CN101789509A - 一种高耐久性燃料电池膜电极及制备方法 - Google Patents

一种高耐久性燃料电池膜电极及制备方法 Download PDF

Info

Publication number
CN101789509A
CN101789509A CN201010102412A CN201010102412A CN101789509A CN 101789509 A CN101789509 A CN 101789509A CN 201010102412 A CN201010102412 A CN 201010102412A CN 201010102412 A CN201010102412 A CN 201010102412A CN 101789509 A CN101789509 A CN 101789509A
Authority
CN
China
Prior art keywords
catalyst
membrane electrode
proton exchange
preparation
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201010102412A
Other languages
English (en)
Other versions
CN101789509B (zh
Inventor
木士春
徐峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN2010101024128A priority Critical patent/CN101789509B/zh
Publication of CN101789509A publication Critical patent/CN101789509A/zh
Application granted granted Critical
Publication of CN101789509B publication Critical patent/CN101789509B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

一种高耐久性燃料电池膜电极及制备方法。其特点是在催化层制备过程中添加了具有高比表面积、高吸附特性的多孔材料。多孔材料是坡缕石-海泡石族矿物纤维、蒙脱石、硅藻土、活性炭、分子筛或硅胶,多孔材料在催化层中的质量分数为0.05%~25%,催化层由催化剂和质子交换树脂组成。与背景技术不同,本发明在传统催化层制备过程中添加了多孔吸附材料,其作用在于吸附迁移的催化剂离子或颗粒,减缓因催化剂流失造成的催化活性下降;吸附CO、NH3或硫化物,减少其对催化剂的毒化作用,提高催化剂的工作效率;并且这种多孔材料可以吸附电池运行过程中产生的金属离子等杂质,防止杂质对膜电极中的质子交换膜的攻击,从而提高膜电极的使用寿命。

Description

一种高耐久性燃料电池膜电极及制备方法
技术领域
本发明涉及一种燃料电池膜电极及制备方法,特别涉及一种高耐久性燃料电池膜电极及制备方法。其特点是催化层中添加了多孔吸附材料。
背景技术
质子交换膜燃料电池(Proton exchange membrane fuel cell,PEMFC)是一种将贮存在燃料中的化学能直接转化为电能的能量转换装置,具有环境友好、能量转换效率高、寿命长、室温下快速启动等特点,已成为新能源领域的研究热点之一。
膜电极的性能及寿命是影响燃料电池性能及寿命的最重要指标之一。由于燃料电池在运行过程中,膜电极的运行环境非常恶劣,会造成催化剂颗粒的溶解、迁移及流失,降低催化剂性能及耐久性;燃料及氧化剂中的杂质气体如CO、硫化物、NH3等对催化剂具有毒化作用,降低催化剂的性能;并且电池运行过程中产生的杂质金属离子如Fe2+、Cr3+、Cu2+等会对催化层及膜内的树脂材料中的C-C、C-F等键进行攻击,破坏树脂材料的结构,造成树脂材料的失效。
专利US2008/003476A1提出向贵金属催化剂中添加氯化物、碘化物、溴化物等物质以抑制贵金属的长大及溶解流失。专利CN101238610A提出使用高温稳定聚合物作为质子交换膜,提高了电池工作温度和膜电极寿命。但这些方法都无法有效抵抗杂质离子对膜的攻击。
发明内容
本发明的目的旨在通过向催化层内添加具有高比表面积、高吸附性的多孔吸附材料获得一种高耐久性燃料电池膜电极及制备方法。这种多孔吸附材料可以吸附迁移的催化剂离子或颗粒,减缓因催化剂流失造成的催化活性下降;吸附CO、NH3或硫化物,减少其对催化剂的毒化作用,提高催化剂的工作效率;并且这种多孔材料可以吸附电池运行过程中产生的金属离子等杂质,防止杂质对膜电极中的质子交换膜的攻击,提高质子交换膜的使用寿命,并提高膜电极的使用寿命。目前尚未有该类型催化剂及膜电极的相关文献报道。
实现发明目的的技术方案:
一种高耐久性燃料电池膜电极,其特征在于,催化层中添加了具有高比表面积、高吸附特性的多孔材料,多孔材料在催化层中的质量分数为0.05%~25%,所述的催化层,是由催化剂和质子交换树脂组成,所述的具有高比表面积、高吸附性的多孔材料是坡缕石-海泡石族矿物纤维、蒙脱石、硅藻土、活性炭、分子筛或硅胶。
本发明的技术方案中,所述的坡缕石-海泡石族矿物纤维是坡缕石(凹凸棒石)或海泡石。
本发明的技术方案中,所述的分子筛是天然沸石、碳分子筛或人工合成沸石。
本发明的技术方案中,所述的天然沸石是丝光沸石或斜发沸石,人工合成沸石是3A型分子筛、4A型分子筛、5A型分子筛、10X型分子筛、13X型分子筛、钠Y型分子筛或钙Y型分子筛。
本发明所述的催化剂是指Pt、Pd、Ru、Rh、Ir或Os贵金属;Pt与Pd、Ru、Rh、Ir或Os的二元合金PtPd、PtRu、PtRh、PtIr或PtOs;铂与其他金属的合金是指Pt、Pd、Ru、Rh、Ir或Os贵金属与Fe、Cr、Ni、Co、Au或Bi形成的二元合金NM,N为Pt、Pd、Ru、Rh、Ir或Os,M为Fe、Cr、Ni、Co、Au或Bi;Pt、Pd、Ru、Rh、Ir或Os贵金属与Fe、Cr、Ni或Co形成的三元合金NM1M2,N的定义同前述,M1、M2为Fe、Cr、Ni及Co中任意两种金属元素的组合物,如FeCo等,其中Bi、Fe、Cr、Ni和Co为贱金属。
本发明的催化剂载体是碳载体、陶瓷载体、纳米SiO2或纳米TiO2
本发明所述的碳载体为纳米碳黑、纳米石墨球、纳米碳纤维、纳米碳管或介孔碳微球,所述的纳米碳黑和纳米石墨球,其颗粒的粒径为10~100纳米,所述的纳米碳纤维和纳米碳管,其直径为2~200纳米,长度为100~10000纳米,所述的介孔碳微球的孔径大小为2-50纳米。
本发明所述的纳米碳管是单壁碳纳米管或多壁碳纳米管。
本发明所述的陶瓷载体是TiSi2、TiB2、TiN、TiC、TiO2、SiC、PbTiO3、Ti3SiC、BaPbO3、LaCrO3、TiC/Si3N4或TiAl/TiB2,其粒径为10~200纳米。
本发明所述的质子交换树脂是指具有磺酸基团的全氟磺酸树脂,部分氟化的质子交换树脂;非氟化的质子交换树脂,如磺化聚砜类树脂、磺化聚苯硫醚树脂、磺化聚苯并咪唑、磺化聚磷腈、磺化聚酰亚胺树脂、磺化聚苯乙烯树脂或磺化聚醚醚酮树脂。
本发明所述的膜电极(membrane electrode assembly,MEA)根据催化剂层与其它组件的结合方式的不同划分两种,一种是将催化剂涂敷在气体扩散层表面制备的气体扩散层电极(gas diffusion layer electrode,GDE)而获得的膜电极,本发明称之为GDE-MEA,另一种是将催化剂涂在质子交换膜两侧(catalyst coated membrane,CCM)获得的膜电极,本发明称之为CCM-MEA。
本发明所述的膜电极的制备方法是将含多孔吸附材料、燃料电池通用催化剂、质子交换树脂、溶剂的物质制成料浆(slurry)或墨汁(ink),涂敷在气体扩散层表面制成气体扩散层电极,然后将气体扩散层电极与质子交换膜热压,获得的膜电极,即GDE-MEA;或是将料浆或墨汁涂敷在质子交换膜两侧,制成燃料电池芯片,或称为CCM(catalyst coatedmembrane),然后再将气体扩散层与CCM进行冷热压或接触,获得的膜电极即CCM-MEA。具体制备过程为:
1)将多孔吸附材料、催化剂、质子交换树脂、溶剂混合均匀制备成料浆,料浆的各种成分的质量分数关系为多孔吸附材料∶催化剂∶质子交换树脂∶溶剂=1~5∶10∶2~5∶50~1000;其中所述的溶剂为甲醇、乙醇、异丙醇、乙二醇、丙三醇、1-甲氧基2-丙醇(MOP)、乙醚、石油醚、乙酸乙酯或丙酮;
或者将催化剂加入到去离子水和质子交换树脂的混合液中,其质子交换树脂与催化剂的质量比为1∶5,充分搅拌调成糊状,再加入纳米吸附材料,超声混合,制备成含有纳米吸附材料的催化剂料浆;
2)将步骤1制备的燃料电池催化剂料浆涂敷于经过预处理的气体扩散层表面,并在80-100℃下真空干燥,制得气体扩散层电极;
其中所述气体扩散层的预处理方法是,将碳纸浸入到聚四氟乙烯疏水剂中,时间为5~10分钟,并在340-350℃下煅烧20-30分钟,聚四氟乙烯疏水剂的含量20wt%-30wt%,之后,再在其一侧涂敷一层由聚四氟乙烯和导电碳黑组成的复合材料层,其中聚四氟乙烯含量为20wt%-30wt%,经340-350℃下煅烧20-30分钟后成型;
3)将步骤2制备的气体扩散层电极与质子交换膜热压,获得高耐久性燃料电池膜电极,热压的压力为1~4MPa,温度90-120℃,时间60~120秒;
或是将步骤2制备的复合催化剂料浆涂敷在质子交换膜的两侧,制得燃料电池芯片,之后,再与经过预处理的气体扩散层进行热压或冷接触,获得高耐久性燃料电池膜电极。热压的压力1~4MPa,温度90-120℃,时间60~120秒。
将制备的复合催化剂组装成单电池,进行电性能测试测试过程如下:
单电池组装及测试;采用石墨板为集流板,在一侧开有平行槽,端板为镀金不锈钢板。将膜电极、集流板、端板及密封材料组装成单电池。单电池操作条件为:
(1)直接氢燃料电池(PEMFC):H2/空气,空气背压为0;阳极增湿,增湿度为0~100%;单电池工作温度为60~80℃,增湿温度为60~75℃;阳极气体中。
(2)直接甲醇燃料电池(DMFC):阳极甲醇浓度为2摩尔,流量为5毫升/分钟,阴极为空气,背压为0。
与现有的背景技术相比,本发明的膜电极具有以下的优点:
1、采用具有吸附作用的多孔材料,阻挡了催化剂的迁移,减缓了催化剂的流失,从而提高催化剂的耐久性;
2、多孔材料能吸附CO、NH3或硫化物,减少其对催化剂的毒化作用,提高催化剂的工作效率;
3、多孔材料阻止了电池运行过程中产生的金属离子及其他杂质向质子交换膜的迁移,防止金属离子及其他杂质对质子交换膜的破坏,提高了质子交换膜的寿命。
通过提高催化剂与质子交换膜的性能与耐久性,使得膜电极的耐久性得到改善。
测试表明,采用本发明的复合催化剂,燃料电池膜电极的的寿命可提高10%以上。
附图说明
附图1Pt离子流失情况
图中:1、普通膜电极,2、加入多孔吸附材料的膜电极。
附图2200小时单电池性能测试结果
图中:1、普通膜电极,2、加入多孔吸附材料的膜电极。
具体实施方式
下面通过实施例详述本发明。
实施例1
1、含坡缕石催化层料浆的制备
按照质量比,坡缕石∶Pt/C催化剂∶质子交换树脂∶溶剂=1∶5∶1∶50的比例制备催化层料浆,其中质子交换树脂为
Figure GSA00000024122000041
树脂溶液(杜邦公司生产),溶剂为甲醇;
2、气体扩散层的预处理
将碳纸浸渍于聚四氟乙烯疏水剂处理5分钟,并在350℃下煅烧20分钟,聚四氟乙烯疏水剂的含量20wt%,之后,再在其一侧涂敷一层由聚四氟乙烯和导电碳黑颗粒组成的复合材料层,其中聚四氟乙烯含量为30wt%,经350℃下煅烧30分钟后成型,构成水管理层;
3、膜电极的制备
将催化剂料浆涂于经过预处理的气体扩散层的一侧,100℃下真空干燥,制得气体扩散层电极;
将全氟磺酸质子交换树膜(NRE 212CS,
Figure GSA00000024122000042
美国杜邦公司生产)置于两张气体扩散层电极之间热压,其中,催化剂层与全氟磺酸质子交换膜接触,热压的压力2MPa,温度120℃,时间90秒,制得备膜电极。膜电极的催化剂载量为0.60mg/cm2
4、单电池组装及测试
将制备的膜电极与石墨集流板、镀金端板及聚四氟乙烯密封圈等组件组装成单电池。单电池操作条件为:氢/空,常压,阴、阳极均加湿,加湿度为100%,工作温度为70℃。
测试200小时表明,催化剂流失量及杂质金属离子的流出量明显减少,单电池耐久性提高了15%。
实施例2
1、含海泡石催化层料浆的制备
按照质量比,海泡石∶PtPd/SCNTs(SCNTs为单壁碳纳米管)∶质子交换树脂∶溶剂=1∶10∶2∶100的比例制备催化层料浆,其中质子交换树脂为
Figure GSA00000024122000043
树脂溶液(杜邦公司生产),溶剂为乙醇;
2、气体扩散层的预处理
将碳纸浸渍于聚四氟乙烯疏水剂处理5分钟,并在340℃下煅烧30分钟,聚四氟乙烯疏水剂的含量25wt%,之后,再在其一侧涂敷一层由聚四氟乙烯和导电碳黑颗粒组成的复合材料层,其中聚四氟乙烯含量为20wt%,经350℃下煅烧30分钟后成型,构成水管理层;
3、膜电极的制备
将催化层料浆涂于全氟磺酸质子交换膜两侧(NRE 212,
Figure GSA00000024122000044
美国杜邦公司生产),100℃下真空干燥,制得CCM;
将CCM置于两张气体扩散层之间热压,热压的压力为3MPa,温度100℃,时间100秒,制得备膜电极,膜电极的催化剂载量为0.40mg/cm2
4、单电池组装及测试
将制备的膜电极与石墨集流板、镀金端板及聚四氟乙烯密封圈等组件组装成单电池。
单电池操作条件为:氢/空,常压,阴、阳极均加湿,加湿度为80%,加湿温度为70℃,工作温度为65℃。
测试200小时表明,催化剂流失量及杂质金属离子的流出量明显减少,单电池耐久性提高了18%。
实施例3
1、含蒙脱石催化层料浆的制备
按照质量比,蒙脱石∶PtRu/C∶质子交换树脂∶溶剂=3∶10∶3∶1000的比例制备催化层料浆,其中质子交换树脂为磺化聚砜类树脂(自制),溶剂为乙二醇;
2、气体扩散层的预处理
与实施例1相同;
3、膜电极的制备
将催化层料浆涂于经过预处理的气体扩散层的一侧,100℃下真空干燥,制得气体扩散层电极;
将磺化聚砜类树脂铸膜(自制,膜厚50微米)置于两张气体扩散层电极之间热压,其中,催化剂层与质子交换膜接触,热压的压力为3MPa,温度110℃,时间60秒,制得备膜电极。膜电极的催化剂载量为0.20mg/cm2
单电池测试条件:阳极甲醇浓度为2摩尔,流量为5毫升/分钟,阴极为空气,背压为0。
测试200小时表明,催化剂流失量及杂质金属离子的流出量明显减少,单电池耐久性提高了12.5%。
实施例4
1、含硅藻土催化层料浆的制备
按照质量比,硅藻土∶RuAu/MCNTs(MCNTs为多壁碳纳米管)∶质子交换树脂∶溶剂=3∶10∶3∶1000的比例制备催化层料浆,其中质子交换树脂为磺化聚苯并咪唑树脂(自制),溶剂为异丙醇;
2、气体扩散层的预处理
将碳纸浸渍于聚四氟乙烯疏水剂处理10分钟,并在340℃下煅烧25分钟,聚四氟乙烯疏水剂的含量25wt%,之后,再在其一侧涂敷一层由聚四氟乙烯和导电碳黑颗粒组成的复合材料层,其中聚四氟乙烯含量为25wt%,经340℃下煅烧25分钟后成型,构成水管理层;
3、膜电极的制备
将催化层料浆涂于磺化聚苯并咪唑树脂铸膜两侧(自制,膜厚100微米),100℃下真空干燥,制得CCM;
将CCM置于两张气体扩散层之间热压,热压的压力为3MPa,温度100℃,时间100秒,制得备膜电极。膜电极的催化剂载量为0.40mg/cm2
单电池测试条件:阳极甲醇浓度为2摩尔,流量为5毫升/分钟,阴极为空气,背压为0。
测试200小时表明,催化剂流失量及杂质金属离子的流出量明显减少,单电池耐久性提高了15%。
实施例5
1、含活性炭催化层料浆的制备
按照质量比,活性炭∶PdNi/SiO2催化剂∶质子交换树脂∶溶剂=3∶10∶3∶1000的比例制备催化层料浆,其中质子交换树脂为磺化聚醚醚酮树脂(自制),溶剂为丙醇;
2、气体扩散层的预处理
与实施例4相同;
3、电极的制备
与实施例4相同,只是采用的质子交换膜为磺化聚醚醚酮树脂铸膜(自制,膜厚80微米)。
单电池测试与实施例2相同,只是在阳极氢气中添加了100ppm的H2S。
测试200小时表明,催化剂流失量及杂质金属离子的流出量明显减少,单电池对H2S的耐受性提高了4倍,单电池耐久性提高了20%。
实施例6
1、含丝光沸石催化层料浆的制备
按质量比,丝光沸石∶PtRuFe/TiO2催化剂∶质子交换树脂∶溶剂=4∶10∶4∶500的比例制备催化层料浆,其中质子交换树脂为磺化聚酰亚胺树脂(自制),溶剂为丙醇;
2、气体扩散层的预处理
与实施例1相同;
3、膜电极的制备
与实施例4相同,只是采用的质子交换膜为磺化聚酰亚胺树脂铸膜(自制,膜厚50微米)。
单电池测试与实施例2相同,只是在阳极氢气中添加了120ppm的CO。
测试200小时表明,催化剂流失量及杂质金属离子的流出量明显减少,单电池对CO的耐受性提高了3倍,单电池耐久性提高了16%。
实施例7
1、含斜发沸石催化层料浆的制备
按质量比,斜发沸石∶PtFeCo/SiC催化剂∶质子交换树脂∶溶剂=5∶10∶4∶800的比例制备催化层料浆,其中质子交换树脂为磺化聚苯硫醚树脂(自制),溶剂为乙醇;
2、气体扩散层的预处理
与实施例1相同;
3、膜电极的制备
与实施例4相同,只是采用的质子交换膜为磺化聚苯硫醚树脂铸膜(自制,膜厚70微米)。
单电池测试与实施例2相同,只是在阳极氢气中添加了180ppm的NH3
测试200小时表明,催化剂流失量及杂质金属离子的流出量明显减少,单电池对NH3的耐受性提高了2倍,单电池耐久性提高了17%。
实施例8
1、含3A型分子筛催化层料浆的制备
与实施例3相同,只是加入的多孔吸附材料是3A型分子筛,催化剂为Ru/TiB2质子交换树脂是磺化聚磷腈树脂(自制);
2、气体扩散层的预处理
与实施例1相同;
3、膜电极的制备
与实施例3相同,只是采用的质子交换膜为磺化聚磷腈树脂铸膜(自制,膜厚80微米)。
单电池测试与实施例3相同。
测试200小时表明,催化剂流失量及杂质金属离子的流出量明显减少,单电池耐久性提高了15%。
实施例9
1、含4A型分子筛催化层料浆的制备
与实施例3相同,只是加入的多孔吸附材料是4A型分子筛,催化剂为PtAu/TiSi2,质子交换树脂是磺化聚苯乙烯树脂(自制),溶剂为MOP;
2、气体扩散层的预处理
与实施例1相同;
3、膜电极的制备
与实施例3相同,只是采用的质子交换膜为磺化聚苯乙烯树脂(自制)。
单电池测试与实施例3相同。
测试200小时表明,催化剂流失量及杂质金属离子的流出量明显减少,单电池耐久性提高了18%。
实施例10
1、含5A型分子筛催化层料浆的制备
按质量比,5A型分子筛∶RuCo/TiN催化剂∶质子交换树脂∶溶剂=4∶10∶3∶600的比例制备催化层料浆,其中质子交换树脂为磺化聚砜类树脂(自制),溶剂为乙醇;
2、气体扩散层的预处理
与实施例1相同;
3、膜电极的制备
与实施例4相同,只是采用的质子交换膜为磺化聚砜类树脂铸膜(自制,膜厚50微米)。
单电池测试与实施例2相同,只是在阳极氢气中添加了130ppm的NH3
测试200小时表明,催化剂流失量及杂质金属离子的流出量明显减少,单电池对NH3的耐受性提高了1.8倍,单电池耐久性提高了13%。
实施例11
1、含10X型分子筛催化层料浆的制备
按质量比,10X型分子筛∶Pt催化剂∶质子交换树脂∶溶剂=1∶10∶5∶650的比例制备催化层料浆,其中质子交换树脂为
Figure GSA00000024122000081
树脂溶液(杜邦公司生产),溶剂为石油醚;
2、气体扩散层的预处理
与实施例1相同;
3、膜电极的制备
与实施例4相同,只是采用的质子交换膜为
Figure GSA00000024122000082
211(杜邦公司生产)。
单电池测试与实施例2相同,只是在阳极氢气中添加了130ppm的CO。
测试200小时表明,催化剂流失量及杂质金属离子的流出量明显减少,单电池对CO的耐受性提高了2.5倍,单电池耐久性提高了16%。
实施例12
1、含13X型分子筛催化层料浆的制备
按质量比,13X型分子筛∶PdPt/C催化剂∶质子交换树脂∶溶剂=2∶10∶3∶1000的比例制备催化层料浆。其中质子交换树脂为
Figure GSA00000024122000083
树脂溶液(杜邦公司生产),溶剂为甲醇。
2、气体扩散层的预处理
与实施例1相同;
3、膜电极的制备
与实施例4相同,只是采用的质子交换膜为
Figure GSA00000024122000084
212(杜邦公司生产)。
单电池测试与实施例2相同,只是在阳极氢气中添加了180ppm的H2S。
测试200小时表明,催化剂流失量及杂质金属离子的流出量明显减少,单电池对H2S的耐受性提高了3倍,单电池耐久性提高了15%。
实施例13
1、含钙Y型分子筛催化层料浆的制备
按质量比,钙Y型分子筛∶PtRu/C催化剂∶质子交换树脂∶溶剂=5∶10∶3∶300的比例制备催化层料浆,其中质子交换树脂为树脂溶液(杜邦公司生产),溶剂为乙醇;
2、气体扩散层的预处理
与实施例1相同;
3、膜电极的制备
与实施例3相同,只是采用的质子交换膜为
Figure GSA00000024122000086
1135(杜邦公司生产)。
单电池测试与实施例3相同。
测试200小时表明,催化剂流失量及杂质金属离子的流出量明显减少,单电池耐久性提高了19%。
实施例14
1、含钠Y型分子筛催化层料浆的制备
按质量比,钠Y型分子筛∶Pt/SiC催化剂∶质子交换树脂∶溶剂=4∶10∶5∶500的比例制备催化层料浆,其中质子交换树脂为树脂溶液(杜邦公司生产),溶剂为乙醇;
2、气体扩散层的预处理
与实施例2相同;
3、膜电极的制备
与实施例12相同。
单电池测试与实施例3相同。
测试200小时表明,催化剂流失量及杂质金属离子的流出量明显减少,单电池耐久性提高了11%。
实施例15
1、含碳分子筛催化层料浆的制备
与实施例6相同,只是加入的催化剂为纳米石墨球担载的PtRu,多孔吸附材料是碳型分子筛;
2、气体扩散层的预处理
与实施例3相同;
3、膜电极的制备
与实施例6相同。
单电池测试与实施例3相同。
测试200小时表明,催化剂流失量及杂质金属离子的流出量明显减少,单电池耐久性提高了15%。
实施例16
1、含硅胶催化层料浆的制备
与实施例6相同,只是加入的催化剂为PtAuNi/C,多孔吸附材料是硅胶;
2、气体扩散层的预处理
与实施例1相同;
3、膜电极的制备
与实施例1相同。
单电池测试与实施例1相同。
测试200小时表明,催化剂流失量及杂质金属离子的流出量明显减少,单电池耐久性提高了16%。

Claims (6)

1.一种耐久性燃料电池膜电极,其特征在于,膜电极催化层中添加了具有高比表面积、高吸附特性的多孔材料,多孔材料在催化层中的质量分数为0.05%~25%,所述的催化层由催化剂和质子交换树脂组成,所述的具有高比表面积、高吸附性的多孔材料是坡缕石-海泡石族矿物纤维、蒙脱石、硅藻土、活性炭、分子筛或硅胶。
2.如权利要求1所述的耐久性燃料电池膜电极,其特征在于,所述的坡缕石-海泡石族矿物纤维是坡缕石或海泡石。
3.如权利要求1所述的耐久性燃料电池膜电极,其特征在于,所述的分子筛是天然沸石、碳分子筛或人工合成沸石。
4.如权利要求3所述的耐久性燃料电池膜电极,其特征在于,所述的天然沸石是丝光沸石或斜发沸石,人工合成沸石是3A型分子筛、4A型分子筛、5A型分子筛、10X型分子筛、13X型分子筛、钠Y型分子筛或钙Y型分子筛。
5.权利要求1所述的耐久性燃料电池膜电极的制备方法,其特征在于,制备方法如下:
1)将多孔吸附材料、催化剂、质子交换树脂、溶剂混合均匀制备成料浆,料浆的各种成分的质量分数关系为多孔吸附材料∶催化剂∶质子交换树脂∶溶剂=1~5∶10∶2~5∶50~1000;其中所述的溶剂为甲醇、乙醇、异丙醇、乙二醇、丙三醇、1-甲氧基2-丙醇(MOP)、乙醚、石油醚、乙酸乙酯或丙酮;
2)将步骤1制备的料浆涂敷于经过预处理的气体扩散层表面,并在80-100℃下真空干燥,制得气体扩散层电极;
其中所述气体扩散层的预处理方法是,将碳纸浸入到聚四氟乙烯疏水剂中,时间为5~10分钟,并在340-350℃下煅烧20-30分钟,聚四氟乙烯疏水剂的含量20wt%-30wt%,之后,再在其一侧涂敷一层由聚四氟乙烯和导电碳黑组成的复合材料层,其中聚四氟乙烯含量为20wt%-30wt%,经340-350℃下煅烧20-30分钟后成型;
3)将步骤2制备的气体扩散层电极与质子交换膜热压,获得高耐久性燃料电池膜电极,热压的压力为1~4MPa、温度90-120℃、时间60~120秒;
或是将步骤1制备的复合催化剂料浆涂敷在质子交换膜的两侧,制得燃料电池芯片,之后,再与经过预处理的气体扩散层进行热压或冷接触,获得高耐久性燃料电池膜电极,热压的压力为1~4MPa、温度90-120℃、时间60~120秒。
6.如权利要求5所述的高耐久性燃料电池膜电极的制备方法,其特征在于,步骤1:将催化剂加入到去离子水和质子交换树脂的混合液中,其质子交换树脂与催化剂的质量比为1∶5,充分搅拌调成糊状,再加入纳米吸附材料,超声混合,制备成含有纳米吸附材料的催化剂料浆。
CN2010101024128A 2010-01-26 2010-01-26 一种高耐久性燃料电池膜电极及制备方法 Expired - Fee Related CN101789509B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010101024128A CN101789509B (zh) 2010-01-26 2010-01-26 一种高耐久性燃料电池膜电极及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010101024128A CN101789509B (zh) 2010-01-26 2010-01-26 一种高耐久性燃料电池膜电极及制备方法

Publications (2)

Publication Number Publication Date
CN101789509A true CN101789509A (zh) 2010-07-28
CN101789509B CN101789509B (zh) 2012-09-05

Family

ID=42532633

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010101024128A Expired - Fee Related CN101789509B (zh) 2010-01-26 2010-01-26 一种高耐久性燃料电池膜电极及制备方法

Country Status (1)

Country Link
CN (1) CN101789509B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106946306A (zh) * 2017-04-01 2017-07-14 李兴祥 燃料电池汽车动力系统的去离子装置系统
CN109390593A (zh) * 2018-10-10 2019-02-26 绍兴俊吉能源科技有限公司 一种燃料电池膜电极浆料的制备方法
CN112993284A (zh) * 2021-02-04 2021-06-18 上海亿氢科技有限公司 一种电解水催化剂层及其制造方法
CN114639831A (zh) * 2022-04-26 2022-06-17 中汽创智科技有限公司 一种质子交换膜燃料电池膜电极的多孔催化层及其制备方法和应用
CN114639831B (zh) * 2022-04-26 2024-05-31 中汽创智科技有限公司 一种质子交换膜燃料电池膜电极的多孔催化层及其制备方法和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101198407A (zh) * 2005-05-12 2008-06-11 微小分子股份有限公司 一种制备材料的方法
CN101222051A (zh) * 2007-12-07 2008-07-16 哈尔滨工业大学 一种直接甲醇燃料电池双催化层电极膜电极的制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106946306A (zh) * 2017-04-01 2017-07-14 李兴祥 燃料电池汽车动力系统的去离子装置系统
CN106946306B (zh) * 2017-04-01 2023-01-31 李兴祥 燃料电池汽车动力系统的去离子装置系统
CN109390593A (zh) * 2018-10-10 2019-02-26 绍兴俊吉能源科技有限公司 一种燃料电池膜电极浆料的制备方法
CN112993284A (zh) * 2021-02-04 2021-06-18 上海亿氢科技有限公司 一种电解水催化剂层及其制造方法
CN112993284B (zh) * 2021-02-04 2024-01-26 上海亿氢科技有限公司 一种电解水催化剂层及其制造方法
CN114639831A (zh) * 2022-04-26 2022-06-17 中汽创智科技有限公司 一种质子交换膜燃料电池膜电极的多孔催化层及其制备方法和应用
CN114639831B (zh) * 2022-04-26 2024-05-31 中汽创智科技有限公司 一种质子交换膜燃料电池膜电极的多孔催化层及其制备方法和应用

Also Published As

Publication number Publication date
CN101789509B (zh) 2012-09-05

Similar Documents

Publication Publication Date Title
Munjewar et al. A comprehensive review on recent material development of passive direct methanol fuel cell
Dicks The role of carbon in fuel cells
JP5425771B2 (ja) 触媒
JP4185064B2 (ja) 液体燃料型固体高分子燃料電池用カソード電極及び液体燃料型固体高分子燃料電池
Ercelik et al. Characterization and performance evaluation of PtRu/CTiO2 anode electrocatalyst for DMFC applications
CN111146482A (zh) 一种自增湿质子交换膜及其制备方法和应用
JP2007250274A (ja) 貴金属利用効率を向上させた燃料電池用電極触媒、その製造方法、及びこれを備えた固体高分子型燃料電池
JP2005332807A (ja) 燃料電池
CN104716333A (zh) 一种有序化气体扩散电极及其制备方法和应用
CN101557001A (zh) 一种燃料电池膜电极及其制备方法
CN101777654A (zh) 一种燃料电池复合催化剂、高耐久性膜电极及制备方法
WO2004017446A1 (ja) 燃料電池用電極及びそれを用いた燃料電池、並びにそれらの製造方法
CN100454636C (zh) 一种保水质子交换膜燃料电池核心组件的制备方法
CN103515621A (zh) 用于燃料电池的载体、电极、膜电极组件和燃料电池系统
CN111584880B (zh) 一种低铂质子交换膜燃料电池膜电极及其制备方法
CN101853943A (zh) 一种具有多孔吸附层的长寿命燃料电池膜电极及制备方法
Xie et al. Enhanced low-humidity performance of proton exchange membrane fuel cell by incorporating phosphoric acid-loaded covalent organic framework in anode catalyst layer
CN101789509B (zh) 一种高耐久性燃料电池膜电极及制备方法
KR20170079621A (ko) 전극과 전극의 제조방법, 그리고 이를 포함하는 연료전지
CN1171671C (zh) 碳纳米管载铂钌系列抗co电极催化剂的制备方法
CN1921195A (zh) 一种以导质子高聚物修饰碳为载体的燃料电池催化剂及制备
CN102723509B (zh) 基于纳米纤维阵列结构的3维质子导体、膜电极及其制备
CN100399612C (zh) 一种具有导质子功能的燃料电池催化剂及制备方法
JP5561250B2 (ja) 固体高分子燃料電池用触媒層用担体炭素材料及びこれを用いた固体高分子型燃料電池
CN101771150B (zh) 一种具有可再生功能的燃料电池膜电极及制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120905

Termination date: 20140126