变抗器、传感器/变换器(例如,加速计、速率陀螺仪)或其他设备的梁设备的外形。在蚀刻穿过结构氧化物(即,IL、BOX和IBL)之后,梁蚀刻可在下牺牲层S1上终止。图形化和蚀刻可进一步限定在下牺牲层S1上终止的释放蚀刻孔。释放蚀刻孔用于释放蚀刻以接近和去除下牺牲层S1。这样,牺牲材料可通过梁切口(beam cut)(即,周边和释放蚀刻孔)蚀刻掉。例如,牺牲材料可以是通过梁切口蚀刻(即,氧化物蚀刻)部分去除且通过光致抗蚀剂脱模工艺部分去除的聚酰亚胺层。在这种情况下,下牺牲层S1不是蚀刻阻挡层或者不能对梁切口蚀刻或光致抗蚀剂脱模显示很高的选择性。或者,下牺牲层S1可以是另一种更适合用作蚀刻阻挡层且不被光致抗蚀剂脱模腐蚀的材料。例如,如此高选择性的材料可以是硅、铜或者铝。
如图11所例示,在相关实施方式中,所述方法还可包括在已图形化且蚀刻的梁上沉积上牺牲层S2。上牺牲层S2可满足多项功能:1)它可在梁限定后但在其释放之前为任何高温工艺提供创建高度对称性(牺牲层-梁-牺牲层);2)它可在将下牺牲层S1用于掺杂所述三层梁的层时创建对称掺杂源;3)它可有助于在梁上形成薄膜封装罩;以及4)为装运目的,它可提供钝化屏障。如果梁切口(轮廓和蚀刻孔)已图形化并已蚀刻,可在已去除下牺牲层S1的地方填充上牺牲层S2。如果将下牺牲层S1沉积成单层,则上牺牲层S2还可以是第二牺牲层。进一步地,如果在所述梁下面的下牺牲层S1沉积成两层,则上牺牲层S2可以是第三牺牲层。更进一步地,如果下牺牲层S1沉积成n层,则上牺牲层可以是第(n+1)牺牲层。
在结构上,上牺牲层可以与在所述三层梁下的下牺牲层S1相同。例如,如果下牺牲层是聚酰亚胺,上牺牲层可以是聚酰亚胺。或者在上牺牲层S2可以与在所述三层梁下的下牺牲层S1的材料不同。例如,下牺牲层S1可以是硅(非结晶硅、多晶硅、溅射硅(sputtered silicon)),然而上牺牲层S2可以是聚酰亚胺,或者反之亦然。另外,上牺牲层S2可以单独地或者与下牺牲层S1的平面化组合地平面化。
在具有上牺牲层S2的本实施方式中,可通过梁切口(即,周边和释放蚀刻孔)从梁的上部和下部蚀刻牺牲材料。如果上、下牺牲材料相同,牺牲蚀刻可以将单种材料作为目标。例如,对聚酰亚胺的牺牲蚀刻将去除梁的上部和下部的聚酰亚胺。或者,牺牲蚀刻可由多种化学反应组成,从而第一牺牲蚀刻化学反应可去除上牺牲层S2,第二牺牲蚀刻化学反应可去除下牺牲层S1。还或者,牺牲蚀刻可由连接次序的化学反应组成,以去除多种材料类型或者去除在处理或去除过程中已发生变化的材料。
可根据相对于基底和设备层的性能的材料性能选择用于下牺牲层S1和上牺牲层S2中的一个或二者的材料。在一个实施方式中,该关系可意味着沉积下牺牲层S1可涉及沉积所选择的、其刚度大于基底的刚度和一个或更多个后继沉积设备层的刚度的材料层。当然,刚度的差别不需要相当大。例如,沉积下牺牲层S1可包括沉积所选择的其刚度大致类似于基底的刚度和一个或更多个设备层的刚度的材料层。
这样利用根据其性能选择的材料组成的牺牲层可降低最终设备形状对工艺参数(例如,特定沉积温度、沉积温度差别(即金属与氧化物相比)、特定材料参数(例如,牺牲层的弹性模量/CTE、金属的塑性性能、牺牲层的玻璃化转变温度)、时间(例如,沉积时间、停留时间、排队时间)和/或几何(例如,牺牲层厚度、设备层厚度、设备层长度或长宽比))的敏感性。另外,这种牺牲层可改良被释放设备的最终制成的形状,并降低所制成形状的可变性,去除所沉积的层从所述基底的去耦,这可发生在更灵活的牺牲材料中,并常降低穿越产品阵列、模具或晶片的设备的可变性。
下牺牲层S1的材料还选择为具有与一个或更多个设备层的材料性能相关的其他特定材料性能。例如,这种材料性能可包括牺牲弹性模量、泊松比、热膨胀系数、厚度、特征长度、特征温度(即熔点、软化点、玻璃化转变温度)、变形或粘弹性性能,它们可选择为与一个或更多个设备层的相应性能直接相关。
例如,在一个特别实施方式中,用来形成下牺牲层S1的材料可选择为其具有大于一个或更多个设备层的沉积温度的特征温度(即熔化温度、软化温度或玻璃化转变温度)。进一步地,用于下牺牲层S1的材料可选择为其热膨胀系数大致类似于一个或更多个设备层的热膨胀系数。
如图12所例示,在另一相关实施方式中,用于制备三层梁的方法可包括在基底上、梁和牺牲层上方沉积罩层LL。罩层LL可在梁和牺牲层上方共形,且可与所述位于下面的场氧化物相同。在一具体实施例中,罩层LL可以是厚度约为4-5μm的氧化硅层。
罩层LL可以用一系列释放蚀刻孔图形化和蚀刻。这些释放蚀刻孔可将尺寸和间距确定成在沉积上牺牲层S2后对罩层LL进行最佳释放和密封。例如,蚀刻释放孔的典型尺寸约为1-5μm,典型间距(取决于孔的尺寸)约为10-30μm。进一步地,蚀刻释放孔可以在x和y方向具有相同间距的规则正交阵列中图形化,或者,蚀刻释放孔可以形成决定于位于下面的设备的在X和Y方向上间距不同或者不规则的图案。
类似地,蚀刻释放孔的尺寸可以是全部一致的或者蚀刻释放孔可以与满足特定蚀刻距离要求时尺寸不同。例如,如果上牺牲层S2的厚度是不均匀的,在牺牲材料较厚的地方,所述孔可以面积更大一些。这样,当孔的尺寸变化时间距(pitch)保持恒定,从而有助于创建更统一的释放蚀刻。或者,通过蚀刻孔尺寸保持恒定,并允许间距不一致地变化,或者通过允许蚀刻孔尺寸和间距均不一致地变化,可创建更均匀一致的释放蚀刻。不管其特定构造,可以蚀刻罩层LL并且可在上牺牲层S2上终止蚀刻。罩蚀刻和牺牲材料之间的蚀刻选择性不是重要因素,但是上牺牲层S2不应该受到损害并不应该允许罩蚀刻腐蚀位于下面的结构/梁材料。
在本实施方式中,可通过梁切口(即周边和释放蚀刻孔)和罩层LL中的蚀刻释放孔从梁的上部和梁的下部蚀刻牺牲材料。所述释放蚀刻可首先将梁上部的牺牲材料作为目标(即上牺牲层S2)。如果上牺牲层S2的材料与下牺牲层S1的材料不同,则需要不同的牺牲释放化学反应以去除上牺牲层S2。一旦上牺牲层S2完全去除,可引入第二蚀刻化学反应以去除下牺牲层S1。例如,释放蚀刻可以是氧等离子体以去聚酰亚胺上牺牲层S2,和XeF2(或SF6)气相蚀刻以去除硅下牺牲层S1。或者,释放蚀刻可以将上牺牲层S2和下牺牲层S1的牺牲材料相同之处的所述两层作为目标。
接着,罩层LL中的所述蚀刻释放孔可以是密封的。例如,所述孔可用有机或无机材料的密封层密封。例如,所述孔可用聚酰亚胺的有机层密封。所述密封层可进一步用可以是电介质(例如,氧化硅、氮化硅或者二者的组合物)或者金属(例如,Al、Au、Cu)的密封屏障覆盖。例如,可以提供湿气屏障作为氧化硅加氮化硅的堆积成层的合成物。该屏障层可以用来提供密封屏障以限制湿气/气体扩散。或者,所述孔可用还可作为密封屏障层的密封层密封。
另一方面,如图13至36所例示,本主题提供了一种制备三层梁的方法和替代结构。在本替代方法中,再次提供基底S。在一个实例中,如图13所例示,基底S可包括用4-金属HVCMOS处理的硅起始晶片W。如图14所例示,可创建连接件MC以将HVCMOS互连于待制备的MEMS设备。参照图15,金属层MM1可以沉积和图形化。参照图16,然后氧化物层可沉积在所述金属层上方,通路MV1形成于所述金属层。这样,在本实例中,如图13-16中所示的这些步骤形成的结构可形成基底S。
然后,如图17所示,基础金属层MB可沉积在所述基底上。基础金属层MB可沉积并通过溅射、蚀刻、剥离、电镀图形化。它可由铝(或诸如Al-0.5%Cu,Al-1%Si等的铝合金)、金、铜或其他导电材料组成。基础金属层MB在需要时可进一步包括粘附层和扩散屏障,并且覆层(即粘附层和扩散层的组合)可以形成于所述金属的两侧。例如,基础金属层MB可在铝层(例如,Al-0.5%Cu)底部和顶部包括钛/氮化钛覆层。
基础金属层MB还可形成电互连、焊盘、可变电容器板的固定电容器板、固定电容器的一个电容器板,或者静电激励器的固定电极。另外,基础金属层MB可互连于相同基底上的位于下面的电子器件。在该布置中,所述位于下面的电子器件可传输电压以控制激励或测量电容的变化。
而且,如图18所例示,可在基础金属层MB上方沉积并且对其平面化的另一其中蚀刻有空腔的氧化物层PL。实现平面化的下牺牲层SL1的工艺可通过诸如下牺牲层SL1沉积和图形化的第一途径的其他集成器件完成,所述下牺牲层SL1封装在电介质(例如,氧化物)中,并且使所述氧化物平面化以暴露和磨光下牺牲层SL1。图19例示了可在空腔中沉积、图形化并蚀刻的附加氧化物层BMP。氧化物层BMP可用于设定电容器间隔,提供较低的电容密度,较高的击穿电压或提供激励器板隔离。或者,对于第一种途径,可在下牺牲层SL1沉积和图形化或氧化物层PL平面化之前处理氧化物层BMP和即将出现的SIP层。第三替代方案是可将氧化物层BMP集成于所述三层工艺中,从而可在所述梁上而不是在基底S上制备所述氧化物隆起。如图20所描绘的,基底上的基础金属层MB可进一步用介电层(SIP)封装。所述SIP介电层可满足多项功能,例如:1)防止动、静电极(电容器或激励器)之间短路;2)封装电介质材料中的金属化(即,基础金属层)以根据需要防止环境或工艺暴露(即金属暴露于牺牲释放);和/或3)限定固定或可调电容器电介质的部分。所述SIP层可以是诸如氧化硅(SiO)、氮化硅(SixNy)、氧化铝(AlxOy)、氧化铪(HfO)或另一介电层的绝缘电介质。所述SIP层可以通过溅射、PECVD、旋涂或其他已知工艺沉积。在一个实例中,所述SIP层可以是介电常数约为4、厚度约为
Figure GPA00001066666800171
的氧化硅层。
现在参照图21至29,所述方法可进一步包括如下步骤:在基底上和基础金属层MB上沉积下牺牲层S1,并将下牺牲层S1形成隔离岛图案(见图21),在基底和牺牲层上沉积绝缘层IL(见图22),蚀刻用于基底S上的元件与后继沉积的设备层之间电连接的通路MV2(见图23),在基底上的绝缘层IL上沉积第一金属层M1(见图24),在第一金属层M1上方沉积梁氧化物层BOX(见图25),图形化和蚀刻穿过梁氧化物层BOX到达第一金属层M1的通路MV3(见图26),在梁氧化物层BOX上沉积第二金属层M2(见图27),在梁氧化物层BOX和第二金属层M2上沉积绝缘平衡层IBL(见图28),通过光刻和蚀刻限定梁切口BC(见图29),以及通过所述梁切口(周边和释放蚀刻孔)蚀刻掉所述牺牲材料。另外,如图30所例示,上牺牲层S2可以沉积在已图形化和蚀刻的梁上。进一步地,如图31所例示,可在基底上和所述梁及牺牲层上方沉积罩层LL。另外,罩层LL可图形化和蚀刻以创建达到上牺牲层S2的孔H(见图32),两个牺牲层可通过蚀刻孔去除(见图33),可沉积密封层LS以密封所述孔(见图35),可通过封装层蚀刻垫片开口P(见图36)。类似于上述实施方式,可将一个或两个牺牲层平面化。
在此构造中,电容器可限定在基础金属层MB和第一金属层M1之间,其中基础金属层MB是静止层而第一金属层M1可以是静止或可动的层。在一种布置中,固定的电容器可通过基底上的基础金属层MB和基础金属层MB上的SIP电介质限定。第一金属层M1可形成固定的电容器的第二板。电介质绝缘层IL可直接沉积在所述SIP电介质上,并且第一金属层M1可直接沉积在绝缘层IL上。因而电容器电介质厚度可通过SIP电介质和绝缘层IL的厚度和限定。
可替代地,下牺牲层S1可沉积在所述SIP层上,所述SIP层可沉积在基础金属层MB上。然后电介质绝缘层IL可沉积在下牺牲层S1上,并且第一金属层M1可直接沉积在绝缘层IL上。在去除下牺牲层S1后,电容器电介质厚度从而通过所述SIP电介质、绝缘层IL和通过去除下牺牲层S1而形成的气隙的厚度的和限定。在本布置中,所述SIP电介质和绝缘层IL可相对氧化硅(SiO)公称地具有介电常数约为4,气隙可具有公称的空气的介电常数(即,约为1),公称厚度约为2μm。
在另一布置中,可调电容器可通过固定在所述基底上的基础金属层MB与基础金属层上的SIP电介质限定。牺牲层可沉积在基础金属层MB上的SIP层上。电介质绝缘层IL可沉积在下牺牲层S1。第二金属层M2可直接沉积在绝缘层IL上,并可形成所述可调电容器的第二可动板。在去除下牺牲层S1后,基础金属层MB和第一金属层M1可通过等于所述牺牲厚度的距离隔离。“开启”状态的电容可通过SIP电介质的厚度、绝缘层IL的厚度以及气隙的宽度确定,其中所述气隙的宽度通过下牺牲层S1的厚度和所述梁/可调电容器所建立的偏移来设定。SIP电介质和绝缘层IL可相对于氧化硅公称地具有介电常数4,并且气隙可具有公称的空气的介电常数(即,约为1),公称厚度约为2μm(对于未偏移的可调电容器而言)。电容器的所述“关闭”状态可通过SIP介电层的厚度和绝缘层IL的厚度确定(没有曲率、粗糙度和/或杂质)。
可替代地,具有电容的可调或固定的电容器可通过SIP电介质和绝缘层IL的厚度确定。SIP电介质和绝缘层IL厚度的公称目标分别是
Figure GPA00001066666800191
和0.15μm。所述SIP介电层行使封装层、牺牲蚀刻和环境(钝化)层的功能,以及电容器电介质的功能。绝缘层IL可行使蚀刻阻挡层、下牺牲层S1和任何后继化学工艺(光致抗蚀剂脱模)之间的屏障,以及电容器电介质的功能。总厚度可以满足电容密度要求和击穿电压要求为目标。
SIP电介质和绝缘层IL的分布和厚度可根据特定要求而不同。例如,如果不需要SIP电介质的屏障和钝化功能,可去除SIP电介质层,这去除了清理和沉积步骤而不是掩膜步骤。如果金属蚀刻阻挡层和牺牲保护不是绝缘层IL的所需要的功能,可去除绝缘层IL,并且SIP层的厚度可增加到满足电容要求(公称0.15μm)。通过去除绝缘层IL,从而因为可去除绝缘层IL的沉积和绝缘平衡层IBL的沉积而简化梁的结构。另外,关键的电介质厚度可通过单层(即SIP电介质厚度)而不是多层沉积物(即SIP电介质和绝缘层IL的组合物)测量。
应当理解,在没有脱离本公开主题的范围的情况下可改变本公开主题的各种细节。而且,上述描述仅用于例示目的,而不是限制目的。

Claims (26)

1.一种用于微电子机械设备的多层结构,包括;
基底;
沉积在所述基底上的下牺牲层;
沉积在所述下牺牲层上的绝缘层;
沉积在所述绝缘层上的第一金属层;
沉积在所述第一金属层上的梁氧化物层;
沉积在所述梁氧化物层上的第二金属层;以及
沉积在所述第二金属层上的绝缘平衡层;
其中,能够将所沉积的层图形化并进行蚀刻以限定多层结构。
2.如权利要求1所述的多层结构,其中,将所述第一金属层图形化以限定用作激励器电极、固定或可调电容器的电容器电极、开关触点、感应线圈或焊盘的结构。
3.如权利要求1所述的多层结构,其中,将所述第二金属层图形化以限定用作激励器电极、固定或可调电容器的电容器电极、开关触点、感应线圈或焊盘的结构。
4.如权利要求1所述的多层结构,其中,所述绝缘平衡层包括具有与所述绝缘层相同的成分和厚度的材料。
5.如权利要求1所述的多层结构,还包括沉积在所述基底和所述下牺牲层之间的基础金属层,其中将一电容器限定在所述基础金属层和所述第一金属层之间。
6.如权利要求1所述的多层结构,还包括沉积在所述多层结构上的上牺牲层。
7.如权利要求1所述的多层结构,还包括沉积在所述多层结构上的罩层。
8.一种制备用于微电子机械设备的多层结构的方法,所述方法包括:
在基底上沉积下牺牲层;
将所述下牺牲层图形化为隔离岛;
在所述基底和所述下牺牲层上沉积绝缘层;
在所述绝缘层上沉积第一金属层;
在所述第一金属层上沉积梁氧化物层;
在所述梁氧化物层上沉积第二金属层;
在所述梁氧化物层和所述第二金属层上沉积绝缘平衡层;
在一个或更多个所沉积的层中创建周边和释放孔;以及
通过所述周边和释放蚀刻孔蚀刻掉所述下牺牲层。
9.如权利要求8所述的方法,其中,沉积所述绝缘平衡层包括沉积具有与所述绝缘层相同的成分和厚度的材料层。
10.如权利要求8所述的方法,其中,沉积所述绝缘平衡层包括封装所述第二金属层。
11.如权利要求8所述的方法,还包括穿过所述绝缘层蚀刻电通路。
12.如权利要求8所述的方法,还包括将所述第一金属层图形化。
13.如权利要求12所述的方法,其中,藉由通过已图形化的电镀模板进行电镀、使用适当的剥离模板进行剥离、利用适当的蚀刻掩膜进行湿蚀刻、或利用适当的蚀刻掩膜进行干蚀刻,来将所述第一金属层图形化。
14.如权利要求8所述的方法,还包括将所述梁氧化物层图形化,以蚀刻所述第一金属层和所述第二金属层之间的电连接通路。
15.如权利要求8所述的方法,还包括将所述第二金属层图形化。
16.如权利要求15所述的方法,其中,藉由通过已图形化的电镀模板进行电镀、使用适当的剥离模板进行剥离、利用适当的蚀刻掩膜进行湿蚀刻、或利用适当的蚀刻掩膜进行干蚀刻,来将所述第二金属层图形化。
17.如权利要求8所述的方法,还包括将所述绝缘层、所述梁氧化物层、和所述绝缘平衡层同步图形化。
18.如权利要求8所述的方法,还包括:
在已图形化且进行蚀刻的多层结构上沉积上牺牲层;以及
通过所述周边和释放蚀刻孔蚀刻掉所述下牺牲层和所述上牺牲层。
19.如权利要求18所述的方法,其中,蚀刻掉所述下牺牲层和所述上牺牲层包括利用第一蚀刻化学反应蚀刻所述上牺牲层,利用第二蚀刻化学反应蚀刻所述下牺牲层。
20.如权利要求8所述的方法,还包括:
在已图形化且进行蚀刻的多层结构上沉积上牺牲层;
在所述基底上和所述多层结构与所述上牺牲层上方沉积罩层;
通过所述周边和释放蚀刻孔以及所述罩层中的蚀刻释放孔蚀刻掉所述下牺牲层和所述上牺牲层;以及
密封所述罩层中的所述蚀刻释放孔。
21.如权利要求20所述的方法,其中,密封所述罩层中的所述蚀刻释放孔包括涂敷密封层,并利用屏障层覆盖所述密封层。
22.一种制备用于微电子机械设备的多层结构的方法,所述方法包括:
在基底上沉积基础金属层;
在所述基底和所述基础金属层上沉积下牺牲层;
将所述下牺牲层图形化为隔离岛;
在所述基底和所述下牺牲层上沉积绝缘层;
在所述基底上的所述绝缘层上沉积所述第一金属层,其中,将一电容器限定在所述基础金属层和所述第一金属层之间;
在所述第一金属层上沉积梁氧化物层;
在所述梁氧化物层上沉积第二金属层;
在所述梁氧化物层和所述第二金属层上沉积绝缘平衡层;
在一个或更多个所沉积的层中创建周边和释放孔;以及
通过所述周边和释放蚀刻孔蚀刻掉所述下牺牲层。
23.如权利要求22所述的方法,还包括在沉积所述下牺牲层之前,利用介电层封装所述基础金属层。
24.如权利要求22所述的方法,还包括:
在已图形化且进行蚀刻的多层结构上沉积上牺牲层;以及
通过所述周边和释放蚀刻孔蚀刻掉所述下牺牲层和所述上牺牲层。
25.如权利要求22所述的方法,还包括:
在已图形化且进行蚀刻的多层结构上沉积上牺牲层;
在所述基底上、所述多层结构与所述上牺牲层上方沉积罩层;
通过所述周边和释放蚀刻孔以及所述罩层中的蚀刻释放孔蚀刻掉所述下牺牲层和所述上牺牲层;以及
密封所述罩层中的所述蚀刻释放孔。
26.一种制备用于微电子机械设备的多层结构的方法,所述方法包括:
在基底上沉积下牺牲层;
在所述基底和所述下牺牲层上沉积绝缘层;
在所述绝缘层上沉积第一金属层;
在所述第一金属层上沉积梁氧化物层;
在所述梁氧化物层上沉积第二金属层;
在所述梁氧化物层和所述第二金属层上沉积绝缘平衡层;
将所沉积的层图形化并进行蚀刻以限定多层结构。
CN200880108379.0A 2007-07-23 2008-07-23 制备三层梁的方法和设备 Active CN101849289B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US96164907P 2007-07-23 2007-07-23
US96159107P 2007-07-23 2007-07-23
US60/961,649 2007-07-23
US60/961,591 2007-07-23
PCT/US2008/070937 WO2009015239A1 (en) 2007-07-23 2008-07-23 Methods and devices for fabricating tri-layer beams

Publications (2)

Publication Number Publication Date
CN101849289A true CN101849289A (zh) 2010-09-29
CN101849289B CN101849289B (zh) 2014-02-26

Family

ID=40281810

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200880108379.0A Active CN101849289B (zh) 2007-07-23 2008-07-23 制备三层梁的方法和设备

Country Status (4)

Country Link
US (3) US8319312B2 (zh)
EP (1) EP2183782B1 (zh)
CN (1) CN101849289B (zh)
WO (1) WO2009015239A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104045053A (zh) * 2013-03-11 2014-09-17 台湾积体电路制造股份有限公司 具有覆盖结构的mems器件结构

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101849289B (zh) 2007-07-23 2014-02-26 维斯普瑞公司 制备三层梁的方法和设备
JP5412031B2 (ja) * 2007-07-24 2014-02-12 ローム株式会社 Memsセンサ
JP2009028807A (ja) * 2007-07-24 2009-02-12 Rohm Co Ltd Memsセンサ
TW200938479A (en) * 2007-10-22 2009-09-16 Toshiba Kk Micromachine device and method of manufacturing the same
US8148790B2 (en) * 2008-07-08 2012-04-03 Wispry, Inc. Thin-film lid MEMS devices and methods
US9018718B2 (en) * 2009-02-24 2015-04-28 Pixart Imaging Incorporation Micro-electro-mechanical-system device with guard ring and method for making same
US8580596B2 (en) * 2009-04-10 2013-11-12 Nxp, B.V. Front end micro cavity
US8674463B2 (en) * 2009-04-26 2014-03-18 United Microelectronics Corp. Multifunction MEMS element and integrated method for making MOS and multifunction MEMS
TWI477434B (zh) * 2009-04-27 2015-03-21 United Microelectronics Corp 一種多功能微機電系統元件暨多功能微機電系統與金氧半導體的整合製造方法
JP2010280035A (ja) * 2009-06-04 2010-12-16 Toshiba Corp Memsデバイスとその製造方法
US8569091B2 (en) * 2009-08-27 2013-10-29 International Business Machines Corporation Integrated circuit switches, design structure and methods of fabricating the same
US8685778B2 (en) 2010-06-25 2014-04-01 International Business Machines Corporation Planar cavity MEMS and related structures, methods of manufacture and design structures
US8138008B1 (en) 2010-11-29 2012-03-20 International Business Machines Corporation Forming an oxide MEMS beam
US8575037B2 (en) * 2010-12-27 2013-11-05 Infineon Technologies Ag Method for fabricating a cavity structure, for fabricating a cavity structure for a semiconductor structure and a semiconductor microphone fabricated by the same
US8470628B2 (en) 2011-06-20 2013-06-25 International Business Machines Corporation Methods to fabricate silicide micromechanical device
FR2977884B1 (fr) * 2011-07-12 2016-01-29 Commissariat Energie Atomique Procede de realisation d'une structure a membrane suspendue et a electrode enterree
US8673670B2 (en) * 2011-12-15 2014-03-18 International Business Machines Corporation Micro-electro-mechanical system (MEMS) structures and design structures
US8796927B2 (en) * 2012-02-03 2014-08-05 Infineon Technologies Ag Plasma cell and method of manufacturing a plasma cell
US10354804B2 (en) 2012-09-20 2019-07-16 Wispry, Inc. Micro-electro-mechanical system (MEMS) variable capacitor apparatuses and related methods
US8809155B2 (en) 2012-10-04 2014-08-19 International Business Machines Corporation Back-end-of-line metal-oxide-semiconductor varactors
CN104051385B (zh) * 2013-03-13 2017-06-13 台湾积体电路制造股份有限公司 堆叠式半导体结构及其形成方法
US9969613B2 (en) 2013-04-12 2018-05-15 International Business Machines Corporation Method for forming micro-electro-mechanical system (MEMS) beam structure
CN104340951B (zh) * 2013-07-30 2016-12-28 中芯国际集成电路制造(上海)有限公司 一种运动传感器的制备方法
JP2015133424A (ja) * 2014-01-14 2015-07-23 住友電工デバイス・イノベーション株式会社 電子部品の製造方法
US9637371B2 (en) * 2014-07-25 2017-05-02 Semiconductor Manufacturing International (Shanghai) Corporation Membrane transducer structures and methods of manufacturing same using thin-film encapsulation
US9446947B2 (en) * 2014-08-25 2016-09-20 Texas Instruments Incorporated Use of metal native oxide to control stress gradient and bending moment of a released MEMS structure
CN105645349B (zh) * 2014-12-04 2017-09-22 中芯国际集成电路制造(上海)有限公司 Mems器件的形成方法
US9546090B1 (en) 2015-08-14 2017-01-17 Globalfoundries Singapore Pte. Ltd. Integrated MEMS-CMOS devices and methods for fabricating MEMS devices and CMOS devices
US10513429B2 (en) 2016-07-27 2019-12-24 Taiwan Semiconductor Manufacturing Co., Ltd. Integration scheme for microelectromechanical systems (MEMS) devices and complementary metal-oxide-semiconductor (CMOS) devices
US10800649B2 (en) 2016-11-28 2020-10-13 Analog Devices International Unlimited Company Planar processing of suspended microelectromechanical systems (MEMS) devices
US10512164B2 (en) 2017-10-02 2019-12-17 Encite Llc Micro devices formed by flex circuit substrates
US10189705B1 (en) * 2017-10-25 2019-01-29 Globalfoundries Singapore Pte. Ltd. Monolithic integration of MEMS and IC devices
US10843920B2 (en) 2019-03-08 2020-11-24 Analog Devices International Unlimited Company Suspended microelectromechanical system (MEMS) devices
CN114679150A (zh) * 2020-12-24 2022-06-28 联华电子股份有限公司 半导体元件结构及其制造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5274904A (en) * 1991-08-07 1994-01-04 Grumman Aerospace Corporation Guideway coil of laminated foil construction for magnetically levitated transportation system
JP3895069B2 (ja) 1999-02-22 2007-03-22 株式会社東芝 半導体装置とその製造方法
US6800912B2 (en) * 2001-05-18 2004-10-05 Corporation For National Research Initiatives Integrated electromechanical switch and tunable capacitor and method of making the same
US6635506B2 (en) * 2001-11-07 2003-10-21 International Business Machines Corporation Method of fabricating micro-electromechanical switches on CMOS compatible substrates
EP1717195B1 (en) * 2001-11-09 2011-09-14 WiSpry, Inc. Trilayered beam MEMS switch and related method
JP2005229001A (ja) * 2004-02-16 2005-08-25 Toshiba Corp 半導体装置及び半導体装置の製造方法
WO2006061036A1 (de) * 2004-12-08 2006-06-15 Abb Patent Gmbh Verfahren zur herstellung eines messumformers
CN100417587C (zh) * 2005-03-14 2008-09-10 清华大学 一种微纳组合结构器件的制作方法
JP4791766B2 (ja) 2005-05-30 2011-10-12 株式会社東芝 Mems技術を使用した半導体装置
JP2007167998A (ja) * 2005-12-20 2007-07-05 Toshiba Corp 梁構造を有する装置、および半導体装置
CN101849289B (zh) * 2007-07-23 2014-02-26 维斯普瑞公司 制备三层梁的方法和设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104045053A (zh) * 2013-03-11 2014-09-17 台湾积体电路制造股份有限公司 具有覆盖结构的mems器件结构

Also Published As

Publication number Publication date
US8319312B2 (en) 2012-11-27
EP2183782B1 (en) 2017-12-27
US20130143347A1 (en) 2013-06-06
CN101849289B (zh) 2014-02-26
US20090134513A1 (en) 2009-05-28
EP2183782A1 (en) 2010-05-12
US8367451B2 (en) 2013-02-05
US8673671B2 (en) 2014-03-18
US20090134492A1 (en) 2009-05-28
EP2183782A4 (en) 2014-08-06
WO2009015239A1 (en) 2009-01-29

Similar Documents

Publication Publication Date Title
CN101849289B (zh) 制备三层梁的方法和设备
US9284185B2 (en) Integrated circuit switches, design structure and methods of fabricating the same
US7265019B2 (en) Elastomeric CMOS based micro electromechanical varactor
US7732240B2 (en) Formation of through-wafer electrical interconnections and other structures using a thin dielectric membrane
US8748207B2 (en) Hybrid MEMS RF switch and method of fabricating same
US10589992B2 (en) Micro-electro-mechanical system (MEMS) structures and design structures
US8790985B2 (en) High voltage resistance coupling structure
US10941036B2 (en) Method of manufacturing MEMS switches with reduced switching voltage
US20060145792A1 (en) Structure and method of fabricating a hinge type mems switch
US8872289B2 (en) Micro-electro-mechanical system (MEMS) structures and design structures
JP2004519867A (ja) 電子デバイスの製造方法
TW565530B (en) CMOS compatible microswitches
CN114303213A (zh) 器件和用于制造器件的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20220314

Address after: Room 1, 3rd floor, 22 tambini industrial Bay, Singapore

Patentee after: AAC TECHNOLOGIES Pte. Ltd.

Address before: California, USA

Patentee before: WISPRY, Inc.

TR01 Transfer of patent right