CN101767649B - 一种无人机起落架收放系统 - Google Patents
一种无人机起落架收放系统 Download PDFInfo
- Publication number
- CN101767649B CN101767649B CN 201010103473 CN201010103473A CN101767649B CN 101767649 B CN101767649 B CN 101767649B CN 201010103473 CN201010103473 CN 201010103473 CN 201010103473 A CN201010103473 A CN 201010103473A CN 101767649 B CN101767649 B CN 101767649B
- Authority
- CN
- China
- Prior art keywords
- total bar
- unmanned plane
- boom
- worm
- drive part
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Toys (AREA)
Abstract
一种无人机起落架收放系统,包括收放机构、驱动部分、控制部分、传感器部分、起落架臂和减震杆,收放机构采用蜗轮、蜗杆结构,收放机构的摇臂的一端与蜗轮固连,另一端与减震杆的一端连接,减震杆的另一端与起落架臂上部通过销轴连接,蜗杆的一端与驱动部分连接,传感器部分安装在收放机构的上下限位孔内,收放机构固定安装在飞机机体上承力结构上,起落架臂的上端通过飞机机体上承力转轴与飞机机体连接,起落架臂的下端与飞机前轮连接,控制部分安装在飞机的航电设备架上,通过电缆分别与驱动部分和传感器部分对接。本发明采用简单机械结构、简单电动驱动设备,弹簧式减震杆,并且无须辅助结构和助力设备支持,占用空间极小,整体体积小;本发明采用蜗轮蜗杆机构、曲柄连杆机构与无刷电机静态制动力的配合即可实现起落架收放工位锁定。
Description
技术领域
本发明涉及一种无人机起落架收放系统,特别是涉及一种轮式起降无人驾驶飞机的起落架收放系统,属于无人机技术领域,可以应用于同样重量级轻型飞机。
背景技术
无人驾驶飞机,简称无人机(UAV);无人机是一种处在迅速发展中的新概念武器装备。它的优势在越南战争以来的多次局部战争中突现,无人机在执行战场侦察、监视、目标精确定位/指示、电子对抗、通信中继和打击地面“时间敏感”目标等任务中都有非常出色的表现。但随着无人机应用的拓展,对无人机飞行平台正在向高空、高速、长航时、隐身等方向发展。
目前国内无人机发展也尤为迅速,规格覆盖大型到微型无人机多种级别,但对于微型和小型无人机,一般采用弹射或者火箭助推等方式起飞,采用缓冲器或气囊进行着陆的。随着飞机吨位的提高,类似于一般飞机的轮式起降成为大中型无人机的主流起降方式,而对于该类无人机一般采用不可收放的轮式起落架,但在飞行过程中增加了飞行阻力,降低了飞机的操纵性。对于某些大型无人机也有采用类似大型飞机的液压作动装置来完成起落架收放,但全系统重量和体积大、使用维护偏复杂。
发明内容
本发明的技术解决问题是:克服现有技术的不足,提供一种重量轻、体积小的无人机的前起落架使用的收放系统。
本发明的技术解决方案是:一种无人机起落架收放系统,包括收放机构、驱动部分、控制部分、传感器部分、起落架臂和减震杆,收放机构包括蜗轮、摇臂、蜗杆、上机械限位杆、框架和下机械限位杆,框架的前后两块支撑板上分别加工有安装传感器部分的上下限位孔,蜗轮、摇臂、蜗杆、上机械限位杆和下机械限位杆安装在框架上,摇臂的一端与蜗轮固连,另一端与减震杆的一端连接,减震杆的另一端与起落架臂上部通过销轴连接,蜗轮、蜗杆之间螺纹配合,蜗杆的一端与驱动部分连接,传感器部分安装在上下限位孔内,框架固定安装在飞机机体上承力结构上,起落架臂的上端通过飞机机体上承力转轴与飞机机体连接,起落架臂的下端与飞机前轮连接,控制部分安装在飞机的航电设备架上,通过电缆分别与驱动部分和传感器部分对接。
所述的减震杆包括弹簧和总杆,总杆由上总杆和下总杆组成,上总杆的一端通过销轴与起落架臂连接,另一端为中空的圆柱筒,下总杆一端通过销轴与收放机构的摇臂连接,另一端为中空的圆柱筒,上总杆一端中空的圆柱筒插入下总杆一端中空的圆柱筒中,两者滑动配合,形成可压缩的气密腔体,弹簧安装在上总杆和下总杆滑动配合处。
所述的上总杆采用叉柱式结构,包括叉柱和上总杆本体,叉柱上开有横槽,上总杆本体与叉柱连接端加工通孔,叉柱插入上总杆本体内,通过紧固螺钉穿过上总杆本体上的通孔和叉柱上的横槽将叉柱和上总杆本体固定。
所述的控制部分固化在电路板上,外部用外壳封装,包括输入电平隔离转换模块、逻辑运算及控制模块、输出电平隔离转换模块和直流转换器,飞机的飞行控制设备中的控制器通过输入电平隔离转换模块将两路开关量输入送到逻辑运算及控制模块,传感器部分将接收到的飞机起落架到位信息分别传送到逻辑运算及控制模块和输出电平隔离转换模块,输出电平隔离转换模块将到位信息传送到飞机的飞行控制设备中的控制器,逻辑运算及控制模块根据输入电平隔离转换模块送入的两路开关量输入和传感器部分送入的飞机起落架到位信息计算得到驱动部分控制量输出到驱动部分,控制驱动部分正反转或停止,直流转换器将飞机输入的直流电转换为控制部分电路所需的电压形式。
所述的输入电平隔离转换模块和输出电平隔离转换模块采用光电隔离方式。
所述的开关量采用高低电平代表逻辑量1和0。
所述的传感器部分选用细长型圆柱形的电感式传感器,采用2个上限位传感器和2个下限位传感器,2个上限位传感器并联,2个下限位传感器串联,实现起落架在收起和放下的冗余控制。
所述的驱动部分采用无刷电机,通过凸键式联轴器与收放系统的蜗杆连接。
本发明与现有技术相比有益效果为:
(1)本发明采用简单机械结构、简单电动驱动设备,弹簧式减震杆,并且无须辅助结构和助力设备支持,占用空间极小,整体体积小;
(2)本发明采用硬铝和高强度复合材料,在收放机构的框架15和起落架臂5结构上进行应力优化设计,保证强度的同时控制了重量;
(3)本发明采用控制部分具有全自动监控能力,由于起落架收放的状态可以通过开关量控制、同时采用开关量输出,具有自动控制、监测功能;
(4)本发明采用冗余传感器方式提高到位指示可靠度,并采用无刷电机伺服提高驱动部分寿命及可靠性,普通机械部件保证免维护,使本发明可靠性高、寿命长、免维护;
(5)本发明采用蜗轮蜗杆本身特性,驱动部分为定速转动,所以一旦安装完成,收起放下所需时间可以精确确定而不会改变,保证了收起放下时间精确控制;
(6)本发明仅仅需要轴连接起落架臂、通过螺栓连接收放机构即可完成结构安装、调整传感器部分位置就可调整收起放下的行程,减震杆的长度可调,通过调整该长度可以改变整个飞机的停机角,安装调试简单;
(7)本发明采用蜗轮蜗杆机构、曲柄连杆机构与无刷电机静态制动力的配合即可实现起落架收放工位锁定;
(8)本发明的减震器采用弹簧式减震杆设计,降低振动幅度响应。
附图说明
图1为本发明放下到位结构示意图;
图2为本发明收起到位结构示意图;
图3为本发明前起落架曲臂连杆机构原理图;
图4为本发明收放机构结构示意图a;
图5为本发明收放机构结构示意图b;
图6为本发明收放机构结构示意图c;
图7为本发明控制部分控制接口图;
图8为本发明控制部分结构框图;
图9为本发明传感器部分电路简图;
图10为本发明传感器结构图;
图11为本发明减震杆结构示意图;
图12为本发明减震杆总杆结构示意图。
具体实施方式
本发明如图1、2所示,包括收放机构1、驱动部分2、控制部分3、传感器部分4、起落架臂5和减震杆6,收放机构1将驱动力施加到起落架臂5,使驱动部分2的旋转运动转换成起落架臂5的收放运动;驱动部分2为起落架臂5收放提供机械动力,驱动收放机构1运动;控制部份3根据飞行控制设备控制量和传感器部分4的反馈控制驱动部份2去执行收起动作和放下动作;传感器部分4反映了起落架的收起到位和放下到位的状态;起落架臂5连接机身与前轮,由收放机构1来拖动;减震器6连接收放机构1和起落架臂5,极大降低飞机滑跑起降过程中的振动。本发明利用蜗轮蜗杆机构使电动机转动运动转换为摇臂摆动运动,利用曲柄连杆机构使摇臂摆动运动转换为起落架臂的摆动运动,实现前轮的收放运动。本发明采用硬铝和高强度复合材料制成。
收放机构1利用一级蜗轮蜗杆以及曲柄连杆实现旋转运动至收放运动。驱动部分2的无刷电机通过凸键式联轴器与收放系统1的蜗杆机构相连,蜗杆带动蜗轮转动,蜗杆与摇臂相连,带动减震杆6从而使起落架臂5收起和放下。
如图4、5、6所示,收放机构1包括蜗轮11、摇臂12、蜗杆13、上机械限位杆14、框架15和下机械限位杆16,框架15的前后两块支撑板上分别加工有安装传感器部分4的上下限位孔17、18,蜗轮11、摇臂12、蜗杆13、上机械限位杆14和下机械限位杆16安装在框架15上,摇臂12的一端与蜗轮11固连,另一端与减震杆6的一端连接,减震杆6的另一端与起落架臂5上部通过销轴连接,蜗轮11、蜗杆13之间螺纹配合,蜗杆13的一端与驱动部分2连接,传感器部分4安装在上下限位孔17、18内,框架15固定安装在飞机机体上承力结构01上,起落架臂5的上端通过飞机机体上承力转轴02与飞机机体连接,起落架臂5的下端与飞机前轮03连接,控制部分3安装在飞机的航电设备架上,通过电缆分别与驱动部分2和传感器部分4对接。
上、下机械限位杆14、16,为防止收放过程中,发生过度放下或过度收起,造成机体其他相邻部分损伤,当出现过收时,转动臂碰到在机械限位杆,该限位杆可以异常情况下保证收起停止。
框架15在背面增加加强筋及在于飞机机体上承力结构01连接处增大厚度,优化应力,在保证强度的同时减少重量。
驱动部分2采用无刷电机,可以实现长寿命使用。通过凸键式联轴器与收放机构1的蜗杆13连接。
控制部分3与飞行控制设备接口采用开关量控制、开关量反馈。如图8所示,控制部分3包括输入电平隔离转换模块31、逻辑运算及控制模块32、输出电平隔离转换模块33和直流转换器34,飞机的飞行控制设备中的控制器通过输入电平隔离转换模块31将两路开关量输入送到逻辑运算及控制模块32,传感器部分4将接收到的飞机起落架到位信息分别传送到逻辑运算及控制模块32和输出电平隔离转换模块33,输出电平隔离转换模块33将到位信息传送到飞机的飞行控制设备中的控制器,逻辑运算及控制模块32根据输入电平隔离转换模块31送入的两路开关量输入和传感器部分4送入的飞机起落架到位信息计算得到驱动部分控制量输出到驱动部分2,控制驱动部分2正反转或停止,直流转换器34将飞机输入的直流电转换为控制部分3电路所需的电压形式。
无人机中的飞行控制设备通过两路开关量输入DI1、DI2、两路开关量输出DO1、DO2与控制部分3相连。此外控制部分3还要与传感器部分4、驱动部分2相连,接收到位指示,DI3为收起到位,DI4为放下到位,通过DO0控制驱动部分2正反转、停止。系统控制设计如7所示,图中A代表外部控制器。
整个收放系统的电气控制部分如图8所示,开关量采用高低电平代表逻辑量1和0,对于电气接口,采用光电隔离接口方式,保证了接口特性。
输入电平隔离转换模块31采用光电隔离方式,保证控制部分3电气变化对外部控制器不会有干扰;逻辑运算及控制模块32接收外部控制器输入和传感器部分4输入,根据表1所示真值表输出驱动部分控制量;输出电平隔离转换模块33采用光电隔离方式,保证外部控制器电气变化不会干扰控制部分3;直流转换器34,将输入直流电转换为控制部分3电路所需的电压形式。
在逻辑运算及控制模块32的真值表设计中,只有两路输入都为低电平,才会控制驱动部分2才执行收起指令,外界控制器A在电气上采用上拉方式,与控制部分3对接。真值表如表1所示。表中X表示任意状态。
表1控制真值表
DI1 | DI2 | DI3(上限位) | DI4(下限位) | 电机控制 | 状态 |
0 | 0 | 0 | X | 收起 | |
0 | 0 | 1 | X | 停止 | 收起到位 |
0 | 1 | X | 0 | 放下 | |
0 | 1 | X | 1 | 停止 | 放下到位 |
1 | 0 | X | 0 | 放下 | |
1 | 0 | X | 1 | 停止 | 放下到位 |
1 | 1 | X | 0 | 放下 | |
1 | 1 | X | 1 | 停止 | 放下到位 |
整个控制部分3可由一块电路板来实现,并利用外壳进行封装后,可按照飞机总体设计考虑,安装在飞机其他航电设备附近。
传感器部分采用冗余技术保证了机构的可靠性,采用非接触式传感器保证传感器不会磨损或者移位。
传感器部分4如图10所示,选用细长型圆柱形的电感式传感器,采用如图9所示的电路设计实现起落架在放下、放下的冗余控制。通过2个上限位传感器和两个下限位传感器,2个上限位传感器并联,当任一上限位传感器探测到位,则输出收起到位的电平,防止收起过度;2个下限位传感器串联,当两个下限位传感器都探测到位,则输出放下到位的电平,防止放下不到位。如图9所示,4a、4b为上限位传感器,用于探测起落架臂是否收起到位状态;4c、4d为下限位传感器,用于探测起落架臂是否放下到位状态;4e为收起到位指示端口,连接控制部分3的DI3;4f为放下到位指示端口,连接控制部分3的DI4;4g、4h为传感器电路必要的下拉电阻,该下拉电阻在传感器检测未到位时处于关断状态,保证输出端输出为低电位,当探测到位时处于闭合状态,输出端为高电位,本实施例中下拉电阻取值1千欧姆,最大功率为0.5瓦特。
传感器采用电感式传感器,当传感器在一定距离内探测到相应阈值面积的金属物体,传感器动作内部闭合,当传感器在一定距离内探测阈值小于一定值,传感器开路。比较没有冗余传感器的方案,通过图9所示电路保证起落架在放下时,可靠放下到位,在收起模式下不会过度收起。由于起落架臂5和收放机构1的摇臂11构成曲柄连杆机构,存在形位关系,所以传感器部分4通过探测收放机构1上的摇臂位置来确定起落架臂5是否收放到位。
由于考虑安装调试方便,传感器部分4安装到收放机构1上,传感器相对固定,减少调整量,并且振动带来的漂移会减小。
起落架臂5采用玻璃钢材料,有很好的机械强度,当受到弯曲扭矩时不容易变形和损坏。在结构设计上,起落架臂5上部与减震杆6连接处应力较大,将此处截面厚度加大,而且保证截面光滑过渡,即为如图1所示的截面形状。起落架臂5的其他结构可采用现有通用型结构。
减震杆6采用弹簧式减震杆设计,降低振动幅度响应。减震杆6如图11所示,包括弹簧61和总杆62。
总杆62如图12所示,由上总杆63和下总杆64组成,下总杆64的一端通过销轴与起落架臂5连接,另一端为中空的圆柱筒,上总杆63一端通过销轴与收放机构1的摇臂12连接,另一端为中空的圆柱筒,下总杆64一端中空的圆柱筒插入上总杆63一端中空的圆柱筒中,两者滑动配合,形成可压缩的气密腔体,腔体内有空气存在,利用空气作为减震器杆的阻尼介质,将振动运动转化为减震杆的拉压运动,从而使振动能转化为热能耗散出去,起到了振动阻尼的作用。上总杆63采用叉柱式结构,包括叉柱66和上总杆本体65,叉柱66上开有横槽,上总杆本体65与叉柱66连接端加工通孔,叉柱66插入上总杆本体65内,通过紧固螺钉67穿过上总杆本体65上的通孔和叉柱66上的横槽将叉柱66和上总杆本体65固定,通过调整紧固螺钉67在叉柱66横槽上的位置可以有限范围内地调节上总杆63的长度定。
弹簧61安装在上、下总杆63、64的圆柱筒滑动配合处,改变全系统的振动频率,起到缓冲作用。
本发明实现了飞机前轮的以下功能:
(1)在地面停放时通过前轮着地,支撑机身;
(2)在飞机滑跑过程中减少地面不平带来的振动响应,并支撑机身;
(3)在飞行中使前轮收入机腹,减小飞行阻力;
(4)在下滑过程中,将前轮放下,等待降落滑跑。
本发明共有三个常规状态:收起到位、放下到位、过渡状态。其中过渡状态是另两个状态切换的中间状态,这之中涉及到两个过程:收起过程、放下过程。
本发明收起和放下指令由外部控制器(如飞行控制计算机)通过开关量进行控制。起落架臂5通过轴连接到前机体,收放机构1通过螺栓固定在机体的承力结构上,控制部分3可以有独立封装可以与其他航电设备一起安装。
本发明的收起流程:
(1)外部控制器将控制量输出到控制部分3,控制部分3根据传感器部分4,确定是否处于收起到位。当不处于收起到位状态,控制部分3控制驱动部分2进行转动;
(2)驱动部分2驱动收放机构1的蜗杆转动,蜗杆带动蜗轮转动,收放机构1的蜗轮与收放机构1的摇臂固连,所以摇臂可以绕蜗轮轴进行摆动;
(3)收放机构1的摇臂、减震杆6、起落架臂5构成曲柄连杆机构,摇臂收起带动了起落架臂5绕机体上的起落架固定轴旋转,实现前轮收放;
(4)控制部分3通过传感器部分4探测到收放机构1上的摇臂已经收起到位,控制驱动部分2停止转动。
本发明的放下流程:
(1)外部控制器将控制量输出到控制部分3,控制部分3根据传感器部分4,确定是否处于放下到位。当不处于放下到位状态,控制部分3控制驱动部分2进行转动;
(2)驱动部分2驱动收放机构1的蜗杆转动,蜗杆带动蜗轮转动,收放机构1的蜗轮与收放机构1的摇臂固连,所以摇臂可以绕蜗轮轴进行摆动;
(3)收放机构1的摇臂、减震杆6、起落架臂5构成曲柄连杆机构,摇臂收起带动了起落架臂5绕机体上的起落架固定轴旋转,实现前轮收放;
(4)控制部分3通过传感器部分4探测到收放机构1上的摇臂已经放下到位,控制驱动部分2停止转动。
本发明传动原理:
如图3所示,采用曲臂连杆机构原理,由收放机构1、起落架臂5和减震杆6构成。实线表示放下到位状态,虚线表示收起到位状态,点划线表示运动轨迹,其中A点为前起落架转动轴,是起落架臂5与机体相连部分,B(B’)点为减震杆6(即曲柄连杆机构的从动曲臂)与起落架臂5连接点,C(C’)点为收放机构1中摇臂(即曲柄连杆机构的主动曲臂)与减震杆6(即从动曲臂)连接点,D点为收放机构1的摇臂(即主动曲臂)旋转中心点,固定在收放机构1中。BC(B’C’)为减震杆6(从动曲臂),CD(C’D)为收放机构1中的摇臂(即主动曲臂),在收放机构1中。
当CD延CC’转动时,带动BC运动,从而拉动前起落架。并且当起落架为释放状态时保证BC与CD为一直线,使BD杆能承受最大的冲击压力,实现放下状态的工位自锁,即当前轮受到不同方向的力或力矩时,整个收放机构能够保持形位不变。
本发明有2个稳定工位:放下到位状态和收起到位状态,故在两工位状态下需要固定。由于采用简单的曲臂连杆机构,曲臂绕固定点做圆周运动,故收放机构1采用蜗轮蜗杆机构,正好解决了曲臂的驱动问题,而且利用蜗轮蜗杆大传动比的特性实现利用小扭矩收放的可能,可谓一举三得。
本发明的安装:
本发明的6个组成部分,在安装时可以分成三组进行安装,首先将起落架臂5与飞机通过轴02连接,保证起落架臂5可以绕轴转动,如图1所示,然后将传感器部分4和驱动部分2安装到收放机构1上,再将收放机构1通过螺栓连接与飞机承力隔框01,安装形式如图1、2所示,接着将减震杆6连接起落架臂5和收放机构1,此外还要将控制部分3安装到航电设备架(根据飞机设计而定)上,进行电缆对接就完成系统安装了。
由于本发明收放机构结构简单、重量轻、安装方便等特点,又可以实现全自动化收放,不仅可以应用于轮式起降无人驾驶飞机,并可以应用于轻型飞机、运动飞机等前三点式起落架布局的前起落架设计中。
本发明未详细说明部分属本领域技术人员公知常识。
Claims (8)
1.一种无人机起落架收放系统,其特征在于:包括收放机构(1)、驱动部分(2)、控制部分(3)、传感器部分(4)、起落架臂(5)和减震杆(6),收放机构(1)包括蜗轮(11)、摇臂(12)、蜗杆(13)、上机械限位杆(14)、框架(15)和下机械限位杆(16),框架(15)的前后两块支撑板上分别加工有安装传感器部分(4)的上、下限位孔(17、18),蜗轮(11)、摇臂(12)、蜗杆(13)、上机械限位杆(14)和下机械限位杆(16)安装在框架(15)上,摇臂(12)的一端与蜗轮(11)固连,另一端与减震杆(6)的一端连接,减震杆(6)的另一端与起落架臂(5)上部通过销轴连接,蜗轮(11)、蜗杆(13)之间螺纹配合,蜗杆(13)的一端与驱动部分(2)连接,传感器部分(4)安装在上、下限位孔(17、18)内,框架(15)固定安装在飞机机体上承力结构(01)上,起落架臂(5)的上端通过飞机机体上承力转轴(02)与飞机机体连接,起落架臂(5)的下端与飞机前轮(03)连接,控制部分(3)安装在飞机的航电设备架上,通过电缆分别与驱动部分(2)和传感器部分(4)对接。
2.根据权利要求1所述的一种无人机起落架收放系统,其特征在于:所述的减震杆(6)包括弹簧(61)和总杆(62),总杆(62)由上总杆(63)和下总杆(64)组成,上总杆(63)的一端通过销轴与起落架臂(5)连接,另一端为中空的圆柱筒,下总杆(64)一端通过销轴与收放机构(1)的摇臂(12)连接,另一端为中空的圆柱筒,上总杆(63)一端中空的圆柱筒插入下总杆(64)一端中空的圆柱筒中,两者滑动配合,形成可压缩的气密腔体,弹簧(61)安装在上总杆(63)和下总杆(64)滑动配合处。
3.根据权利要求2所述的一种无人机起落架收放系统,其特征在于:所述的上总杆(63)采用叉柱式结构,包括叉柱(66)和上总杆本体(65),叉柱(66)上开有横槽,上总杆本体(65)与叉柱(66)连接端加工通孔,叉柱(66)插入上总杆本体(65)内,通过紧固螺钉(67)穿过上总杆本体(65)上的通 孔和叉柱(66)上的横槽将叉柱(66)和上总杆本体(65)固定。
4.根据权利要求1所述的一种无人机起落架收放系统,其特征在于:所述的控制部分(3)固化在电路板上,外部用外壳封装,包括输入电平隔离转换模块(31)、逻辑运算及控制模块(32)、输出电平隔离转换模块(33)和直流转换器(34),飞机的飞行控制设备中的控制器通过输入电平隔离转换模块(31)将两路开关量输入送到逻辑运算及控制模块(32),传感器部分(4)将接收到的飞机起落架到位信息分别传送到逻辑运算及控制模块(32)和输出电平隔离转换模块(33),输出电平隔离转换模块(33)将到位信息传送到飞机的飞行控制设备中的控制器,逻辑运算及控制模块(32)根据输入电平隔离转换模块(31)送入的两路开关量输入和传感器部分(4)送入的飞机起落架到位信息计算得到驱动部分控制量输出到驱动部分(2),控制驱动部分(2)正反转或停止,直流转换器(34)将飞机输入的直流电转换为控制部分(3)电路所需的电压形式。
5.根据权利要求4所述的一种无人机起落架收放系统,其特征在于:所述的输入电平隔离转换模块(31)和输出电平隔离转换模块(33)采用光电隔离方式。
6.根据权利要求4所述的一种无人机起落架收放系统,其特征在于:所述的开关量采用高低电平代表逻辑量1和0。
7.根据权利要求1所述的一种无人机起落架收放系统,其特征在于:所述的传感器部分(4)选用细长型圆柱形的电感式传感器,采用2个上限位传感器和2个下限位传感器,2个上限位传感器并联,2个下限位传感器串联,实现起落架在收起和放下的冗余控制。
8.根据权利要求1所述的一种无人机起落架收放系统,其特征在于:所述的驱动部分(2)采用无刷电机,通过凸键式联轴器与收放系统(1)的蜗杆(13)连接。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010103473 CN101767649B (zh) | 2010-01-29 | 2010-01-29 | 一种无人机起落架收放系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010103473 CN101767649B (zh) | 2010-01-29 | 2010-01-29 | 一种无人机起落架收放系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101767649A CN101767649A (zh) | 2010-07-07 |
CN101767649B true CN101767649B (zh) | 2012-07-18 |
Family
ID=42500789
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201010103473 Active CN101767649B (zh) | 2010-01-29 | 2010-01-29 | 一种无人机起落架收放系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101767649B (zh) |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102139760B (zh) * | 2011-01-13 | 2013-06-12 | 陕西飞机工业(集团)有限公司 | 一种飞机起落架应急放下钢索系统 |
CN102518752B (zh) * | 2011-12-02 | 2015-05-06 | 北京航空航天大学 | 一种涡轮蜗杆驱动的平分运动摇臂机构 |
EP2664546B1 (en) * | 2012-05-16 | 2014-12-31 | Airbus Operations, S.L. | Aircraft with a landing gear and an inflatable device |
CN103754356A (zh) * | 2014-01-10 | 2014-04-30 | 江苏艾锐泰克无人飞行器科技有限公司 | 起落架 |
CN104787307B (zh) * | 2015-03-31 | 2017-09-26 | 深圳一电航空技术有限公司 | 无人机系统、无人机及该无人机系统的控制方法 |
CN104943855B (zh) * | 2015-07-23 | 2019-03-08 | 致导科技(北京)有限公司 | 一种无人机起落架及具有其的无人机 |
CN105160961B (zh) * | 2015-09-29 | 2017-12-26 | 哈尔滨莱特兄弟科技开发有限公司 | 仿真飞机起落架模拟装置 |
CN105253296B (zh) * | 2015-09-30 | 2017-04-05 | 中航飞机起落架有限责任公司 | 一种起落架收放装置 |
CN105197228B (zh) * | 2015-10-30 | 2017-09-29 | 深圳市大疆创新科技有限公司 | 脚架及无人飞行器 |
CN105501440B (zh) * | 2015-12-23 | 2018-02-06 | 北京合众泰达科技有限公司 | 一种无人机 |
CN107521677B (zh) * | 2016-06-22 | 2022-05-13 | 北京臻迪机器人有限公司 | 一种无人机脚架控制系统及方法 |
CN107521675B (zh) * | 2016-06-22 | 2022-03-25 | 北京臻迪机器人有限公司 | 一种利用涡轮涡杆开合的脚架结构 |
CN107521671B (zh) * | 2016-06-22 | 2021-08-10 | 北京臻迪机器人有限公司 | 涡轮涡杆支架装置 |
CN106005377B (zh) * | 2016-08-09 | 2018-09-04 | 哈尔滨工业大学(威海) | 一种无人机起落架收放系统及无人机 |
CN107757885B (zh) * | 2016-08-17 | 2019-11-08 | 比亚迪股份有限公司 | 无人机脚架收放装置及无人机 |
CN106527486B (zh) * | 2016-12-16 | 2018-01-02 | 常州市环境监测中心 | 一种用于水陆多栖采样检测的无人机 |
WO2018120044A1 (zh) * | 2016-12-30 | 2018-07-05 | 深圳市大疆创新科技有限公司 | 无人飞行器及其起落架系统 |
CN108725767A (zh) * | 2018-05-29 | 2018-11-02 | 钦州学院 | 一种用于快递运输的无人机 |
CN109835470B (zh) * | 2019-02-22 | 2020-09-08 | 武汉科技大学 | 摆缸驱动的飞机起落架 |
CN110733632B (zh) * | 2019-11-15 | 2021-04-13 | 中航飞机起落架有限责任公司 | 一种起落架收放结构 |
CN111284685B (zh) * | 2020-03-12 | 2021-04-13 | 中航飞机起落架有限责任公司 | 一种空间收放起落架应急放下装置及应急放下方法 |
CN111232207A (zh) * | 2020-03-23 | 2020-06-05 | 吉林大学 | 一种用于低空遥感测绘任务的微小型无人机 |
CN112117522B (zh) * | 2020-08-20 | 2024-06-04 | 北京特种机械研究所 | 一种大吨位天伺馈起竖电动机构 |
CN112544597B (zh) * | 2020-12-23 | 2024-06-14 | 河南正大航空工业股份有限公司 | 一种微振动的植保无人机 |
CN113148119B (zh) * | 2021-05-25 | 2022-05-24 | 中国航天空气动力技术研究院 | 一种长航时大翼展无人机收放式起落架结构 |
CN114537647A (zh) * | 2022-02-10 | 2022-05-27 | 湖南翔龙飞机有限公司 | 多功能飞机智能起落架装置 |
CN114577254B (zh) * | 2022-05-07 | 2022-09-09 | 成都凯天电子股份有限公司 | 基于起落架电感式接近传感器的高可靠性检测方法及系统 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB256527A (en) * | 1926-03-30 | 1926-08-12 | Us Slicing Machine Co | Improvements in power drive mechanism for slicing machines |
GB564251A (en) * | 1941-02-14 | 1944-09-20 | Gen Aircraft Ltd | An improved method of and means for utilising means towed by or suspended from an aircraft to provide a source of energy |
CN1197433A (zh) * | 1995-09-14 | 1998-10-28 | 西科尔斯基飞机公司 | 具有冲击负载强度显示装置的吸收能量的起落架/尾撬 |
WO2005077757A1 (en) * | 2004-02-09 | 2005-08-25 | The Boeing Company | Methods and systems for operating aircraft landing gears |
EP1714870A1 (fr) * | 2005-04-22 | 2006-10-25 | Eurocopter | Atterrisseur auxiliaire de nez, structure porteuse et aéronef à voilure tournante |
CN201086822Y (zh) * | 2007-08-03 | 2008-07-16 | 西安大地测绘工程有限责任公司 | 无人飞机起落架后跪式减震装置 |
CN101224791A (zh) * | 2007-01-19 | 2008-07-23 | 陕西燎原航空机械制造公司 | 小型飞机起落架电动收放装置 |
-
2010
- 2010-01-29 CN CN 201010103473 patent/CN101767649B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB256527A (en) * | 1926-03-30 | 1926-08-12 | Us Slicing Machine Co | Improvements in power drive mechanism for slicing machines |
GB564251A (en) * | 1941-02-14 | 1944-09-20 | Gen Aircraft Ltd | An improved method of and means for utilising means towed by or suspended from an aircraft to provide a source of energy |
CN1197433A (zh) * | 1995-09-14 | 1998-10-28 | 西科尔斯基飞机公司 | 具有冲击负载强度显示装置的吸收能量的起落架/尾撬 |
WO2005077757A1 (en) * | 2004-02-09 | 2005-08-25 | The Boeing Company | Methods and systems for operating aircraft landing gears |
EP1714870A1 (fr) * | 2005-04-22 | 2006-10-25 | Eurocopter | Atterrisseur auxiliaire de nez, structure porteuse et aéronef à voilure tournante |
CN101224791A (zh) * | 2007-01-19 | 2008-07-23 | 陕西燎原航空机械制造公司 | 小型飞机起落架电动收放装置 |
CN201086822Y (zh) * | 2007-08-03 | 2008-07-16 | 西安大地测绘工程有限责任公司 | 无人飞机起落架后跪式减震装置 |
Non-Patent Citations (1)
Title |
---|
孙为民,朱银垂,黄建新,郑毅.一种摇臂式起落架的两种建模及结果对比.《直升机技术》.2009,(第159期),第60-63页. * |
Also Published As
Publication number | Publication date |
---|---|
CN101767649A (zh) | 2010-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101767649B (zh) | 一种无人机起落架收放系统 | |
CN110126562B (zh) | 一种空地一体化电动并联式轮足驱动机构 | |
CN105000180B (zh) | 飞行器气动布局装置 | |
US20160221669A1 (en) | Drive system for landing gear | |
CN104176251B (zh) | 一种用于小型倾转旋翼机的发动机小角度倾转机构 | |
US10358207B2 (en) | Adaptable rotor control system for a variable number of blades | |
WO2011147571A2 (en) | A device for an adjustable flap of a wing | |
CN108454834A (zh) | 一种无人直升机用缓冲式起落架 | |
US10745120B2 (en) | Adaptable rotor control system for a variable number of blades | |
CN109774922B (zh) | 一种变接地点的主起着陆装置 | |
CN103523217A (zh) | 飞机前轮转弯系统 | |
US20090152393A1 (en) | Flight Machinery | |
CN207658039U (zh) | 一种无人机起落架 | |
JP4534018B2 (ja) | 飛行機械 | |
CN107985563B (zh) | 固定翼轻质无人机单轮缓冲式前起落架 | |
CN205387196U (zh) | 无人直升机旋翼头中联结构 | |
GB2563946A (en) | Pitch trimmer | |
CN102963521A (zh) | 一种民用飞机水平尾翼中央翼 | |
CN108016609B (zh) | 一种具有自滑型功能的飞机起落架 | |
CN109774926A (zh) | 高超飞行器轮撬组合起降装置 | |
CN107757904A (zh) | 一种油动变距四旋翼无人机 | |
CN104973244A (zh) | 用于旋翼飞行器的旋翼臂组件及其装配方法 | |
US11059572B2 (en) | Landing gear | |
CN108298105A (zh) | 一种无人机电磁弹射器 | |
CN206125410U (zh) | 一种农业轻型飞机后缘襟翼控制机构 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20170306 Address after: 065500 Guan Industrial Park, Langfang, Hebei Patentee after: Rainbow UAV Technology Co., Ltd. Address before: 100074 Beijing, box 7201, box 41 Patentee before: China Aerospace Aerodynamic Technology Institute |
|
TR01 | Transfer of patent right |