CN101750670B - 抗电离辐射的光纤放大器 - Google Patents

抗电离辐射的光纤放大器 Download PDF

Info

Publication number
CN101750670B
CN101750670B CN200910253727XA CN200910253727A CN101750670B CN 101750670 B CN101750670 B CN 101750670B CN 200910253727X A CN200910253727X A CN 200910253727XA CN 200910253727 A CN200910253727 A CN 200910253727A CN 101750670 B CN101750670 B CN 101750670B
Authority
CN
China
Prior art keywords
optical fiber
silicon dioxide
matrix
fibre core
nano particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200910253727XA
Other languages
English (en)
Other versions
CN101750670A (zh
Inventor
E·雷尼耶
A·帕斯图雷特
E·比罗夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel CIT SA
Original Assignee
Alcatel CIT SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel CIT SA filed Critical Alcatel CIT SA
Publication of CN101750670A publication Critical patent/CN101750670A/zh
Application granted granted Critical
Publication of CN101750670B publication Critical patent/CN101750670B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02395Glass optical fibre with a protective coating, e.g. two layer polymer coating deposited directly on a silica cladding surface during fibre manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01202Means for storing or carrying optical fibre preforms, e.g. containers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/01433Reactant delivery systems for delivering and depositing additional reactants as liquids or solutions, e.g. for solution doping of the porous glass preform
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/016Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by a liquid phase reaction process, e.g. through a gel phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01807Reactant delivery systems, e.g. reactant deposition burners
    • C03B37/01838Reactant delivery systems, e.g. reactant deposition burners for delivering and depositing additional reactants as liquids or solutions, e.g. for solution doping of the deposited glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • C03C13/046Multicomponent glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/004Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of particles or flakes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/0229Optical fibres with cladding with or without a coating characterised by nanostructures, i.e. structures of size less than 100 nm, e.g. quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06716Fibre compositions or doping with active elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/169Nanoparticles, e.g. doped nanoparticles acting as a gain material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/31Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/34Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/34Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers
    • C03B2201/36Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers doped with rare earth metals and aluminium, e.g. Er-Al co-doped
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12035Materials
    • G02B2006/1208Rare earths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1608Solid materials characterised by an active (lasing) ion rare earth erbium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1616Solid materials characterised by an active (lasing) ion rare earth thulium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1618Solid materials characterised by an active (lasing) ion rare earth ytterbium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/1655Solid materials characterised by a crystal matrix silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1691Solid materials characterised by additives / sensitisers / promoters as further dopants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1691Solid materials characterised by additives / sensitisers / promoters as further dopants
    • H01S3/1695Solid materials characterised by additives / sensitisers / promoters as further dopants germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/17Solid materials amorphous, e.g. glass
    • H01S3/176Solid materials amorphous, e.g. glass silica or silicate glass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/949Radiation emitter using nanostructure
    • Y10S977/95Electromagnetic energy
    • Y10S977/951Laser

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Biophysics (AREA)
  • Lasers (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

放大用光纤或激光光纤包括:适用于传输和放大光学信号的中间纤芯;以及围绕所述中间纤芯并适用于将传输的光学信号限定在所述纤芯内的光学覆层。所述纤芯具有基质并含有基于掺杂稀土元素的二氧化硅的纳米颗粒。纳米颗粒都至少含有85重量%的二氧化硅。这种光纤可以在具有有限的光学损失的条件下用于强电离辐射的环境中。

Description

抗电离辐射的光纤放大器
技术领域
本发明涉及光纤领域,更具体而言,本发明涉及适用于将传输的光学信号放大的放大用光纤。特别地,所述放大用光纤能够用作高速传输线放大器或用于激光器中。本发明涉及这种放大用光纤在电离辐射的环境中的应用。本发明还涉及制备这种光纤的方法。
背景技术
在标准方式下,光纤由起到传输并可任选地放大光学信号作用的光学纤芯和起到将光学信号限定在所述纤芯内的光学覆层构成。为此,所述纤芯的折射率nc和所述覆层的折射率ng为使得nc>ng
光纤放大器、特别是掺杂稀土金属元素的光纤通常用于光学用途。
例如,在光学通讯系统中掺杂铒以将传输的光学信号放大。这种光纤用于EDFA或“掺杂铒的光纤放大器”,其具有由二氧化硅基质构成的中间纤芯,所述二氧化硅基质包含浓度为250至1000wtppm(0.025 to 0.1重量%)级别的掺杂元素(例如铒),并且可任选地联合补充掺杂元素以可以改善放大作用,例如联合氧化铝以扩大用于WDM(波长密集复用)的增益带宽。
在用于激光器(例如用于军事用途的1μm的激光器)的光纤中常掺杂镱。镱还可用于EDFA光纤中以改善由于铒而引起的吸收泵浦信号的效率。类似地,取决于所追求的用途,其他稀土金属元素可单独使用或联合使用。
按照本身已知的方式,在掺杂稀土元素的光纤中的光学放大是通过将激发稀土元素离子(例如EDFA中的Er3+离子)的泵浦信号注入光纤中来进行的。当光信号通过这部分光纤时,其通过产生在与入射光子的各个方面都相同的光子来刺激发射,从而使离子去能量化。因此,光信号加倍。其他可用作放大信号的掺杂元素的稀土金属元素例如为镱(Yb)或铥(Tm),它们取代或与铒联合使用。与由镜系统或布拉格光栅构成的共振腔联合的光纤的一部分形成这样的激光光纤,其波长和能量取决于使用的稀土元素和其浓度。
放大用光纤通过将稀土元素离子加入光纤纤芯的二氧化硅基质中而制得。将稀土元素离子加入光纤纤芯中通常伴随着加入其他掺杂剂以改善放大增益和/或加宽放大带宽和/或限制稀土元素掺杂剂在纤芯基质中分散的不均匀性。通常,加入稀土元素掺杂剂伴随着加入氧化铝(Al2O3)和/或磷(P)。此外,放大用光纤在纤芯中还可包含锗(Ge)以提供引导和限定传输的信号的步骤标记。
按照本身已知的方式,在光纤中传输的信号经历光学损失,所述光学损失随着进行距离而积累。当光纤在经历电离辐射(例如β-、α-、γ射线和X-射线)时,这些传输损失显著增加。当光纤用于其环境中含有电离辐射的光学系统(例如核能厂、粒子加速试验室、或送入太空中的卫星)时,所述光纤可能经受这种辐射。在这种环境中,对于空间环境而言,辐射可以达到大于或等于100Gray(即10,000rad)的水平,或者在核能厂的情况下可以甚至达到MGray(108Rad)的级别。
即使在放射性环境中使用抗辐射光纤以确保数据传输,但是放大作用通常是通过电子系统来确保的。
目前仍在探求在这些放射性环境中使用全光学系统。
被动光纤(不掺杂稀土元素)被特别设计以用于这种环境。例如,US-A-4690 504公开了一种纤芯中不含锗(Ge)的这种光纤。纤芯中不存在锗使得可以获得改善的抗电离辐射性。然后,使光学覆层掺杂具有降低二氧化硅的折射率作用的掺杂剂(例如氟)。该文献还公开了纤芯中掺杂少量氟以补偿纤芯中的过剩的氧的光纤的实施方案。
US-A-5 509 101公开了一种抗X-射线、特别是抗γ-射线的光纤。该光纤具有纤芯和掺杂氟的覆层。该专利文献公开了一些具有不同浓度的氟和锗的实施方案。该文献指出当光纤的纤芯中还含有锗时,传输损失减小。
Tammela等人(“制备非常短的、高增益的掺杂Er的二氧化硅玻璃光纤的直接纳米颗粒沉积法”ECOC 2002;28th European Conference on opticalcommunication;IEEE Piscataway,NJ,U.S.A.,Vol.4,2002,第2页)公开了一种基于气相的方法,其中形成玻璃的元素和掺杂剂全部都在火焰中反应,从而制得用于密实放大器的高Er掺杂性的光纤。
WO-A-2005 109055公开了一种光纤,其具有纯二氧化硅纤芯和掺杂氟的覆层。该文献指出光学覆层的直径和纤芯的直径的高比率(在9至10之间)提高了光纤的抗电离辐射性。
已确定,相对于具有掺杂锗的二氧化硅纤芯的光纤或者在纤芯或覆层中含有磷的光纤,具有纯二氧化硅纤芯或纤芯掺杂氟的光纤在放射性环境中表现出较小的损失。然而,在放大用光纤的特别情况下,在光纤经历电离辐射时,纤芯中必须存在稀土元素掺杂剂和使用掺杂剂来改善增益的情况导致光纤具有显著的损失。
目前已确定在光纤经历电离辐射时,存在氧化铝或磷会导致光学损失的明确增加。
H.Henschel等人的公开文献(“掺杂稀土元素的二氧化硅光纤的辐射引起到损失”,IEEE 1998,第439-444页)明确地确定了放大用光纤在放射性环境中损失增大的问题。该公开文献提出限制掺杂剂的浓度,但是并未实际确定实现抗辐射性放大用光纤的制备方法。
US-A-2003/175003公开了一种制备放大用光纤的方法,其中通过加入纳米颗粒来将稀土金属元素加入光纤纤芯中,所述纳米颗粒的基质的组成不同于所述纤芯的组成。纳米颗粒具有掺杂铒的氧化铝(Al2O3)或锑(Sb2O3)基质。然而,这种纳米颗粒的组成被未明确设计来抗辐射。
因此,需要一种放大用光纤或激光光纤,其可以在具有有限的光学损失的条件下用于强电离辐射的环境中。
发明内容
为此,本发明包括一种光纤,其在纤芯中包含稀土元素掺杂剂而不加入任何其他对辐射敏感的掺杂剂。特别地,光纤纤芯不含氧化铝和磷。不存在这种掺杂剂还可以在辐射前使背景损失的水平最小化。“背景损失”是指在任何应用于放射性环境中之前在稀土元素离子的吸收带外所测定的光纤的光学损失。这种光纤可通过将掺杂稀土元素的纯二氧化硅纳米颗粒加入光纤纤芯中而制得。
因此,本发明涉及一种光纤,其包括:适用于传输和放大光学信号的中间纤芯;以及围绕所述中间纤芯并适用于将所述传输的光学信号限定在所述纤芯内的光学覆层,所述光纤纤芯具有基质并含有掺杂稀土元素的纳米颗粒,所述纳米颗粒都具有基于二氧化硅的基质,所述基于二氧化硅的基质至少含有85重量%的二氧化硅。优选地,所述纳米颗粒的基质都含有至少95重量%的二氧化硅。
根据实施方案,本发明的光纤可以具有下列特性中的一种或多种:
所述纤芯基质是不含磷的基于二氧化硅的基质;
所述纤芯基质是不含氧化铝的基于二氧化硅的基质;
所述纤芯基质是纯二氧化硅基质;
所述纤芯基质是基于掺杂氟的二氧化硅的基质;
所述纤芯基质是基于掺杂氮的二氧化硅的基质;
所述纤芯基质是基于掺杂锗的二氧化硅的基质;
纳米颗粒的基质都是纯二氧化硅基质;
纳米颗粒的基质都含有氧化铝,使得所述纤芯中的氧化铝浓度小于3重量%;
稀土元素掺杂剂选自铒、镱、铥、或它们的组合;
放大用光纤或激光光纤的增益宽度在1nm和40nm之间,优选在1nm和30nm之间;
放大用光纤或激光光纤在任何辐射之前在所述铒的吸收带之外的1200nm处的光学损失小于或等于1.5dB/km;
放大用光纤或激光光纤在室温、0.08Gy/min(8Rad/min)的条件下在300Gy辐射下,在1550nm处的损失增量小于0.05dB/m。
本发明还涉及包含一部分本发明的掺杂铒的光纤的光放大器,其中在1550nm处放大25dB的增益所需要的光纤长度小于10m。
本发明还涉及包含一部分本发明的激光器。
本发明还涉及一种制备光纤的初级预制件(primary preform)的方法,所述光纤包括:适用于传输和放大光学信号的中间纤芯;以及围绕所述中间纤芯并适用于将所述传输的光学信号限定在所述纤芯内的光学覆层,该方法包括下列步骤:
合成基于掺杂稀土元素的二氧化硅的纳米颗粒,所述纳米颗粒都至少含有85重量%、优选至少95%的二氧化硅;
将所述纳米颗粒分散在水溶液中;
为了形成所述初级预制件的所述纤芯,将所述溶液注入二氧化硅管的内部多孔层。
根据实施方案,合成纳米颗粒的步骤包括使稀土元素的盐和二氧化硅的盐的前体在水溶液中共沉淀的步骤,其中二氧化硅的盐的前体和稀土元素的盐的前体的摩尔比在30和300之间。
附图说明
通过阅读下列描述,本发明的其他特性和优点是显而易见的。该描述是参照本发明的实施方案(其是通过实施例的形式给出的)来进行的。下面参照附图来进行描述,其中:
图1是示出本发明的第一实施方案的光纤的设定曲线的图;
图2是示出本发明的第二实施方案的光纤的设定曲线的图;
图3是制备本发明的放大用光纤的方法的图。
具体实施方式
本发明的光纤包括:适用于传输和放大光学信号的中间纤芯;以及围绕所述中间纤芯并适用于将传输的光学信号限定在所述纤芯内的光学覆层,所述外部覆层通常由二氧化硅构成。通常,中间纤芯和光学覆层时通过气相沉积法(CVD、OVD、VAD等)获得的。在CVD类方法的情况下,外部覆层通过沉积管和可任选的重填或套管来形成。通常,为了形成初级预制件的纤芯,在CVD操作过程中通过注入多孔二氧化硅棒来加入更少的挥发性元素(稀土元素、氧化铝等)。
本发明的光纤纤芯由二氧化硅型基质和掺杂稀土金属元素的纳米颗粒构成。纤芯和纳米颗粒的基质被特别设计为使对于辐射敏感的掺杂剂的存在最小化、或甚至消除所述掺杂剂。例如,将稀土元素离子加入纯二氧化硅纳米颗粒中使得可以将稀土元素离子加入纤芯而不会加入对于电离辐射敏感的其他掺杂剂。因此,可以获得不含痕迹量的磷(P)或氧化铝(Al2O3)的主动(放大用或用于激光器)光纤。然而,纳米颗粒可以含有除了稀土元素掺杂剂以外的元素。例如,纳米颗粒的二氧化硅基质可以含有少量氧化铝,所述氧化铝限制了Er3+包的形成。然而,与已知光线相比,纤芯中氧化铝的浓度非常有限。
光纤纤芯的纯二氧化硅基质可以含有这些掺杂稀土元素的纯二氧化硅纳米颗粒。然后,光线是特别抗电离辐射的。然而,光纤纤芯可以含有其他掺杂剂(其对于电离辐射不敏感或仅仅稍微敏感),例如氟和/或氮。光纤纤芯甚至可以含有一定量的锗,所述锗的量使得放大用光纤只用在相对短的范围内。
如果光纤纤芯由纯二氧化硅或掺杂氟的二氧化硅形成,则为了确保在光纤纤芯内引导光学信号的作用,光学覆层需要是内埋覆层(即其折射率小于外部覆层的折射率)。因此,光学覆层可以掺杂氟或具有微孔。
为了优化光纤的光几何参数(optogeometrical parameter),例如截止波长或众数直径(mode diameter),光纤纤芯可以掺杂锗。如果光纤纤芯由掺杂锗或氮的二氧化硅制成,则光学覆层可以由纯二氧化硅或稍微掺杂氟和/或锗的二氧化硅制成。光几何参数的优化特别允许用于改善与标准系统的其他光纤的相容性,即使在纤芯含有锗的情况下抗电离辐射性很低时也是如此。
图1和2示出了本发明的放大用光纤的两种可能的折射率曲线。这些曲线为设定曲线。图1和2的例子的曲线是非常不同的。事实上,本发明不限于特定的光纤曲线。
对于光纤而言,折射率曲线通常根据这样的图的外观来分类,所述图表示作为光纤的半径的函数的折射率。在标准方式下,x轴表示距离光纤中心的距离r,y轴表示相对于外部覆层(通常由纯二氧化硅制成)的折射率,纤芯和覆层的折射率之差。
图1示出了本发明的放大用光纤的折射率的第一例子。
在图1的例子中,光纤纤芯由纯二氧化硅制成。然后光纤的光学覆层是(例如)由掺杂氟的二氧化硅制成的内埋覆层,其与纤芯的折射率之差为-19.10-3。外部覆层由稍微掺杂氟的二氧化硅制成,其与纯二氧化硅的折射率之差为-1.10-3。光纤纤芯直径为4μm,光学覆层直径和纤芯直径的比为约15。
这种曲线使得可以确保令人满意地将信号限定在纤芯内,并且纤芯中缺少除了稀土元素掺杂剂之外的任何掺杂剂使得可以在放射性环境中限制光学损失的增加。
图2示出了本发明的放大用光纤的折射率的第二例子。
在图2的例子中,光纤纤芯由掺杂锗的二氧化硅制成;纤芯与光学覆层的折射率之差为+19.10-3。光学覆层由共掺杂锗和氟的二氧化硅构成,外部覆层由纯二氧化硅制成。光纤纤芯直径为3.6μm,光学覆层直径与纤芯直径的比取决于光学覆层的折射率:后者越是内埋,该比率越高。在光学覆层的折射率等于外部覆层的折射率的情况下,该比率可以显著地降低,例如该比率可以为3级。这种曲线使得可以确保以更低的生产成本将信号令人满意地限定在纤芯内。纤芯中存在锗导致在放射性环境中的光学损失增加大于图1的光学损失增加,但是仍保持是有限的。
图3示出了制备本发明的放大用光纤的可能的实施方案。
1)合成纳米颗粒:
掺杂铒的二氧化硅纳米颗粒可以通过化学或物理合成并且分散在水溶液中来制备。
例如,可以通过下列化学路线来获得这些纳米颗粒:通过控制pH来进行二氧化硅盐的前体和稀土元素的盐的前体在水性介质中共沉淀和碱性催化。二氧化硅的盐的前体和稀土元素的盐的前体的摩尔比在30和300之间,以获得含有至少85重量%的二氧化硅、优选含有至少95重量%的二氧化硅的具有基于二氧化硅的基质的纳米颗粒。
纳米颗粒的尺寸通过选择反应参数来控制,例如特别是催化剂的量、试剂的浓度、反应时间、介质的离子强度和是否存在表面活性剂。然后获得控制尺寸的纳米颗粒,所述纳米颗粒然后被洗涤和以预定的浓度重新分散在水中。如果需要在纳米颗粒的基质中加入氧化铝,可以将铝的前体加入到共沉淀物中。在任何情况下,纳米颗粒基质含有至少85重量%的二氧化硅,优选含有至少95%的二氧化硅。另外,铝的加入量被限制为使得光纤纤芯中氧化铝的浓度小于3重量%。
任何允许通过在给定的光谱窗口内的光学泵浦来进行放大的稀土元素都可以单独或联合用于本发明。优选地,使用铒、镱、铥、或其组合。
2)将纳米颗粒整合到预制件的纤芯中
然后将稳定悬浮的纳米颗粒溶液用于在MCVD操作中注入二氧化硅棒的多孔纤芯,从而形成初级预制件的掺杂纤芯。之后将预制件进行干燥,然后进行玻璃化和收缩。
3)引导结构的制备(根据曲线):
光学覆层可以通过MCVD操作或PCVD操作来制备,特别是在光学覆层掺杂大量氟的时候更是如此。
4)最终预制件(final preform)的制备
为了形成最终预制件,还将初级预制件进行重填或套管。然后该预制件可以在光纤拉制塔上进行拉制以获得光纤。
这种制备方法使得可以获得放大用光纤,其稀土元素掺杂剂的浓度足以确保在确定的光谱窗内进行令人满意地放大,同时具有令人满意的抗辐射性。
稀土金属元素在纤芯中的重量浓度可以在100ppm和某些重量%之间,这取决于使用的元素和寻求的增益。放大光谱窗取决于使用的稀土金属元素。例如,在光纤含有约300ppm的铒的情况下,二十几米光纤就足以在1550nm处获得23dB的增益的EDFA。通过增加光纤中的铒的浓度,可以在光纤长度小于10m的情况下获得在1550nm处25dB的增益的EDFA。本发明的光纤的增益值取决于使用的稀土元素的浓度和种类。本发明的光纤的增益宽度在1nm和40nm之间,优选在1nm和30nm之间。其中,增益宽度取决于加入纳米颗粒基质中的氧化铝的量。
通常,掺杂稀土元素的光纤表现出背景损失(即在稀土元素离子的吸收带之外),这主要是由纤芯基质的损失来确定的。因此,在本发明的光纤的情况下,这些损失在辐射前和辐射后都保持有限的。例如,对于掺杂锗并且含有掺杂铒的纳米颗粒的二氧化硅基质,本发明的光纤在照射前在1200nm处(1200nm的波长通常被用于表征掺杂铒的光纤的背景损失)表现出小于2dB/km的损失。在纯二氧化硅基质的情况下,这些损失在1200nm处小于1.5dB/km。对于6重量%的Al,加入掺杂剂(例如氧化铝)通常将导致损失最高达6dB/km。为了相同的所寻求的性能(例如某些增益宽度),优选向纳米颗粒的二氧化硅基质中加入氧化铝而不是向纤芯基质中加入氧化铝,因为向纳米颗粒中加入氧化铝将需要更小的氧化铝含量,结果导致更小的损失。
在室温下进行辐射后,速率为0.08Gy/min(8Rad/min),总剂量为300Gy(通常在约15年的时间内在空间环境中的剂量,或者在距离反应堆一半距离的核能厂内的剂量),本发明的光纤在1550nm处的衰减增加小于0.05dB/m。在相同条件下,标准掺杂铒的光纤的衰减增加为1dB/m的级别。更通常地,本发明的光纤对于辐射的敏感性预计与不掺杂稀土元素并且具有相同的纤芯基质的光纤对于辐射的敏感性接近。
本发明的光纤可用于安装下电离辐射环境中的密实光放大器中,例如粒子物理实验室的Ethernet网络、核能厂或暴露于空间辐射的卫星。结合镜系统或布拉格光栅,本发明的光纤还可用作上述相同环境中的激光光纤。

Claims (20)

1.一种光纤,其包括:
适用于传输和放大光学信号的中间纤芯;以及
围绕所述中间纤芯并适用于将所述传输的光学信号限定在所述纤芯内的光学覆层,
所述光纤纤芯具有基质并含有掺杂稀土元素的纳米颗粒,所述纳米颗粒都具有基于二氧化硅的基质,所述基于二氧化硅的基质至少含有85重量%的二氧化硅。
2.根据权利要求1所述的光纤,其中所述纳米颗粒的基质都含有至少95重量%的二氧化硅。
3.根据权利要求1或2所述的光纤,其中所述纤芯基质是不含磷(P)的基于二氧化硅的基质。
4.根据权利要求1或2所述的光纤,其中所述纤芯基质是不含氧化铝(Al2O3)的基于二氧化硅的基质。
5.根据权利要求1或2所述的光纤,其中所述纤芯基质是纯二氧化硅基质。
6.根据权利要求1或2所述的光纤,其中所述纤芯基质是掺杂氟(F)的基于二氧化硅的基质。
7.根据权利要求1或2所述的光纤,其中所述纤芯基质是掺杂氮(N)的基于二氧化硅的基质。
8.根据权利要求1或2所述的光纤,其中所述纤芯基质是掺杂锗(Ge)的基于二氧化硅的基质。
9.根据权利要求1或2所述的光纤,其中所述纳米颗粒的基质都是纯二氧化硅基质。
10.根据权利要求1或2所述的光纤,其中所述纳米颗粒的基质都含有氧化铝,使得所述纤芯中的氧化铝浓度小于3重量%。
11.根据权利要求1或2所述的光纤,所述光纤的增益宽度在1nm和40nm之间。
12.根据权利要求1或2所述的光纤,所述光纤的增益宽度在1nm和30nm之间。
13.根据权利要求1或2所述的光纤,其中所述稀土元素掺杂剂选自铒(Er)、镱(Yb)、铥(Tm)、或它们的组合。
14.根据权利要求13所述的光纤,其中所述光纤掺杂铒,所述光纤在辐射之前在所述铒的吸收带之外的1200nm处的光学损失小于或等于1.5dB/km。
15.根据权利要求14所述的光纤,所述光纤在室温、0.08Gy/min(8Rad/min)的条件下在300Gy辐射下,在1550nm处的损失增量小于0.05dB/m。
16.光放大器,其包含一部分根据权利要求14或15所述的光纤,其中在1550nm处放大25dB的增益所需要的光纤长度小于10m。
17.激光器,其包含至少一部分根据权利要求14或15所述的光纤。
18.一种制备光纤的初级预制件的方法,所述光纤包括:适用于传输和放大光学信号的中间纤芯;以及围绕所述中间纤芯并适用于将所述传输的光学信号限定在所述纤芯内的光学覆层,该方法包括下列步骤:
合成基于掺杂稀土元素的二氧化硅的纳米颗粒,所述纳米颗粒都至少含有85重量%的二氧化硅;
将所述纳米颗粒分散在水溶液中;
为了形成所述初级预制件的所述纤芯,将所述溶液注入二氧化硅管的内部多孔层。
19.权利要求18所述的方法,其中合成的纳米颗粒都至少含有95重量%的二氧化硅。
20.根据权利要求18或19所述的方法,其中合成纳米颗粒的步骤包括使稀土元素的盐和二氧化硅的盐的前体在水溶液中共沉淀的步骤,其中二氧化硅的盐的前体和稀土元素的盐的前体的摩尔比在30和300之间。
CN200910253727XA 2008-12-08 2009-12-08 抗电离辐射的光纤放大器 Expired - Fee Related CN101750670B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US12068208P 2008-12-08 2008-12-08
FR08/06864 2008-12-08
FR0806864A FR2939522B1 (fr) 2008-12-08 2008-12-08 Fibre optique amplificatrice resistante aux radiations ionisantes
US61/120,682 2008-12-08

Publications (2)

Publication Number Publication Date
CN101750670A CN101750670A (zh) 2010-06-23
CN101750670B true CN101750670B (zh) 2013-10-16

Family

ID=40822965

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910253727XA Expired - Fee Related CN101750670B (zh) 2008-12-08 2009-12-08 抗电离辐射的光纤放大器

Country Status (7)

Country Link
US (1) US8467123B2 (zh)
EP (1) EP2194408B1 (zh)
JP (1) JP5604092B2 (zh)
KR (1) KR20100066402A (zh)
CN (1) CN101750670B (zh)
DK (1) DK2194408T3 (zh)
FR (1) FR2939522B1 (zh)

Families Citing this family (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8041168B2 (en) 2007-11-09 2011-10-18 Draka Comteq, B.V. Reduced-diameter ribbon cables with high-performance optical fiber
US8031997B2 (en) 2007-11-09 2011-10-04 Draka Comteq, B.V. Reduced-diameter, easy-access loose tube cable
DK2206001T3 (da) 2007-11-09 2014-07-07 Draka Comteq Bv Optisk fiber, der er modstandsdygtig over for mikrobøjning
US8467650B2 (en) 2007-11-09 2013-06-18 Draka Comteq, B.V. High-fiber-density optical-fiber cable
US8041167B2 (en) * 2007-11-09 2011-10-18 Draka Comteq, B.V. Optical-fiber loose tube cables
US8145026B2 (en) 2007-11-09 2012-03-27 Draka Comteq, B.V. Reduced-size flat drop cable
US8081853B2 (en) 2007-11-09 2011-12-20 Draka Comteq, B.V. Single-fiber drop cables for MDU deployments
US8165439B2 (en) 2007-11-09 2012-04-24 Draka Comteq, B.V. ADSS cables with high-performance optical fiber
ES2543879T3 (es) 2008-11-07 2015-08-25 Draka Comteq B.V. Fibra óptica de diámetro reducido
FR2939522B1 (fr) 2008-12-08 2011-02-11 Draka Comteq France Fibre optique amplificatrice resistante aux radiations ionisantes
FR2939911B1 (fr) * 2008-12-12 2011-04-08 Draka Comteq France Fibre optique gainee, cable de telecommunication comportant plusieurs fibres optiques et procede de fabrication d'une telle fibre
NL1036343C2 (nl) * 2008-12-19 2010-06-22 Draka Comteq Bv Werkwijze en inrichting voor het vervaardigen van een optische voorvorm.
DK2204681T3 (en) 2008-12-30 2016-05-09 Draka Comteq Bv An optical fiber cable, comprising a perforated water-blocking element
WO2010077132A1 (en) 2008-12-31 2010-07-08 Draka Comteq B.V. Uvled apparatus for curing glass-fiber coatings
FR2941539B1 (fr) * 2009-01-23 2011-02-25 Draka Comteq France Fibre optique monomode
FR2941541B1 (fr) * 2009-01-27 2011-02-25 Draka Comteq France Fibre optique monomode
FR2941540B1 (fr) * 2009-01-27 2011-05-06 Draka Comteq France Fibre optique monomode presentant une surface effective elargie
US8489219B1 (en) 2009-01-30 2013-07-16 Draka Comteq B.V. Process for making loose buffer tubes having controlled excess fiber length and reduced post-extrusion shrinkage
US9360647B2 (en) * 2009-02-06 2016-06-07 Draka Comteq, B.V. Central-tube cable with high-conductivity conductors encapsulated with high-dielectric-strength insulation
FR2942571B1 (fr) * 2009-02-20 2011-02-25 Draka Comteq France Fibre optique amplificatrice comprenant des nanostructures
FR2942551B1 (fr) * 2009-02-23 2011-07-15 Draka Comteq France Cable comportant des elements a extraire, procede d'extraction desdits elements et procede de fabrication associe
US8625945B1 (en) 2009-05-13 2014-01-07 Draka Comteq, B.V. Low-shrink reduced-diameter dry buffer tubes
US8625944B1 (en) 2009-05-13 2014-01-07 Draka Comteq, B.V. Low-shrink reduced-diameter buffer tubes
FR2946436B1 (fr) * 2009-06-05 2011-12-09 Draka Comteq France Fibre optique multimode a tres large bande passante avec une interface coeur-gaine optimisee
US20110026889A1 (en) * 2009-07-31 2011-02-03 Draka Comteq B.V. Tight-Buffered Optical Fiber Unit Having Improved Accessibility
FR2953030B1 (fr) 2009-11-25 2011-11-18 Draka Comteq France Fibre optique multimode a tres large bande passante avec une interface coeur-gaine optimisee
FR2953606B1 (fr) 2009-12-03 2012-04-27 Draka Comteq France Fibre optique multimode a large bande passante et a faibles pertes par courbure
FR2953029B1 (fr) 2009-11-25 2011-11-18 Draka Comteq France Fibre optique multimode a tres large bande passante avec une interface coeur-gaine optimisee
FR2953605B1 (fr) 2009-12-03 2011-12-16 Draka Comteq France Fibre optique multimode a large bande passante et a faibles pertes par courbure
US9014525B2 (en) 2009-09-09 2015-04-21 Draka Comteq, B.V. Trench-assisted multimode optical fiber
FR2957153B1 (fr) 2010-03-02 2012-08-10 Draka Comteq France Fibre optique multimode a large bande passante et a faibles pertes par courbure
FR2949870B1 (fr) 2009-09-09 2011-12-16 Draka Compteq France Fibre optique multimode presentant des pertes en courbure ameliorees
US8306380B2 (en) * 2009-09-14 2012-11-06 Draka Comteq, B.V. Methods and devices for cable insertion into latched-duct conduit
FR2950156B1 (fr) 2009-09-17 2011-11-18 Draka Comteq France Fibre optique multimode
FR2950443B1 (fr) * 2009-09-22 2011-11-18 Draka Comteq France Fibre optique pour la generation de frequence somme et son procede de fabrication
US8805143B2 (en) 2009-10-19 2014-08-12 Draka Comteq, B.V. Optical-fiber cable having high fiber count and high fiber density
FR2952634B1 (fr) * 2009-11-13 2011-12-16 Draka Comteq France Fibre en silice dopee en terre rare a faible ouverture numerique
US9042693B2 (en) 2010-01-20 2015-05-26 Draka Comteq, B.V. Water-soluble water-blocking element
EP2352046B1 (en) 2010-02-01 2018-08-08 Draka Comteq B.V. Non-zero dispersion shifted optical fiber having a short cutoff wavelength
DK2352047T3 (da) * 2010-02-01 2019-11-11 Draka Comteq Bv Ikke-nul dispersionsskiftet optisk fiber med et stort effektivt areal
EP2369379B1 (en) * 2010-03-17 2015-05-06 Draka Comteq B.V. Fibre optique monomode ayant des pertes par courbures réduites
US8693830B2 (en) 2010-04-28 2014-04-08 Draka Comteq, B.V. Data-center cable
PT2390700T (pt) 2010-05-03 2016-10-19 Draka Comteq Bv Cabos de fibra ótica empacotados
EP2388239B1 (en) 2010-05-20 2017-02-15 Draka Comteq B.V. Curing apparatus employing angled UV-LEDs
US8625947B1 (en) 2010-05-28 2014-01-07 Draka Comteq, B.V. Low-smoke and flame-retardant fiber optic cables
US8871311B2 (en) 2010-06-03 2014-10-28 Draka Comteq, B.V. Curing method employing UV sources that emit differing ranges of UV radiation
FR2962230B1 (fr) 2010-07-02 2012-07-27 Draka Comteq France Fibre optique monomode
US8682123B2 (en) 2010-07-15 2014-03-25 Draka Comteq, B.V. Adhesively coupled optical fibers and enclosing tape
DK2418183T3 (en) 2010-08-10 2018-11-12 Draka Comteq Bv Method of curing coated glass fibers which provides increased UVLED intensity
US8571369B2 (en) 2010-09-03 2013-10-29 Draka Comteq B.V. Optical-fiber module having improved accessibility
FR2966256B1 (fr) 2010-10-18 2012-11-16 Draka Comteq France Fibre optique multimode insensible aux pertes par
US8824845B1 (en) 2010-12-03 2014-09-02 Draka Comteq, B.V. Buffer tubes having reduced stress whitening
FR2968775B1 (fr) 2010-12-10 2012-12-21 Draka Comteq France Fibre optique dopee en terres rares presentant de faibles interactions entre les elements dopants
KR101188344B1 (ko) * 2011-01-14 2012-10-05 광주과학기술원 클래딩층 내 금속 나노 입자가 도핑된 광섬유, 코어리스 광섬유 및 이들의 제조 방법
EP2482106B1 (en) 2011-01-31 2014-06-04 Draka Comteq B.V. Multimode fiber
FR2971061B1 (fr) 2011-01-31 2013-02-08 Draka Comteq France Fibre optique a large bande passante et a faibles pertes par courbure
PT2678728T (pt) 2011-02-21 2018-07-05 Draka Comteq Bv Cabo de interligação de fibra ótica
EP2495589A1 (en) 2011-03-04 2012-09-05 Draka Comteq B.V. Rare earth doped amplifying optical fiber for compact devices and method of manufacturing thereof
EP2503368A1 (en) 2011-03-24 2012-09-26 Draka Comteq B.V. Multimode optical fiber with improved bend resistance
EP2506044A1 (en) 2011-03-29 2012-10-03 Draka Comteq B.V. Multimode optical fiber
EP2518546B1 (en) 2011-04-27 2018-06-20 Draka Comteq B.V. High-bandwidth, radiation-resistant multimode optical fiber
DK2527893T3 (da) 2011-05-27 2013-12-16 Draka Comteq Bv Optisk singlemode fiber
ES2451369T3 (es) 2011-06-09 2014-03-26 Draka Comteq Bv Fibra óptica de modo único
DK2541292T3 (en) 2011-07-01 2014-12-01 Draka Comteq Bv A multimode optical fiber
EP2584340A1 (en) 2011-10-20 2013-04-24 Draka Comteq BV Hydrogen sensing fiber and hydrogen sensor
NL2007831C2 (en) 2011-11-21 2013-05-23 Draka Comteq Bv Apparatus and method for carrying out a pcvd deposition process.
KR101334136B1 (ko) * 2011-12-29 2013-11-28 전자부품연구원 나노 입자를 포함하는 비등방성 광전달 소재
US8929701B2 (en) 2012-02-15 2015-01-06 Draka Comteq, B.V. Loose-tube optical-fiber cable
WO2013160714A1 (en) 2012-04-27 2013-10-31 Draka Comteq Bv Hybrid single and multimode optical fiber for a home network
US9188754B1 (en) 2013-03-15 2015-11-17 Draka Comteq, B.V. Method for manufacturing an optical-fiber buffer tube
KR101386108B1 (ko) * 2013-05-31 2014-04-16 광주과학기술원 광섬유를 이용한 광 증폭기
WO2014191751A1 (en) * 2013-05-31 2014-12-04 SETNA, Rohan P. Controlled microwave assisted synthesis of functionalized silica nanoparticles
NL2011075C2 (en) 2013-07-01 2015-01-05 Draka Comteq Bv Pcvd process with removal of substrate tube.
GB2521156A (en) * 2013-12-10 2015-06-17 Fibercore Ltd Optical transmission
EP3234665B1 (en) 2014-12-18 2024-08-21 NKT Photonics A/S A photonic crystal fiber, a method of production thereof and a supercontinuum light source
CN105207046A (zh) * 2015-10-22 2015-12-30 南京大学(苏州)高新技术研究院 一种提高掺铒光纤放大器抗辐射能力的方法
US11043785B2 (en) * 2016-10-14 2021-06-22 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Nanoparticle doping for lasers and amplifiers operating at eye-safer wavelengths, and/or exhibiting reduced Stimulated Brillouin Scattering
JP7149515B2 (ja) * 2017-07-14 2022-10-07 国立研究開発法人宇宙航空研究開発機構 希土類元素添加光ファイバ、及び希土類元素添加光ファイバの耐放射線性を向上させる方法
CN109160723B (zh) * 2018-08-20 2021-11-23 华南理工大学 一种多模式光学传感纳米晶复合玻璃光纤及其制备方法和应用
CN112094052B (zh) 2019-09-16 2022-01-28 中国科学院上海光学精密机械研究所 一种耐辐射石英光纤预制棒芯棒及其制备方法
CN111458788B (zh) * 2020-03-31 2022-05-20 烽火通信科技股份有限公司 一种超强抗弯耐辐照光纤及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1764350A1 (fr) * 2005-09-16 2007-03-21 Alcatel Procédé de fabrication d'une fibre optique comprenant des nanoparticules et préforme mise en ?uvre dans la fabrication d'une telle fibre.
CN101288212A (zh) * 2005-08-17 2008-10-15 阿尔卡特朗讯公司 包括纳米粒子的光导和制造形成该光导的预成型件的方法

Family Cites Families (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4419115A (en) * 1981-07-31 1983-12-06 Bell Telephone Laboratories, Incorporated Fabrication of sintered high-silica glasses
US4574063A (en) * 1983-05-09 1986-03-04 Corning Glass Works Method of forming glass or ceramic article
JPS60257408A (ja) 1984-06-04 1985-12-19 Shin Etsu Chem Co Ltd 光フアイバおよびその製造方法
DE3511457A1 (de) * 1985-03-29 1986-10-09 Philips Patentverwaltung Gmbh, 2000 Hamburg Verfahren und vorrichtungen zur herstellung von glaskoerpern
US4775401A (en) * 1987-06-18 1988-10-04 American Telephone And Telegraph Company, At&T Bell Laboratories Method of producing an optical fiber
US4838643A (en) 1988-03-23 1989-06-13 Alcatel Na, Inc. Single mode bend insensitive fiber for use in fiber optic guidance applications
EP0443781A1 (en) * 1990-02-23 1991-08-28 AT&T Corp. Method for doping optical fibers
JP2599511B2 (ja) * 1991-03-28 1997-04-09 国際電信電話株式会社 希土類元素ド−プ石英ガラスの製造方法
JPH0563259A (ja) * 1991-09-03 1993-03-12 Sumitomo Electric Ind Ltd 光フアイバ増幅器
JP3188304B2 (ja) * 1992-04-02 2001-07-16 ケイディーディーアイ株式会社 希土類元素ド−プ石英ガラス系光ファイバ用母材およびその製造方法
US5509101A (en) 1994-07-11 1996-04-16 Corning Incorporated Radiation resistant optical waveguide fiber and method of making same
US5574816A (en) 1995-01-24 1996-11-12 Alcatel Na Cable Sytems, Inc. Polypropylene-polyethylene copolymer buffer tubes for optical fiber cables and method for making the same
US5717805A (en) 1996-06-12 1998-02-10 Alcatel Na Cable Systems, Inc. Stress concentrations in an optical fiber ribbon to facilitate separation of ribbon matrix material
US7322122B2 (en) 1997-01-15 2008-01-29 Draka Comteq B.V. Method and apparatus for curing a fiber having at least two fiber coating curing stages
FR2760540B1 (fr) 1997-03-10 1999-04-16 Alsthom Cge Alcatel Cable a fibres optiques serrees dans une gaine
US5911023A (en) 1997-07-10 1999-06-08 Alcatel Alsthom Compagnie Generale D'electricite Polyolefin materials suitable for optical fiber cable components
US6066397A (en) 1998-03-31 2000-05-23 Alcatel Polypropylene filler rods for optical fiber communications cables
US6175677B1 (en) 1998-04-17 2001-01-16 Alcatel Optical fiber multi-ribbon and method for making the same
US6085009A (en) 1998-05-12 2000-07-04 Alcatel Water blocking gels compatible with polyolefin optical fiber cable buffer tubes and cables made therewith
US6215931B1 (en) 1999-01-26 2001-04-10 Alcatel Flexible thermoplastic polyolefin elastomers for buffering transmission elements in a telecommunications cable
US6134363A (en) 1999-02-18 2000-10-17 Alcatel Method for accessing optical fibers in the midspan region of an optical fiber cable
US6381390B1 (en) 1999-04-06 2002-04-30 Alcatel Color-coded optical fiber ribbon and die for making the same
US6181857B1 (en) 1999-05-12 2001-01-30 Alcatel Method for accessing optical fibers contained in a sheath
JP2001007425A (ja) * 1999-06-17 2001-01-12 Sumitomo Electric Ind Ltd 光ファイバ増幅器
US6314224B1 (en) 1999-06-18 2001-11-06 Alcatel Thick-walled cable jacket with non-circular cavity cross section
US6334016B1 (en) 1999-06-30 2001-12-25 Alcatel Optical fiber ribbon matrix material having optimal handling characteristics
US6321012B1 (en) 1999-08-30 2001-11-20 Alcatel Optical fiber having water swellable material for identifying grouping of fiber groups
US6493491B1 (en) 1999-09-28 2002-12-10 Alcatel Optical drop cable for aerial installation
US6321014B1 (en) 1999-11-01 2001-11-20 Alcatel Method for manufacturing optical fiber ribbon
EP1132349A1 (en) * 2000-03-10 2001-09-12 Corning Incorporated Erbium-doped multicomponent glasses manufactured by the sol-gel method
FR2809499B1 (fr) 2000-05-29 2003-10-03 Cit Alcatel Peau de protection pour fibres optiques
US6603908B2 (en) 2000-08-04 2003-08-05 Alcatel Buffer tube that results in easy access to and low attenuation of fibers disposed within buffer tube
US6457329B1 (en) * 2000-12-14 2002-10-01 Fitel Usa Corp. Process for fabricating sol-gel article involving low-shrinkage formulation
US6618538B2 (en) 2000-12-20 2003-09-09 Alcatel Method and apparatus to reduce variation of excess fiber length in buffer tubes of fiber optic cables
US6922515B2 (en) 2000-12-20 2005-07-26 Alcatel Method and apparatus to reduce variation of excess fiber length in buffer tubes of fiber optic cables
CA2436579C (en) * 2001-02-02 2006-09-26 Ministry Of Information Technology A process for making rare earth doped optical fibre
US6751990B2 (en) * 2001-03-06 2004-06-22 Council Of Scientific And Industrial Research Process for making rare earth doped optical fiber
US7346244B2 (en) 2001-03-23 2008-03-18 Draka Comteq B.V. Coated central strength member for fiber optic cables with reduced shrinkage
DK1283195T3 (da) * 2001-08-01 2005-12-12 Novara Technology Srl Sol-gel fremgangsmåde til fremstilling af præformer for optiske fibre
US7045010B2 (en) 2001-09-06 2006-05-16 Alcatel Applicator for high-speed gel buffering of flextube optical fiber bundles
US6749446B2 (en) 2001-10-10 2004-06-15 Alcatel Optical fiber cable with cushion members protecting optical fiber ribbon stack
WO2003033423A1 (en) * 2001-10-18 2003-04-24 Council Of Scientific And Industrial Research A process of making rare earth doped optical fibre
US6889528B2 (en) * 2001-10-22 2005-05-10 Council Of Scientific & Industrial Research Process of making rare earth doped optical fiber
US6800574B2 (en) * 2001-10-24 2004-10-05 3M Innovative Properties Company Glass beads and uses thereof
WO2003070817A1 (en) * 2002-02-19 2003-08-28 Photon-X, Inc. Athermal polymer nanocomposites
FR2837287B1 (fr) * 2002-03-18 2004-07-16 Cit Alcatel Guide optique comportant un milieu amplificateur, et un procede de fabrication d'un tel guide
US6912347B2 (en) 2002-11-15 2005-06-28 Alcatel Optimized fiber optic cable suitable for microduct blown installation
US6941049B2 (en) 2003-06-18 2005-09-06 Alcatel Fiber optic cable having no rigid strength members and a reduced coefficient of thermal expansion
US7407604B2 (en) * 2004-01-08 2008-08-05 Rutgers The State University Of New Jersey Nanostructured re-doped SiO2-base fluorescent materials and methods for production of same
DE602005003596D1 (de) 2004-01-26 2008-01-17 Draka Comteq Bv Hüllrohrwindung zur Ankopplung eines faseroptischen Kabels und Methode zur Installation eines faseroptischen Kabels
US6947650B1 (en) 2004-05-06 2005-09-20 Luna Energy Llc Long wavelength, pure silica core single mode fiber and method of forming the same
US7526167B1 (en) * 2005-06-24 2009-04-28 Lockheed Martin Corporation Apparatus and method for a high-gain double-clad amplifier
CN101283304B (zh) 2005-07-20 2013-03-13 德雷卡通信技术公司 利用遇水膨胀的卷曲变形纱线的无润滑脂缓冲光纤管结构
US7599589B2 (en) 2005-07-20 2009-10-06 Draka Comteq B.V. Gel-free buffer tube with adhesively coupled optical element
US7515795B2 (en) 2005-07-20 2009-04-07 Draka Comteq B.V. Water-swellable tape, adhesive-backed for coupling when used inside a buffer tube
US7567739B2 (en) 2007-01-31 2009-07-28 Draka Comteq B.V. Fiber optic cable having a water-swellable element
FR2893149B1 (fr) 2005-11-10 2008-01-11 Draka Comteq France Fibre optique monomode.
WO2007091879A1 (en) 2006-02-08 2007-08-16 Draka Comteq B.V. Optical fiber cable suited for blown installation or pushing installation in microducts of small diameter
FR2899693B1 (fr) 2006-04-10 2008-08-22 Draka Comteq France Fibre optique monomode.
JP4699267B2 (ja) * 2006-04-14 2011-06-08 株式会社フジクラ 耐放射線性光ファイバ及びその製造方法
FR2900739B1 (fr) 2006-05-03 2008-07-04 Draka Comteq France Fibre de compensation de la dispersion chromatique
FR2904876B1 (fr) 2006-08-08 2008-11-21 Draka Comteq France Cable de telecommunication a fibres optiques
FR2908250B1 (fr) 2006-11-03 2009-01-09 Draka Comteq France Sa Sa Fibre de compensation de la dispersion chromatique
FR2908525B1 (fr) 2006-11-10 2009-06-26 Draka Comteq France Sa Sa Cable de telecommunication a fibres optiques
EP1930753B1 (en) 2006-12-04 2015-02-18 Draka Comteq B.V. Optical fiber with high Brillouin threshold power and low bending losses
JP2008177434A (ja) * 2007-01-19 2008-07-31 Sumitomo Electric Ind Ltd 増幅用光ファイバおよび光ファイバ増幅器
JP2010521702A (ja) * 2007-03-15 2010-06-24 リエッキ オイ 光ファイバ構造およびその製造方法
FR2915002B1 (fr) 2007-04-11 2009-11-06 Draka Comteq France Procede d'acces a une ou plusieurs fibres optiques d'un cable de telecommunication
US7646952B2 (en) 2007-06-28 2010-01-12 Draka Comteq B.V. Optical fiber cable having raised coupling supports
US7639915B2 (en) 2007-06-28 2009-12-29 Draka Comteq B.V. Optical fiber cable having a deformable coupling element
US8145026B2 (en) 2007-11-09 2012-03-27 Draka Comteq, B.V. Reduced-size flat drop cable
US8041168B2 (en) 2007-11-09 2011-10-18 Draka Comteq, B.V. Reduced-diameter ribbon cables with high-performance optical fiber
DK2206001T3 (da) 2007-11-09 2014-07-07 Draka Comteq Bv Optisk fiber, der er modstandsdygtig over for mikrobøjning
US8041167B2 (en) 2007-11-09 2011-10-18 Draka Comteq, B.V. Optical-fiber loose tube cables
US8165439B2 (en) 2007-11-09 2012-04-24 Draka Comteq, B.V. ADSS cables with high-performance optical fiber
US8031997B2 (en) 2007-11-09 2011-10-04 Draka Comteq, B.V. Reduced-diameter, easy-access loose tube cable
US8081853B2 (en) 2007-11-09 2011-12-20 Draka Comteq, B.V. Single-fiber drop cables for MDU deployments
FR2924866B1 (fr) * 2007-11-09 2014-04-04 Alcatel Lucent Dispositif a fibre optique dopee aux terres rares pour l'emission ou l'amplification d'un signal dans la bande "s"
US20090214167A1 (en) 2008-02-25 2009-08-27 Draka Comteq B.V. Optical Cable Buffer Tube with Integrated Hollow Channels
FR2929716B1 (fr) 2008-04-04 2011-09-16 Draka Comteq France Sa Fibre optique a dispersion decalee.
FR2930997B1 (fr) 2008-05-06 2010-08-13 Draka Comteq France Sa Fibre optique monomode
FR2931253B1 (fr) 2008-05-16 2010-08-20 Draka Comteq France Sa Cable de telecommunication a fibres optiques
FR2932932B1 (fr) 2008-06-23 2010-08-13 Draka Comteq France Sa Systeme optique multiplexe en longueur d'ondes avec fibres optiques multimodes
FR2933779B1 (fr) 2008-07-08 2010-08-27 Draka Comteq France Fibres optiques multimodes
US7970247B2 (en) 2008-09-12 2011-06-28 Draka Comteq B.V. Buffer tubes for mid-span storage
US8401353B2 (en) 2008-09-12 2013-03-19 Draka Comteq B.V. Optical fiber cable assembly
US7974507B2 (en) 2008-09-12 2011-07-05 Draka Comteq, B.V. High-fiber-density optical fiber cable
ES2543879T3 (es) 2008-11-07 2015-08-25 Draka Comteq B.V. Fibra óptica de diámetro reducido
FR2938389B1 (fr) 2008-11-07 2011-04-15 Draka Comteq France Systeme optique multimode
DK2187486T3 (da) 2008-11-12 2014-07-07 Draka Comteq Bv Forstærkende optisk fiber og fremgangsmåde til fremstilling
FR2939246B1 (fr) 2008-12-02 2010-12-24 Draka Comteq France Fibre optique amplificatrice et procede de fabrication
FR2939522B1 (fr) 2008-12-08 2011-02-11 Draka Comteq France Fibre optique amplificatrice resistante aux radiations ionisantes

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101288212A (zh) * 2005-08-17 2008-10-15 阿尔卡特朗讯公司 包括纳米粒子的光导和制造形成该光导的预成型件的方法
EP1764350A1 (fr) * 2005-09-16 2007-03-21 Alcatel Procédé de fabrication d'une fibre optique comprenant des nanoparticules et préforme mise en ?uvre dans la fabrication d'une telle fibre.

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
direct nanoparticle deposition process for manufacturing very short high gain Er-doped silica glass fibers;TAMMELA S ET AL;《ECOC 2002.28TH EUROPEAN CONFERENCE ON OPTICAL COMMUNICATION》;IEEE PISCATAWAY,NJ,USA;20021231;第4卷;第0001、0002、0005-0007、0009段,附图1 *
TAMMELA S ET AL.direct nanoparticle deposition process for manufacturing very short high gain Er-doped silica glass fibers.《ECOC 2002.28TH EUROPEAN CONFERENCE ON OPTICAL COMMUNICATION》.IEEE PISCATAWAY,NJ,USA,2002,第4卷第0001、0002、0005-0007、0009段,附图1.

Also Published As

Publication number Publication date
FR2939522B1 (fr) 2011-02-11
US20100142033A1 (en) 2010-06-10
US8467123B2 (en) 2013-06-18
JP2010135801A (ja) 2010-06-17
JP5604092B2 (ja) 2014-10-08
CN101750670A (zh) 2010-06-23
KR20100066402A (ko) 2010-06-17
FR2939522A1 (fr) 2010-06-11
DK2194408T3 (da) 2014-10-20
EP2194408A1 (en) 2010-06-09
EP2194408B1 (en) 2014-09-10

Similar Documents

Publication Publication Date Title
CN101750670B (zh) 抗电离辐射的光纤放大器
CN101762843B (zh) 放大光纤和生产方法
EP2463970B1 (en) Rare-earth-doped optical fiber
US8259389B2 (en) Amplifying optical fiber and method of manufacturing
US8675275B2 (en) Rare-earth-doped optical fiber having small numerical aperture
US6889528B2 (en) Process of making rare earth doped optical fiber
CN102540326A (zh) 光纤、光学放大器、光纤激光器和光纤初级预制件制造方法
US9162917B2 (en) Rare-earth-doped amplifying optical fiber
US8494013B2 (en) Photodarkening resistant optical fibers and fiber lasers incorporating the same
US8055115B2 (en) Optically active glass and optical fiber with reduced photodarkening and method for reducing photodarkening
Lord et al. Erbium-doped aluminophosphosilicate all-fiber laser operating at 1584 nm
JP7496100B2 (ja) 希土類元素添加光ファイバ
DiGiovanni et al. Rare earth–doped fibers
Simpson Rare Earth Doped Fiber Fabrication: Techniques and Physical Properties
Regnier et al. Recent developments in optical fibers and how defense, security, and sensing can benefit
CN102122015A (zh) 纤芯掺杂光纤

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20131016

Termination date: 20161208

CF01 Termination of patent right due to non-payment of annual fee