CN101793514A - 倾斜地理定位和测量系统 - Google Patents
倾斜地理定位和测量系统 Download PDFInfo
- Publication number
- CN101793514A CN101793514A CN200910225172A CN200910225172A CN101793514A CN 101793514 A CN101793514 A CN 101793514A CN 200910225172 A CN200910225172 A CN 200910225172A CN 200910225172 A CN200910225172 A CN 200910225172A CN 101793514 A CN101793514 A CN 101793514A
- Authority
- CN
- China
- Prior art keywords
- image
- computer system
- data
- measurement
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 39
- 238000005259 measurement Methods 0.000 claims abstract description 43
- 238000004364 calculation method Methods 0.000 abstract description 11
- 238000000926 separation method Methods 0.000 abstract 2
- 238000005096 rolling process Methods 0.000 description 7
- 230000009977 dual effect Effects 0.000 description 6
- 230000011664 signaling Effects 0.000 description 6
- 230000000007 visual effect Effects 0.000 description 6
- 238000004422 calculation algorithm Methods 0.000 description 4
- 238000012937 correction Methods 0.000 description 3
- 230000014509 gene expression Effects 0.000 description 3
- 238000012549 training Methods 0.000 description 3
- 238000009795 derivation Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 230000005055 memory storage Effects 0.000 description 2
- 244000025254 Cannabis sativa Species 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000002355 dual-layer Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000002650 habitual effect Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C11/00—Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
- G01C11/02—Picture taking arrangements specially adapted for photogrammetry or photographic surveying, e.g. controlling overlapping of pictures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C11/00—Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
- G01C11/04—Interpretation of pictures
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B15/00—Special procedures for taking photographs; Apparatus therefor
- G03B15/006—Apparatus mounted on flying objects
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B37/00—Panoramic or wide-screen photography; Photographing extended surfaces, e.g. for surveying; Photographing internal surfaces, e.g. of pipe
- G03B37/02—Panoramic or wide-screen photography; Photographing extended surfaces, e.g. for surveying; Photographing internal surfaces, e.g. of pipe with scanning movement of lens or cameras
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/20—Drawing from basic elements, e.g. lines or circles
- G06T11/203—Drawing of straight lines or curves
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T17/00—Three dimensional [3D] modelling, e.g. data description of 3D objects
- G06T17/05—Geographic models
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/40—Scaling of whole images or parts thereof, e.g. expanding or contracting
- G06T3/4038—Image mosaicing, e.g. composing plane images from plane sub-images
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/60—Analysis of geometric attributes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10032—Satellite or aerial image; Remote sensing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30204—Marker
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Remote Sensing (AREA)
- Theoretical Computer Science (AREA)
- Multimedia (AREA)
- Radar, Positioning & Navigation (AREA)
- Geometry (AREA)
- Software Systems (AREA)
- Computer Graphics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Image Processing (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
- Measurement Of Radiation (AREA)
- Optical Radar Systems And Details Thereof (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Processing Or Creating Images (AREA)
- Measurement Of Optical Distance (AREA)
Abstract
一种计算机化方法,用于从显示在计算机系统上的倾斜图像上进行测量,所述方法包括:将该计算机系统置于多个测量模式的所需一个之中,配置所需的测量模式,以计算所需的测量;在显示图像上选择起始点;检索与所述起始点对应的位置数据;在该显示图像上选择结束点;检索与所述结束点对应的位置数据;以及计算该所需的测量,该测量至少部分地取决于所述起始点和结束点的位置数据。
Description
本申请是申请日为2003年11月7日、申请号为200380108517.2、发明名称为“倾斜地理定位和测量系统”的中国发明专利申请的分案申请。
技术领域
本发明涉及摄影测量,尤其涉及用于采集倾斜图像和用于测量物体以及图像中所示物体之间的距离的方法和装置。
背景技术
摄影测量是对显示在照片中、尤其是航摄照片中的物体及物体之间进行测量的一门科学。通常,摄影测量包括拍摄地形特征的图像,并且从其推导数据,例如,该数据表示所述图像中物体之间的相对距离及物体的尺寸。摄影测量也可以包括将照片与其它数据联系起来,例如代表纬度和经度的数据。实际上,所述图像被叠加并且符合特定的空间坐标系。
传统的摄影测量包括采集和/或获取正交图像。诸如照相机或传感器这样的图像采集设备是正交图像。诸如照相机或传感器这样的图像采集设备由诸如飞机或卫星这样的运载体或平台携带,并且瞄准平台正下方的和/或从平台垂直向下的最底点(nadir point)。图像中对应于最底点的点或像素是精确地与图像采集设备正交的唯一的点/像素。图像中所有其它的点或像素实际上相对于图像采集设备倾斜。当点或像素逐渐远离最底点时,它们相对于图像采集设备愈加地倾斜,并且地面取样距离(即,对应于每个像素或由每个像素覆盖的表面积)也增加。正交图像中的倾斜导致图像中的特征畸变,尤其在离最底点较远的图像中。
该畸变通过正交校正过程被消除或补偿,实质上,通过在正网格(orthometric grid)或坐标系上拟合或弯曲正交图像的每个像素,所述正交校正过程从正交图像中消除倾斜。所述正交校正过程产生了图像,其中所有的像素具有相同的地面取样距离并且都被朝北定向。因此,在正交校正图像上的任何点都可以使用X,Y坐标系来定位,并且只要知道图像比例,就能够计算出地形特征的长度和宽度,以及这些特征之间的相对距离。
尽管正交校正过程一定程度上补偿了正交图像中的倾斜畸变,但是它在正交校正的正交图像中引入了其它不期望的畸变和/或误差。由于多数观察者不习惯从上方观察物体,尤其是地形特征,因此显示在正交校正过的正交图像中的物体可能难以识别和/或鉴定。对于未受培训的观察者而言正交校正图像具有许多畸变。实际上直的道路看上去弯曲,建筑物可能看上去倾斜。而且,正交校正图像基本上不包含关于地形特征的高度信息。为了识别这种图像中的物体和地形特征,正交和/或正交校正正交图像的解释和分析通常由受过高等培训的分析员来进行,这些人员接受了多年的专门培训并且具有多年的经验。
因此,尽管正交和正交校正图像在摄影测量中有用,但是它们缺少关于其中所示特征的高度信息,并且要求受过高等培训的分析员来解释图像所显示的细节。
倾斜图像是用通常瞄准或指向携带图像采集设备的平台的侧向或下方的图像采集设备采集的图像。与正交图像不同,倾斜图像显示了诸如房屋、建筑和/或山脉这样的地形特征的侧部及其顶部。因此,观察倾斜图像比观察正交或正交校正图像更自然和直观,甚至临时的观察者也能够识别和解释显示在倾斜图像中的地形特征和其它物体。在倾斜图像的前景中的每个像素对应于所示的表面或物体的较小面积(即,每个前景像素具有较小的地面取样距离),而背景中的每个像素对应于所示的表面或物体的较大面积(即,每个背景像素具有较大的地面取样距离)。倾斜图像采集对象表面或物体的大致梯形面积或视图,并且梯形前景具有基本上比梯形背景小的地面取样距离(即,更高的分辨率)。
在摄影测量中倾斜图像被认为几乎或完全没有用处。将不同尺寸的倾斜图像的前景像素和背景像素变换为统一的尺寸,并由此在坐标系上弯曲该图像的传统方法极大地扭曲了倾斜图像,并且由此造成了物体的识别以及在图像中显示物体的测量任务变得费力而不精确。通过使用高程模型在倾斜图像中进行地形移位的校正进一步扭曲了图像,由此增加了进行测量的难度,而减小了任何这样的测量的精确度。
因此,尽管在摄影测量中倾斜图像被认为几乎或完全没有用处,但是它们容易被理解,并且包含关于其中所示特征的高度信息。
因此,在本领域中需要一种用于摄影测量的方法和装置,其能够实现倾斜图像中的地理定位和精确测量。
而且,在本领域中需要一种用于摄影测量的方法和装置,其能够实现图像中物体的标高和相对标高的测量。
进一步地,在本领域中需要一种用于摄影测量的方法和装置,其利用更多直观的和自然的图像。
发明内容
本发明提供了用于采集、显示和测量物体以及倾斜图像中所示的物体之间的距离的一种方法和装置。
本发明的一种形式包括一种计算机化方法,用于从显示在计算机系统上的倾斜图像上进行测量,至少一个输入设备连接到所述计算机系统,图像数据文件可由所述计算机系统访问,所述图像数据文件包括与之对应的采集的图像和位置数据,所述计算机化方法包括:
将该计算机系统置于多个测量模式的所需一个之中,配置该所需的测量模式,以计算所需的测量;在该显示图像上选择起始点;检索与所述起始点对应的位置数据;在该显示图像上选择结束点;检索与所述结束点对应的位置数据;以及计算该所需的测量,该测量至少部分地取决于所述起始点和结束点的所述位置数据。
附图说明
当结合附图阅读时,参考本发明的实施例的以下描述,本发明的上述和其它特征和优点以及实现它们的方式将变得明显并被完全理解,其中:
图1示出了携带本发明的图像采集系统的平台或运载体的一个实施例,并且示出了由此拍摄的典型正交图像和倾斜图像;
图2是图1的图像采集系统的简图;
图3是图2的图像采集计算机系统的结构图;
图4是图1的图像采集系统的示例性输出数据文件的图示;
图5是本发明的图像显示和测量计算机系统的一个实施例的结构图,所述系统用于显示并对在由图1的图像采集系统采集的图像中所示的物体及物体之间进行测量;
图6示出了显示在图5的系统上的示例性图像,并且示出了对在该图像中所示物体及物体之间进行测量的本发明的方法的一个实施例;
图7和8示出了本发明用于采集倾斜图像的方法的一个实施例;
图9和10示出了本发明用于采集倾斜图像的方法的第二实施例;
在所有的这几幅图中相应的附图标记表示相应的部分。这里阐述的范例以一种形式说明了本发明的优选实施例,并且该范例不旨在以任何方式限制本发明的范围。
具体实施方式
现在参考附图,尤其参考图1,示出了本发明用于对倾斜图像进行采集和地理定位的装置的一个实施例。装置10包括携带图像采集和地理定位系统30的平台或运载体20。
平台20,例如飞机,航天飞机,火箭,卫星,或者任何合适的运载体,在表面31的预定区域上方和在表面31上的一个或多个预定海拔高度携带图像采集系统30,所述表面31例如为地球表面或者任何感兴趣的其它表面。因而,平台20能够在有人驾驶或无人驾驶情况下,经由例如地球大气层或外层空间沿着预定的飞行路径或路线受控运动或者飞行。图像采集平台20包括用于产生和调节能量的系统(未示出),该系统例如包括一个或多个发动机,燃料电池,太阳电池板,和/或电池,为图像采集系统30提供动力。
从图2中最清楚地看到,图像采集和地理定位系统30包括图像采集设备32a和32b,全球定位系统(GPS)接收器34,惯性导航单元(INU)36,时钟38,陀螺仪40,罗盘42和高度计44,它们中的每一个都与图像采集计算机系统46互连。
图像采集设备32a和32b,例如传统相机,数字相机,数字传感器,电荷耦合器件,或者其它合适的图像采集设备,能够用摄像或者电子仪器采集图像。图像采集设备32a和32b所具有的已知或确定的特性包括焦距,传感器尺寸和长宽比,径向畸变和其它畸变项,主点偏移,像素间距,和对准。图像采集设备32a和32b分别获取图像和发出图像数据信号(IDS)48a和48b,该图像信号对应于拍摄的特定图像或照片并且存储在图像采集计算机系统46中,以下更具体地描述。
如图1所示,图像采集设备32a和32b各自具有中心轴A1和A2,并且安装到平台20上,使得每一个轴A1和A2相对于水平面P具有偏角θ。偏角θ实质上是任何倾斜角度,但是优选地从大约20°(20度)到大约60°(60度),并且最优选地从大约40°(40度)到大约50°(50度)。
GPS接收器34接收全球定位系统信号52,该信号由一个或多个全球定位系统卫星54发射。GPS信号52以公知的形式能够确定平台20相对于表面31的精确位置。GPS接收器34对GPS信号52进行译码并且发出位置信号/数据56,该位置信号/数据56至少部分地取决于GPS信号52,并指示了平台20相对于表面31的精确位置。对应于图像采集设备32a和32b采集的每个图像的位置信号/数据56被图像采集计算机系统46接收和存储。
INU 36是传统的惯性导航单元,其连接到图像采集设备32a和32b和/或平台20,并且检测图像采集设备32a和32b和/或平台20的速度的变化,包括平动速度和旋转速度。INU 36将表示速度和/或速度变化的速度信号/数据58发送到存储速度信号/数据58的图像采集计算机系统46,该速度信号/数据58对应于由图像采集设备32a和32b采集并且被图像采集计算机系统46接收和存储的每个图像。
时钟38保持准确的时间测量值(有效时间),该时间测量值用于对图像采集和地理定位系统30中的事件进行同步。时钟38提供了时间数据/时钟信号62,所述时间数据/时钟信号62表示图像采集设备32a和32b拍摄图像的准确时间。时间数据62也被提供给图像采集计算机系统46并由图像采集计算机系统46存储。可选地,时钟38与图像采集计算机系统46集成在一起,例如时钟软件程序。
陀螺仪40是在飞机上和/或用于飞机的商业导航系统中很常见的传统的陀螺仪。陀螺仪40提供的信号包括俯仰信号64,滚动信号66和偏航信号68,其分别表示平台20的俯仰,滚动和偏航。对应于图像采集设备32a和32b采集的每个图像的俯仰信号64,滚动信号66和偏航信号68被图像采集计算机系统46接收和存储。
罗盘42,例如传统的电子罗盘,指示平台20的航向。罗盘42发出表示平台20航向的航向信号/数据72。图像采集计算机系统46接收和存储该航向信号/数据72,该航向信号/数据72对应于图像采集设备32a和32b采集的每个图像。
高度计44指示平台20的海拔高度。高度计44发出海拔高度信号/数据74,图像采集计算机系统46接收和存储该海拔高度信号/数据74,该海拔高度信号/数据74对应于图像采集设备32a和32b采集的每个图像。
如图3所示,图像采集计算机系统46,例如传统的膝上型个人电脑,包括存储器82,输入设备84a和84b,显示设备86,和输入和输出(I/O)端口88。图像采集计算机系统46运行图像和数据获取软件90,该软件存储在存储器82中。图像采集计算机系统46在其操作期间使用和/或计算的数据也存储在存储器82中,并且存储器82包括,例如非易失性只读存储器,随机存取存储器,硬盘存储器,移动存储卡和/或其它合适的记忆体存储设备和/或介质。输入设备84a和84b,例如鼠标,键盘,控制杆等,使得能够进行数据的输入,以及用户和由图像采集计算机系统46运行的软件之间的交互作用。显示设备86,例如液晶显示器或阴极射线管,向图像采集计算机系统46的用户显示信息。I/O端口88,例如串行和并行数据输入和输出端口,使得能够向图像采集计算机系统46输入和/或从其输出数据。
上述的每一个数据信号都连接到图像采集计算机系统46。更具体地,图像数据信号48,位置信号56,速度信号58,时间数据信号62,俯仰、滚动和偏航信号64,66和68,航向信号72和海拔高度信号74通过I/O端口88被接收并且存储在图像采集计算机系统46的存储器82中。
在使用时,图像采集计算机系统46运行图像和数据获取软件90,该软件通常控制对上述数据信号的读取、操作和存储。更具体地,图像和数据获取软件90读取图像数据信号48a和48b,并将它们存储在存储器82中。表示在获取图像瞬间的存在状态的位置信号56,速度信号58,时间数据信号62,俯仰、滚动和偏航信号64,66和68,航向信号72和海拔高度信号74中的每一个由图像采集设备32a和32b获取和采集,并且对应于表示所采集的图像的特定图像数据信号48a和48b,这些信号通过I/O端口88由图像采集计算机系统46接收。运行图像和数据获取软件90的图像采集计算机系统46将图像采集信号92发送到图像采集设备32a和32b,由此导致这些设备在至少部分取决于平台20速度的预定位置和/或以预定时间间隔获取或采集图像。
图像和数据获取软件90按照需要对前述信号进行解码并将其存储在存储器82中,并且使得该数据信号与相应的图像信号48a和48b相关联。因此,可以知道图像采集设备32a和32b采集的每个图像的海拔高度,就俯仰、滚动和偏航而言的定向,图像采集设备32a和32b相对于表面31的位置,即,经度和纬度。
经由图像采集路线驾驶或者以其它方式引导平台20,所述图像采集路线经过表面31的特定区域上方,例如地球或另一行星表面的预定区域。优选地,平台20的图像采集路线与感兴趣区域的至少一个边界成直角。平台20和/或图像采集设备32a,32b经过感兴趣区域上方的次数至少部分取决于该区域的大小以及在采集的图像中所需的细节量。以下更具体地描述平台20的图像采集路线的特定细节。
当平台20经过感兴趣区域上方时,大量倾斜图像被图像采集设备32a和32b采集。本领域的普通技术人员将会理解,以预定的图像获取时间间隔,图像采集设备32a和32b采集或获取图像,所述时间间隔至少部分取决于平台20的速度。
图像采集计算机系统46的存储器82通过I/O端口88接收并存储对应于获取的每个图像的图像数据信号48a和48b。类似地,图像采集计算机系统46的存储器82通过I/O端口88接收并存储对应于采集的每个图像的数据信号(即,图像数据信号48,位置信号56,速度信号58,时间数据信号62,俯仰、滚动和偏航信号64,66,68,航向信号72和海拔高度信号74)。因此,在采集每个图像的准确时刻,图像采集设备32a和32b相对于表面32的位置被记录在存储器82中,并且与相应的采集图像相关联。
如图1所示,图像采集设备32a和32b相对于地球的位置对应于正交图像102的最底点N。因此,正交图像102的最底点N的精确地理位置由位置信号56,速度信号58,时间数据信号62,俯仰、滚动和偏航信号64,66,68,航向信号72和海拔高度信号74表示。一旦正交图像102的最底点N已知,可以用公知的方式确定图像102内任何其它像素或点的地理位置。
当图像采集设备32a和32b采集诸如倾斜图像104a和104b(图1)的倾斜图像时,图像采集设备32a和32b相对于表面31的位置类似地分别由位置信号56,速度信号58,时间数据信号62,俯仰、滚动和偏航信号64,66,68,航向信号72,海拔高度信号74和图像采集设备32a和32b的主轴线A1和A2的已知偏角θ表示。
特别应当注意的是,校准过程使图像和数据获取软件90能够结合校正系数和/或能够对图像采集设备32固有的或由其引起的任何误差进行校正,例如由于校准的焦距,传感器尺寸,径向畸变,主点偏移,和对准引起的误差。
图像和数据获取软件90产生并在存储器82中存储一个或多个输出图像和数据文件120。更具体地,图像和数据获取软件90将图像数据信号48a,48b和定向数据信号(即,图像数据信号48,位置信号56,速度信号58,时间数据信号62,俯仰、滚动和偏航信号64,66,68,航向信号72和海拔高度信号74)转换为计算机可读的输出图像和数据文件120。如图4所示,输出图像和数据文件120包含对应于采集的倾斜图像的多个采集图像文件I1,I2,…,In,和与之对应的位置数据CPD1,CPD2,…,CPDn。
图像和数据文件120的图像文件I1,I2,…,In实际上以计算机可读的任何图像或图形文件格式被存储,例如JPEG,TIFF,GIF,BMP,或者PDF文件格式,并且与同样作为计算机可读数据存储的位置数据CPD1,CPD2,…,CPDn相互参照。可选地,位置数据CPD1,CPD2,…,CPDn以公知的方式嵌入到相应的图像文件I1,I2,…,In中。然后由图像和数据获取软件90或者由后处理过程对图像数据文件120进行处理,以校正误差,例如由于飞行路线偏移导致的误差和本领域普通技术人员公知的其它误差。之后,图像数据文件120准备好用于显示所采集图像中描述的物体,并对所采集图像中描述的物体及物体之间进行测量,包括该物体的高度测量。
现在参考图5,图像显示和测量计算机系统130,例如传统的台式个人电脑或者警车中的移动电脑终端,包括存储器132,输入设备134a和134b,显示设备136,和网络连接器138。图像采集计算机系统130运行图像显示和分析软件140,该软件存储在存储器132中。存储器132包括,例如非易失性只读存储器,随机存取存储器,硬盘存储器,移动存储卡和/或其它合适的记忆体存储设备和/或介质。输入设备134a和134b,例如鼠标,键盘,控制杆等,允许数据的输入,并使用户与图像显示和测量计算机系统130运行的图像显示和分析软件140之间能够进行交互作用。显示设备136,例如液晶显示器或阴极射线管,向图像显示和测量计算机系统130的用户显示信息。网络连接器138将图像显示和测量计算机系统130连接到网络(未示出),例如局域网,广域网,因特网和/或万维网。
现在参考图6,在使用中,运行图像显示和分析软件140的图像显示和测量计算机系统130访问一个或多个例如通过网络连接器138,软盘驱动器,移动存储卡或其它适当方式读入存储器132中的输出图像和数据文件120。此后,在图像显示和分析软件140的控制下,输出图像和数据文件120的一个或多个采集图像I1,I2,…,In作为显示倾斜图像142被显示。在大约相同的时间,对应于显示倾斜图像142的一个或多个数据部分CPD1,CPD2,…,CPDn被读入到存储器132的可访问部分。
特别应当注意的是,基本上当采集时对显示倾斜图像142进行显示,即显示的图像142没有针对任何坐标系弯曲或拟合,也没有被正交校正。图像显示和分析软件140并不为了能够测量图像中显示的物体而针对一个坐标系弯曲显示的图像142,而是通常通过参考输出图像和数据文件120的数据部分CPD1,CPD2,…,CPDn和使用一个或多个下文中将具体说明的投影方程计算那些所选像素的位置和/或地理位置,来确定仅根据需要而选择的或“在空中”选择的像素的地理位置。
通常,显示和测量计算机系统130的用户通过选择图像显示和分析软件140中提供的几个可用测量模式中的一个,对显示在显示倾斜图像142中的物体及其之间进行测量。用户例如通过访问一系列下拉菜单或工具栏M,或者通过键盘命令选择所需的测量模式。图像显示和分析软件140提供的测量模式包括,例如,距离模式,其能够测量两个或多个选择点之间的距离;面积模式,其能够测量由若干选择的和互连的点包围的面积;高度模式,其能够测量两个或多个选择点之间的高度;和标高模式,其能够测量一个选择点相对于一个或多个其它选择点的标高变化。
当选择所需的测量模式之后,图像显示和分析软件140的用户用输入设备134a,134b中的一个在显示图像142上选择起始点或开始像素152和结束点或像素154,并且图像显示和分析软件140自动计算和显示探索量(quantity sought),例如开始像素152和结束像素154之间的距离。
当用户选择开始点/像素152时,由图像显示和分析软件140计算表面31上与之对应的点的地理位置,所述图像显示和分析软件140利用与被显示的特定图像对应的输出图像和数据文件120的数据部分CPD1,CPD2,…,CPDn,运行一个或多个投影方程。然后,图像显示和分析软件140将与像素152对应的表面31上的点的经度和纬度显示在显示器136上,例如,在显示图像142上,靠近选择点/像素叠加经度和纬度,或在显示器136上其它位置的弹出显示框中叠加经度和纬度。用户重复同样的过程,以选择结束像素/点154,并且图像显示和分析软件140重复同样的过程,以检索和显示经度和纬度信息。
通过确定每个“在空中”选择的像素152,154的地理位置,分别完成起始和结束点/像素152,154之间距离的计算。检索与显示图像对应的输出图像和数据文件120的数据部分CPD1,CPD2,…,CPDn,然后确定与每个所选像素对应的表面31上点的地理位置。与所选像素对应的地理位置之间的差异决定了像素之间的距离。
作为如何确定显示倾斜图像142内给定点或像素的地理位置的例子,我们将假设显示图像142对应于正交图像104(图1)。图像显示和分析软件140的用户选择像素154,为了简便,该像素对应于倾斜图像104a的中心C(图1)。如图1所示,线106沿着水平面G,从其上位于图像采集设备32a正下方的点108延伸到倾斜图像104a的近边界或边缘108的中心C。主轴线A1的延伸线与中心C相交。角是在线106与主轴线A1的延伸线之间形成的角。因此,形成一个三角形(未标示),该三角形的顶点分别是图像采集设备32a,点108和中心C,该三角形的边分别是边106,主轴线A1的延伸线,以及点108和图像采集设备32a之间的垂线(虚线)110。
地平面G基本上是水平的、平坦的或不倾斜的地平面(其一般具有反映地形平均标高的标高),因此上述的三角形包括边/线110和边/线106之间的直角。由于角和图像采集设备32的海拔高度(即,边110的长度)是已知的,因此可以通过简单的几何学计算该直角三角形的斜边(即,主轴线A1的延伸线的长度)和剩下的另一边。而且,由于在与显示图像142对应的图像被采集的时刻,图像采集设备32a的精确位置已知,因此点108的纬度和经度也已知。知道按照上述计算的边106的长度,能够通过图像显示和分析软件140确定与倾斜图像104a的中心C对应的像素154的准确地理位置。一旦知道了与像素154对应的点的地理位置,就可以利用已知相机特性来确定显示倾斜图像142中的任何其它像素的地理位置,例如焦距,传感器尺寸和长宽比,径向畸变和其它畸变项等。
通过利用公知算法确定所选像素的地理位置之间的差异,图像显示和分析软件140计算与显示图像142中两个或多个所选像素对应的两个或多个点之间的距离,所述算法例如为高斯公式和/或灭点(vanishing point)公式,这取决于选择的测量模式。通过与上述测量所选像素之间的距离基本类似的过程,来对显示或出现在显示图像142中的物体进行测量。例如,通过选择合适的/所需的测量模式,以及选择开始和结束像素,来测量出现在显示图像142中的诸如建筑物,河流,道路,以及实质上任何其它地理或人造结构的物体的长度,宽度和高度。
特别应当注意的是,在图像显示和分析软件140的距离测量模式中,开始和结束点/像素152,154之间的距离实质上可以沿任何路线确定,例如“直线”路线P1,或者包括选择中间点/像素和一个或多个与之互连的“直线”段的路线P2。
也特别应当注意的是,图像显示和分析软件140的距离测量模式根据“漫步地球”法确定所选像素之间的距离。“漫步地球法”产生了一系列互连的直线段,这些线段共同由路线P1和P2表示,所述路线P1和P2在所选像素/点之间延伸,并且落在或依照定义了方格状地平面的一系列互连小平面中的平面上。如以下将具体描述的,方格状地平面很接近地遵照或再现表面31的地形,因此路线P1和P2也很接近地遵照表面31的地形。通过沿着由方格状地平面模拟的地形测量距离,“漫步地球”法提供了比传统方法更精确和有用的选择点之间的距离测量,所述传统方法在平地或平均标高平面系统上弯曲图像,并且沿平地或平面测量选择点之间的距离,基本上忽略点之间的地形变化。
例如,准备对在不平地形或者丘陵地形上铺路的合同进行投标的承包商,可以使用图像显示和分析软件140和由此提供的“漫步地球”测量法,来确定所包含道路的近似数量或面积。承包商可以从他或她自己的办公室获得道路的近似数量或面积,而不必派遣测绘队到现场获得必要的测量值。
与本发明提供的“漫步地球”法相比,当测量位于不平地形上的点和/或物体之间的距离时,以及当测量类似物体的尺寸和/或高度时,“平地”或平均标高距离计算法包含固有的不精确性。即使采集表面中的适度倾斜或坡度,也导致最底点的标高实际上相对于其上任何其它兴趣点的差值。因此,再次参考图1,由线106,主轴线A1的延伸线,以及点108和图像采集设备32a之间的垂线(虚线)110形成的三角形可能不是直角三角形。如果发生这种情况,假设该三角形是直角三角形的任何几何计算会包含误差,甚至兴趣点之间的较小的梯度或斜坡也会导致该计算结果成为近似值。
例如,如果表面31在最底点N和倾斜图像104的靠近边缘或底部边缘108的中心C之间向上倾斜,那么第二线110在其与水平或非倾斜表面31的交点之前的一点与表面31相交。如果中心C比最底点N高15英尺,并且具有40°(40度)偏角θ,如果不对点之间的标高变化进行校正,那么计算的中心C的位置将偏差大约17.8英尺。
大体如上所述,为了至少部分地补偿标高的变化,和图像142中的物体及物体之间的测量产生的不精确性,图像显示和分析软件140按照需要参考显示图像142中和表面31上的点,与预先计算的、图6中表示为160的方格状或分成小面的地平面进行参照。方格状地平面160包括多个独立的小平面162a,162b,162c等,每个小平面与每个其它小平面互相连接,并且由具有各自标高的四个顶点(未标示,但是以点示出)定义。小平面162a,162b,162c等中的相邻两个共用两个顶点。每个小平面162a,162b,162c等具有各自的间距和坡度。方格状地平面160基于各种数据和资源而产生,例如地形图,和/或数字光栅图形,测绘数据,和各种其它的资源。
通常,通过确定小平面162a,162b,162c等中的哪一个对应于感兴趣点,来计算显示图像142上感兴趣点的地理位置。因此,感兴趣点的位置基于小平面162a,162b,162c等的标高、间距和坡度特征计算,而不是基于平坦的或平均标高地平面计算。感兴趣点位于小平面162a,162b,162c等的平面内,只有在表面31的地形和其上感兴趣点的位置偏离这些平面的情况下,才会引入误差。通过对小平面162a,162b,162c等中的特定一个小平面内感兴趣点的标高进行双线性插值,并且在图像显示和分析软件140执行的位置计算中利用该以插值的标高,可以减小误差。
为了使用方块状地平面160,图像显示和分析软件140利用改进的光线跟踪算法,来找到从图像采集设备32a或32b朝表面31和方块状地平面160投射光线的交点。该算法不仅确定了小平面162a,162b,162c等中的哪一个与该光线相交,而且确定了在小平面内的什么位置发生该相交。通过使用双线性插值,可以确定相当精确的地面位置。对于反向投影,使用方块状地平面160也利用双线性插值,得到输入地面位置的地面标高值。然后通过图像采集设备32a或32b的模型,将该标高和位置用于反向投影,以确定显示图像142中哪一个像素对应于给定位置。
更具体地,作为一个例子,通过将方块状地平面160叠加和/或拟合到表面31的至少一个诸如小山这样的部分166,图像显示和分析软件140执行和/或计算点164的地理位置。应当注意,只有方块状地平面160及其小平面162a,162b,162c等中的一小部分,沿着表面31的部分166的轮廓显示。如上所述,小平面162a,162b,162c等中的每一个由四个顶点定义,每个顶点具有各自的标高,每个小平面具有各自的间距和坡度。如上所述,确定在小平面162a,162b,162c等的平面/表面(点164(或其投影)位于该平面/表面上)上点164的具体位置。
优选地,在图像显示和测量计算机系统130以及图像显示和分析软件140的操作之外产生方块状地平面160。更好地,方块状地平面160采用存储在图像显示和测量计算机系统130的和/或可访问存储器中较简单的数据表或查询表168的形式。计算典型地平面的许多小平面的所有顶点位置所需的计算资源,不一定在图像显示和测量计算机系统130中。因此,在不需要附加计算资源的情况下,图像显示和测量计算机系统130与传统个人电脑的应用兼容,并可由传统的个人电脑执行。
在图像显示和测量计算机系统130之外计算方块状地平面160,实际上能够使方块状地平面160中包含任何级别的细节,即,由小平面162a,162b,162c等中的每一个覆盖的或对应的尺寸和/或面积,可以按照需要变大或变小,而不会明显地增加计算时间,减慢操作,也不会显著增加图像显示和测量计算机系统130和/或图像显示和分析软件140所需的资源。显示和测量计算机系统130因此可以是较基本的和不复杂的计算机系统。
小平面162a,162b,162c等的尺寸在特定的显示图像142中是一致的。例如,如果显示图像142对应于在前景中大约750英尺宽和大约900英尺深的面积,那么该图像可以被分为大约50平方英尺的小平面,因此在宽度上产生了大约15个小平面,在深度上产生了18个小平面。可选择地,小平面162a,162b,162c等的尺寸就包含于其中的像素数量而言是一致的,即,每个小平面具有相同数量的像素宽度和相同数量的像素深度。因此,在像素密度最大的显示图像142的前景中的小平面,在尺寸上小于像素密度最低的显示图像142的背景中的小平面。由于希望在像素密度最大的显示图像的前景中进行大多数的测量,与尺寸一致的小平面相比,产生包含的像素数量一致的小平面具有的优点是,在显示图像142的前景中提供了更精确的测量。
使用像素作为基础来定义小平面162a,162b,162c等的尺寸的另一优点是,位置计算(像素位置到地面位置)较简单。用户操作图像显示和测量计算机系统130,以选择给定小平面中的像素,图像显示和分析软件140查询与选择像素对应的小平面的数据,如上所述计算所选像素的标高,该标高用于位置计算中。
通常,本发明采集倾斜图像的方法,将例如国家这样的感兴趣区域划分为尺寸基本一致的区,例如面积大约为一平方英里的区。这样做便于制定飞行计划,以采集覆盖每一英寸感兴趣区域的倾斜图像,并且组织和命名这些区和/或其图像,以容易地标识,存储和检索(在本领域中被称为“分区”法)。因为任何感兴趣的地理区域的边缘,例如国家,极少落在整齐划一的平分英里边界,所以本发明采集倾斜图像的方法提供了比感兴趣区域中的平方英里数要多的区——多出多少主要取决于该国家边界的长度,以及边界的平直或曲折程度如何。典型地,可以预期边界的每二到三英里具有一个额外的区。因此如果国家或其它感兴趣区域约为20英里乘35英里,或者为700平方英里,那么该面积将被分为大约740-780个区。
通常,本发明采集倾斜图像的方法从至少两个罗盘方向采集倾斜图像,并且从至少这两个罗盘方向提供感兴趣区域的完全覆盖。现在参考图7和8,显示了本发明用于采集倾斜图像的方法的第一实施例。为了清楚,图7和8基于仅具有一个图像采集设备的系统。然而,应当理解可以使用两个或多个图像采集设备。
图像采集设备在每次穿越区域200期间采集一个或多个倾斜图像。如上所述,图像采集设备以一个角度瞄准区域200,以采集倾斜图像。图像捕捉设备和/或平台以类似于修剪草坪的方式来回地穿越区域200,以保证区域200的双重覆盖。
更具体地,图像捕捉设备32和/或平台20沿着第一路线202穿越区域200,由此采集区域200的区202a,202b和202c的倾斜图像。然后图像捕捉设备32和/或平台20沿着第二路线204穿越区域200,由此采集区域200的区204a,204b和204c的倾斜图像,其中所述第二路线204与所述第一路线202平行且间隔一定距离,并且与其成180°(180度)的相反方向。通过比较图7和8,可以看出区域200的区207(图8)被从第一方向或视角采集的图像202a-c覆盖,且被从第二方向或视角采集的图像204a-c覆盖。同样,区域200的中间区被100%(百分之一百)双重覆盖。重复沿着平行于路线202和204的相反路线通过或穿越区域200的上述模式,直到整个区域200被至少一个从互相平行、由区域200的尺寸规定的距离互相间隔并且沿着与路线202和204相同方向的路径采集的倾斜图像完全覆盖为止,从而从那些视角/方向百分之一百双重覆盖区域200。
如果需要,为了增强细节,两个附加的相反并平行的第三和第四路线206和208分别覆盖区域200,如图9和10所示,路线206和208垂直于路线202和204。因此图像捕捉设备32和/或平台20沿着第三路线206穿越区域200,以采集区域200的区206a,206b和206c的倾斜图像,然后,沿着第四路线208穿越,以采集区域200的区208a,208b和208c的倾斜图像,所述第四路线208与第三路线206平行,间隔一定距离并且方向相反。类似地重复沿着平行于路线206和208的相反路线通过或穿越区域200的上述模式,直到整个区域200被至少一个从平行于、由区域200的尺寸规定的距离互相间隔、且与路线206和208相同方向的路径采集的倾斜图像完全覆盖为止,从而从那些视角/方向百分之一百双重覆盖区域200。
如上所述,图像捕捉设备32和/或平台20沿着预定路线通过或穿越区域200。然而,应当理解,图像捕捉设备和/或平台20并不一定直接通过或穿越区域200,而是可以通过或穿越与区域200邻近、接壤,甚至一定程度上脱离区域200的区域,以确保正在被成像的区域200的区落在图像采集设备的图像采集范围内。如图7所示,路线202是这样的路线,其不直接经过区域200上方,但是仍采集其倾斜图像。
本发明能够以各种级别的分辨率和地面取样距离采集图像。第一级别的细节,之后称为社区级,具有例如约为每个像素2英尺的地面取样距离。对于正交社区级图像,地面取样距离在整个图像中基本保持恒定。正交社区级图像用足够的交叠进行采集,以提供立体双层覆盖。对于倾斜社区级图像,地面取样距离变化,例如,从图像前景中的大约每个像素1英尺,到图像中景中的大约每个像素2英尺,以及到图像背景中的大约每个像素4英尺。倾斜社区级图像用足够的交叠进行采集,从而典型地,由至少两个从每个罗盘方向采集的倾斜图像覆盖每个感兴趣的区域。每个区大约采集10个倾斜社区级图像。
第二级别的细节,之后称为邻居级,其明显地比社区级图像更详细。邻居级图像具有例如约为每个像素6英寸的地面取样距离。对于正交邻居级图像,地面取样距离基本保持恒定。倾斜邻居级图像具有的地面取样距离,例如,从图像前景中的大约每个像素4英寸,到图像中景中的大约每个像素6英寸,以及到图像背景中的大约每个像素10英寸。倾斜邻居级图像用足够的交叠进行采集,从而典型地,由至少两个从每个罗盘方向采集的倾斜图像覆盖每个感兴趣的区域,从而相对的罗盘方向提供了互相之间的100%交叠。每个区大约采集一百(100)个倾斜区域图像。
特别应当注意的是,从所有四个罗盘方向采集倾斜社区级和/或邻居级图像,保证了图像中的每个点将会出现在至少一个采集的倾斜图像的前景或者下部中,在图像的前景或下部中地面采样距离最小且图像细节最大。
在所示实施例中,图像采集和地理定位系统30包括陀螺仪,罗盘和高度计。然而,应当理解,本发明的图像采集和地理定位系统可替代地可以构造成:例如,从GPS和INU信号/数据推导和/或计算海拔高度,俯仰,滚动和偏航,和罗盘导航,实际上,由此导致不再必需一个或多个陀螺仪,罗盘和高度计。
在所示的实施例中,图像采集设备相对于水平面具有相等偏角。然而,应当理解,图像采集设备的偏角不必相等。
在所示的实施例中,图像采集计算机系统运行图像和数据获取软件,该图像和数据获取软件将通用的或单独的图像采集信号发送到图像采集设备,由此促使那些设备获取或采集图像。然而,应当理解,本发明可替代地可以构造成,在不同的时刻和/或以不同的时间间隔,分别促使图像采集设备采集图像。
在所示的实施例中,本发明的方法采集倾斜图像,以从基本上彼此相对、即互相成180°(180度)的路线/视角提供对感兴趣区域的双重覆盖。然而,应当理解,本发明的方法可替代地可以构造成,从大致和/或基本互相垂直的路线/视角提供双重覆盖。
尽管以具有的优选设计描述了本发明,但是在该公开的精神和范围内,本发明可以被进一步修改。因此,该公开意味着包含其中公开的结构和元素的任何等价物。另外,该公开意味着包含使用其中公开的一般原理的本发明的任何变化,使用或修改。而且,该公开意味着包含在相关领域中的已知或惯用实施范围内,并且落入附加权利要求的限制内的本公开主旨的引申。
Claims (3)
1.一种计算机化方法,用于从显示在计算机系统上的倾斜图像上进行测量,至少一个输入设备连接到所述计算机系统,图像数据文件可由所述计算机系统访问,所述图像数据文件包括与之对应的采集的图像和位置数据,所述计算机化方法包括:
将该计算机系统置于多个测量模式的所需一个之中,配置该所需的测量模式,以计算所需的测量;
在该显示图像上选择起始点;
检索与所述起始点对应的位置数据;
在该显示图像上选择结束点;
检索与所述结束点对应的位置数据;以及
计算该所需的测量,该测量至少部分地取决于所述起始点和结束点的所述位置数据。
2.根据权利要求1所述的方法,进一步包括以下步骤:
在所述显示图像上选择一个或多个中间点;以及
检索与所述中间点对应的该位置数据。
3.根据权利要求1所述的方法,其中所述多个测量模式包括:距离测量模式,用于计算两个或多个选择点之间的距离;高度测量模式,用于计算两个或多个选择点之间的高度差;相对标高测量模式,用于计算两个或多个选择点标高的差值;和面积测量模式,用于计算由至少三个点包围的面积。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US42527502P | 2002-11-08 | 2002-11-08 | |
US60/425,275 | 2002-11-08 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200380108517A Division CN100585619C (zh) | 2002-11-08 | 2003-11-07 | 倾斜地理定位和测量系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101793514A true CN101793514A (zh) | 2010-08-04 |
CN101793514B CN101793514B (zh) | 2013-01-02 |
Family
ID=32108178
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200380108517A Expired - Fee Related CN100585619C (zh) | 2002-11-08 | 2003-11-07 | 倾斜地理定位和测量系统 |
CN2009102251728A Expired - Fee Related CN101793514B (zh) | 2002-11-08 | 2003-11-07 | 倾斜地理定位和测量系统 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200380108517A Expired - Fee Related CN100585619C (zh) | 2002-11-08 | 2003-11-07 | 倾斜地理定位和测量系统 |
Country Status (14)
Country | Link |
---|---|
US (12) | US7424133B2 (zh) |
EP (2) | EP1418402B1 (zh) |
JP (2) | JP4901103B2 (zh) |
CN (2) | CN100585619C (zh) |
AT (1) | ATE331204T1 (zh) |
AU (1) | AU2003291364A1 (zh) |
BR (1) | BRPI0316110B1 (zh) |
CA (6) | CA2821759C (zh) |
DE (1) | DE60306301T2 (zh) |
DK (1) | DK1418402T3 (zh) |
ES (1) | ES2266704T3 (zh) |
HK (1) | HK1088421A1 (zh) |
MX (1) | MXPA05004987A (zh) |
WO (1) | WO2004044692A2 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106595597A (zh) * | 2016-12-16 | 2017-04-26 | 亚坦能源科技(上海)有限公司 | 一种在拍摄显示屏上展现测量信息的方法和装置 |
CN107272049A (zh) * | 2017-07-13 | 2017-10-20 | 成都理工大学 | 基于脉冲宽度的数字n‑γ甄别方法 |
CN113703438A (zh) * | 2021-07-14 | 2021-11-26 | 深圳市水务工程检测有限公司 | 用于输水隧洞巡检的auv自主导航路径规划方法 |
Families Citing this family (187)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1320812A2 (en) | 2000-06-14 | 2003-06-25 | Vermeer Manufacturing Company | Utility mapping and data distribution system and method |
US8994822B2 (en) | 2002-08-28 | 2015-03-31 | Visual Intelligence Lp | Infrastructure mapping system and method |
US7893957B2 (en) | 2002-08-28 | 2011-02-22 | Visual Intelligence, LP | Retinal array compound camera system |
US8483960B2 (en) | 2002-09-20 | 2013-07-09 | Visual Intelligence, LP | Self-calibrated, remote imaging and data processing system |
USRE49105E1 (en) | 2002-09-20 | 2022-06-14 | Vi Technologies, Llc | Self-calibrated, remote imaging and data processing system |
US7424133B2 (en) | 2002-11-08 | 2008-09-09 | Pictometry International Corporation | Method and apparatus for capturing, geolocating and measuring oblique images |
US7315800B2 (en) * | 2003-07-08 | 2008-01-01 | Meiners Robert E | System and method of sub-surface system design and installation |
US7308342B2 (en) * | 2004-01-23 | 2007-12-11 | Rafael Armament Development Authority Ltd. | Airborne reconnaissance system |
US8207964B1 (en) * | 2008-02-22 | 2012-06-26 | Meadow William D | Methods and apparatus for generating three-dimensional image data models |
WO2006040775A2 (en) * | 2004-10-15 | 2006-04-20 | Ofek Aerial Photography International Ltd. | Computational solution of and building of three dimensional virtual models from aerial photographs |
US20060208943A1 (en) * | 2005-03-21 | 2006-09-21 | Sirf Technology, Inc. | Location tagging using post-processing |
KR100668159B1 (ko) * | 2005-07-01 | 2007-01-11 | 김문정 | 실사 이미지 기반 조경 설계 시스템 및 방법 |
US7554539B2 (en) * | 2005-07-27 | 2009-06-30 | Balfour Technologies Llc | System for viewing a collection of oblique imagery in a three or four dimensional virtual scene |
US20070188610A1 (en) * | 2006-02-13 | 2007-08-16 | The Boeing Company | Synoptic broad-area remote-sensing via multiple telescopes |
US8098295B2 (en) * | 2006-03-06 | 2012-01-17 | Given Imaging Ltd. | In-vivo imaging system device and method with image stream construction using a raw images |
US9646415B2 (en) * | 2006-05-16 | 2017-05-09 | Underground Imaging Technologies, Inc. | System and method for visualizing multiple-sensor subsurface imaging data |
US8089390B2 (en) * | 2006-05-16 | 2012-01-03 | Underground Imaging Technologies, Inc. | Sensor cart positioning system and method |
US7873238B2 (en) * | 2006-08-30 | 2011-01-18 | Pictometry International Corporation | Mosaic oblique images and methods of making and using same |
US8593518B2 (en) * | 2007-02-01 | 2013-11-26 | Pictometry International Corp. | Computer system for continuous oblique panning |
US8520079B2 (en) * | 2007-02-15 | 2013-08-27 | Pictometry International Corp. | Event multiplexer for managing the capture of images |
DE102007009664B3 (de) * | 2007-02-22 | 2008-04-10 | Jena-Optronik Gmbh | Vorrichtung zur Kalibrierung von Zeilenkameras |
US8145578B2 (en) | 2007-04-17 | 2012-03-27 | Eagel View Technologies, Inc. | Aerial roof estimation system and method |
US8078436B2 (en) | 2007-04-17 | 2011-12-13 | Eagle View Technologies, Inc. | Aerial roof estimation systems and methods |
WO2008133790A1 (en) * | 2007-04-27 | 2008-11-06 | Lpa Systems, Inc. | System and method for analysis and display of geo-referenced imagery |
US9262818B2 (en) | 2007-05-01 | 2016-02-16 | Pictometry International Corp. | System for detecting image abnormalities |
US8385672B2 (en) * | 2007-05-01 | 2013-02-26 | Pictometry International Corp. | System for detecting image abnormalities |
US7990394B2 (en) | 2007-05-25 | 2011-08-02 | Google Inc. | Viewing and navigating within panoramic images, and applications thereof |
US8515207B2 (en) * | 2007-05-25 | 2013-08-20 | Google Inc. | Annotations in panoramic images, and applications thereof |
EP2112817A4 (en) * | 2007-08-03 | 2010-03-24 | Univ Keio | COMPOSITION ANALYSIS METHOD, IMAGE COMPUTER WITH COMPOSITION ANALYSIS FUNCTION, COMPOSITION ANALYSIS PROGRAM AND COMPUTER READABLE RECORDING MEDIUM |
AU2008309133B8 (en) | 2007-10-04 | 2014-02-20 | Sungevity | System and method for provisioning energy systems |
US7991226B2 (en) * | 2007-10-12 | 2011-08-02 | Pictometry International Corporation | System and process for color-balancing a series of oblique images |
US8531472B2 (en) | 2007-12-03 | 2013-09-10 | Pictometry International Corp. | Systems and methods for rapid three-dimensional modeling with real façade texture |
EP2076055B1 (en) * | 2007-12-27 | 2012-10-24 | Saab AB | Method for displaying a virtual image |
CN101939616B (zh) * | 2008-01-09 | 2014-07-09 | 株式会社尼康 | 测量设备和测量方法 |
US8417061B2 (en) * | 2008-02-01 | 2013-04-09 | Sungevity Inc. | Methods and systems for provisioning energy systems |
US8675068B2 (en) | 2008-04-11 | 2014-03-18 | Nearmap Australia Pty Ltd | Systems and methods of capturing large area images in detail including cascaded cameras and/or calibration features |
US8497905B2 (en) * | 2008-04-11 | 2013-07-30 | nearmap australia pty ltd. | Systems and methods of capturing large area images in detail including cascaded cameras and/or calibration features |
CN102027412B (zh) * | 2008-05-19 | 2013-09-04 | 佳能株式会社 | 图像拾取系统和透镜装置 |
US8155433B2 (en) * | 2008-07-10 | 2012-04-10 | Goodrich Corporation | Method of object location in airborne imagery using recursive quad space image processing |
US8588547B2 (en) | 2008-08-05 | 2013-11-19 | Pictometry International Corp. | Cut-line steering methods for forming a mosaic image of a geographical area |
US8477560B2 (en) * | 2008-09-19 | 2013-07-02 | Westerngeco L.L.C. | Determining a position of an object of a positioning network associated with a marine survey arrangement |
US8170840B2 (en) * | 2008-10-31 | 2012-05-01 | Eagle View Technologies, Inc. | Pitch determination systems and methods for aerial roof estimation |
US8731234B1 (en) | 2008-10-31 | 2014-05-20 | Eagle View Technologies, Inc. | Automated roof identification systems and methods |
US8209152B2 (en) | 2008-10-31 | 2012-06-26 | Eagleview Technologies, Inc. | Concurrent display systems and methods for aerial roof estimation |
US9477368B1 (en) | 2009-03-31 | 2016-10-25 | Google Inc. | System and method of indicating the distance or the surface of an image of a geographical object |
KR101609679B1 (ko) * | 2009-03-31 | 2016-04-06 | 팅크웨어(주) | 도로의 면형 데이터를 이용한 맵 매칭장치 및 그 방법 |
JP4854819B2 (ja) * | 2009-05-18 | 2012-01-18 | 小平アソシエイツ株式会社 | 画像情報出力方法 |
US8401222B2 (en) * | 2009-05-22 | 2013-03-19 | Pictometry International Corp. | System and process for roof measurement using aerial imagery |
JP5294995B2 (ja) * | 2009-06-03 | 2013-09-18 | パナソニック株式会社 | 距離計測装置及び距離計測方法 |
JP5375958B2 (ja) * | 2009-06-18 | 2013-12-25 | 富士通株式会社 | 画像処理装置および画像処理方法 |
JP5288482B2 (ja) * | 2009-07-21 | 2013-09-11 | Nec東芝スペースシステム株式会社 | 撮像装置、撮像方法、撮像回路及びプログラム |
DE102009035755A1 (de) * | 2009-07-24 | 2011-01-27 | Pilz Gmbh & Co. Kg | Verfahren und Vorrichtung zum Überwachen eines Raumbereichs |
US9330494B2 (en) | 2009-10-26 | 2016-05-03 | Pictometry International Corp. | Method for the automatic material classification and texture simulation for 3D models |
US8427536B2 (en) * | 2009-11-19 | 2013-04-23 | Qualcomm Incorporated | Orientation determination of a mobile station using side and top view images |
US8665316B2 (en) * | 2009-11-24 | 2014-03-04 | Microsoft Corporation | Multi-resolution digital large format camera with multiple detector arrays |
US8542286B2 (en) * | 2009-11-24 | 2013-09-24 | Microsoft Corporation | Large format digital camera with multiple optical systems and detector arrays |
US8934008B2 (en) * | 2009-12-07 | 2015-01-13 | Cognitech, Inc. | System and method for determining geo-location(s) in images |
FR2954520B1 (fr) * | 2009-12-18 | 2012-09-21 | Thales Sa | Procede de designation d'une cible pour un armement a guidage terminal par imagerie |
US8963943B2 (en) * | 2009-12-18 | 2015-02-24 | Electronics And Telecommunications Research Institute | Three-dimensional urban modeling apparatus and method |
US20120114229A1 (en) * | 2010-01-21 | 2012-05-10 | Guoqing Zhou | Orthorectification and mosaic of video flow |
US9126700B2 (en) * | 2010-01-25 | 2015-09-08 | Tarik Ozkul | Autonomous decision system for selecting target in observation satellites |
IN2012DN06329A (zh) | 2010-01-26 | 2015-10-02 | Saab Ab | |
AU2011210538B2 (en) | 2010-02-01 | 2015-03-26 | Eagle View Technologies, Inc. | Geometric correction of rough wireframe models derived from photographs |
US9025810B1 (en) | 2010-04-05 | 2015-05-05 | Google Inc. | Interactive geo-referenced source imagery viewing system and method |
US20120232717A1 (en) * | 2010-04-06 | 2012-09-13 | Honeywell International Inc. | Remote coordinate identifier system and method for aircraft |
US8477190B2 (en) | 2010-07-07 | 2013-07-02 | Pictometry International Corp. | Real-time moving platform management system |
US9041796B2 (en) * | 2010-08-01 | 2015-05-26 | Francis Ruben Malka | Method, tool, and device for determining the coordinates of points on a surface by means of an accelerometer and a camera |
WO2012037549A1 (en) | 2010-09-17 | 2012-03-22 | Steven Nielsen | Methods and apparatus for tracking motion and/or orientation of a marking device |
US8977520B2 (en) * | 2010-10-21 | 2015-03-10 | Pictometry International Corp. | Computer system for automatically classifying roof elements |
US8823732B2 (en) | 2010-12-17 | 2014-09-02 | Pictometry International Corp. | Systems and methods for processing images with edge detection and snap-to feature |
US9879993B2 (en) | 2010-12-23 | 2018-01-30 | Trimble Inc. | Enhanced bundle adjustment techniques |
US9182229B2 (en) | 2010-12-23 | 2015-11-10 | Trimble Navigation Limited | Enhanced position measurement systems and methods |
US10168153B2 (en) | 2010-12-23 | 2019-01-01 | Trimble Inc. | Enhanced position measurement systems and methods |
US8363928B1 (en) * | 2010-12-24 | 2013-01-29 | Trimble Navigation Ltd. | General orientation positioning system |
US8520080B2 (en) | 2011-01-31 | 2013-08-27 | Hand Held Products, Inc. | Apparatus, system, and method of use of imaging assembly on mobile terminal |
US8505847B2 (en) | 2011-03-01 | 2013-08-13 | John Ciampa | Lighter-than-air systems, methods, and kits for obtaining aerial images |
US10325350B2 (en) | 2011-06-10 | 2019-06-18 | Pictometry International Corp. | System and method for forming a video stream containing GIS data in real-time |
US8687062B1 (en) * | 2011-08-31 | 2014-04-01 | Google Inc. | Step-stare oblique aerial camera system |
JP5787695B2 (ja) | 2011-09-28 | 2015-09-30 | 株式会社トプコン | 画像取得装置 |
MX342021B (es) | 2011-11-29 | 2016-08-10 | Pictometry Int Corp | Sistema para la deteccion automatica de la huella de la estructura de imagenes oblicuas. |
US8774525B2 (en) | 2012-02-03 | 2014-07-08 | Eagle View Technologies, Inc. | Systems and methods for estimation of building floor area |
US9599466B2 (en) | 2012-02-03 | 2017-03-21 | Eagle View Technologies, Inc. | Systems and methods for estimation of building wall area |
US10663294B2 (en) | 2012-02-03 | 2020-05-26 | Eagle View Technologies, Inc. | Systems and methods for estimation of building wall area and producing a wall estimation report |
US9933257B2 (en) | 2012-02-03 | 2018-04-03 | Eagle View Technologies, Inc. | Systems and methods for estimation of building wall area |
US10515414B2 (en) | 2012-02-03 | 2019-12-24 | Eagle View Technologies, Inc. | Systems and methods for performing a risk management assessment of a property |
US9501700B2 (en) | 2012-02-15 | 2016-11-22 | Xactware Solutions, Inc. | System and method for construction estimation using aerial images |
EP2825901A1 (en) | 2012-03-12 | 2015-01-21 | Vermeer Manufacturing Co., Inc | Offset frequency homodyne ground penetrating radar |
US9183538B2 (en) | 2012-03-19 | 2015-11-10 | Pictometry International Corp. | Method and system for quick square roof reporting |
US8788968B1 (en) * | 2012-06-04 | 2014-07-22 | Google Inc. | Transitioning an interface to a neighboring image |
CN104520508B (zh) * | 2012-11-08 | 2017-06-30 | 住友重机械工业株式会社 | 铺装机械用图像生成装置以及铺装机械用操作支援系统 |
US9235763B2 (en) | 2012-11-26 | 2016-01-12 | Trimble Navigation Limited | Integrated aerial photogrammetry surveys |
DE102013200387A1 (de) * | 2013-01-14 | 2014-07-17 | Robert Bosch Gmbh | Erstellung einer Hinderniskarte |
US9372081B2 (en) | 2013-01-21 | 2016-06-21 | Vricon Systems Aktiebolag | Method and system for geo-referencing at least one sensor image |
ES2693785T3 (es) * | 2013-01-21 | 2018-12-13 | Vricon Systems Aktiebolag | Procedimiento y disposición para desarrollar un modelo tridimensional de un entorno |
US9244272B2 (en) | 2013-03-12 | 2016-01-26 | Pictometry International Corp. | Lidar system producing multiple scan paths and method of making and using same |
US9881163B2 (en) * | 2013-03-12 | 2018-01-30 | Pictometry International Corp. | System and method for performing sensitive geo-spatial processing in non-sensitive operator environments |
US9071732B2 (en) | 2013-03-15 | 2015-06-30 | Tolo, Inc. | Distortion correcting sensors for diagonal collection of oblique imagery |
US10909482B2 (en) | 2013-03-15 | 2021-02-02 | Pictometry International Corp. | Building materials estimation |
US9753950B2 (en) | 2013-03-15 | 2017-09-05 | Pictometry International Corp. | Virtual property reporting for automatic structure detection |
US9739133B2 (en) | 2013-03-15 | 2017-08-22 | Vermeer Corporation | Imaging underground objects using spatial sampling customization |
US9275080B2 (en) | 2013-03-15 | 2016-03-01 | Pictometry International Corp. | System and method for early access to captured images |
US9959581B2 (en) | 2013-03-15 | 2018-05-01 | Eagle View Technologies, Inc. | Property management on a smartphone |
US11587176B2 (en) | 2013-03-15 | 2023-02-21 | Eagle View Technologies, Inc. | Price estimation model |
EP2787319A1 (de) * | 2013-04-05 | 2014-10-08 | Leica Geosystems AG | Steuerung einer Bildauslösung zur Luftbilderfassung in Nadir-Ausrichtung für ein unbemanntes Fluggerät |
US9185289B2 (en) | 2013-06-10 | 2015-11-10 | International Business Machines Corporation | Generating a composite field of view using a plurality of oblique panoramic images of a geographic area |
US9247239B2 (en) * | 2013-06-20 | 2016-01-26 | Trimble Navigation Limited | Use of overlap areas to optimize bundle adjustment |
EP3028464B1 (en) | 2013-08-02 | 2019-05-01 | Xactware Solutions Inc. | System and method for detecting features in aerial images using disparity mapping and segmentation techniques |
CN103453880B (zh) * | 2013-08-16 | 2016-03-30 | 北京百纳威尔科技有限公司 | 空间参数测量方法和用户终端 |
CN105917337A (zh) | 2013-08-29 | 2016-08-31 | 桑格威迪公司 | 改进太阳能系统的设计及安装报价 |
US9046996B2 (en) | 2013-10-17 | 2015-06-02 | Google Inc. | Techniques for navigation among multiple images |
US20170102467A1 (en) * | 2013-11-20 | 2017-04-13 | Certusview Technologies, Llc | Systems, methods, and apparatus for tracking an object |
EP3077880B1 (en) * | 2013-12-06 | 2020-11-18 | BAE Systems PLC | Imaging method and apparatus |
US10051178B2 (en) | 2013-12-06 | 2018-08-14 | Bae Systems Plc | Imaging method and appartus |
CN103673996A (zh) * | 2013-12-10 | 2014-03-26 | 苏州市峰之火数码科技有限公司 | 一种便于获得良好航拍音效的方法 |
CN103822617A (zh) * | 2013-12-11 | 2014-05-28 | 苏州市峰之火数码科技有限公司 | 航拍音效增强方法 |
MX2016008890A (es) | 2014-01-10 | 2017-01-16 | Pictometry Int Corp | Sistema y metodo de evaluacion de estructura de aeronave no tripulada. |
DE102014201238A1 (de) * | 2014-01-23 | 2015-07-23 | Siemens Aktiengesellschaft | Verfahren und System zur Erstellung einer Vektorkarte |
US9292913B2 (en) | 2014-01-31 | 2016-03-22 | Pictometry International Corp. | Augmented three dimensional point collection of vertical structures |
US9541387B2 (en) * | 2014-02-07 | 2017-01-10 | Goodrich Corporation | Passive altimeter |
CA2938973A1 (en) | 2014-02-08 | 2015-08-13 | Pictometry International Corp. | Method and system for displaying room interiors on a floor plan |
WO2015199772A2 (en) | 2014-03-28 | 2015-12-30 | Konica Minolta Laboratory U.S.A., Inc. | Method and system of stitching aerial data using information from previous aerial images |
US9734399B2 (en) * | 2014-04-08 | 2017-08-15 | The Boeing Company | Context-aware object detection in aerial photographs/videos using travel path metadata |
US10378895B2 (en) | 2014-08-29 | 2019-08-13 | Spookfish Innovagtions PTY LTD | Aerial survey image capture system |
US9460517B2 (en) | 2014-10-22 | 2016-10-04 | Pointivo, Inc | Photogrammetric methods and devices related thereto |
GB201419356D0 (en) * | 2014-10-30 | 2014-12-17 | Isis Innovation | A method and apparatus for adjusting drag on a trailing air vehicle flying behind a leading air vehicle |
US9965962B1 (en) | 2014-11-11 | 2018-05-08 | Skyward IO, Inc. | Aerial robotics network management infrastructure |
CN104463969B (zh) * | 2014-12-09 | 2017-09-26 | 广西界围信息科技有限公司 | 一种对航空倾斜拍摄的地理照片的模型的建立方法 |
US10613231B2 (en) * | 2014-12-18 | 2020-04-07 | Javad Gnss, Inc. | Portable GNSS survey system |
US10223793B1 (en) | 2015-08-05 | 2019-03-05 | Al Incorporated | Laser distance measuring method and system |
US9972098B1 (en) | 2015-08-23 | 2018-05-15 | AI Incorporated | Remote distance estimation system and method |
US11069082B1 (en) | 2015-08-23 | 2021-07-20 | AI Incorporated | Remote distance estimation system and method |
US11935256B1 (en) | 2015-08-23 | 2024-03-19 | AI Incorporated | Remote distance estimation system and method |
US10408604B1 (en) | 2015-09-07 | 2019-09-10 | AI Incorporated | Remote distance estimation system and method |
US10217283B2 (en) | 2015-12-17 | 2019-02-26 | Google Llc | Navigation through multidimensional images spaces |
CA3001023A1 (en) | 2016-01-08 | 2017-07-13 | Pictometry International Corp. | Systems and methods for taking, processing, retrieving, and displaying images from unmanned aerial vehicles |
CA3012049A1 (en) | 2016-01-20 | 2017-07-27 | Ez3D, Llc | System and method for structural inspection and construction estimation using an unmanned aerial vehicle |
US10402676B2 (en) | 2016-02-15 | 2019-09-03 | Pictometry International Corp. | Automated system and methodology for feature extraction |
US10671648B2 (en) | 2016-02-22 | 2020-06-02 | Eagle View Technologies, Inc. | Integrated centralized property database systems and methods |
US10255296B2 (en) | 2016-02-25 | 2019-04-09 | Omniearth, Inc. | System and method for managing geodemographic data |
US9544264B1 (en) * | 2016-03-22 | 2017-01-10 | International Business Machines Corporation | Augmenting location of social media posts based on proximity of other posts |
US10628802B2 (en) | 2016-05-19 | 2020-04-21 | Lockheed Martin Corporation | Systems and methods for assessing damage to infrastructure assets |
US10032267B2 (en) | 2016-06-09 | 2018-07-24 | Lockheed Martin Corporation | Automating the assessment of damage to infrastructure assets |
JP6780315B2 (ja) * | 2016-06-22 | 2020-11-04 | カシオ計算機株式会社 | 投影装置、投影システム、投影方法及びプログラム |
US11392625B2 (en) | 2016-06-27 | 2022-07-19 | Omniearth, Inc. | Systems and methods for utilizing property features from images |
CN106292699B (zh) * | 2016-08-03 | 2017-12-12 | 广州极飞科技有限公司 | 无人机仿地飞行的方法、装置和无人机 |
US10346995B1 (en) | 2016-08-22 | 2019-07-09 | AI Incorporated | Remote distance estimation system and method |
EP3529629B1 (en) * | 2016-10-20 | 2023-11-29 | Spookfish Innovations Pty Ltd. | An aerial camera boresight calibration system |
CN106840118A (zh) * | 2017-02-06 | 2017-06-13 | 华东师范大学 | 一种山地微地形坡度、坡向的空间测量方法 |
US20180231379A1 (en) * | 2017-02-14 | 2018-08-16 | Honeywell International Inc. | Image processing system |
CN108151711B (zh) * | 2017-03-01 | 2018-10-16 | 哈尔滨工业大学 | 一种光学卫星环扫超宽幅成像方法 |
EP3675621B1 (en) | 2017-05-09 | 2024-08-07 | Blue River Technology Inc. | Automated plant detection using image data |
US10803311B2 (en) | 2017-05-09 | 2020-10-13 | Blue River Technology Inc. | Automatic camera parameter adjustment on a plant treatment system |
CN107255469B (zh) * | 2017-05-27 | 2020-08-14 | 中国一冶集团有限公司 | 热风炉内衬检修用垂直爬升影像采集装置及实景建模方法 |
US20190027370A1 (en) * | 2017-07-19 | 2019-01-24 | Globalfoundries Inc. | Shaped cavity for epitaxial semiconductor growth |
US10586349B2 (en) | 2017-08-24 | 2020-03-10 | Trimble Inc. | Excavator bucket positioning via mobile device |
GB2566023B (en) * | 2017-08-30 | 2020-06-17 | Jaguar Land Rover Ltd | Controller for an unmanned aerial vehicle |
AU2018324087A1 (en) | 2017-08-31 | 2020-01-23 | Eagle View Technologies, Inc. | Systems and methods for automatic estimation of object characteristics from digital images |
US10355104B2 (en) * | 2017-10-27 | 2019-07-16 | Globalfoundries Inc. | Single-curvature cavity for semiconductor epitaxy |
US10503843B2 (en) | 2017-12-19 | 2019-12-10 | Eagle View Technologies, Inc. | Supervised automatic roof modeling |
WO2019183393A1 (en) * | 2018-03-21 | 2019-09-26 | Lei Zhou | Controlling movement of an automated guided vehicle |
EP4421407A2 (en) | 2018-09-21 | 2024-08-28 | Eagle View Technologies, Inc. | Method and system for determining solar access of a structure |
ES2968959T3 (es) | 2018-11-21 | 2024-05-14 | Eagle View Tech Inc | Aeronave no tripulada de navegación que utiliza cabeceo |
US10460169B1 (en) | 2019-01-14 | 2019-10-29 | Sourcewater, Inc. | Image processing of aerial imagery for energy infrastructure analysis using joint image identification |
US10339646B1 (en) | 2019-01-14 | 2019-07-02 | Sourcewater, Inc. | Image processing of aerial imagery for energy infrastructure analysis using pre-processing image selection |
US10467473B1 (en) | 2019-01-14 | 2019-11-05 | Sourcewater, Inc. | Image processing of aerial imagery for energy infrastructure analysis |
US10460170B1 (en) * | 2019-01-14 | 2019-10-29 | Sourcewater, Inc. | Image processing of aerial imagery for energy infrastructure site status analysis |
CN109840945B (zh) * | 2019-01-18 | 2022-10-28 | 厦门美图之家科技有限公司 | 有限元预处理方法及装置 |
AU2020285361A1 (en) * | 2019-05-24 | 2022-01-20 | Aerometrex Pty Ltd | An aerial imaging system and method |
GB2598244B (en) | 2019-06-07 | 2023-11-29 | Pictometry Int Corp | Systems and methods for automated detection of changes in extent of structures using imagery |
AU2020287875A1 (en) | 2019-06-07 | 2021-12-23 | Pictometry International Corp. | Using spatial filter to reduce bundle adjustment block size |
US10635904B1 (en) | 2019-07-09 | 2020-04-28 | Sourcewater, Inc. | Identification and validation of roads using aerial imagery and mobile location information |
US11776104B2 (en) | 2019-09-20 | 2023-10-03 | Pictometry International Corp. | Roof condition assessment using machine learning |
US11527024B2 (en) | 2019-09-25 | 2022-12-13 | Pictometry International Corp. | Systems and methods for creating automated faux-manual markings on digital images imitating manual inspection results |
WO2021076747A1 (en) | 2019-10-18 | 2021-04-22 | Pictometry International Corp. | Systems for the classification of interior structure areas based on exterior images |
WO2021076914A1 (en) | 2019-10-18 | 2021-04-22 | Pictometry International Corp. | Geospatial object geometry extraction from imagery |
US10943360B1 (en) | 2019-10-24 | 2021-03-09 | Trimble Inc. | Photogrammetric machine measure up |
US11625907B2 (en) | 2019-10-25 | 2023-04-11 | Pictometry International Corp. | System using image connectivity to reduce bundle size for bundle adjustment |
US11094113B2 (en) | 2019-12-04 | 2021-08-17 | Geomni, Inc. | Systems and methods for modeling structures using point clouds derived from stereoscopic image pairs |
JP2021117047A (ja) * | 2020-01-23 | 2021-08-10 | 株式会社フジタ | 無人飛行体を用いた写真測量方法および無人飛行体を用いた写真測量システム |
CN111415295B (zh) * | 2020-03-17 | 2024-01-12 | 东南数字经济发展研究院 | 一种倾斜摄影三维模型的拍摄分辨率正射图生成方法 |
US11184740B2 (en) | 2020-03-25 | 2021-11-23 | Sourcewater, Inc. | Location data based intelligence for supply chain information platforms |
WO2021212099A1 (en) * | 2020-04-17 | 2021-10-21 | Insurance Services Office, Inc. | Systems and methods for mobile aerial flight planning and image capturing based on structure footprints |
CN111222586B (zh) * | 2020-04-20 | 2020-09-18 | 广州都市圈网络科技有限公司 | 一种基于三维倾斜模型视角的倾斜影像匹配方法及装置 |
KR102398839B1 (ko) * | 2020-12-01 | 2022-05-17 | 서울과학기술대학교 산학협력단 | 객체의 표면에 영상을 투영시키는 장치 |
CN113251995B (zh) * | 2021-05-18 | 2023-03-21 | 中国科学院云南天文台 | 获取全天候天文经纬度间接测定值的方法 |
US11282268B1 (en) * | 2021-10-27 | 2022-03-22 | Flyreel, Inc. | Top-down view mapping of interior spaces |
US20230306679A1 (en) * | 2022-03-23 | 2023-09-28 | Saudi Arabian Oil Company | Length scale dimension in spatial coordinate systems |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999018732A1 (en) * | 1997-10-06 | 1999-04-15 | Ciampa John A | Digital-image mapping |
US20010038718A1 (en) * | 1997-05-09 | 2001-11-08 | Rakesh Kumar | Method and apparatus for performing geo-spatial registration of imagery |
Family Cites Families (186)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2273876A (en) | 1940-02-12 | 1942-02-24 | Frederick W Lutz | Apparatus for indicating tilt of cameras |
US3153784A (en) * | 1959-12-24 | 1964-10-20 | Us Industries Inc | Photo radar ground contour mapping system |
US5345086A (en) | 1962-11-28 | 1994-09-06 | Eaton Corporation | Automatic map compilation system |
US3621326A (en) | 1968-09-30 | 1971-11-16 | Itek Corp | Transformation system |
US3594556A (en) | 1969-01-08 | 1971-07-20 | Us Navy | Optical sight with electronic image stabilization |
US3661061A (en) | 1969-05-05 | 1972-05-09 | Atomic Energy Commission | Picture position finder |
US3614410A (en) | 1969-06-12 | 1971-10-19 | Knight V Bailey | Image rectifier |
US3716669A (en) | 1971-05-14 | 1973-02-13 | Japan Eng Dev Co | Mapping rectifier for generating polarstereographic maps from satellite scan signals |
US3725563A (en) | 1971-12-23 | 1973-04-03 | Singer Co | Method of perspective transformation in scanned raster visual display |
US3864513A (en) | 1972-09-11 | 1975-02-04 | Grumman Aerospace Corp | Computerized polarimetric terrain mapping system |
US4015080A (en) | 1973-04-30 | 1977-03-29 | Elliott Brothers (London) Limited | Display devices |
JPS5223975Y2 (zh) | 1973-05-29 | 1977-05-31 | ||
US3877799A (en) | 1974-02-06 | 1975-04-15 | United Kingdom Government | Method of recording the first frame in a time index system |
DE2510044A1 (de) | 1975-03-07 | 1976-09-16 | Siemens Ag | Anordnung zum aufzeichnen von zeichen unter verwendung von mosaikschreibwerken |
US4707698A (en) | 1976-03-04 | 1987-11-17 | Constant James N | Coordinate measurement and radar device using image scanner |
US4240108A (en) | 1977-10-03 | 1980-12-16 | Grumman Aerospace Corporation | Vehicle controlled raster display system |
JPS5637416Y2 (zh) | 1977-10-14 | 1981-09-02 | ||
IT1095061B (it) | 1978-05-19 | 1985-08-10 | Conte Raffaele | Apparecchiatura per la registrazione magnetica di eventi casuali relativi a mezzi mobili |
US4396942A (en) | 1979-04-19 | 1983-08-02 | Jackson Gates | Video surveys |
FR2461305B1 (fr) | 1979-07-06 | 1985-12-06 | Thomson Csf | Systeme indicateur cartographique destine plus particulierement a la navigation aerienne |
US4313678A (en) * | 1979-09-24 | 1982-02-02 | The United States Of America As Represented By The Secretary Of The Interior | Automated satellite mapping system (MAPSAT) |
DE2939681A1 (de) | 1979-09-29 | 1981-04-30 | Agfa-Gevaert Ag, 5090 Leverkusen | Verfahren und vorrichtung zur ueberwachung der qualitaet bei der herstellung von fotografischen bildern |
DE2940871C2 (de) | 1979-10-09 | 1983-11-10 | Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn | Photogrammetrisches Verfahren für Fluggeräte und Raumflugkörper zur digitalen Geländedarstellung |
US4290694A (en) * | 1980-03-07 | 1981-09-22 | Kern Instruments, Inc. | Photogrammetric plotting apparatus |
US4387056A (en) | 1981-04-16 | 1983-06-07 | E. I. Du Pont De Nemours And Company | Process for separating zero-valent nickel species from divalent nickel species |
US4382678A (en) | 1981-06-29 | 1983-05-10 | The United States Of America As Represented By The Secretary Of The Army | Measuring of feature for photo interpretation |
US4463380A (en) | 1981-09-25 | 1984-07-31 | Vought Corporation | Image processing system |
US4495500A (en) | 1982-01-26 | 1985-01-22 | Sri International | Topographic data gathering method |
US4490742A (en) | 1982-04-23 | 1984-12-25 | Vcs, Incorporated | Encoding apparatus for a closed circuit television system |
US4586138A (en) | 1982-07-29 | 1986-04-29 | The United States Of America As Represented By The United States Department Of Energy | Route profile analysis system and method |
US4491399A (en) | 1982-09-27 | 1985-01-01 | Coherent Communications, Inc. | Method and apparatus for recording a digital signal on motion picture film |
US4527055A (en) | 1982-11-15 | 1985-07-02 | Honeywell Inc. | Apparatus for selectively viewing either of two scenes of interest |
FR2536851B1 (fr) | 1982-11-30 | 1985-06-14 | Aerospatiale | Systeme de reconnaissance comportant un vehicule aerien tournant autour de son axe longitudinal |
US4489322A (en) | 1983-01-27 | 1984-12-18 | The United States Of America As Represented By The Secretary Of The Air Force | Radar calibration using direct measurement equipment and oblique photometry |
US4635136A (en) | 1984-02-06 | 1987-01-06 | Rochester Institute Of Technology | Method and apparatus for storing a massive inventory of labeled images |
US4814711A (en) | 1984-04-05 | 1989-03-21 | Deseret Research, Inc. | Survey system and method for real time collection and processing of geophysicals data using signals from a global positioning satellite network |
US4686474A (en) | 1984-04-05 | 1987-08-11 | Deseret Research, Inc. | Survey system for collection and real time processing of geophysical data |
US4673988A (en) | 1985-04-22 | 1987-06-16 | E.I. Du Pont De Nemours And Company | Electronic mosaic imaging process |
US4653136A (en) | 1985-06-21 | 1987-03-31 | Denison James W | Wiper for rear view mirror |
EP0211623A3 (en) * | 1985-08-01 | 1988-09-21 | British Aerospace Public Limited Company | Identification of ground targets in airborne surveillance radar returns |
US4953227A (en) | 1986-01-31 | 1990-08-28 | Canon Kabushiki Kaisha | Image mosaic-processing method and apparatus |
US4653316A (en) | 1986-03-14 | 1987-03-31 | Kabushiki Kaisha Komatsu Seisakusho | Apparatus mounted on vehicles for detecting road surface conditions |
US4688092A (en) | 1986-05-06 | 1987-08-18 | Ford Aerospace & Communications Corporation | Satellite camera image navigation |
US4956872A (en) | 1986-10-31 | 1990-09-11 | Canon Kabushiki Kaisha | Image processing apparatus capable of random mosaic and/or oil-painting-like processing |
JPS63202182A (ja) | 1987-02-18 | 1988-08-22 | Olympus Optical Co Ltd | 傾斜ドツトパタ−ン形成方法 |
US4814896A (en) | 1987-03-06 | 1989-03-21 | Heitzman Edward F | Real time video data acquistion systems |
US5164825A (en) | 1987-03-30 | 1992-11-17 | Canon Kabushiki Kaisha | Image processing method and apparatus for mosaic or similar processing therefor |
US4807024A (en) | 1987-06-08 | 1989-02-21 | The University Of South Carolina | Three-dimensional display methods and apparatus |
US4899296A (en) | 1987-11-13 | 1990-02-06 | Khattak Anwar S | Pavement distress survey system |
US4843463A (en) | 1988-05-23 | 1989-06-27 | Michetti Joseph A | Land vehicle mounted audio-visual trip recorder |
GB8826550D0 (en) | 1988-11-14 | 1989-05-17 | Smiths Industries Plc | Image processing apparatus and methods |
US4906198A (en) | 1988-12-12 | 1990-03-06 | International Business Machines Corporation | Circuit board assembly and contact pin for use therein |
JP2765022B2 (ja) | 1989-03-24 | 1998-06-11 | キヤノン販売株式会社 | 立体画像形成装置 |
US5617224A (en) | 1989-05-08 | 1997-04-01 | Canon Kabushiki Kaisha | Imae processing apparatus having mosaic processing feature that decreases image resolution without changing image size or the number of pixels |
US5086314A (en) | 1990-05-21 | 1992-02-04 | Nikon Corporation | Exposure control apparatus for camera |
JPH0316377A (ja) | 1989-06-14 | 1991-01-24 | Kokusai Denshin Denwa Co Ltd <Kdd> | 2値画像の縮小方法及び装置 |
US5166789A (en) | 1989-08-25 | 1992-11-24 | Space Island Products & Services, Inc. | Geographical surveying using cameras in combination with flight computers to obtain images with overlaid geographical coordinates |
JP3147358B2 (ja) | 1990-02-23 | 2001-03-19 | ミノルタ株式会社 | 撮影地データを記録できるカメラ |
US5335072A (en) | 1990-05-30 | 1994-08-02 | Minolta Camera Kabushiki Kaisha | Photographic system capable of storing information on photographed image data |
EP0464263A3 (en) | 1990-06-27 | 1992-06-10 | Siemens Aktiengesellschaft | Device for obstacle detection for pilots of low flying aircrafts |
US5191174A (en) | 1990-08-01 | 1993-03-02 | International Business Machines Corporation | High density circuit board and method of making same |
US5200793A (en) | 1990-10-24 | 1993-04-06 | Kaman Aerospace Corporation | Range finding array camera |
US5155597A (en) | 1990-11-28 | 1992-10-13 | Recon/Optical, Inc. | Electro-optical imaging array with motion compensation |
JPH04250436A (ja) | 1991-01-11 | 1992-09-07 | Pioneer Electron Corp | 撮像装置 |
US5265173A (en) | 1991-03-20 | 1993-11-23 | Hughes Aircraft Company | Rectilinear object image matcher |
US5369443A (en) | 1991-04-12 | 1994-11-29 | Abekas Video Systems, Inc. | Digital video effects generator |
DE69204345T2 (de) | 1991-04-16 | 1996-04-25 | Nippon Electric Co | Satelliten-Zwillings-Bildaufnahme für Abbildung und Steuerung. |
US5555018A (en) | 1991-04-25 | 1996-09-10 | Von Braun; Heiko S. | Large-scale mapping of parameters of multi-dimensional structures in natural environments |
US5231435A (en) | 1991-07-12 | 1993-07-27 | Blakely Bruce W | Aerial camera mounting apparatus |
EP0530391B1 (en) | 1991-09-05 | 1996-12-11 | Nec Corporation | Image pickup system capable of producing correct image signals of an object zone |
US5677515A (en) | 1991-10-18 | 1997-10-14 | Trw Inc. | Shielded multilayer printed wiring board, high frequency, high isolation |
US5402170A (en) | 1991-12-11 | 1995-03-28 | Eastman Kodak Company | Hand-manipulated electronic camera tethered to a personal computer |
US5247356A (en) * | 1992-02-14 | 1993-09-21 | Ciampa John A | Method and apparatus for mapping and measuring land |
US5270756A (en) | 1992-02-18 | 1993-12-14 | Hughes Training, Inc. | Method and apparatus for generating high resolution vidicon camera images |
US5251037A (en) * | 1992-02-18 | 1993-10-05 | Hughes Training, Inc. | Method and apparatus for generating high resolution CCD camera images |
US5506644A (en) | 1992-08-18 | 1996-04-09 | Olympus Optical Co., Ltd. | Camera |
FR2696843B1 (fr) * | 1992-10-14 | 1994-12-09 | Matra Sep Imagerie Inf | Appareil de prise de vues à distance, à haute résolution, pour porteur aérien. |
US5481479A (en) | 1992-12-10 | 1996-01-02 | Loral Fairchild Corp. | Nonlinear scanning to optimize sector scan electro-optic reconnaissance system performance |
US5342999A (en) | 1992-12-21 | 1994-08-30 | Motorola, Inc. | Apparatus for adapting semiconductor die pads and method therefor |
US5414462A (en) * | 1993-02-11 | 1995-05-09 | Veatch; John W. | Method and apparatus for generating a comprehensive survey map |
US5508736A (en) | 1993-05-14 | 1996-04-16 | Cooper; Roger D. | Video signal processing apparatus for producing a composite signal for simultaneous display of data and video information |
US6542077B2 (en) | 1993-06-08 | 2003-04-01 | Raymond Anthony Joao | Monitoring apparatus for a vehicle and/or a premises |
US5842473A (en) * | 1993-11-29 | 1998-12-01 | Life Imaging Systems | Three-dimensional imaging system |
US5467271A (en) * | 1993-12-17 | 1995-11-14 | Trw, Inc. | Mapping and analysis system for precision farming applications |
CA2190596C (en) | 1994-05-19 | 2002-03-26 | Theodore M. Lachinski | Method for collecting and processing visual and spatial position information |
US5596494A (en) | 1994-11-14 | 1997-01-21 | Kuo; Shihjong | Method and apparatus for acquiring digital maps |
RU2153700C2 (ru) | 1995-04-17 | 2000-07-27 | Спейс Системз/Лорал, Инк. | Система управления ориентацией и формированием изображения (варианты) |
US5604534A (en) | 1995-05-24 | 1997-02-18 | Omni Solutions International, Ltd. | Direct digital airborne panoramic camera system and method |
US5668593A (en) | 1995-06-07 | 1997-09-16 | Recon/Optical, Inc. | Method and camera system for step frame reconnaissance with motion compensation |
US5963664A (en) | 1995-06-22 | 1999-10-05 | Sarnoff Corporation | Method and system for image combination using a parallax-based technique |
US5835133A (en) | 1996-01-23 | 1998-11-10 | Silicon Graphics, Inc. | Optical system for single camera stereo video |
US5894323A (en) * | 1996-03-22 | 1999-04-13 | Tasc, Inc, | Airborne imaging system using global positioning system (GPS) and inertial measurement unit (IMU) data |
US5798786A (en) * | 1996-05-07 | 1998-08-25 | Recon/Optical, Inc. | Electro-optical imaging detector array for a moving vehicle which includes two axis image motion compensation and transfers pixels in row directions and column directions |
US5844602A (en) * | 1996-05-07 | 1998-12-01 | Recon/Optical, Inc. | Electro-optical imaging array and camera system with pitch rate image motion compensation which can be used in an airplane in a dive bomb maneuver |
US5841574A (en) | 1996-06-28 | 1998-11-24 | Recon/Optical, Inc. | Multi-special decentered catadioptric optical system |
US6108032A (en) * | 1996-11-05 | 2000-08-22 | Lockheed Martin Fairchild Systems | System and method for image motion compensation of a CCD image sensor |
DE69720758T2 (de) * | 1996-11-05 | 2004-03-04 | Bae Systems Information And Electronic Systems Integration Inc. | Vorrichtung zur elektro-optischen fernerkundung mit bewegungskompensation |
RU2127075C1 (ru) | 1996-12-11 | 1999-03-10 | Корженевский Александр Владимирович | Способ получения томографического изображения тела и электроимпедансный томограф |
US6222583B1 (en) * | 1997-03-27 | 2001-04-24 | Nippon Telegraph And Telephone Corporation | Device and system for labeling sight images |
US5995681A (en) * | 1997-06-03 | 1999-11-30 | Harris Corporation | Adjustment of sensor geometry model parameters using digital imagery co-registration process to reduce errors in digital imagery geolocation data |
US5805289A (en) * | 1997-07-07 | 1998-09-08 | General Electric Company | Portable measurement system using image and point measurement devices |
US6157747A (en) | 1997-08-01 | 2000-12-05 | Microsoft Corporation | 3-dimensional image rotation method and apparatus for producing image mosaics |
US6097854A (en) | 1997-08-01 | 2000-08-01 | Microsoft Corporation | Image mosaic construction system and apparatus with patch-based alignment, global block adjustment and pair-wise motion-based local warping |
US5852753A (en) | 1997-11-10 | 1998-12-22 | Lo; Allen Kwok Wah | Dual-lens camera with shutters for taking dual or single images |
AU1048399A (en) | 1997-11-10 | 1999-05-31 | Gentech Corporation | System and method for generating super-resolution-enhanced mosaic images |
US6037945A (en) | 1997-12-16 | 2000-03-14 | Xactware, Inc. | Graphical method for modeling and estimating construction costs |
US6094215A (en) | 1998-01-06 | 2000-07-25 | Intel Corporation | Method of determining relative camera orientation position to create 3-D visual images |
US6130705A (en) * | 1998-07-10 | 2000-10-10 | Recon/Optical, Inc. | Autonomous electro-optical framing camera system with constant ground resolution, unmanned airborne vehicle therefor, and methods of use |
JP4245699B2 (ja) | 1998-09-16 | 2009-03-25 | オリンパス株式会社 | 撮像装置 |
US6434265B1 (en) | 1998-09-25 | 2002-08-13 | Apple Computers, Inc. | Aligning rectilinear images in 3D through projective registration and calibration |
US6600553B1 (en) * | 1998-11-03 | 2003-07-29 | National Institute Of Science And Technology U.S. Dept Of Commerce | Three degree-of-freedom telescoping geometry scanner |
DE19857667A1 (de) | 1998-12-15 | 2000-08-17 | Aerowest Photogrammetrie H Ben | Verfahren zur Erzeugung einer drei-dimensionalen Objektbeschreibung |
US6167300A (en) | 1999-03-08 | 2000-12-26 | Tci Incorporated | Electric mammograph |
DE19922341C2 (de) * | 1999-05-14 | 2002-08-29 | Zsp Geodaetische Sys Gmbh | Verfahren und eine Anordnung zur Bestimmung der räumlichen Koordinaten mindestens eines Objektpunktes |
AUPQ056099A0 (en) | 1999-05-25 | 1999-06-17 | Silverbrook Research Pty Ltd | A method and apparatus (pprint01) |
JP5210473B2 (ja) | 1999-06-21 | 2013-06-12 | 株式会社半導体エネルギー研究所 | 表示装置 |
US7015954B1 (en) * | 1999-08-09 | 2006-03-21 | Fuji Xerox Co., Ltd. | Automatic video system using multiple cameras |
US6639596B1 (en) | 1999-09-20 | 2003-10-28 | Microsoft Corporation | Stereo reconstruction from multiperspective panoramas |
JP4685313B2 (ja) | 1999-12-29 | 2011-05-18 | ジオスパン コーポレイション | 任意の局面の受動的な体積画像の処理方法 |
US6826539B2 (en) | 1999-12-31 | 2004-11-30 | Xactware, Inc. | Virtual structure data repository and directory |
US6829584B2 (en) | 1999-12-31 | 2004-12-07 | Xactware, Inc. | Virtual home data repository and directory |
US6810383B1 (en) | 2000-01-21 | 2004-10-26 | Xactware, Inc. | Automated task management and evaluation |
AU3047801A (en) | 2000-02-03 | 2001-08-14 | Alst Technical Excellence Center | Image resolution improvement using a color mosaic sensor |
AU2001271238A1 (en) | 2000-03-16 | 2001-09-24 | The Johns-Hopkins University | Light detection and ranging (lidar) mapping system |
US20020041328A1 (en) * | 2000-03-29 | 2002-04-11 | Astrovision International, Inc. | Direct broadcast imaging satellite system apparatus and method for providing real-time, continuous monitoring of earth from geostationary earth orbit and related services |
US7019777B2 (en) * | 2000-04-21 | 2006-03-28 | Flight Landata, Inc. | Multispectral imaging system with spatial resolution enhancement |
US6549683B1 (en) * | 2000-05-02 | 2003-04-15 | Institut National D'optique | Method and apparatus for evaluating a scale factor and a rotation angle in image processing |
JP2001344597A (ja) * | 2000-05-30 | 2001-12-14 | Fuji Heavy Ind Ltd | 融合視界装置 |
US7184072B1 (en) * | 2000-06-15 | 2007-02-27 | Power View Company, L.L.C. | Airborne inventory and inspection system and apparatus |
US6834128B1 (en) | 2000-06-16 | 2004-12-21 | Hewlett-Packard Development Company, L.P. | Image mosaicing system and method adapted to mass-market hand-held digital cameras |
US6484101B1 (en) | 2000-08-16 | 2002-11-19 | Imagelinks, Inc. | 3-dimensional interactive image modeling system |
US7313289B2 (en) | 2000-08-30 | 2007-12-25 | Ricoh Company, Ltd. | Image processing method and apparatus and computer-readable storage medium using improved distortion correction |
US6421610B1 (en) | 2000-09-15 | 2002-07-16 | Ernest A. Carroll | Method of preparing and disseminating digitized geospatial data |
US6757445B1 (en) * | 2000-10-04 | 2004-06-29 | Pixxures, Inc. | Method and apparatus for producing digital orthophotos using sparse stereo configurations and external models |
US6959120B1 (en) | 2000-10-27 | 2005-10-25 | Microsoft Corporation | Rebinning methods and arrangements for use in compressing image-based rendering (IBR) data |
JP4298155B2 (ja) * | 2000-11-17 | 2009-07-15 | 本田技研工業株式会社 | 距離測定装置、及び距離測定方法 |
US20020122969A1 (en) * | 2000-12-15 | 2002-09-05 | Manfred Herrmann | Pressure driven hermetically sealed pump for fuel cell system |
JP4712202B2 (ja) * | 2001-02-28 | 2011-06-29 | 株式会社 ジツタ | 土地区画図等の測量図面作成システム |
JP2003097946A (ja) * | 2001-03-02 | 2003-04-03 | Kansai Electric Power Co Inc:The | 載置台式のカメラを用いた写真測量システム及び基準棒装置 |
US6952487B2 (en) * | 2001-04-06 | 2005-10-04 | Itt Manufacturing Enterprises, Inc. | Detecting the presence of failure(s) in existing man-made structures |
US6735348B2 (en) * | 2001-05-01 | 2004-05-11 | Space Imaging, Llc | Apparatuses and methods for mapping image coordinates to ground coordinates |
WO2002090887A2 (en) * | 2001-05-04 | 2002-11-14 | Vexcel Imaging Gmbh | Digital camera for and method of obtaining overlapping images |
US7046401B2 (en) | 2001-06-01 | 2006-05-16 | Hewlett-Packard Development Company, L.P. | Camera-based document scanning system using multiple-pass mosaicking |
US7509241B2 (en) | 2001-07-06 | 2009-03-24 | Sarnoff Corporation | Method and apparatus for automatically generating a site model |
US20030043824A1 (en) | 2001-08-31 | 2003-03-06 | Remboski Donald J. | Vehicle active network and device |
US6840480B2 (en) * | 2001-09-27 | 2005-01-11 | Ernest A. Carroll | Miniature, unmanned aircraft with interchangeable data module |
US6747686B1 (en) * | 2001-10-05 | 2004-06-08 | Recon/Optical, Inc. | High aspect stereoscopic mode camera and method |
US7262790B2 (en) | 2002-01-09 | 2007-08-28 | Charles Adams Bakewell | Mobile enforcement platform with aimable violation identification and documentation system for multiple traffic violation types across all lanes in moving traffic, generating composite display images and data to support citation generation, homeland security, and monitoring |
TW550521B (en) | 2002-02-07 | 2003-09-01 | Univ Nat Central | Method for re-building 3D model of house in a semi-automatic manner using edge segments of buildings |
US6894809B2 (en) * | 2002-03-01 | 2005-05-17 | Orasee Corp. | Multiple angle display produced from remote optical sensing devices |
JP4184703B2 (ja) | 2002-04-24 | 2008-11-19 | 大日本印刷株式会社 | 画像修正方法およびシステム |
US7725258B2 (en) * | 2002-09-20 | 2010-05-25 | M7 Visual Intelligence, L.P. | Vehicle based data collection and processing system and imaging sensor system and methods thereof |
EA008402B1 (ru) | 2002-09-20 | 2007-04-27 | М7 Визьюал Интелидженс, Лп | Размещаемая на транспортном средстве система сбора и обработки данных |
EP1696204B1 (en) | 2002-11-08 | 2015-01-28 | Pictometry International Corp. | Method for capturing, geolocating and measuring oblique images |
US7424133B2 (en) | 2002-11-08 | 2008-09-09 | Pictometry International Corporation | Method and apparatus for capturing, geolocating and measuring oblique images |
US7018050B2 (en) | 2003-09-08 | 2006-03-28 | Hewlett-Packard Development Company, L.P. | System and method for correcting luminance non-uniformity of obliquely projected images |
JP2005151536A (ja) | 2003-10-23 | 2005-06-09 | Nippon Dempa Kogyo Co Ltd | 水晶発振器 |
CA2455359C (en) * | 2004-01-16 | 2013-01-08 | Geotango International Corp. | System, computer program and method for 3d object measurement, modeling and mapping from single imagery |
US7916940B2 (en) | 2004-01-31 | 2011-03-29 | Hewlett-Packard Development Company | Processing of mosaic digital images |
KR20070007790A (ko) | 2004-02-27 | 2007-01-16 | 인터그래프 소프트웨어 테크놀로지스 캄파니 | 중첩 이미지로부터 단일 이미지 형성 방법 및 시스템 |
US7773799B2 (en) * | 2004-04-02 | 2010-08-10 | The Boeing Company | Method for automatic stereo measurement of a point of interest in a scene |
US20060028550A1 (en) | 2004-08-06 | 2006-02-09 | Palmer Robert G Jr | Surveillance system and method |
US7728833B2 (en) | 2004-08-18 | 2010-06-01 | Sarnoff Corporation | Method for generating a three-dimensional model of a roof structure |
US8078396B2 (en) | 2004-08-31 | 2011-12-13 | Meadow William D | Methods for and apparatus for generating a continuum of three dimensional image data |
US7348895B2 (en) | 2004-11-03 | 2008-03-25 | Lagassey Paul J | Advanced automobile accident detection, data recordation and reporting system |
US7142984B2 (en) | 2005-02-08 | 2006-11-28 | Harris Corporation | Method and apparatus for enhancing a digital elevation model (DEM) for topographical modeling |
US7466244B2 (en) * | 2005-04-21 | 2008-12-16 | Microsoft Corporation | Virtual earth rooftop overlay and bounding |
US7554539B2 (en) * | 2005-07-27 | 2009-06-30 | Balfour Technologies Llc | System for viewing a collection of oblique imagery in a three or four dimensional virtual scene |
US7844499B2 (en) | 2005-12-23 | 2010-11-30 | Sharp Electronics Corporation | Integrated solar agent business model |
US7778491B2 (en) | 2006-04-10 | 2010-08-17 | Microsoft Corporation | Oblique image stitching |
US7310606B2 (en) * | 2006-05-12 | 2007-12-18 | Harris Corporation | Method and system for generating an image-textured digital surface model (DSM) for a geographical area of interest |
EP2036043A2 (en) | 2006-06-26 | 2009-03-18 | Lockheed Martin Corporation | Method and system for providing a perspective view image by intelligent fusion of a plurality of sensor data |
US7873238B2 (en) * | 2006-08-30 | 2011-01-18 | Pictometry International Corporation | Mosaic oblique images and methods of making and using same |
DE102007030781A1 (de) | 2006-10-11 | 2008-04-17 | Gta Geoinformatik Gmbh | Verfahren zur Texturierung virtueller dreidimensionaler Objekte |
IL179344A (en) | 2006-11-16 | 2014-02-27 | Rafael Advanced Defense Sys | Mobile Platform Tracking Method |
US8520079B2 (en) * | 2007-02-15 | 2013-08-27 | Pictometry International Corp. | Event multiplexer for managing the capture of images |
US7832267B2 (en) | 2007-04-25 | 2010-11-16 | Ecometriks, Llc | Method for determining temporal solar irradiance values |
US20090177458A1 (en) | 2007-06-19 | 2009-07-09 | Ch2M Hill, Inc. | Systems and methods for solar mapping, determining a usable area for solar energy production and/or providing solar information |
JP5110979B2 (ja) * | 2007-06-26 | 2012-12-26 | キヤノン株式会社 | 照明光学系およびそれを用いた投射型表示装置 |
US8417061B2 (en) | 2008-02-01 | 2013-04-09 | Sungevity Inc. | Methods and systems for provisioning energy systems |
US8275194B2 (en) | 2008-02-15 | 2012-09-25 | Microsoft Corporation | Site modeling using image data fusion |
US8538151B2 (en) | 2008-04-23 | 2013-09-17 | Pasco Corporation | Building roof outline recognizing device, building roof outline recognizing method, and building roof outline recognizing program |
US8401222B2 (en) | 2009-05-22 | 2013-03-19 | Pictometry International Corp. | System and process for roof measurement using aerial imagery |
US8477190B2 (en) * | 2010-07-07 | 2013-07-02 | Pictometry International Corp. | Real-time moving platform management system |
US9183538B2 (en) | 2012-03-19 | 2015-11-10 | Pictometry International Corp. | Method and system for quick square roof reporting |
US9292913B2 (en) * | 2014-01-31 | 2016-03-22 | Pictometry International Corp. | Augmented three dimensional point collection of vertical structures |
-
2003
- 2003-11-05 US US10/701,839 patent/US7424133B2/en active Active
- 2003-11-07 CA CA2821759A patent/CA2821759C/en not_active Expired - Lifetime
- 2003-11-07 DK DK03025702T patent/DK1418402T3/da active
- 2003-11-07 EP EP03025702A patent/EP1418402B1/en not_active Expired - Lifetime
- 2003-11-07 CA CA2821605A patent/CA2821605C/en not_active Expired - Lifetime
- 2003-11-07 DE DE60306301T patent/DE60306301T2/de not_active Expired - Lifetime
- 2003-11-07 WO PCT/US2003/035528 patent/WO2004044692A2/en active Application Filing
- 2003-11-07 CN CN200380108517A patent/CN100585619C/zh not_active Expired - Fee Related
- 2003-11-07 BR BRPI0316110A patent/BRPI0316110B1/pt not_active IP Right Cessation
- 2003-11-07 CA CA2821775A patent/CA2821775C/en not_active Expired - Lifetime
- 2003-11-07 CN CN2009102251728A patent/CN101793514B/zh not_active Expired - Fee Related
- 2003-11-07 ES ES03025702T patent/ES2266704T3/es not_active Expired - Lifetime
- 2003-11-07 JP JP2004551862A patent/JP4901103B2/ja not_active Expired - Fee Related
- 2003-11-07 CA CA2505566A patent/CA2505566C/en not_active Expired - Lifetime
- 2003-11-07 CA CA2821780A patent/CA2821780C/en not_active Expired - Lifetime
- 2003-11-07 MX MXPA05004987A patent/MXPA05004987A/es active IP Right Grant
- 2003-11-07 CA CA2821602A patent/CA2821602C/en not_active Expired - Lifetime
- 2003-11-07 AT AT03025702T patent/ATE331204T1/de active
- 2003-11-07 EP EP10011757.1A patent/EP2261600B1/en not_active Expired - Lifetime
- 2003-11-07 AU AU2003291364A patent/AU2003291364A1/en not_active Abandoned
-
2006
- 2006-08-08 HK HK06108790.9A patent/HK1088421A1/xx not_active IP Right Cessation
-
2008
- 2008-08-06 US US12/186,889 patent/US7787659B2/en not_active Expired - Lifetime
-
2010
- 2010-01-08 JP JP2010003317A patent/JP2010112959A/ja active Pending
- 2010-08-10 US US12/853,616 patent/US7995799B2/en not_active Expired - Fee Related
- 2010-11-19 US US12/950,643 patent/US8068643B2/en not_active Expired - Fee Related
- 2010-11-19 US US12/950,653 patent/US8204341B2/en not_active Expired - Fee Related
-
2011
- 2011-08-25 US US13/217,885 patent/US8233666B2/en not_active Expired - Fee Related
-
2012
- 2012-06-27 US US13/534,907 patent/US8634594B2/en not_active Expired - Lifetime
-
2013
- 2013-03-08 US US13/791,032 patent/US9182657B2/en not_active Expired - Lifetime
- 2013-03-11 US US13/793,110 patent/US9443305B2/en not_active Expired - Fee Related
-
2016
- 2016-08-24 US US15/246,038 patent/US9811922B2/en not_active Expired - Lifetime
-
2017
- 2017-11-02 US US15/802,173 patent/US10607357B2/en not_active Expired - Lifetime
-
2020
- 2020-03-30 US US16/834,325 patent/US11069077B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010038718A1 (en) * | 1997-05-09 | 2001-11-08 | Rakesh Kumar | Method and apparatus for performing geo-spatial registration of imagery |
WO1999018732A1 (en) * | 1997-10-06 | 1999-04-15 | Ciampa John A | Digital-image mapping |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106595597A (zh) * | 2016-12-16 | 2017-04-26 | 亚坦能源科技(上海)有限公司 | 一种在拍摄显示屏上展现测量信息的方法和装置 |
CN107272049A (zh) * | 2017-07-13 | 2017-10-20 | 成都理工大学 | 基于脉冲宽度的数字n‑γ甄别方法 |
CN107272049B (zh) * | 2017-07-13 | 2019-01-08 | 成都理工大学 | 基于脉冲宽度的数字n-γ甄别方法 |
CN113703438A (zh) * | 2021-07-14 | 2021-11-26 | 深圳市水务工程检测有限公司 | 用于输水隧洞巡检的auv自主导航路径规划方法 |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101793514B (zh) | 倾斜地理定位和测量系统 | |
EP1696204B1 (en) | Method for capturing, geolocating and measuring oblique images |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130102 Termination date: 20131107 |