CN101698254A - 金属加热装置及金属加热方法 - Google Patents

金属加热装置及金属加热方法 Download PDF

Info

Publication number
CN101698254A
CN101698254A CN200910206594A CN200910206594A CN101698254A CN 101698254 A CN101698254 A CN 101698254A CN 200910206594 A CN200910206594 A CN 200910206594A CN 200910206594 A CN200910206594 A CN 200910206594A CN 101698254 A CN101698254 A CN 101698254A
Authority
CN
China
Prior art keywords
light
mentioned
metal heating
output
hardware
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN200910206594A
Other languages
English (en)
Inventor
山田英一郎
耕田浩
菅沼宽
井上享
斋藤和人
中里浩二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Publication of CN101698254A publication Critical patent/CN101698254A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/005Soldering by means of radiant energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/005Soldering by means of radiant energy
    • B23K1/0056Soldering by means of radiant energy soldering by means of beams, e.g. lasers, E.B.
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/19Soldering, e.g. brazing, or unsoldering taking account of the properties of the materials to be soldered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0608Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams in the same heat affected zone [HAZ]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/0033Heating devices using lamps
    • H05B3/0038Heating devices using lamps for industrial applications
    • H05B3/0061Heating devices using lamps for industrial applications for metal treatment
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3494Heating methods for reflowing of solder

Landscapes

  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Laser Beam Processing (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Lasers (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本发明一实施形式的金属加热装置具有光输出部,该光输出部输出中心波长处于波长范围200nm~600nm内的光。

Description

金属加热装置及金属加热方法
本发明专利申请是申请号为200480028786.2、申请日为2004年09月30日、发明名称为“金属加热装置、金属加热方法、及光源装置”的发明专利申请的分案申请。
技术领域
本发明涉及一种金属加热装置、金属加热方法、及光源装置。
背景技术
对金属进行加热的装置具有多种。例如,锡焊除了用加热器进行加热外,也通过激光照射进行加热。
现有技术中,如日本公开实用新案公报实开平5-18751号公报或池田正幸著“激光工学”,欧姆(ォ一ム)公司,pp.59-62记载的那样,为了通过激光照射对焊锡进行加热,使用从远红外区到长波长可视区的波长的激光(例如参照专利文献1和非专利文献1)。
另外,例如当制造电子设备时,为了电连接电子部件或配线等,进行锡焊。锡焊通过在金属构件上使焊锡熔化后使该熔化的焊锡固化而进行。在日本公开专利公报·特开平6-71425号、日本公开专利公报·特开平11-197868号及日本公开专利公报·特开2002-239717号,公开了可由激光照射使焊锡熔化而进行锡焊的装置和方法。公开于这些文献的锡焊方法的目的在于提高焊锡的温度上升速度。
发明内容
然而,在现有的装置中,难以进行与对象物相应的效率良好的加热。
因此,本发明的目的在于提供一种可进行与对象物对应的效率良好的加热的金属加热装置、金属加热方法、及光源装置。
本发明一个方面的金属加热装置具有输出中心波长处于波长范围200nm~600nm内的光的光输出单元。
另外,本发明另一个方面的金属加热方法,包括从光输出单元输出中心波长处于波长范围200nm~600nm内的光的步骤和将该光照射到金属构件的步骤。
按照本发明,从光输出单元输出的光的中心波长处于波长范围200nm~600nm内。按照本发明,由于中心波长处于上述波长范围内,所以,包括金(Au)的金属构件被按良好的效率加热。在本发明中,也可输出中心波长处于波长范围390nm~420nm内的光。
本发明的金属加热装置还具有导光单元,该导光单元具有与光输出单元进行光耦合的输入端和输出端,将来自光输出单元的光输入到输入端,对该光进行导光,从出射端输出。另外,本发明的金属加热方法最好还包括这样的步骤,即,将来自上述光输出单元的光输入到导光单元的输入端,由导光单元对该光进行导光,从该导光单元的出射端输出。在该场合,可自由决定光输出单元和出射端的相对位置,所以,装置设计的自由度增加。
在这里,在本发明的金属加热装置中,光输出单元可包括输出光的光源。在本发明的金属加热装置中,最好该光源为激光器光源。在该场合,由于光的波长宽度减小,所以,可按良好的效率照射适合于加热的波长。另外,最好该光源为使用半导体元件的光源。在这些场合,有利于使发光效率提高,使光源的寿命变长,使装置小型化。另外,在本发明的金属加热方法中,作为上述光,最好输出激光。
在本发明的金属加热装置中,作为导光单元,最好包括光纤。另外,在本发明的金属加热方法中,最好由作为导光单元的光纤对光进行导光。在该场合,光纤重量轻,具有柔性,所以,光照射位置的变更容易,自由度高。
本发明的金属加热装置也可还包括使光扩大、收敛或平行校正的透镜。本发明的金属加热方法也可还包括由透镜使光扩大、收敛或平行校正的步骤。在该场合,可将照射光的大小(直径)或光功率密度调节为所期望的程度。
另外,在本发明的金属加热装置中,光输出单元可包括输出光的多个光源。该多个光源最好分别为激光器光源。该光源最好为使用半导体元件的光源。在该场合,由于从导光单元输出的光的功率大,所以,光照射面积扩大或光功率密度的增大成为可能。另外,由于可减小供给到各光源的驱动电流,所以,可降低各半导体激光器光源的故障的发生频率。另外,在个别光源发生故障的场合,进行输出控制,增大未发生故障的其它光源的输出,补充发生故障的光源导致的输出下降,可降低装置发生故障的频率。另外,在本发明的金属加热方法中,最好从多个光源输出光,在该场合,该光最好为激光。
上述多个光源也可包括输出第1中心波长的光的第1光源和输出第2中心波长的光的第2光源。在该场合,通过使各光源的中心波长为适合于照射对象的各金属的加热的波长,从而可进行高效的加热。
在本发明的金属加热装置中,最好导光单元包括相对多个光源1对1地设置的多个光纤,各光纤对从多个光源中的对应的光源输出的光进行导光。在本发明的金属加热方法中,最好由相对多个光源1对1地设置的作为导光单元的多个光纤分别对从多个光源中的对应的光源输出的光进行导光。在该场合,从各光源输出的光由对应的光纤进行导光,照射到金属构件。另外,在该场合,可不混合强度或中心波长不同的光源的光地分别照射,所以,可二维地对材料或形状不同的对象物高效率地进行加热。
本发明的金属加热装置也可还包括相对多个光源1对1地设置的多个透镜。另外,在本发明的金属加热方法中,也可还包括由相对多个光源1对1设置的多个透镜使光收敛或平行校正的步骤。
本发明的金属加热装置最好还具有分别控制多个光源各个的输出动作的控制部。另外,本发明的金属加热方法也可还包括由控制部分别控制多个光源各个的输出动作的步骤。在该场合,由控制部分别控制多个光源各个的输出动作,由与各光源对应的光纤进行导光,可分别控制照射到金属构件的光的功率。
另外,本发明的金属加热装置最好一维或二维地排列多个光纤各个的出射端。在该场合,光照射的范围可较宽,另外,通过由控制部控制各光源的输出动作,从而可改变光照射的范围。
本发明的金属加热装置最好还具有沿来自多个光纤各个的出射端的光交叉的面设置的搭载单元,对搭载单元上的区域的图像进行摄影的摄影单元,用于根据由摄影单元摄影的图像使搭载单元或出射端移动的导向单元,及分别控制多个光源各个的输出动作的控制部。另外,本发明的金属加热方法最好还包括将金属构件搭载于搭载单元的步骤,由摄影单元对金属构件的图像进行摄影的步骤,根据由摄影单元摄影的图像对金属构件或出射端的位置进行调整的步骤,及由控制部分别控制多个光源各个的输出动作的步骤。按照本发明,通过在搭载单元上搭载金属构件,从而可按良好的精度调整相对金属构件的光的照射位置。
本发明的再另一方面的光源装置具有多个光源,相对多个光源1对1设置的多个光纤,及分别控制多个光源的输出动作的控制部。按照该光源,可将各种图形的光照射到对象物。
在本发明的金属加热装置中,最好控制上述多个光源的输出动作,使得照射在围住搭载单元上的第1区域的一部分的第2区域的光的强度比照射在该第1区域的光的强度大。另外,本发明的金属加热装置可为对焊锡进行加热的装置。在该场合,可仅对焊锡连接部位进行加热,不会由焊锡的软溶工序对锡焊部位以外的部分也进行加热,所以,可提高锡焊的部件的合格率和可靠性。
在本发明的金属加热方法中,最好控制上述多个光源的输出动作,使得照射在围住上述搭载单元上的第1区域的一部分的第2区域的光的强度比照射在该第1区域的光的强度大。另外,本发明的金属加热方法可为对金属构件照射光从而对焊锡进行加热的方法。另外,本发明的金属加热方法最好还包括将含锡的焊锡供给到金属构件上的步骤,金属构件包括金,在调整金属构件的位置的步骤中,将焊锡的位置调整到第1区域,将金属构件的位置调整到第2区域。另外,在本发明的光源装置中,最好控制部控制多个光源的输出动作,使得照射在围住搭载单元上的第1区域的一部分的第2区域的光的强度比照射在该第1区域的光的强度大。
按照本发明,例如在对基板的配线图形和IC的端子进行锡焊的场合,使焊锡位于第1区域,使配线图形位于第2区域,从而可由配线图形的热使焊锡熔化,所以,可提高锡焊的合格率和可靠性。
本发明的金属加热装置最好还包括1根光纤,该1根光纤具有与多个光纤各个的出射端进行光耦合的输入端和将输入到该输入端的光输出的输出端,在该场合,可增大照射到焊锡的激光的功率。
本发明的金属加热方法包括(1)将第2金属构件供给到第1金属构件上的步骤,和(2)将光照射到第1金属构件和第2金属构件双方或仅照射到第1金属构件的步骤。该光最好为激光。
本发明的金属加热方法最好是,(3a)在照射光的步骤中照射第2金属构件的反射率比第1金属构件的反射率大的中心波长的光。按照本发明的金属加热方法,可使第1金属构件的温度上升速度比第2金属构件的温度上升速度大。另外,可控制第1金属构件或第2金属构件的各位置的温度上升。
在本发明的金属加热方法中,第2金属构件也可为焊锡。也可使得第1金属构件以金为主成分,第2金属构件以锡为主成分,在该场合,最好光的中心波长在550nm或其以下。在该场合,金属构件与焊锡的锡焊的匹配性良好。另外,可使第1金属构件的温度先提高,所以,可从与第1金属构件接触的部分开始使焊锡熔化。因此,可进行合格率和可靠性高的锡焊。在这里,以某一对象物为“主成分”意味着该对象物“按最多的比例含有”。因此,也包括50%或其以下的比例的场合。
本发明的金属加热方法最好是,(3b)使第1金属构件的光照射面积比第2金属构件的光照射面积大地照射光。另外,也可仅在第1金属构件照射光。另外,此时,最好第1金属构件以金为主成分,光的中心波长不足600nm。另外,最好第2金属构件为以锡为主成分的焊锡。在该场合,可使第1金属构件的温度上升速度比第2金属构件的温度上升速度快。另外,在第2金属构件为焊锡的场合,最好使焊锡中的与第1金属构件接触的部分最先熔化。
本发明的金属加热方法最好是,(3c)使对第1金属构件的能量赋予量比对第2金属构件的能量赋予量大地照射光。另外,第2金属构件最好为焊锡,最好第1金属构件以金为主成分,第2金属构件为以锡为主成分。在该场合,可使第1金属构件的温度上升速度比第2金属构件的温度上升速度快。另外,在第2金属构件为焊锡的场合,最好使焊锡中的与第1金属构件接触的部分最先熔化。
本发明的金属加热方法最好是,(3d)作为激光照射第1中心波长的光和第2中心波长的光。在该场合,可使第1金属构件的温度上升速度比第2金属构件的温度上升速度快。
在本发明的金属加热方法中,最好第1中心波长的光和第2中心波长的光各个的出射位置相同。另外,此时由共用的光纤对第1中心波长的光和第2中心波长的光进行导光,使第1中心波长的光和第2中心波长的光分别从光纤的端面出射,照射到第1金属构件或第2金属构件。在该场合,可简易而且廉价地构成用于将激光引导或照射到第1金属构件或第2金属构件的光学系统。
在本发明的金属加热方法中,最好使第1金属构件的光照射面积比第2金属构件的光照射面积大地照射第1中心波长的光,同时,使第2金属构件的光照射面积比第1金属构件的光照射面积大地照射第2中心波长的光。另外,此时,由束式光纤对第1中心波长的光和第2中心波长的光进行导光,使第1中心波长的光和第2中心波长的光分别从束式光纤的相互不同的出射位置出射,照射到第1金属构件或第2金属构件。在该场合,对于第1金属构件的温度上升,第1中心波长的光的照射处于支配地位,对于第2金属构件的温度上升,第2中心波长的光的照射处于支配地位,所以,通过调整第1中心波长的光和第2中心波长的光的各波长、照射强度、及照射范围等中的任一个,从而可进行最佳的加热。另外,在使用束式光纤的场合,可简单而且廉价地构成用于将光引导或照射到第1金属构件或第2金属构件的光学系统。
在本发明的金属加热方法中,最好使第1中心波长的光和第2中心波长的光各个的中心波长相互相差波长宽度以上。或者,最好使第1中心波长的光和第2中心波长的光各个的中心波长相互相差100nm或其以上。使用各中心波长这样不同的第1中心波长的光和第2中心波长的光,同时适当设定相对第1金属构件或第2金属构件照射时的诸条件,从而可进行效率良好的加热。
在本发明的金属加热方法中,最好第1金属构件以金为主成分,第1中心波长不足600nm。另外,最好第2金属构件以锡为主成分,第2中心波长为600nm或其以上。另外,最好第2金属构件为焊锡。在该场合,第1金属构件与作为第2金属构件的焊锡的锡焊匹配性良好。在中心波长不足600nm时,金的反射率小,所以,通过在以金为主成分的第1金属构件照射中心波长不足600mm的光,从而可高效率地进行第1金属构件的加热。另外,作为输出中心波长600nm或其以上的光的光源,可获得较廉价、高功率的光源,另一方面,由于锡的反射率的波长依存性小,所以,最好在以锡为主成分的第2金属构件照射中心波长600nm或其以上的光。
附图说明
图1为第1实施形式的金属加热装置的构成图。
图2为说明包括于第1实施形式的金属加热装置的M×N根光纤的各出射端的排列的图。
图3为第2实施形式的金属加热装置的构成图。
图4为示出金、银、及铜的吸光率的波长依存性的图。
图5为示出锡的吸光率的波长依存性的图。
图6为第3实施形式的金属加热方法的说明图。
图7为第3实施形式的金属加热方法的变型例的说明图。
图8为第4实施形式的金属加热方法的说明图。
图9为示出在第4实施形式的金属加热方法中较好地使用的锡焊装置的构成的一例的图。
图10为示出在第4实施形式的金属加热方法中较好地使用的金属加热装置的构成的另一例的图。
图11为示意地示出第5实施形式的金属加热装置的透视图。
图12为显示于监视器的基板的画面例。
图13为放大示出锡焊部位的图。
图14为说明光纤的出射端的另一排列的图。
图15为说明光纤的出射端的另一排列的图。
图16为示出在第4实施形式的金属加热方法中较好地使用的金属加热装置的构成的另一例的图。
图17为示出在第4实施形式的金属加热方法中较好地使用的金属加热装置的构成的另一例的图。
图18为示出在第4实施形式的金属加热方法中较好地使用的金属加热装置的构成的另一例的图。
图19为示出在第4实施形式的金属加热方法中较好地使用的金属加热装置的构成的另一例的图。
具体实施方式
下面,参照附图详细说明用于实施本发明的最佳形式。在附图的说明中,相同部分采用相同符号,省略重复的说明。
(第1实施形式)
首先,说明本发明金属加热装置的第1实施形式。图1为第1实施形式的金属加热装置的构成图。该图所示金属加热装置1具有光输出部10、M×N个透镜201,1~20M,N、导光部(导光单元)30、固定构件40、及控制部50。其中,M、N为大于等于2的整数。另外,以下使用的m表示大于等于1小于等于M的任意整数,n表示大于等于1小于等于N的任意整数。
光输出部10具有M×N个光源101,1~10M,N。各光源10m,n最好输出中心波长处于波长范围200nm~600nm内的光。该光如为激光则更好。其中,中心波长为波长宽度的中心的波长,波长宽度为半幅值(半值幅)。
光源10m,n可为利用了半导体元件的光源。例如,作为光源10m, n,可使用激光二极管(LD)、发光二极管(LED)、LD激励固体激光器等。中心波长如在550nm或其以下,则可使用各种发光二极管,所以,可实现高发光效率、高寿命、装置小型化。如中心波长为390nm或其以上420nm或其以下,则可使用作为高密度记录型数字激光视盘光源得到利用的、大量生产的中心波长400nm的激光二极管,可低廉地实现出射端的高功率密度。另外,如中心波长在370nm或其以上,则可由目视或通用的可视光摄像机,容易地确认光的位置、束径等照射状态。
作为激光二极管,例示出中心波长400nm的蓝紫色激光二极管。作为发光二极管,例示出中心波长430nm的GaN制的LED、中心波长500nm的InGaN制的LED、中心波长550nm的GaP制的LED等。作为LD激励固体激光器,例示出中心波长355nm的Nd-YAG3倍波激光器、中心波长532nm的Nd-YAG2倍波激光器等。作为其它光源,可例示出中心波长442nm的He-Cd气体激光器、中心波长488nm或515nm的Ar+气体激光器、中心波长248nm的KrF受激准分子激光器、中心波长308nm的XeCl受激准分子激光器等。
在使用激光二极管作为光源10m,n的场合,提供高功率而且冷却单元简单的小型的金属加热装置。在使用发光二极管的场合,提供可进行更高效率的发光、运行成本低廉而且装置成本低廉的金属加热装置。在使用LD激励固体激光器的场合,提供功率非常高的金属加热装置。
另外,作为光源10m,n,也可使用如光纤激光器或ASE光源等那样组合激励用光二极管和光纤的光纤型光源。在该场合,容易与作为导光部30使用的光纤的连接。
导光部30具有M×N根光纤301,1~30M,N。各透镜20m,n对从对应的光源10m,n输出的光进行聚光,使该光入射到对应的光纤30m,n的入射端。各光纤30m,n对从对应的光源10m,n输出的光进行导光,由对应的透镜20m,n聚光后的光输入到入射端,对该光进行导光,从出射端输出。在各光纤30m,n的出射端最好设置用于使出射的光平行校正或收敛的透镜这样的聚光光学系。
固定构件40用于固定M×N根光纤301,1~30M,N的各出射端的配置。由该固定构件40二维地排列M×N根的光纤301,1~30M,N的各出射端。图2为说明包括于第1实施形式的金属加热装置的M×N根的光纤301,1~30M,N的各出射端的排列的图。如该图所示那样,在二维排列中,各光纤30m,n处于第m行第n列。多个光纤30也可如图14所示那样排列成圆形,也可如图15所示六边形的排列那样排列成多边形。
控制部50分别控制M×N个光源101,1~10M,N中的各光源的输出动作。例如,控制部50可控制供给到各光源10m,n的驱动电流的大小或驱动电流的供给时间,也可使用调制器控制对光纤30m,n进行光耦合的程度。
该金属加热装置1如以下那样动作。当从M×N个光源101,1~10M, N的全部或任一个输出光时,从各光源10m,n输出的光由透镜20m,n聚光,入射到光纤30m,n的入射端,由光纤30m,n引导,从光纤30m,n的出射端输出到外部。
从各光纤30m,n的出射端输出的光从各光源10m,n输出,入射到光纤30m,n的入射端。因此,M×N个光源101,1~10M,N中的各光源的输出动作分别由控制部50控制,调整从各光纤30m,n的出射端输出的光的功率。然后,通过将该输出的光照射到金属构件,从而对金属构件进行加热。
在本实施形式中,由于可分别调整从各光纤30m,n的出射端输出的光的功率,所以,可选择地将光照射到应加热的位置,可抑制光在其它部位的不必要的光照射。另外,由于光照射位置的变更的自由度大,所以,可连续地对应加热的位置不同的多个部件进行加热。
另外,在本实施形式中,通过使照射到金属构件的光的中心波长处于波长范围200nm~600nm内,从而获得良好的对含金的金属构件的加热效率。图4为示出金、银、及铜的吸光率的波长依存性的图。其中,吸光率具有与1-反射率大致相同的关系。
如现有技术那样,在使用红外激光(中心波长800nm~1100nm)对含金的金属构件进行加热的场合,由于如图4所示那样红外激光的金的反射率较高,所以,含金的金属构件的加热效率低。因此,由红外激光不能按良好的效率对含金的金属构件进行加热。
另一方面,第1实施形式的金属加热装置1将金的反射率低的中心波长200nm~600nm的光照射到含金的金属构件,所以,可按良好的效率对该金属构件进行加热。即,在中心波长800nm~1100nm,金的吸光率低到3%以下。另一方面,当中心波长处于600nm或其以下时,金的吸光率超过10%(3倍),所以,可进行高效率的加热。另外,当中心波长处于480nm或其以下时,金的吸光率为60%,在可视光区域为最高的水准,可进行更高效率的加热。
另外,当金属加热装置1在含金的金属构件上用于通过含锡的焊锡进行锡焊时,可提高锡焊的合格率和可靠性。图5为示出锡的吸光率的波长依存性的图。如图4和图5所示那样,锡或含锡的金属的中心波长200nm~600nm的光的吸光率比金低。即,在照射上述波长的光的场合,金的温度上升速度比锡快。因此,当将上述波长的光照射到供给了焊锡的金属构件时,先对金属构件进行加热,使焊锡的与金属构件接触的部分先熔化。结果,锡焊的合格率和可靠性提高。具体地说,当中心波长处于550nm或其以下时,金的吸光率比锡的吸光率(25%)高,金的温度上升速度比锡高。因此,可靠性良好的锡焊成为可能。
另外,如图5所示那样,当中心波长在800nm或其以上时,银(Ag)的吸光率低达3%以下。另一方面,当中心波长在420nm或其以下时,超过10%(3倍),银的高效率的加热成为可能。
另外,如图5所示那样,当中心波长在800nm或其以上时,铜(Cu)的吸光率低达5%以下。另一方面,当中心波长在600nm或其以下时,超过15%(3倍),铜的高效率的加热成为可能。另外,当中心波长在500nm或其以下时,吸光率为40%以上,在可视光区域成为最高的水准,可进行更高效率的加热。
(第2实施形式)
下面,说明本发明的第2实施形式。图3为第2实施形式的金属加热装置的构成图。示于该图的金属加热装置2具有光输出部10、K个透镜201~20K、导光部(导光单元)30、及控制部50。其中,K为大于等于2的整数。另外,以后使用的k表示大于等于1小于等于K的任意的整数。
光输出部10具有K个光源101~10K。各光源10k最好输出各中心波长处于波长范围200nm~600nm内的光。该光最好为激光。各光源10k可使用与上述光源10m,n同样的光源。
导光部30具有K根光纤301~30K和1根光纤31。各透镜20k对从对应的光源10k输出的光进行聚光,使该光入射到对应的光纤30k的入射端。各光纤30k对从对应的光源10k输出的光进行导光,使由对应的透镜20k聚光的光输入到入射端,对该光进行导光,从出射端输出。
光纤31的入射端与K根的光纤301~30K各个的出射端进行光耦合。光纤31将从K根光纤301~30K各个的出射端出射的光输入到自己的入射端,对该光进一步进行导光,从出射端输出。在光纤31的出射端最好设有用于使出射的光平行校正或收敛的透镜这样的聚光光学系统。
控制部50分别控制K个光源101~10K的各输出动作。例如,控制部50可控制供给到各光源10k的驱动电流的大小,也可使用调制器控制在光纤30k的光耦合的程度。
该金属加热装置2如以下那样动作。当从K个的半导体激光器光源101~10K的全部或任一个输出光时,从各光源10k输出的光由透镜20k聚光,输入到光纤30k的入射端,由光纤30k进行导光,进而由光纤31进行导光,从光纤31的出射端输出到外部。
从该光纤31的出射端输出的光为从各光纤10k输出、输入到光纤30k的入射端的光合波而获得的光。因此,通过由控制部50分别控制K个光源101~10K各个的输出动作,从而调整从光纤31的出射端输出的光的功率。通过将该输出的光照射到金属构件,从而对金属构件进行加热。
在本实施形式中,可适当地调整从光纤31的出射端输出的光的功率,所以,仅将金属构件的加热所需要的功率的光照射到焊锡,可减少其它部位的不需要的加热。另外,可减小各光源的驱动电流,所以,可降低光源的故障的发生频率。
另外,该金属加热装置2可与金属加热装置1同样地按良好的效率对含金的构件进行加热。另外,在金属加热装置2与金属加热装置1同样地用于由含金的焊锡对含金的金属构件进行锡焊的场合,可提高锡焊的合格率和可靠性。
(第3实施形式)
下面,说明本发明的第3实施形式。图6为第3实施形式的金属加热方法的说明图。该第3实施形式的金属加热方法将焊锡(第2金属构件)112供给到金属构件(第1金属构件)111上,在金属构件111上使焊锡112熔化进行锡焊。在该金属加热方法中,将激光L照射到金属构件111和焊锡112双方或仅照射到金属构件111。通过这样照射激光L,使置于金属构件111上的焊锡112中的与金属构件111相对的部分即焊锡112的与金属构件111接触的部分最先熔化。这样,置于金属构件111上的焊锡112中的与金属构件相对的部分比与该相对部分的相反侧的部分先熔化,从而使锡焊的合格率或可靠性高。
在该金属加热方法中,最好照射焊锡112的反射率比金属构件111的反射率大的波长的激光L。另外,如在图4和图5示出金和锡的各自的吸光率的波长依存性那样,当波长处于550nm或其以下时,金的吸光率比锡的吸光率大,所以,最好金属构件111以金为主成分,焊锡112以锡为主成分,激光L的中心波长最好在550nm或其以下。在该场合,使金属构件111的温度上升速度比焊锡112的温度上升速度大,适于使焊锡112中的与金属构件111相对的部分最先熔化。另外,在该场合,最好金属构件111与焊锡112的锡焊的匹配性良好。近年来,考虑到环境,使用以锡为主成分的焊锡(Sn-3Ag-0.5Cu)代替含铅的焊锡的场合增多。
另外,最好使金属构件111的激光照射面积比焊锡112的激光照射面积大地照射激光L。也可如图7所示那样,将激光L仅照射到金属构件111。此时,由于如图4和图5所示那样,当波长不足600nm时,金的吸光率大,所以,最好金属构件111以金为主成分,激光L的中心波长不足600nm。在该场合,最好使金属构件111的温度上升速度比焊锡112的温度上升速度大,使焊锡112中的与金属构件111相对的部分最先熔化。
另外,最好使在金属构件111的能量赋予量比在焊锡112的能量赋予量大地照射激光L。在这里,能量赋予量用照射能量与吸光率的积表示。为了调整分别在金属构件111和焊锡112的能量赋予量,调整各个的激光反射率(即激光L的波长)、各个的激光照射强度和各个的激光照射范围等任一方即可。在该场合,使金属构件111的温度上升速度比焊锡112中的温度上升速度大,适于使焊锡112中的与金属构件111相对的部分最先熔化。
(第4实施形式)
下面,说明本发明的第4实施形式。图8为第4实施形式的金属加热方法的说明图。该第4实施形式的金属加热方法将焊锡(第2金属构件)112供给到金属构件(第1金属构件)111上,在金属构件111上使焊锡112熔化进行锡焊;其中,在金属构件111或焊锡112照射激光L1、L2。通过这样照射激光L1、L2,使放置到金属构件111上的焊锡112中的与金属构件111相对的部分即焊锡112的与金属构件111接触的部分最先熔化。这样,放置于金属构件111上的焊锡112中的与金属构件111相对的部分比与该相对部分相反侧的部分先熔化,从而使锡焊的合格率和可靠性高。
该第4实施形式的金属加热方法的特征在于,作为照射到金属构件111或金属加热112的激光,使用第1中心波长的激光L1和第2中心波长的激光L2。
图9为示出在第4实施形式的金属加热方法中较好地使用的金属加热装置的构成的一例的图。在该图所示金属加热装置4中,激光L1、L2从光输出部10输出,经过耦合光学系统(透镜)20,入射到导光部(光纤)30的一端,由该导光部30引导后,从导光部30的另一端出射,由透镜120聚光或平行校正,照射到金属构件111或焊锡112。这样,最好激光L1、L2各个的出射位置相同。这样,可简单而且廉价地构成用于将激光L1、L2引导或照射到金属构件11或焊锡12的光学系统。
图10为示出在第4实施形式的金属加热方法中较好地使用的金属加热装置的构成的另一例的图。示于该图的金属加热装置4a除了具有透镜120外,具有与图1所示金属加热装置1同样的构成。在该金属加热装置4a中,光输出部10具有多个光源10k,多个光源10k中的一部分输出第1中心波长的激光L1,另一部分输出第2中心波长的激光L2。k为大于等于1的整数,在图10中,k示出1和2的场合的例。
一方的激光L1从光输出部10的光源101输出,经过耦合光学系统(透镜)201,入射到作为导光部30的束式光纤的一端。另一方的激光L2从光源102输出,经过耦合光学系统(透镜)202,输入到作为导光部30的束式光纤的一端。入射到束式光纤30的一端的激光L1、L2在由束式光纤30引导后,从束式光纤30的另一端出射,由透镜120聚光或平行校正,照射到金属构件111或焊锡112。
通过如该图10所示那样使用束式光纤30,从而使激光L1、L2分别从束式光纤30的相互不同的出射位置出射,容易照射到金属构件111或焊锡112。另外,使金属构件111的激光照射面积比从焊锡112的激光照射面积大地照射激光L1,同时,使焊锡112的激光照射面积比金属构件111的激光照射面积大地照射激光L2。这样,对于金属构件111的温度上升,激光L1的照射处于支配地位,对于焊锡112的温度的上升,激光L2的照射处于支配地位,所以,通过调整激光L1、L2各自的波长、照射强度和照射范围等任一个,从而可进行最佳的锡焊。另外,通过使用束式光纤30,从而可简单而且廉价地形成用于将激光L1、L2引导或照射到金属构件111或焊锡112的光学系统。
激光L1、L2的各中心波长最好相差波长宽度以上,或相差100nm或其以上。通过这样使用各个的中心波长不同的激光L1、L2,同时,适当地设定照射金属构件111或焊锡112时的诸条件,从而可进行高效率的锡焊。
另外,最好金属构件111以金为主成分,激光L1的中心波长不足600nm。另外,最好焊锡112以锡为主成分,激光L2的中心波长在600nm或其以上。这样,金属构件111与焊锡112的锡焊的匹配性良好。如图4和图5所示那样,当不到波长600nm时,金的反射率小,所以,在以金为主成分的金属构件111照射中心波长不足600mm的激光L1,从而可高效率地进行金属构件111的加热。另外,作为输出中心波长600nm或其以上的激光L2的光源10k,可获得较廉价、高功率的光源(例如输出波长800nm的半导体激光器光源、输出波长1064nm的YAG激光器光源等),如图4和图5所示那样,锡的反射率的波长依存性小,所以,最好在以锡为主成分的焊锡112照射中心波长600nm或其以上的激光L2。
在来自光源10k的激光充分引导至光纤30的场合,也可如图16所示那样没有透镜20k。另外,也可如图17所示那样,由单一的透镜20将来自光源10k的激光引导至光纤30。另外,也可如图18所示那样,不使用光纤地由透镜120会聚激光后进行照射。另外,也可如图19所示那样从光源10k直接照射光。
(第5实施形式)
下面,说明本发明的第5实施形式。图11为示意地示出第5实施形式的金属加热装置的透视图。在该图所示金属加热装置5使用上述金属加热装置1、2、4或4a作为光源装置60。光源装置60具有内装光输出部10和控制部50的模块62,在模块62连接着导光部30。
另外,金属加热装置5具有底座64、第1台(搭载单元)66、导向件(导向单元)68a和68b、支柱70、第2台72、焊锡供给单元74、摄像机(摄影单元)76、及监视器78。
底座64通过导向件68a和68b支承第1台66。第1台66沿来自导光部30的输出端30a的光交叉的面设置。第1台66可沿与上述光的光轴交叉的二个方向由导向件68a和68b移动。也可设置用于使第1台66移动的步进电动机等驱动系。
支柱70支承于底座64,朝与上述光轴相同方向延伸。第2台72由支柱70支承,而且可沿支柱70移动。也可设有用于使第2台72移动的气缸等的驱动系。
锡焊供给装置74将焊锡供给到搭载于第1台66的金属构件,可将卷于卷轴的焊丝供给到金属构件上。
摄像机76对第1台66上的区域的图像进行摄影,将该图像输出到监视器78。因此,搭载于第1台66上的金属构件的图像由监视器78进行显示。
另外,金属加热装置5也可具有测量第1台66上的区域的温度的温度传感器80。在该场合,从温度传感器80的输出提供给控制部50,从而控制来自光输出部10的光输出。温度传感器80优选为如红外线CCD摄像机那样测定二维的温度分布的装置。在该场合,通过根据温度分布的测定结果由控制部50个别地调整多个光源的光输出,从而可成为目标的最佳温度分布地进行加热。
下面,以作为光源装置60具有金属加热装置1的金属加热装置5为例说明其动作。在这里,说明了这样的例子,即,作为金属构件,在设有含金的图形的基板上搭载IC芯片,该图形和IC芯片的端子由含锡的焊锡进行锡焊。
图12为显示于监视器的基板的画面例。在使用该金属加热装置5的场合,首先,在第1台66上搭载基板90。根据由摄像机76摄影获得的基板90的图像,移动第1台66。例如,如图12所示那样,在将2个IC芯片92搭载于基板90的场合,在搭载了芯片92的区域98a和98b的一方照射来自输出端30a的光地移动第1台66。该移动使后述的焊锡位于来自输出端30a的光照射的区域中的的第1区域,使基板90的图形90a位于第2区域。该移动可通过根据图像处理的结果控制第1台66的驱动系而实施,也可由手动实施。
然后,将IC芯片92搭载于基板90上。由焊锡供给装置74将焊锡96供给到基板90的图形90a上和IC芯片92的端子92a上。
然后,由来自控制部50的驱动电流从光输出部10输出光。图13为放大地示出锡焊部位的图。在图13中,用虚线标记的圆形的标记表示从各光纤30m,n投射到基板90上的光点。
在这里,控制部50使输出用于照射第2区域的光的光源10m,n的驱动电流比输出用于照射第1区域的光的光源10m,n的驱动电流大。输出用于照射其它区域的光的光源10m,n的驱动电流更小,或不供给驱动电流。该第1区域在图13中为加了斜线的影线的照射光点的区域,为焊锡96应处于的区域。另外,第2区域为在图13中照射加了格子状的影线的光点的区域,为图形90a应处于的区域。这样,可增强照射到图形90a的光的强度,可使图形90a的温度比焊锡96先上升。结果,与图形90a接触的部分的焊锡96先熔化,可实现可靠性高的锡焊。另外,第2区域围住第1区域的一部分,不将强度大的光照射到IC芯片92。因此,可防止IC92的故障。
在焊锡96熔化后,停止向光源10m,n供给电流,焊锡硬化。此时,通过强制性地冷却基板90,从而也可缩短硬化时间。
然后,将来自输出端30a的光照射到区域98a或98b的另一方地使第1台66移动后,反复进行上述的处理。
以上说明了本发明的实施形式,但本发明不限于上述实施形式,可进行多种变形。例如,本发明由于可按良好的效率对金属构件进行加热,所以,也可适用于金属的退火、消除金属的应变、金属的变形加工等。另外,也可适用于金属微粒子的烧结加工。
另外,光源的数量可为多个,也可为1个。在第1实施形式中,二维地排列了多个光纤的出射端,但也可一维地排列多个光纤的出射端。
另外,金属加热装置1、3、4、及4a也可用作光源装置。在将金属加热装置1和4a用作光源装置的场合,可较好地将该光源装置用作照射各种图形的光。在该场合,该光源装置不限于输出上述预定波长范围的光的光源,也可具有输出各种波长范围的光的光源。
产业上利用的可能性
按照本发明,提供一种可进行与对象物对应的效率良好的加热的金属加热装置、金属加热方法、及光源装置。

Claims (39)

1.一种金属加热装置,其特征在于:具有输出中心波长处于波长范围200nm~600nm内的光的光输出单元。
2.根据权利要求1所述的金属加热装置,其特征在于:上述光输出单元输出中心波长处于波长范围390nm~420nm内的光。
3.根据权利要求1或2所述的金属加热装置,其特征在于:上述光输出单元包括输出上述光的光源。
4.根据权利要求3所述的金属加热装置,其特征在于:上述光源包括输出激光的激光器光源。
5.根据权利要求3所述的金属加热装置,其特征在于:上述光源包括使用半导体元件的光源。
6.根据权利要求1所述的金属加热装置,其特征在于:还具有导光单元,该导光单元具有与上述光输出单元光耦合的输入端和输出端,将来自上述光输出单元的光输入到上述输入端,对该光进行导光,从上述出射端输出。
7.根据权利要求6所述的金属加热装置,其特征在于:上述导光单元包括光纤。
8.根据权利要求1所述的金属加热装置,其特征在于:还包括使上述光扩大、扩大、收敛或平行校正的透镜。
9.根据权利要求1或2所述的金属加热装置,其特征在于:上述光输出单元包括输出上述光的多个光源。
10.根据权利要求9所述的金属加热装置,其特征在于:上述多个光源为输出激光的激光器光源。
11.根据权利要求9所述的金属加热装置,其特征在于:上述光源包括使用半导体元件的光源。
12.根据权利要求9所述的金属加热装置,其特征在于:上述多个光源包括输出第1中心波长的光的第1光源和输出第2中心波长的光的第2光源。
13.根据权利要求9所述的金属加热装置,其特征在于:还具有分别控制上述多个光源各自的输出动作的控制部。
14.根据权利要求9所述的金属加热装置,其特征在于:还具有导光单元,该导光单元具有与上述光输出单元光耦合的输入端和输出端,将来自上述光输出单元的光输入到上述输入端,对该光进行导光,从上述出射端输出。
15.根据权利要求14所述的金属加热装置,其特征在于:上述导光单元包括相对上述多个光源1对1地设置的多个光纤,
上述多个光纤分别对从上述多个光源中的对应的光源输出的光进行导光。
16.根据权利要求15所述的金属加热装置,其特征在于:上述导光单元还包括1根光纤,该1根光纤具有与上述多个光纤各个的出射端光耦合的输入端,和将输入到该输入端的光输出的输出端。
17.根据权利要求9所述的金属加热装置,其特征在于:还包括相对上述多个光源1对1地设置的多个透镜。
18.根据权利要求15所述的金属加热装置,其特征在于:上述多个光纤各个的出射端一维或二维地排列着。
19.根据权利要求18所述的金属加热装置,其特征在于:还具有沿来自上述多个光纤各个的出射端的光交叉的面设置的搭载单元,
对上述搭载单元上的区域的图像进行摄影的摄影单元,
用于根据由上述摄影单元摄影的图像使上述搭载单元或上述出射端移动的导向单元,及
分别控制上述多个光源各个的输出动作的控制部。
20.根据权利要求19所述的金属加热装置,其特征在于:上述控制部控制上述多个光源的输出动作,使得照射在围住上述搭载单元上的第1区域的一部分的第2区域的光的强度比照射在该第1区域的光的强度大。
21.根据权利要求1所述的金属加热装置,其特征在于:通过照射上述光从而对焊锡进行加热。
22.一种金属加热方法,包括从光输出单元输出中心波长处于波长范围200nm~600nm内的光的步骤,和
将上述光照射到金属构件的步骤。
23.根据权利要求22所述的金属加热方法,其特征在于:上述光为中心波长处于波长范围390nm~420nm内的光。
24.根据权利要求22或23所述的金属加热方法,其特征在于:作为上述光,输出激光。
25.根据权利要求22所述的金属加热方法,其特征在于:还包括:将来自上述光输出单元的光输入到导光单元的输入端,由上述导光单元对该光进行导光,从该导光单元的出射端输出的步骤。
26.根据权利要求25所述的金属加热方法,其特征在于:由作为导光单元的光纤对上述光进行导光。
27.根据权利要求22所述的金属加热方法,其特征在于:还包括由透镜使上述光扩大、收敛或平行校正的步骤。
28.根据权利要求22或23所述的金属加热方法,其特征在于:从作为上述光输出单元的多个光源分别输出上述光。
29.根据权利要求28所述的金属加热方法,其特征在于:从上述多个光源输出激光。
30.根据权利要求28所述的金属加热方法,其特征在于:还具有由控制部分别控制上述多个光源各自的输出动作的步骤。
31.根据权利要求28所述的金属加热方法,其特征在于:还具有导光单元,该导光单元具有与上述光输出单元光耦合的输入端和输出端,将来自上述光输出单元的光输入到上述输入端,对该光进行导光,从上述出射端输出。
32.根据权利要求31所述的金属加热方法,其特征在于:由相对上述多个光源1对1地设置的作为上述导光单元的多个光纤,分别对从上述多个光源中的对应的光源输出的光进行导光。
33.根据权利要求32所述的金属加热方法,其特征在于:由作为上述导光单元与上述多个光纤各个的出射端光耦合的1根光纤进一步对上述光进行导光。
34.根据权利要求28所述的金属加热方法,其特征在于:还包括由相对上述多个光源1对1设置的多个透镜使上述光收敛或平行校正的步骤。
35.根据权利要求32所述的金属加热方法,其特征在于:上述多个光纤各自的出射端一维或二维地排列着。
36.根据权利要求35所述的金属加热方法,其特征在于:还包括
将上述金属构件搭载于搭载单元的步骤,
由上述摄影单元对上述金属构件的图像进行摄影的步骤,
根据由上述摄影单元摄影的图像对上述金属构件的位置或上述出射端的相对位置进行调整的步骤,及
由控制部分别控制上述多个光源各个的输出动作的步骤。
37.根据权利要求36所述的金属加热方法,其特征在于:上述控制部控制上述多个光源的输出动作,使得照射在围住上述搭载单元上的第1区域的一部分的第2区域的光的强度比照射在该第1区域的光的强度大。
38.根据权利要求22所述的金属加热方法,其特征在于:对上述金属构件照射上述光从而对焊锡进行加热。
39.根据权利要求37所述的金属加热方法,其特征在于:还包括将包括锡的焊锡供给到上述金属构件的步骤,
上述金属构件包括金,
在调整上述金属构件的位置的上述步骤中,将上述焊锡的位置调整到第1区域,将上述金属构件的位置调整到上述第2区域。
CN200910206594A 2003-10-03 2004-09-30 金属加热装置及金属加热方法 Pending CN101698254A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003346199 2003-10-03
JP2003-346199 2003-10-03
JP2004-138983 2004-05-07
JP2004138983 2004-05-07

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNB2004800287862A Division CN100563894C (zh) 2003-10-03 2004-09-30 金属加热方法

Publications (1)

Publication Number Publication Date
CN101698254A true CN101698254A (zh) 2010-04-28

Family

ID=34425352

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910206594A Pending CN101698254A (zh) 2003-10-03 2004-09-30 金属加热装置及金属加热方法

Country Status (5)

Country Link
EP (1) EP1676661A4 (zh)
JP (1) JPWO2005032752A1 (zh)
KR (1) KR101168446B1 (zh)
CN (1) CN101698254A (zh)
WO (1) WO2005032752A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8303738B2 (en) 2003-10-03 2012-11-06 Sumitomo Electric Industries, Ltd. Metal heating apparatus, metal heating method, and light source apparatus
JP4784406B2 (ja) 2006-06-13 2011-10-05 住友電気工業株式会社 ファイバレーザ装置およびレーザ加工方法
JP2010049106A (ja) * 2008-08-22 2010-03-04 Suzuki Gakki Seisakusho:Kk リード加工方法、ハーモニカおよび鍵盤ハーモニカ
DE102014213528A1 (de) * 2014-07-11 2015-08-06 Continental Automotive Gmbh Verfahren zum Verbinden zweier Werkstoffe durch Löten
TW201636144A (zh) * 2015-04-13 2016-10-16 翊鼎光電股份有限公司 雷射焊接裝置
EP3302868B1 (en) * 2015-05-26 2023-07-12 IPG Photonics Corporation Multibeam laser system and method for welding
CN110860751A (zh) * 2018-08-16 2020-03-06 台达电子工业股份有限公司 多光束焊锡系统及多光束焊锡方法
KR102174928B1 (ko) * 2019-02-01 2020-11-05 레이저쎌 주식회사 멀티 빔 레이저 디본딩 장치 및 방법

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4926022A (en) * 1989-06-20 1990-05-15 Digital Equipment Corporation Laser reflow soldering process and bonded assembly formed thereby
US5049718A (en) * 1989-09-08 1991-09-17 Microelectronics And Computer Technology Corporation Method of laser bonding for gold, gold coated and gold alloy coated electrical members
JPH0466285A (ja) * 1990-07-05 1992-03-02 Matsushita Electric Ind Co Ltd 加熱装置
US5272309A (en) * 1990-08-01 1993-12-21 Microelectronics And Computer Technology Corporation Bonding metal members with multiple laser beams
JPH06216516A (ja) * 1993-01-20 1994-08-05 Mitsubishi Electric Corp 電子部品のはんだ付方法
JPH06326389A (ja) * 1993-04-09 1994-11-25 Nippon Steel Corp レーザーはんだ付け装置用光源
JPH11254160A (ja) * 1998-03-10 1999-09-21 Matsushita Electric Ind Co Ltd レーザ装置
JP2000031564A (ja) * 1998-07-15 2000-01-28 Mitsubishi Electric Corp レーザ制御装置
DE19839343A1 (de) * 1998-08-28 2000-03-16 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Verfahren zum Bearbeiten eines Bauteils oder einer Bauteilanordnung mittels elektromagnetischer Strahlung sowie Vorrichtung zum Fügen, insbesondere Verlöten
JP2001047222A (ja) * 1999-08-16 2001-02-20 Nippon Avionics Co Ltd レーザによる被覆細線のリフローソルダリング法
JP3720681B2 (ja) * 2000-06-26 2005-11-30 株式会社ファインディバイス レーザー式はんだ付け方法及び装置
JP3849758B2 (ja) * 2001-04-12 2006-11-22 ソニー株式会社 半導体レーザ素子

Also Published As

Publication number Publication date
EP1676661A1 (en) 2006-07-05
EP1676661A4 (en) 2008-09-10
WO2005032752A1 (ja) 2005-04-14
KR101168446B1 (ko) 2012-07-25
KR20060123128A (ko) 2006-12-01
JPWO2005032752A1 (ja) 2007-11-15

Similar Documents

Publication Publication Date Title
US20240348012A1 (en) Applications, Methods and Systems for a Laser Deliver Addressable Array
US4278867A (en) System for chip joining by short wavelength radiation
EP3235014B1 (en) Method of forming a device assembly
KR950001305B1 (ko) 레이저에 의한 배선패턴 절단방법 및 장치
US11224937B2 (en) Line beam light source, line beam irradiation device, and laser lift off method
KR20130079148A (ko) 레이저 납땜 시스템
US20170227816A1 (en) Led backlight unit with separately and independently dimmable zones for a liquid crystal display
RU2095206C1 (ru) Способ пайки
CN101698254A (zh) 金属加热装置及金属加热方法
CN103179801B (zh) 发光装置的制造方法
CN100563894C (zh) 金属加热方法
EP3616819A1 (en) Laser soldering method and device
US20080047939A1 (en) Process and apparatus for joining at least two elements
CN111542216B (zh) 多光束激光剥离装置
EP1228738B1 (de) Lichthärtgerät mit einer Halbleiter-Strahlungsquelle in Wärmeleitverbindung mit einem Basiskörper
US4909428A (en) Furnace to solder integrated circuit chips
US8303738B2 (en) Metal heating apparatus, metal heating method, and light source apparatus
Bachmann Present technology, industrial applications, and future prospects of high-power diode lasers
JP7565582B2 (ja) レーザーハンダ付け装置及び方法
US20030217996A1 (en) Method for simultaneous laser beam soldering
Dorsch et al. Fiber-coupled diode laser systems up to 2-kW output power
TW202034413A (zh) 電子部件的回流及返工裝置
Whitehead et al. Semiconductor Diode Lasers for Soldering
US20080031575A1 (en) Optoelectronic module
JP2007109997A (ja) 半導体モジュールの製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20100428