CN101748509B - 高抗水解性聚乳酸纤维 - Google Patents
高抗水解性聚乳酸纤维 Download PDFInfo
- Publication number
- CN101748509B CN101748509B CN2008102444779A CN200810244477A CN101748509B CN 101748509 B CN101748509 B CN 101748509B CN 2008102444779 A CN2008102444779 A CN 2008102444779A CN 200810244477 A CN200810244477 A CN 200810244477A CN 101748509 B CN101748509 B CN 101748509B
- Authority
- CN
- China
- Prior art keywords
- polylactic acid
- fiber
- acid fiber
- polylactic
- hydrolytic resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Artificial Filaments (AREA)
Abstract
本发明公开了一种高抗水解性聚乳酸纤维,在该聚乳酸纤维中,含有聚乳酸成分(A)、封端剂成分(B)以及水解抑制助剂成分(C);所述的封端剂含量为聚乳酸重量成分的0.5~5%,所述的水解抑制助剂含量为聚乳酸重量成分的50ppm-1500ppm。本发明制备得到的聚乳酸抗水解纤维具有很好的抗水解性,经热水处理和恒温恒湿处理后能获得较高的强度保持率,可以提高聚乳酸纤维在高温、加压下染色的性能。
Description
技术领域:
本发明涉及一种聚乳酸纤维。
背景技术:
近年来,随着人们生活水平的提高以及环保意识的增强,人们对天然可生物降解纤维的研究越来越重视,世界各国竞相研究和开发新的绿色环保纤维,其中于九十年代末刚刚实现工业化开发的聚乳酸纤维(PLA纤维)最引人注目,它可以从谷物中取得,其制品废弃后在土壤中经微生物作用可分解为二氧化碳和水,而且燃烧时不会散发毒气,不会造成污染。
但是,纯聚乳酸纤维的抗水解性能较差,在织物的染色过程中,经加压高温处理,其织物的强度会下降,影响了聚乳酸纤维的广泛应用。
由于PLA中含有大量的羧基,导致水解时羧基的增多,纤维的强度大幅度下降。所以采用封末端基的方法,将PLA纤维中羧基的含量大幅度下降,达到提高抗水解性能。根据日本专利特许第3122485号和特许第3393752号专利中记载的加入碳化二亚胺抗水解剂可以提高抗水解性,但是碳化二亚胺本身是有毒性的,特别分解后产生的气体是致癌的,对人体是有害的,所以大规模的生产是不可以的。本专利使用具有环氧基团的抗水解剂替代碳化二亚胺,同时又能很好的达到封羧基的效果,纤维水解后强度不会大幅度下降。
发明内容:
本发明的目的在于提供一种抗水解性能好的高抗水解性聚乳酸纤维。
本发明的技术解决方案是:
一种高抗水解性聚乳酸纤维,其特征是:在该聚乳酸纤维中,含有聚乳酸成分(A)、封端剂成分(B)以及水解抑制助剂成分(C);所述的封端剂含量为聚乳酸重量成分的0.5~5%,所述的水解抑制助剂含量为聚乳酸重量成分的50ppm-1500ppm。
封端剂优选添加量在0.8-2%,所述的封端剂为含有一个环氧基团或多个环氧基团的环氧化合物。水解抑制助剂的优选添加量为100-500ppm。水解抑制助剂为碳酸钙、氢氧化铝或镁铝水滑石类化合物。添加环氧的封端剂0.5-5%,可以使聚乳酸纤维的羧基得到大幅的降低,达到1-20eq/t。但是聚乳酸在湿热条件下水解,会使环境处理液的酸碱性变化,促使聚乳酸的水解。针对这个问题,在聚乳酸中同时加入50-1500ppm水解抑制助剂,作为缓冲溶剂,抑制了处理液的酸碱性,使酸碱性达到平衡,在湿热条件下120度30分钟处理后聚乳酸的强度保持率达到50-90%;在温度为70度、湿度为90%的条件下处理7昼夜(168小时)后,聚乳酸的强度保持率达到40-85%。
本发明高抗水解性聚乳酸纤维的制备方法是:先将封端剂和水解抑制助剂加入聚乳酸中通过挤出机制成聚乳酸改性切片,然后再将聚乳酸改性切片熔融高速纺丝设备制得预取向丝,再通过延伸设备延伸后制得高抗水解性聚乳酸纤维。
本发明制备得到的聚乳酸抗水解纤维具有很好的抗水解性,经热水处理和恒温恒湿处理后能获得较高的强度保持率,可以提高聚乳酸纤维在高温、加压下染色的性能。
抗水解的评价方法:
方法一:测量处理前纤维的强度为S1,热水120度处理30分钟后纤维的强度为S2,其强度保持率为S2/S1;
方法二:测量处理前的纤维强度为S1,恒温(70度)恒湿(90%)处理7昼夜(168小时)后纤维强度为S3,其强度保持率为S3/S1
下面结合实施例对本发明作进一步说明:
纺丝性评价方法是○:24小时无断丝,压力正常
△:24小时断丝存在压力不稳定
×:24小时断丝10回以上压力上升快
实施例1:
原料:A聚乳酸切片:分子量(Mn)为10万,熔点是170度;
B封端剂:单环氧基团化合物(DAMGIC);
C水解抑制助剂:碳酸钙。
将原料A、B、C通过共混制得聚乳酸改性切片,将所得聚乳酸改性切片通过高速熔融纺丝设备制得预取向丝,其中纺丝温度为220度,吐出量为25.2g/min,使用喷丝板的孔数为24孔,纺丝速度为3000m/min。再通过延伸设备在1.4倍的延伸倍率下延伸后制得高抗水解性聚乳酸纤维。上述原料用量:封端剂用量为聚乳酸重量的0.6%,水解抑制助剂用量为聚乳酸重量的100ppm。
制得的聚乳酸纤维强度为3.7cN/dtex,纤维末端羧基含量为16eq/ton。聚乳酸纤维经120度热水处理30分后,其强度保持率达到50%。纤维经70度恒温90%恒湿处理168小时后,其强度保持率达到40%。
实施例2:
原料:A聚乳酸切片:分子量(Mn)为10万,熔点是170度;
B封端剂:三个环氧基团化合物(TGIC)
C水解抑制助剂:镁铝水滑石
将原料A、B、C通过共混制得聚乳酸改性切片,将所得聚乳酸改性切片通过高速熔融纺丝设备制得预取向丝,其中纺丝温度为220度,吐出量为25.2g/min,使用喷丝板的孔数为24孔,纺丝速度为3500m/min。再通过延伸设备在1.3倍的延伸倍率下延伸后制得高抗水解性聚乳酸纤维。
上述原料用量:封端剂用量为聚乳酸重量的1.0%,水解抑制助剂用量为聚乳酸重量的100ppm。
制得的聚乳酸纤维强度为4.1cN/dtex,纤维末端羧基含量为11eq/ton。聚乳酸纤维经120度热水处理30分后,其强度保持率达到70%。纤维经70度恒温90%恒湿处理168小时后,其强度保持率达到70%。
实施例3:
原料:A聚乳酸切片:分子量(Mn)为10万,熔点是170度;
B封端剂:双环氧基团化合物(MADGIC)
C水解抑制助剂:镁铝水滑石
将原料A、B、C通过共混制得聚乳酸改性切片,聚乳酸改性切片通过高速熔融纺丝设备制得预取向丝,其中纺丝温度为225度,吐出量为25.2g/min,使用喷丝板的孔数为24孔,纺丝速度为4000m/min。再通过延伸设备在1.2倍的延伸倍率下延伸后制得高抗水解性聚乳酸纤维。
上述原料用量:封端剂用量为聚乳酸重量的1.5%,水解抑制助剂用量为聚乳酸重量的100ppm。
制得的聚乳酸纤维强度为4.2cN/dtex,纤维末端羧基含量为8eq/ton。聚乳酸纤维经120度热水处理30分后,其强度保持率达到70%。纤维经70度恒温90%恒湿处理168小时后,其强度保持率达到70%。
实施例4:
原料:同实施例2。
将原料A、B、C通过共混制得聚乳酸改性切片,聚乳酸改性切片高速熔融纺丝设备制得预取向丝,其中纺丝温度为230度,吐出量为25.2g/min,使用喷丝板的孔数为24孔,纺丝速度为4500m/min。再通过延伸设备在1.16倍的延伸倍率下延伸后制得高抗水解性聚乳酸纤维。
上述原料用量:封端剂用量为聚乳酸重量的2.0%,水解抑制助剂用量为聚乳酸重量的100ppm。
制得的聚乳酸纤维强度为3.8cN/dtex,纤维末端羧基含量为6eq/ton。聚乳酸纤维经120度热水处理30分后,其强度保持率达到75%。纤维经70度恒温90%恒湿处理168小时后,其强度保持率达到75%。
实施例5:
原料:A聚乳酸切片:分子量(Mn)为10万,熔点是170度;
B封端剂:单环氧基团化合物(DAMGIC);
C水解抑制助剂:氢氧化铝。
将原料A、B、C通过共混制得聚乳酸改性切片,v通过高速熔融纺丝设备制得预取向丝,其中纺丝温度为230度,吐出量为25.2g/min,使用喷丝板的孔数为24孔,纺丝速度为2500m/min。再通过延伸设备在1.45倍的延伸倍率下延伸后制得高抗水解性聚乳酸纤维。
上述原料用量:封端剂用量为聚乳酸重量的4.5%,水解抑制助剂为聚乳酸重量的100ppm。
制得的聚乳酸纤维强度为3.8cN/dtex,纤维末端羧基含量为4eq/ton。聚乳酸纤维经120度热水处理30分后,其强度保持率达到80%。纤维经70度恒温90%恒湿处理168小时后,其强度保持率达到80%。
封端剂含量 | 水解抑制助剂含量 | 热水处理后保持率 | 恒温恒湿处理后强度保持率 | 纺丝性 | |
实施例1 | 0.6% | 100ppm | 50% | 40% | ○ |
实施例2 | 1.0% | 100ppm | 70% | 70% | ○ |
实施例3 | 1.5% | 100ppm | 70% | 70% | ○ |
实施例4 | 2.0% | 100ppm | 75% | 75% | ○ |
实施例5 | 4.5% | 100ppm | 80% | 80% | △ |
比较例1 | 0 | 0 | 0% | 0% | ○ |
比较例2 | 0 | 100ppm | 20% | 15% | ○ |
比较例3 | 0.3% | 0 | 25% | 30% | ○ |
比较例4 | 6% | 100ppm | 85% | 80% | × |
实施例6:
原料:A聚乳酸切片:分子量(Mn)为10万熔点是170度
B封端剂:三个环氧基团化合物TGIC
C水解抑制助剂:镁铝水滑石
将原料A、B、C通过共混制得聚乳酸改性切片,聚乳酸改性切片高速熔融纺丝设备制得预取向丝,其中纺丝温度为220度,吐出量为25.2g/min使用喷丝板的孔数为24孔,纺丝速度为3000m/min。再通过延伸设备在1.4倍的延伸倍率下延伸后制得高抗水解性聚乳酸纤维。
上述原料用量:封端剂用量为聚乳酸重量的1%,水解抑制助剂用量为聚乳酸重量的60ppm。
制得的聚乳酸纤维强度为3.7cN/dtex,纤维末端羧基含量为11eq/ton。聚乳酸纤维经120度热水处理30分后,其强度保持率达到60%,纤维经70度恒温90%恒湿处理168小时后,其强度保持率达到60%。
实施例7
原料同实施例6
将原料A、B、C通过共混制得聚乳酸改性切片,将所得聚乳酸改性切片通过高速熔融纺丝设备制得预取向丝,其中纺丝温度为220度,吐出量为25.2g/min,使用喷丝板的孔数为24孔,纺丝速度为3000m/min。再通过延伸设备在1.4倍的延伸倍率下延伸后制得高抗水解性聚乳酸纤维。
上述原料用量:封端剂用量为聚乳酸重量的1%,水解抑制助剂用量为聚乳酸重量的130ppm。
制得的聚乳酸纤维强度为3.7cN/dtex,纤维末端羧基含量为12eq/ton。聚乳酸纤维经120度热水处理30分后,其强度保持率达到70%,纤维经70度恒温90%恒湿处理168小时后,其强度保持率达到70%。
实施例8
C磷酸盐化合物:碳酸钙其他同实施例6
将原料A、B、C通过共混制得聚乳酸改性切片,将所得聚乳酸改性切片通过高速熔融纺丝设备制得预取向丝,其中纺丝温度为220度,吐出量为25.2g/min,使用喷丝板的孔数为24孔,纺丝速度为3000m/min。再通过延伸设备在1.4倍的延伸倍率下延伸后制得高抗水解性聚乳酸纤维。
上述原料用量:封端剂用量为聚乳酸重量的1%,水解抑制助剂用量为聚乳酸重量的300ppm。
制得的聚乳酸纤维强度为3.7cN/dtex,纤维末端羧基含量为10eq/ton。聚乳酸纤维经120度热水处理30分后,其强度保持率达到70%,纤维经70度恒温90%恒湿处理168小时后,其强度保持率达到75%。
实施例9
原料同实施例8
将原料A、B、C通过共混制得聚乳酸改性切片,将所得聚乳酸改性切片通过高速熔融纺丝设备制得预取向丝,其中纺丝温度为220度,吐出量为25.2g/min,使用喷丝板的孔数为24孔,纺丝速度为3000m/min。再通过延伸设备在1.4倍的延伸倍率下延伸后制得高抗水解性聚乳酸纤维。
上述原料用量:封端剂用量为聚乳酸重量的1%,水解抑制助剂用量为聚乳酸重量的480ppm。
制得的聚乳酸纤维强度为3.7cN/dtex,纤维末端羧基含量为8eq/ton。。聚乳酸纤维经120度热水处理30分后,其强度保持率达到80%,纤维经70度恒温90%恒湿处理168小时后,其强度保持率达到85%。
实施例10:C磷酸盐化合物:氢氧化铝其他原料同实施例6
将原料A、B、C通过共混制得聚乳酸改性切片,将所得聚乳酸改性切片通过高速熔融纺丝设备制得预取向丝,其中纺丝温度为220度,吐出量为25.2g/min,使用喷丝板的孔数为24孔,纺丝速度为3000m/min。再通过延伸设备在1.4倍的延伸倍率下延伸后制得高抗水解性聚乳酸纤维。
上述原料用量:封端剂用量为聚乳酸重量的1%,水解抑制助剂用量为聚乳酸重量的1300ppm。制得的聚乳酸纤维强度为3.6cN/dtex,纤维末端羧基含量为12eq/ton。聚乳酸纤维经120度热水处理30分后,其强度保持率达到85%,纤维经70度恒温90%恒湿处理168小时后,其强度保持率达到85%。
封端剂含量 | 水解抑制助剂含量 | 热水处理后强度保持率 | 恒温恒湿处理后强度保持率 | 纺丝性 | |
实施例6 | 1% | 60ppm | 60% | 60% | ○ |
实施例7 | 1% | 130ppm | 70% | 70% | ○ |
实施例8 | 1% | 300ppm | 70% | 75% | ○ |
实施例9 | 1% | 480ppm | 80% | 85% | ○ |
实施例10 | 1% | 1300ppm | 85% | 85% | △ |
比较例1 | 0 | 0 | 0 | 0 | ○ |
比较例5 | 1% | 0 | 60% | 40% | ○ |
比较例6 | 1% | 30ppm | 60% | 50% | ○ |
比较例7 | 1% | 1800ppm | 85% | 85% | × |
比较例1
将常规聚乳酸切片通过高速熔融纺丝设备制得预取向丝,经延伸机延伸后制得的聚乳酸纤维。该聚乳酸纤维通过热水处理后强度保持率是0%,恒温恒湿处理后强度保持率是0%。
比较例2
原料:A聚乳酸切片:分子量(Mn)为10万熔点是170度
B水解抑制助剂:碳酸钙
将原料A、B通过共混制得聚乳酸改性切片,将所得聚乳酸改性切片高速熔融纺丝设备制得预取向丝,经延伸机延伸后制得的高抗水解性聚乳酸纤维。水解抑制助剂含量为聚乳酸重量的100ppm。聚乳酸纤维通过热水处理后强度保持率是20%以下,恒温恒湿处理后强度保持率是15%以下。维末端羧基含量为20eq/ton以上。
比较例3
原料:A聚乳酸切片:分子量(Mn)为10万熔点是170度
B封端剂:三个环氧基团化合物TGIC
将原料A、B通过共混制得聚乳酸改性切片,将所得聚乳酸改性切片通过高速熔融纺丝设备制得预取向丝,经延伸机延伸后制得的高抗水解性聚乳酸纤维。封端剂含量位聚乳酸含量的0.3%,聚乳酸纤维通过热水处理后强度保持率是25%,恒温恒湿处理后强度保持率为30%。维末端羧基含量为16eq/ton。
比较例4
C磷酸盐化合物:镁铝水滑石其他同比较例3
将原料A、B和C通过共混制得聚乳酸改性切片,将所得聚乳酸改性切片通过高速熔融纺丝设备制得预取向丝,经延伸机延伸后制得的高抗水解性聚乳酸纤维。该聚乳酸纤维中含有6%聚乳酸重量分的封端剂以及100ppm聚乳酸重量分的水解抑制助剂。维末端羧基含量为3eq/ton。但是纺丝性能下降
比较例5
原料:A聚乳酸切片:Mn=10万熔点是170度
B封端剂:三个环氧基团化合物TGIC
将原料A、B通过共混制得聚乳酸改性切片,将所得聚乳酸改性切片通过高速熔融纺丝设备制得预取向丝,经延伸机延伸后制得的高抗水解性聚乳酸纤维。该聚乳酸纤维中含有聚乳酸重量份1%的封端剂。聚乳酸纤维通过热水处理后强度保持率是60%,恒温恒湿处理后强度保持率为40%。维末端羧基含量为11eq/ton。
比较例6
原料:A聚乳酸切片:Mn=10万熔点是170度
B封端剂:三个环氧基团化合物TGIC
C水解抑制助剂:镁铝水滑石
将原料A、B通过共混制得聚乳酸改性切片,将所得聚乳酸改性切片通过高速熔融纺丝设备制得预取向丝,经延伸机延伸后制得的高抗水解性聚乳酸纤维。该聚乳酸纤维中含有聚乳酸重量分1%的封端剂以及聚乳酸重量分30ppm的水解抑制助剂,聚乳酸纤维通过热水处理后强度保持率是60%;恒温恒湿处理后强度保持率为50%。维末端羧基含量为10eq/ton。
比较例7
原料同比较例6
将原料A、B通过共混制得聚乳酸改性切片,将所得聚乳酸改性切片混合后通过高速熔融纺丝设备制得预取向丝,经延伸机延伸后制得的高抗水解性聚乳酸纤维。该聚乳酸纤维中含有聚乳酸重量份1%的封端剂以及聚乳酸重量分1800ppm的水解抑制助剂,聚乳酸纤维通过热水处理后强度保持率是85%,恒温恒湿处理后强度保持率为85%。维末端羧基含量为8eq/ton。但是纺丝性能下降。
Claims (4)
1.一种高抗水解性聚乳酸纤维,其特征是:在该聚乳酸纤维中,含有聚乳酸成分(A)、封端剂成分(B)以及水解抑制助剂成分(C);所述的封端剂含量为聚乳酸重量成分的0.5~5%,所述的水解抑制助剂为碳酸钙、氢氧化铝或镁铝水滑石化合物,其含量为聚乳酸重量成分的50ppm-1500ppm;封端剂为含有一个环氧基团或多个环氧基团的环氧化合物。
2.根据权利要求1所述的高抗水解性聚乳酸纤维,其特征是:纤维的末端羧基含量为1~20eq/ton。
3.根据权利要求1所述的高抗水解性聚乳酸纤维,其特征是:纤维经120度热水处理30分后,其强度保持率为50~95%。
4.根据权利要求1所述的高抗水解性聚乳酸纤维,其特征是:纤维经70度恒温90%恒湿处理168小时后,其强度保持率为40~85%。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008102444779A CN101748509B (zh) | 2008-12-05 | 2008-12-05 | 高抗水解性聚乳酸纤维 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008102444779A CN101748509B (zh) | 2008-12-05 | 2008-12-05 | 高抗水解性聚乳酸纤维 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101748509A CN101748509A (zh) | 2010-06-23 |
CN101748509B true CN101748509B (zh) | 2012-06-06 |
Family
ID=42476103
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008102444779A Expired - Fee Related CN101748509B (zh) | 2008-12-05 | 2008-12-05 | 高抗水解性聚乳酸纤维 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101748509B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102286801A (zh) * | 2011-05-27 | 2011-12-21 | 东华大学 | 一种高效抗水解的柔性pla纤维的制备方法 |
CN103741254B (zh) * | 2013-12-27 | 2015-09-16 | 马海燕 | 一种大直径生物可降解聚乳酸单丝及其生产方法 |
CN108070912A (zh) * | 2016-11-14 | 2018-05-25 | 黑龙江鑫达企业集团有限公司 | 一种抗水解改性聚乳酸纤维及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1400247A (zh) * | 2001-08-01 | 2003-03-05 | 第一工业制药株式会社 | 能够长期贮藏的生物降解性聚酯水系化物 |
CN101074501A (zh) * | 2006-05-19 | 2007-11-21 | 东丽纤维研究所(中国)有限公司 | 高温高湿下耐水解性能良好的聚乳酸纤维产品及生产方法 |
CN101126183A (zh) * | 2006-08-16 | 2008-02-20 | 东丽纤维研究所(中国)有限公司 | 聚乳酸抗水解纤维及制备方法 |
CN101240464A (zh) * | 2007-02-05 | 2008-08-13 | 东丽纤维研究所(中国)有限公司 | 聚乳酸抗水解纤维及制备方法 |
CN101240465A (zh) * | 2007-02-05 | 2008-08-13 | 东丽纤维研究所(中国)有限公司 | 新型聚乳酸抗水解纤维及制备方法 |
-
2008
- 2008-12-05 CN CN2008102444779A patent/CN101748509B/zh not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1400247A (zh) * | 2001-08-01 | 2003-03-05 | 第一工业制药株式会社 | 能够长期贮藏的生物降解性聚酯水系化物 |
CN101074501A (zh) * | 2006-05-19 | 2007-11-21 | 东丽纤维研究所(中国)有限公司 | 高温高湿下耐水解性能良好的聚乳酸纤维产品及生产方法 |
CN101126183A (zh) * | 2006-08-16 | 2008-02-20 | 东丽纤维研究所(中国)有限公司 | 聚乳酸抗水解纤维及制备方法 |
CN101240464A (zh) * | 2007-02-05 | 2008-08-13 | 东丽纤维研究所(中国)有限公司 | 聚乳酸抗水解纤维及制备方法 |
CN101240465A (zh) * | 2007-02-05 | 2008-08-13 | 东丽纤维研究所(中国)有限公司 | 新型聚乳酸抗水解纤维及制备方法 |
Non-Patent Citations (1)
Title |
---|
曹延生等.纳米碳酸钙改性聚乳酸材料性能的研究.《中国塑料》.2007,第21卷(第10期),正文第1-3节. * |
Also Published As
Publication number | Publication date |
---|---|
CN101748509A (zh) | 2010-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101851808B (zh) | 一种抗水解改性聚乳酸纤维及其制备方法 | |
CN109487360A (zh) | 一种含植物提取物的涤纶纤维 | |
CN103409843A (zh) | 具有抗紫外线功能的锦纶纤维的制备方法 | |
CN101748509B (zh) | 高抗水解性聚乳酸纤维 | |
CN103194819B (zh) | 一种保健氨纶纤维及其制备方法 | |
CN104514041B (zh) | 一种可降解纤维及其制备方法 | |
CN104032403B (zh) | 稀土金属氧化物/聚丙烯腈复合纤维及其制备方法 | |
CN101608350B (zh) | 高抗水解性聚乳酸纤维 | |
CN101240464A (zh) | 聚乳酸抗水解纤维及制备方法 | |
CN104674377A (zh) | 一种汽车内饰面料用夜光低弹丝的制备方法 | |
CN101768786B (zh) | 一种超高分子量聚乙烯纤维的制备方法 | |
CN114959941A (zh) | 一种含茶、橙活性成分的涤纶大生物纤维及其制备方法 | |
CN101368297A (zh) | 高抗水解性、高耐摩擦性聚乳酸纤维及制备方法 | |
CN102249556A (zh) | 玻璃纤维细纱浸润剂及其制备方法 | |
CN109517146B (zh) | 一种环保型抗紫外纤维用聚酯及其应用 | |
CN101608349B (zh) | 高抗水解性、高耐摩擦性聚乳酸纤维 | |
CN101240465B (zh) | 聚乳酸抗水解纤维及制备方法 | |
CN105442075A (zh) | 一种原花青素纤维素纤维及其制备方法 | |
CN102877155A (zh) | 高仿棉多孔超细旦聚酯纤维及其制备方法以及设备 | |
CN109505032B (zh) | 一种皮芯复合高收缩聚酯短纤维及其制备方法 | |
CN107964694A (zh) | 一种改性聚乳酸及其制备方法 | |
CN101126183A (zh) | 聚乳酸抗水解纤维及制备方法 | |
CN102031579A (zh) | 高耐摩擦性、高抗水解性聚乳酸纤维 | |
CN105463623B (zh) | 一种聚甲醛‑聚乳酸‑聚对二氧环己酮三元复合纤维及其制备方法 | |
CN109722741B (zh) | 皮芯阻燃长丝及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120606 Termination date: 20151205 |
|
EXPY | Termination of patent right or utility model |