CN101680945B - 微波/毫米波传感器装置 - Google Patents

微波/毫米波传感器装置 Download PDF

Info

Publication number
CN101680945B
CN101680945B CN2008800176410A CN200880017641A CN101680945B CN 101680945 B CN101680945 B CN 101680945B CN 2008800176410 A CN2008800176410 A CN 2008800176410A CN 200880017641 A CN200880017641 A CN 200880017641A CN 101680945 B CN101680945 B CN 101680945B
Authority
CN
China
Prior art keywords
signal
radial pattern
microwave
sensor apparatus
millimeter wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2008800176410A
Other languages
English (en)
Other versions
CN101680945A (zh
Inventor
歌川仁史
松井敏明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Information and Communications Technology
Original Assignee
National Institute of Information and Communications Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Information and Communications Technology filed Critical National Institute of Information and Communications Technology
Publication of CN101680945A publication Critical patent/CN101680945A/zh
Application granted granted Critical
Publication of CN101680945B publication Critical patent/CN101680945B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • G01S7/032Constructional details for solid-state radar subsystems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2208Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • H01Q9/285Planar dipole
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/18Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance
    • H03B5/1841Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance the frequency-determining element being a strip line resonator
    • H03B5/1847Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance the frequency-determining element being a strip line resonator the active element in the amplifier being a semiconductor device
    • H03B5/1852Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance the frequency-determining element being a strip line resonator the active element in the amplifier being a semiconductor device the semiconductor device being a field-effect device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93271Sensor installation details in the front of the vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93272Sensor installation details in the back of the vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93274Sensor installation details on the side of the vehicles

Abstract

本发明涉及可以实现单纯结构、低成本以及高电力效率,并且可以取得高灵敏度的检测信息的微波/毫米波传感器装置。在本发明的微波/毫米波传感器装置中,在表面侧电介体基板(10)与背面侧电介体基板(11)之间介有内层GND(12)的平面放射型振荡器基板(S1)在表面层(16)侧轴对称地具备一对导体贴片(4、4),将微波晶体管(1)的栅极(2)以及漏极(3)分别与导体贴片(4、4)连接,通过栅极侧RF扼流圈电路(5a)以及漏极侧扼流圈电路(5b)对微波晶体管(1)的栅极(2)以及漏极(3)进行供电,在源极(8)上连接满足振荡条件的阻抗线路(9),作为平面放射型振荡器而发送RF带的发送RF信号,并且接收来自被测定物的反射波即接收RF信号,通过零拍混频取得IF信号而作为检测信息。

Description

微波/毫米波传感器装置
技术领域
本发明涉及向被测定物发射微波/毫米波带的信号,并接收来自被测定物的反射波而检测(例如动作检测、速度检测、存在检测、以及位置检测等)与被测定物相关的信息的微波/毫米波传感器装置。
背景技术
以往的微波/毫米波传感器装置构成为,通过微带线等传送线路,来连接晶体管振荡器电路或GUNN二极管振荡电路、二极管混频器电路、天线、耦合器、分配器、以及发送接收分离用循环器等各个独立的功能电路。这样的以往的微波/毫米波传感器装置是一般通过将振荡电路的振荡信号用作发送RF信号,并且利用分配电路来取出该振荡信号的一部分并也用作混频器电路用本地信号,使该混频器作为零拍型降频变换器而发挥功能,而将接收RF信号变换成IF信号的零拍型传感器方式的微波/毫米波传感器装置。
在这样的通过连接独立的功能电路来构成的微波/毫米波传感器装置中,电路的高密度集成化中存在界限,并且,特别在毫米波带中由于这些功能电路间的连接部、传送线路引起的损失成为电路性能劣化的主要原因,所以提出了将振荡器电路、混频器电路、以及天线等集成化的结构的零拍型传感器或零拍型降频变换器。
例如在非专利文献1“C.M.Montiel,’A Self-mixing active antennafor communication and vehicle identification applications’,MTT-SDigest,1996”中,公开了如下内容:将用作振荡元件兼混频元件的GUNN二极管直接安装在圆形导体贴片内,从与圆形导体贴片连接的带有DC阻塞电容器的偏置Tee电路中取出IF信号。
另外,在非专利文献2“Robert A.Flynt,’Low Cost and CompactActive Intergrated Antenna Transceiver for System Application’,MTT-10 Vol.44 Oct.,1996”中,公开了如下内容:在通过片式电容器电容地耦合的两个半圆形导体贴片的中央配置用作振荡元件的FET,在漏极侧导体贴片内直接安装用作混频元件的肖特基势垒二极管。
另外,在非专利文献3“M.J.Kelly,’HBT active antenna as aself-oscillating Doppler sensor’,IEE Proc.Microw.Antennas Properg.,vol.147,No.1,Feb.,2000”中,公开了如下内容:对供电阻抗是50欧姆的一般的方形导体贴片天线的供电点,在同一平面上连接独立于该贴片天线所设计的50欧姆负载用的通常的微带线型晶体管振荡电路,将该晶体管用作振荡元件兼混频元件,从通常的方形导体贴片天线中输入接收RF信号,在晶体管的漏极侧RF扼流圈与直流电源之间配置20欧姆的电阻,并从该电阻的扼流圈侧的端子作为电压而取出施加到集电极与发射极之间的IF信号。
但是,如非专利文献1记载的发明那样,在圆形导体贴片内直接安装了GUNN二极管的结构中,虽然没有由于传送线路而引起的电力损失,但GUNN二极管自身的DC/RF变换效率与晶体管相比非常不佳,因此功耗变大,如果不采用高的放热结构,则无法期待稳定动作。另外,GUNN二极管与晶体管相比,无法期待高的RF/IF变换增益,所以在检测灵敏度的这一点中是不利的。进而,在非专利文献1记载的发明中,虽然采用了平面导体贴片型放射结构,但无法实现期待单纯结构、低成本、以及高电力效率的传感器装置。
另外,如非专利文献1记载的发明那样,在通过片式电容器电容耦合的两个半圆形导体贴片的中央配置振荡用FET,并在漏极侧导体贴片内直接安装了混频用的肖特基势垒二极管的结构中,由于将多个RF带部件配置在导体贴片内,不得不成为复杂的结构。另外,在通过片式电容器实现的电容耦合中,难以在毫米波带中实现,且在混频用中使用肖特基势垒二极管,所以无法期待比晶体管高的RF/IF变换增益,在检测灵敏度的这一点中是不利的。
另外,如非专利文献3记载的发明那样,对设计成50Ω供电用的方形导体贴片天线的供电点,在同一平面上仅连接了设计成50Ω负载用的微带线型晶体管振荡电路的结构中,在方形贴片天线与振荡电路的微带线导体之间产生难以回避的耦合,所以振荡电路的导体图案对放射输出、放射图案、以及振荡频率特性造成影响。非专利文献3记载的发明由于具有这样的缺点,所以难以实际地处理。而且,非专利文献3记载的发明构成为,对输出阻抗是50欧姆的一般的微带线振荡电路,连接输入阻抗50欧姆的一般的微带线方形贴片天线,所以天线与振荡电路没有成为浑然一体,特别在毫米波带中,由于构成用于振荡的反馈电路等的微波带部引起的电力损失增大,所以在效率的这一点中是不利的。
发明内容
本发明的目的在于提供一种微波/毫米波传感器装置,可以实现单纯结构、低成本、以及高电力效率,并且可以取得高灵敏度的检测信息(动作检测、速度检测、存在检测、以及用于进行位置检测等的IF信号)。
为了实现上述目的,本发明的第1发明提供一种微波/毫米波传感器装置,其特征在于,以在共振腔中发生负性电阻的形式使三电极高频放大元件集成化,并且以使向空间放射电磁波的天线功能共用的形式构成放射型振荡器,该放射型振荡器的振荡放射波是发送RF信号,该发送RF信号被被测定物反射而产生的反射波是接收RF信号,使用上述放射型振荡器接收该接收RF信号,通过由放射型振荡器自身产生的零拍混频来取得IF信号,基于由信号解析处理单元解析以及处理根据在RF带中振荡动作中的上述三电极高频放大元件具有的直流利用IF带中的放大增益所放大的IF信号,进行被测定物的检测。
本发明的第2发明的微波/毫米波传感器装置在上述第1发明中,其特征在于,上述放射型振荡器的三电极高频振荡元件中的三电极是被控制电流流入电极、被控制电流流出电极、以及控制电极,在上述三电极高频放大元件的被控制电流流入电极,连接使直流偏置电压以及IF信号通过并阻止RF信号的RF扼流圈电路,在该RF扼流圈电路与直流电源的供电路之间插入IF带负载单元,从该IF带负载单元与上述RF扼流圈电路之间取出上述IF信号。
本发明的第3发明的微波/毫米波传感器装置在上述第1发明中,其特征在于,上述放射型振荡器的三电极高频振荡元件中的三电极是被控制电流流入电极、被控制电流流出电极、以及控制电极,在上述三电极高频放大元件的被控制电流流出电极,连接使直流偏置电压以及IF信号通过并阻止RF信号的RF扼流圈电路,在该RF扼流圈电路与直流电源的供电路之间插入IF带负载单元,从该IF带负载单元与上述RF扼流圈电路之间取出上述IF信号。
本发明的第4发明的微波/毫米波传感器装置在上述第1~第3发明中的任意一个发明中,其特征在于,在上述放射型振荡器中设置振荡稳定化用共振腔,使该振荡稳定化用共振腔与放射型振荡器电磁场耦合。
本发明的第5发明的微波/毫米波传感器装置在上述第1~第4发明中的任意一个发明中,其特征在于,在上述放射型振荡器的放射面侧,设置有能够提高发送RF信号的放射指向性的喇叭结构。
本发明的第6发明的微波/毫米波传感器装置在上述第1~第5发明中的任意一个发明中,其特征在于,频率选择性滤波单元,从上述放射型振荡器的放射面隔开适当距离而配置,对所需频率的电波选择性地进行滤波。
本发明的第7发明的微波/毫米波传感器装置在上述第1~第6发明中的任意一个发明中,其特征在于,具备可以搭载上述放射型振荡器的接地导体面的筐体,在从该筐体的接地导体面离开λ/2波长或其整数倍的电气长度量的放射面侧配置部分透射性反射面,由相对向的部分透射性反射面和接地导体面,构成波束放射型共振器。
本发明的第8发明的微波/毫米波传感器装置在上述第1~第6发明中的任意一个发明中,其特征在于,在上述放射型振荡器的放射面侧,配置使两个部分透射性反射面对向而构成的波束放射型共振器,将一个反射面的反射率设为R1,将另一个反射面的反射率设为R2,在R1>R2的情况下,使反射率小的R2面侧对向于上述放射面侧,使该波束放射型共振器与放射型振荡器电磁场耦合。
本发明的第9发明的微波/毫米波传感器装置在上述第1~第8发明中的任意一个发明中,其特征在于,通过使向上述放射型振荡器的三电极高频放大元件供电的直流偏置值变化,使振荡频率或振荡振幅变化。
本发明的第10发明的微波/毫米波传感器装置在上述第1~第8发明中的任意一个发明中,其特征在于,在决定上述发送RF信号的振荡频率的共振腔中,设置由可变电容元件实现的阻抗可变部,通过施加给可变电容元件的外部信号,使振荡频率变化。
本发明的第11发明的微波/毫米波传感器装置在上述第1~第8发明中的任意一个发明中,其特征在于,设为可以向上述放射型振荡器供给外部注入锁定信号,使振荡频率稳定化。
本发明的第12发明的微波/毫米波传感器装置在上述第11发明中,其特征在于,通过使上述外部注入锁定信号的频率变化,而使发送RF信号的振荡频率变化。
本发明的第13发明提供一种微波/毫米波传感器装置,其特征在于,以在共振腔中发生负性电阻的形式使三电极高频放大元件集成化,并且以使向空间放射电磁波的天线功能共用的形式构成放射型振荡器,具备选择从该放射型振荡器的放射面中放射的振荡RF信号的期望的高次谐波并使其透射的高频谐波选择单元,振荡RF信号的期望的高次谐波是发送高次谐波信号,该发送高次谐波信号被被测定物反射而产生的反射波是接收高次谐波信号,使用上述放射型振荡器接收该接收高次谐波信号,通过由放射型振荡器自身产生的零拍高次谐波混频来取得IF信号,基于由信号解析处理单元解析以及处理根据在RF带中振荡动作中的上述三电极高频放大元件具有的直流利用IF带中的放大增益所放大的IF信号,进行被测定物的检测。
本发明的第14发明的微波/毫米波传感器装置在上述第13发明中,其特征在于,上述高次谐波选择单元是从上述放射型振荡器的放射面侧隔开适当距离而配置的,并设为对所需频率的电波选择性地进行滤波的频率选择性电路图案面。
本发明的第15发明的微波/毫米波传感器装置在上述第13发明中,其特征在于,在上述高次谐波选择单元中,从上述放射型振荡器的放射面侧隔开适当距离而配置使两个部分透射性反射面对向而构成的波束放射型共振器,使该波束放射型共振器的共振频率成为期望的高次谐波的频率。
本发明的第16发明的微波/毫米波传感器装置在上述第13发明中,其特征在于,上述高次谐波选择单元设为选择期望的高次谐波并使其透射而放射的波导管滤波器。
根据本发明的第1发明,以在共振腔中发生负性电阻的形式使三电极高频放大元件集成化,并且以使向空间放射电磁波的天线功能共用的形式构成放射型振荡器,该放射型振荡器的振荡放射波是发送RF信号,该发送RF信号被被测定物反射而产生的反射波是接收RF信号,通过上述放射型振荡器接收该接收RF信号,通过由放射型振荡器自身实现的零拍混频而取得IF信号,利用信号解析处理单元对从在RF带中振荡动作中的上述三电极高频放大元件具有的直流中通过IF带中的放大增益所放大的IF信号进行解析以及处理,据此进行被测定物的检测,所以除了放射型振荡器原来具有的高效放射特性以及高效接收特性以外,在IF带中也同时利用三电极高频放大元件的放大增益来达成RF/IF变换效率,可以实现能够实现单纯结构、低成本、以及高电力效率,同时能够取得高灵敏度的检测信息(用于进行动作检测、速度检测、存在检测、以及位置检测等的IF信号)的微波/毫米波传感器装置。
另外,根据本发明的第2发明,上述放射型振荡器的三电极高频振荡元件中的三电极是被控制电流流入电极、被控制电流流出电极、以及控制电极,对上述三电极高频放大元件的被控制电流流入电极,连接使直流偏置电压以及IF信号通过并阻止RF信号的RF扼流圈电路,在该RF扼流圈电路与直流电源的供电路之间插入IF带负载单元,从该IF带负载单元与上述RF扼流圈电路之间取出上述IF信号,所以高频晶体管在进行上述RF带振荡动作的同时,进行IF带放大动作,可以达成综合性高的RF/IF变换效率。因此,可以实现能够实现单纯结构、低成本、以及高电力效率,同时能够取得高灵敏度的检测信息(用于进行动作检测、速度检测、存在检测、以及位置检测等的IF信号)的微波/毫米波传感器装置。换言之,本发明的第2发明的微波/毫米波传感器装置的特征点在于,通过单一传感器元件来实现通过高效接收特性实现的高的RF/IF变换效率、和通过IF放大实现的高的RF/IF变换效率,而得到相乘效果。即,RF发送天线、RF接收天线、RF振荡器、RF混频器、以及IF放大器的各功能成为浑然一体,因为并非简单地将这些各功能密集连接的装置,所以可以提供在微波毫米波带中有利的结构的传感器装置。
另外,根据本发明的第3发明,上述放射型振荡器的三电极高频振荡元件中的三电极是被控制电流流入电极、被控制电流流出电极、以及控制电极,对上述三电极高频放大元件的被控制电流流出电极,连接使直流偏置电压以及IF信号通过并阻止RF信号的RF扼流圈电路,在该RF扼流圈电路与直流电源的供电路之间插入IF带负载单元,从该IF带负载单元与上述RF扼流圈电路之间取出上述IF信号,所以高频晶体管在进行RF带振荡动作的同时,进行IF带放大动作,可以达成综合性高的RF/IF变换效率。因此,可以实现能够实现单纯结构、低成本、以及高电力效率,同时能够取得高灵敏度的检测信息(用于进行动作检测、速度检测、存在检测、以及位置检测等的IF信号)的微波/毫米波传感器装置。换言之,本发明的第3发明的微波/毫米波传感器装置的特征点在于,通过单一传感器元件来实现通过高效接收特性实现的高的RF/IF变换效率、和通过IF放大实现的高的RF/IF变换效率,而得到相乘效果。即,RF发送天线、RF接收天线、RF振荡器、RF混频器、以及IF放大器的各功能成为浑然一体,因为并非简单地将这些各功能密集连接的装置,所以可以提供在微波毫米波带中有利的结构的传感器装置。
另外,根据本发明的第4发明,在上述放射型振荡器中设置振荡稳定化用共振腔,使该振荡稳定化用共振腔与放射型振荡器电磁场耦合,所以期待放射型振荡器中的振荡频率的稳定化。
另外,根据本发明的第5发明,在上述放射型振荡器的放射面侧,设置有可以提高发送RF信号的放射指向性的喇叭结构,所以可以确保某开口而使放射波束变得尖锐,提高检测灵敏度。
另外,根据本发明的第6发明,具备从上述放射型振荡器的放射面隔开适当距离配置,对所需频率的电波选择性地进行滤波的频率选择性滤波单元,所以可以抑制不需要信号的辐射。
另外,根据本发明的第7发明,具有具备可以搭载上述放射型振荡器的接地导体面的筐体,在从该筐体的接地导体面离开λ/2波长或其整数倍的电气长度量的放射面侧配置部分透射性反射面,由相对向的部分透射性反射面和接地导体面,构成波束放射型共振器,所以放射型振荡器的振荡RF信号被稳定化,不放射共振频率以外的信号,所以可以防止不需要的辐射,由于不会入射共振频率以外的不需要的外部电波,所以可以防止误动作。
另外,根据本发明的第8发明,在上述放射型振荡器的放射面侧,配置使两个部分透射性反射面对向而构成的波束放射型共振器,将一个反射面的反射率设为R1,将另一个反射面的反射率设为R2,在R1>R2的情况下,使反射率小的R2面侧与上述放射面侧对向,使该波束放射型共振器与放射型振荡器电磁场耦合,所以放射型振荡器的振荡RF信号被稳定化,不放射共振频率以外的信号,所以可以防止不需要的辐射,由于不会入射共振频率以外的不需要的外部电波,所以可以防止误动作。
另外,根据本发明的第9发明,通过使向上述放射型的三电极高频放大元件供电的直流偏置值变化,使振荡频率或振荡振幅变化,所以可以实现FM-CW传感器动作、脉冲传感器动作等,可以检测被测定物的位置信息等。
另外,根据本发明的第10发明,在决定上述发送RF信号的振荡频率的共振腔中,设置由可变电容元件实现的阻抗可变部,通过施加给可变电容元件的外部信号使振荡频率变化,所以可以实现FM-CW传感器动作等,可以检测被测定物的位置信息等。
另外,根据本发明的第11发明,设为可以向上述放射型振荡器供给外部注入锁定信号,使振荡频率稳定化,所以可以使放射型振荡器的振荡锁定于该外部注入锁定信号,使振荡频率稳定化。
另外,根据本发明的第12发明,通过使上述外部注入锁定信号的频率变化,而使发送RF信号的振荡频率变化,所以可以实现FM-CW传感器动作等,可以检测被测定物的位置信息等。
另外,根据本发明的第13发明,以在共振腔中发生负性电阻的形式使三电极高频放大元件集成化,并且以使向空间放射电磁波的天线功能共用的形式构成放射型振荡器,具备使从该放射型振荡器的放射面中放射的振荡RF信号的期望的高次谐波选择性地透射的高频谐波选择单元,振荡RF信号的期望的高次谐波是发送高次谐波信号,该发送高次谐波信号被被测定物反射而产生的反射波是接收高次谐波信号,通过上述放射型振荡器接收该接收高次谐波信号,通过由放射型振荡器自身实现的零拍高次谐波混频而取得IF信号,利用信号解析处理单元对从在RF带中振荡动作中的上述三电极高频放大元件具有的直流中通过IF带中的放大增益所放大的IF信号进行解析以及处理,据此进行被测定物的检测,所以即使使用最大动作频率(fmax)小的低成本低性能的三电极高频放大元件来构成放射型振荡器,也可以实现比较高的频率下的传感器装置。
另外,根据本发明的第14发明,上述高次谐波选择单元是从上述放射型振荡器的放射面侧隔开适当距离而配置的,并设为对所需频率的电波选择性地进行滤波的频率选择性电路图案面,所以可以通过简易的结构来实现高次谐波选择单元。
另外,根据本发明的第15发明,在上述高次谐波选择单元中,从上述放射型振荡器的放射面侧隔开适当距离而配置使两个部分透射性反射面对向而构成的波束放射型共振器,使该波束放射型共振器的共振频率成为期望的高次谐波的频率,所以可以通过简易的结构来实现高次谐波选择单元。
另外,根据本发明的第16发明,上述高次谐波选择单元设为使期望的高次谐波选择性地透射而放射的波导管滤波器,所以可以从波导管口中确保某开口而使放射波束变得尖锐,提高检测灵敏度。
附图说明
图1A、图1B、图1C是本发明的第1实施方式的微波/毫米波传感器装置的示意图。
图2是本发明的第1实施方式的微波/毫米波传感器装置的电路结构图。
图3是平面放射型振荡器中的导体贴片以及微波晶体管的结构说明图。
图4是使IF信号取出用的电阻变化后的情况下的输出电压的变化特性图。
是本发明的第2实施方式的微波/毫米波传感器装置的示意图。
图5是第2实施方式的微波/毫米波传感器装置的电路结构图。
图6是第3实施方式的微波/毫米波传感器装置的电路结构图。
图7是第4实施方式的微波/毫米波传感器装置的电路结构图。
图8是第5实施方式的微波/毫米波传感器装置的电路结构图。
图9是第6实施方式的微波/毫米波传感器装置的电路结构图。
图10是第7实施方式的微波/毫米波传感器装置的电路结构图。
图11是第8实施方式的微波/毫米波传感器装置的电路结构图。
图12是第9实施方式的微波/毫米波传感器装置的电路结构图。
图13是第10实施方式的微波/毫米波传感器装置的电路结构图。
图14是第11实施方式的微波/毫米波传感器装置的电路结构图。
图15是第12实施方式的微波/毫米波传感器装置的电路结构图。
图16是第13实施方式的微波/毫米波传感器装置的电路结构图。
图17是第14实施方式的微波/毫米波传感器装置的电路结构图。
图18是第15实施方式的微波/毫米波传感器装置的电路结构图。
图19是第16实施方式的微波/毫米波传感器装置的电路结构图。
图20是第17实施方式的微波/毫米波传感器装置的电路结构图。
图21是第18实施方式的微波/毫米波传感器装置的电路结构图。
图22是第19实施方式的微波/毫米波传感器装置的电路结构图。
图23是第20实施方式的微波/毫米波传感器装置的电路结构图。
图24A、图24B是本发明中可以应用的共振腔的第1结构例的示意图,图24A是该示意图的表面图,图24B是图24A中的A-A’线的箭头方向剖面图。
图25A、图25B是本发明中可以应用的共振腔的第2结构例的示意图,图25A是该示意图的表面图,图25B是图25A中的A-A’线的箭头方向剖面图。
图26A、图26B是本发明中可以应用的共振腔的第3结构例的示意图,图26A是该示意图的表面图,图26B是图26A中的A-A’线的箭头方向剖面图。
图27A、图27B是本发明中可以应用的共振腔的第4结构例的示意图,图27A是该示意图的表面图,图27B是图27A中的A-A’线的箭头方向剖面图。
图28A、图28B是本发明中可以应用的共振腔的第5结构例的示意图,图28A是该示意图的表面图,图28B是图28A中的A-A’线的箭头方向剖面图。
图29A、图29B是本发明中可以应用的共振腔的第6结构例的示意图,图29A是该示意图的表面图,图29B是图29A中的A-A’线的箭头方向剖面图。
图30A、图30B是本发明中可以应用的共振腔的第7结构例的示意图,图30A是该示意图的表面图,图30B是图30A中的A-A’线的箭头方向剖面图。
图31A、图31B是本发明中可以应用的共振腔的第8结构例的示意图,图31A是该示意图的表面图,图31B是图31A中的A-A’线的箭头方向剖面图。
图32A、图32B是本发明中可以应用的共振腔的第9结构例的示意图,图32A是该示意图的表面图,图32B是图32A中的A-A’线的箭头方向剖面图。
图33A、图33B是本发明中可以应用的共振腔的第10结构例的示意图,图33A是该示意图的表面图,图33B是图33A中的A-A’线的箭头方向剖面图。
图34A、图34B是本发明中可以应用的共振腔的第11结构例的示意图,图34A是该示意图的表面图,图34B是图34A中的A-A’线的箭头方向剖面图。
图35A、图35B是本发明中可以应用的共振腔的第12结构例的示意图,图35A是该示意图的表面图,图35B是图35A中的A-A’线的箭头方向剖面图。
图36A、图36B、图36C是本发明的第21实施方式的微波/毫米波传感器装置的示意图。
图37是第21实施方式的微波/毫米波传感器装置的电路结构图。
图38A、图38B是第22实施方式的微波/毫米波传感器装置的示意图,图38A是该示意图的表面图,图38B是图38A中的A-A’线的箭头方向剖面图。
图39A、图39B是第23实施方式的微波/毫米波传感器装置的示意图,图39A是该示意图的表面图,图39B是图39A中的A-A’线的箭头方向剖面图。
图40A、图40B是第24实施方式的微波/毫米波传感器装置的示意图,图40A是该示意图的表面图,图40B是图40A中的A-A’线的箭头方向剖面图。
图41A、图41B是第25实施方式的微波/毫米波传感器装置的示意图,图41A是该示意图的表面图,图41B是图41A中的A-A’线的箭头方向剖面图。
图42是第26实施方式的微波/毫米波传感器装置的概略纵剖面图。
图43是第27实施方式的微波/毫米波传感器装置的电路结构图。
图44A、图44B、图44C是第28实施方式的微波/毫米波传感器装置的示意图。
图45A、图45B、图45C是第29实施方式的微波/毫米波传感器装置的示意图。
图46A、图46B、图46C是第30实施方式的微波/毫米波传感器装置的示意图。
图47A、图47B、图47C是第31实施方式的微波/毫米波传感器装置的示意图。
图48A、图48B、图48C是第32实施方式的微波/毫米波传感器装置的示意图。
图49是第33实施方式的微波/毫米波传感器装置的概略结构图。
图50A、图50B、图50C是第34实施方式的微波/毫米波传感器装置的示意图。
具体实施方式
以下,根据附图,对本发明的微波/毫米波传感器装置的实施方式进行说明。
(第1实施方式)
图1A、图1B、图1C示出第1实施方式的微波/毫米波传感器装置的概略结构,图1A是放射型振荡器基板S1的表面图,图1B是图1A中的A-A’线的箭头方向剖面图,图1C是放射型振荡器基板S1的背面图。放射型振荡器基板S1成为在表面侧电介体基板10与背面侧电介体基板11之间介有接地导体层即内层GND 12的三层基板结构,从直流电源DC1以及DC2对该放射型振荡器基板S1的高频晶体管1进行直流供电,通过信号解析处理部P处理从放射型振荡器基板S1中取出的检测信号(IF信号)。
即,放射型振荡器基板S1作为“以在共振腔中发生负性电阻的形式使三电极高频放大元件集成化,并且使向空间放射电磁波的天线功能共用的放射型振荡器”而发挥功能,放射型振荡器的振荡放射波是发送RF信号,该发送RF信号被被测定物反射而产生的反射波是接收RF信号,通过上述放射型振荡器接收该接收RF信号,通过由放射型振荡器自身实现的零拍混频来取得IF信号,利用信号解析处理单元即信号解析处理部P对根据在RF带中振荡动作中的上述三电极高频放大元件具有的直流通过IF带中的放大增益而放大的IF信号进行解析以及处理,据此可以进行被测定物的检测。另外,信号解析处理部P进行所输入的IF信号的A/D变换、FFT计算等期望的信号处理、以及信号解析,根据作为微波/毫米波传感器而检测的检测信息(动作检测、速度检测、存在检测、以及位置检测等),适当设定处理内容、解析手法即可。另外,三电极高频放大元件是通过利用小的电压或电流来控制大的电流而实现放大功能的元件,包括单体的晶体管元件、使用多个单体的晶体管而构成的元件,并且不限于以单体处理的零件,而还包括通过半导体工艺而在半导体晶片中做入的零件。该三电极高频放大元件中的控制电极是施加控制电压、或使控制电流流入(或流出)的电极,相当于栅极、基极。另外,被控制电流流入电极是被控制的电流流入的电极,被控制电流流出电极是流出被控制的电流的电极,根据元件结构是N型还是P型,一个相当于漏极、集电极,另一个相当于源极、发射极。
在放射型振荡器基板S1的表面侧电介体基板10的表面层16侧,轴对称地设置一对导体贴片4、4而形成放射面,并且将这些一对导体贴片4、4之间配置的作为三电极高频放大元件的高频晶体管1中设置的作为控制电极的栅极2以及作为被控制电流流入电极的漏极3分别与导体贴片4、4连接,对高频晶体管1的栅极2连接栅极电压供给用的栅极侧RF扼流圈电路5a,对高频晶体管1的漏极3连接漏极电压供给用的漏极侧RF扼流圈电路5b,对高频晶体管1的作为被控制电流流出电极的源极8连接满足振荡条件的阻抗线路9。另外,栅极电极供给用的栅极侧RF扼流圈电路5a以及漏极电压供给用的漏极侧RF扼流圈电路5b是经由通孔部13与放射型振荡器基板S1的背面侧电介体基板10的背面层17侧形成的导体线路拼接而构成的。
另外,在放射型振荡器基板S1的背面层17侧,设置有:为了对栅极电压供给用的栅极侧RF扼流圈电路5a供给直流栅极电压而与直流电源DC1连接的直流栅极电压供给端子6a;为了对漏极电压供给用的漏极侧RF扼流圈电路5b供给直流漏极电压而与直流电源DC2连接的直流漏极电压供给端子6b;串联连接在该直流漏极电压供给端子6b与漏极侧RF扼流圈电路5b之间的作为IF带负载单元的电阻7;以及从该电阻7与漏极侧RF扼流圈电路5b之间取出IF信号电压的IF输出端子14。
图2是示出安装在放射型振荡器基板S1中的电路结构的概略电路图,对与图1相同的结构附加相同标号。另外,在三层基板结构的放射型振荡器基板S1中,由表面层16、内层GND 12、以及表面侧电介体基板10构成放射型振荡器的RF电路部,由内层GND 12、背面层17、以及背面侧电介体基板11构成RF扼流圈电路以及IF电路。
另外,导体贴片4作为共振器、发送天线、以及接收天线而发挥功能,并且构成反馈电路。通过该导体贴片4的面积和形状设定等和向上述高频晶体管的直流供电,实现振荡放射波长λ即RF带的发送RF信号的放射型振荡器。
图3是示出一对轴对称的导体贴片4的图,各导体贴片4具备与高频晶体管1的栅极2或漏极3连接的等倾斜角的尖锐部,这些尖锐部被配置成相互接近,将经由该尖锐部而宽度W相等的平行部的长度设为D,将从一对导体贴片4的一端至另一端的整体长度(全长)设为L。
在这样构成的导体贴片4中,通过调整连接了高频晶体管1的栅极2或漏极3的尖锐部的扩展角θ,可以调整高频晶体管1与共振器的耦合强度,另外,通过适当地选择全长、宽度W、以及平行部的长度D,得到振荡条件的设定中所需的各条件的选择的自由度。另外,虽然省略了图示,通过在振荡波长λ的1/15~1/5倍之间设定设置有导体贴片4的表面层16与内层GND 12的间隔h(实际上表面侧电介体基板10的厚度),可以确保稳定的振荡状态。另外,导体贴片4的结构没有特别限定,只要可以通过表面侧电介体基板10以及内层GND 12来构成适合于振荡RF信号的共振腔,则可以是任意结构。对于共振腔的改变例,在后面说明。
为了使第1实施方式的微波/毫米波传感器装置动作,首先,对直流漏极电压供给端子6a与GND之间施加直流电压而在RF带中振荡。由于通过该振荡而放射电波,所以将其作为发送RF信号而照射到被测定物。这样,天线与振荡电路成为浑然一体的放射型振荡器本来具有的高效放射特性即也是高效接收特性,来自被测定物的反射波即接收RF信号被低损失地输入施加到高频晶体管1的栅极2与漏极3之间。对振荡中的高频晶体管1输入的接收RF信号通过与振荡RF信号的零拍混频而产生IF信号。
另外,接收IF信号电压在被测定物移动时是多普勒拍子信号,在被测定物静止时是检测到驻波的零拍子的DC信号。
在高频晶体管1的栅极2与漏极3、或栅极2与源极8之间产生的IF信号使高频晶体管1的漏极电流变化,其结果,在串联插入于漏极侧RF扼流圈电路5b与直流电源DC2之间的电阻7的RF扼流圈侧端子6b中产生放大的IF信号电压。
此处,高频晶体管1是包括MOS-FET的IG-FET(InsulatedGate FET,绝缘栅FET)、HEMT(High Electron Mobility Transistor,高电子迁移率晶体管)、及MESFET(Metal-Semiconductor FET,金属半导体FET)等场效应晶体管(FET:Field Effect Transistor)、或者HBT(Hetero-junction Bipolar Transistor,异质结双极晶体管)等双极型结型晶体管(BJT:Bipolar Junction Transistor)等,是具有在RF带中满足振荡条件的负性电阻,并且同时在IF带中具有放大增益的晶体管。即,高频晶体管1由于具有比二极管大RF带放大增益,所以有产生高灵敏度的RF接收特性的能力,并且,在从DC至IF带中也具有放大增益,所以有对通过混频产生的IF信号进行放大的功能。这样,可以通过同时利用高频晶体管1的RF带以及DC~IF带的放大增益,来实现本实施方式的微波/毫米波传感器装置。
例如,如果振荡中的高频晶体管1的IF带中的变压器导电率值是g[S],则在电阻7的阻抗值Rd大于1/gΩ的情况下成为电压放大率Av=g×Rd>1,进行IF带中的放大,而得到高RF/IF变换效率。
但是,在漏极侧RF扼流圈电路5b与直流电源DC2之间设置有电阻7的情况下,为了提高电压放大率需要使用高电阻,漏极电压由于该高电阻而下降,所以需要提高直流电源DC2的供电电压。但是,在使用过高的电阻值的电阻7时,该电阻内的功耗成为压倒性,而无法生成放射型振荡器的高效特性。在假设使用通常的小信号高频晶体管的情况下,漏极电压是1~3V左右,漏极电流是5~20mA左右,变压器导电率值是几十mS,即使考虑与50Ω系统电路的匹配性,10~50kΩ左右这样的现实的电阻的值是适当的。例如,如果在漏极电压是2V、漏极电流是15mA的情况下,使用10kΩ的电阻,则电源电压成为152V(=2V+(10kΩ×15mA)),需要100V以上的高电压,所以伴随实用上困难。另外,由于高频晶体管自身的漏极电阻ro,有效的负载电阻Reff的值成为将电阻7与ro并联连接而成的合成电阻值,所以不论如何增大电阻7的值,Reff的值仅仅接近ro的值。
因此,如果作为IF带负载单元,比起电阻使用低电压降低的恒流电路,则由于可以利用该恒流源的高阻抗,所以可以回避由于高电阻引起的电压降低和功耗增大,并且可以提高IF带的电压放大率。
图4示出试作放射型振荡器,改变电阻7的电阻值Rd而实测的IF输出端子14的IF信号电压特性。另外,RF振荡频率是10.35GHz,是使被测定物以4mm/sec接近放射型振荡器基板S1的放射面时的结果。将电阻7的电阻值Rd作为参数而进行测定的结果,可以确认IF输出电压振幅与电阻值大致成比例。
如上所述,在本发明的微波/毫米波传感器装置的第1实施方式中,在表面侧电介体基板10与背面侧电介体基板11之间介有导电性的接地导体层12的三层基板的表面层16侧轴对称地设置一对导体贴片4、4而形成放射面,将在这些一对导体贴片4、4之间配置的三电极高频放大元件即高频晶体管1的栅极2以及漏极3与各导体贴片4连接,并且由经由满足振荡条件的阻抗线路9将高频晶体管1的原级8接地而得到放射型振荡器基板S1,由放射型振荡器基板S1、和对放射型振荡器基板S1的高频晶体管1供电的直流电源DC1、DC2构成放射型振荡器,通过该放射型振荡器,实现“以在共振腔中发生负性电阻的形式使三电极高频放大元件集成化,并且使向空间放射电磁波的天线功能共用的放射型振荡器”,得到放射型振荡器原来具有的RF带中的高效放射特性以及高效接收特性,而且,将电阻7作为IF带负载而设置在漏极侧扼流圈电路5b与直流电源DC2之间,高频晶体管1在进行上述RF带振荡动作的同时,进行IF带放大动作,从而达成综合性高的RF/IF变换效率,所以可以实现能够实现单纯结构、低成本、以及高电力效率,同时能够取得高灵敏度的检测信息(用于进行动作检测、速度检测、存在检测、以及位置检测等的IF信号)的微波/毫米波传感器装置。
换言之,该微波/毫米波传感器装置的特征点在于,通过单一传感器元件来实现通过高效接收特性实现的高的RF/IF变换效率、和通过IF放大实现的高的RF/IF变换效率,而得到相乘效果。即,RF发送天线、RF接收天线、RF振荡器、RF混频器、以及IF放大器的各功能成为浑然一体,因为并非是简单地将这些各功能密集连接的装置,所以可以提供在微波毫米波带中有利的结构的传感器装置。
另外,RF扼流圈电路的功能虽然防止RF信号漏到直流电源侧,但即使RF信号漏到直流电源侧,只要可以通过三电极高频放大元件来得到超过由于该泄露而引起的损失的负性电阻,则可以取出检测信息取得用的IF信号。因此,即使通过没有设置RF扼流圈电路的放射型振荡器来构成本发明,也可以实现微波/毫米波传感器装置。另外,也不必为了构成RF扼流圈电路,而使用三层基板结构的放射型振荡器基板。
另外,本发明的微波/毫米波传感器装置既可以通过HMIC(混合微波集成电路,hybrid microwave integrated circuit)来实现,也可以通过MMIC(单片微波集成电路,Monolithic Microwaveintegrated circuit)实现。另外,也可以通过使用了LTCC(LowTemperature Co-fired Ceramics,低温共烧陶瓷)等的三维形式的集成电路来实现。
以上,说明了本发明的微波/毫米波传感器装置的第1实施方式,但本发明不限于本实施方式的结构,只要不变更权利要求书记载的结构,则可以实现的微波/毫米波传感器装置全部包含在权利范围中。以下,对其他实施方式进行说明。
(第2实施方式)
图5示出第2实施方式的微波/毫米波传感器装置的电路结构图,从直流电源DC1以及DC2对放射型振荡器基板S2进行直流供电,通过信号解析处理部P对从放射型振荡器基板S2中取出的检测信号(IF信号)进行解析以及处理。本实施方式的微波/毫米波传感器装置是在上述第1实施方式的微波/毫米波传感器装置中改变IF信号的取出位置而得到的。另外,对于与第1实施方式示出的微波/毫米波传感器装置相同的结构,附加相同的标号而省略说明。
在放射型振荡器基板S2中,对高频晶体管1的源极8,连接源极侧RF扼流圈电路5c,在该源极侧RF扼流圈电路5c与接地导体之间,串联地插入作为IF带负载单元的电阻7,从电阻7与源极侧RF扼流圈电路5c之间取出IF信号。在本发明中,如上所述根据由于IF信号引起的高频晶体管1的漏极电流变化来得到IF信号电压,所以还可以根据与该漏极电流变化大致相同的源极电流变化来得到IF信号电压。
(第3实施方式)
图6示出第3实施方式的微波/毫米波传感器装置的电路结构图,从直流电源DC1、DC2对放射型振荡器基板S3进行直流供电,通过信号解析处理部P对从放射型振荡器基板S3中取出的检测信号(IF信号)进行解析以及处理。本实施方式的微波/毫米波传感器装置是在上述第1实施方式的微波/毫米波传感器装置中改变导体贴片4的安装位置而得到的。另外,对于与第1实施方式示出的微波/毫米波传感器装置相同的结构,附加相同的标号而省略说明。
在放射型振荡器基板S3中,对高频晶体管1的栅极和源极分别安装了导体贴片4、4。导体贴片4、4即使与高频晶体管1的栅极和源极连接,也作为兼作共振器和放射器的功能的反馈电路而发挥功能,所以可以构成放射型振荡器,可以作为与第1实施方式的微波/毫米波振荡装置同样的传感器动作。
(第4实施方式)
图7示出第4实施方式的微波/毫米波传感器装置的电路结构图,从直流电源DC1、DC2对放射型振荡器基板S4进行直流供电,通过信号解析处理部P对从放射型振荡器基板S4中取出的检测信号(IF信号)进行解析以及处理。本实施方式的微波/毫米波传感器装置是在上述第1实施方式的微波/毫米波传感器装置中改变直流电源DC2的极性和接地位置而得到的。另外,对于与上述各实施方式示出的微波/毫米波传感器装置相同的结构,附加相同的标号而省略说明。
在放射型振荡器基板S4中,将IF带负载单元即电阻7的连接侧作为接地电位侧,将负电压的直流电源DC2与源极侧连接。在该放射型振荡器基板S4中,仅基准电位变化,而作为与第1实施方式的微波/毫米波振荡装置同样的传感器动作。另外,在作为高频晶体管1使用场效应晶体管、双极性晶体管的情况下,对于场效应晶体管中的N型与P型的差异、双极性晶体管中的NPN型与PNP型的差异,仅电极电位的正负的极性变逆。
(第5实施方式)
图8示出第5实施方式的微波/毫米波传感器装置的电路结构图,仅从直流电源DC2对放射型振荡器基板S5进行直流供电,通过信号解析处理部P对从放射型振荡器基板S5中取出的检测信号(IF信号)进行解析以及处理。在本实施方式的微波/毫米波传感器装置中,作为高频晶体管1使用耗尽型场效应晶体管,并采用耗尽型场效应晶体管的自己偏置电路结构。另外,对于与上述各实施方式示出的微波/毫米波传感器装置相同的结构,附加相同的标号而省略说明。
(第6实施方式)
图9示出第6实施方式的微波/毫米波传感器装置的电路结构图,仅从直流电源DC2对放射型振荡器基板S6进行直流供电,通过信号解析处理部P对从放射型振荡器基板S6中取出的检测信号(IF信号)进行解析以及处理。在本实施方式的微波/毫米波传感器装置中,作为高频晶体管1使用双极性晶体管,并采用双极性应晶体管的自己偏置电路结构。另外,对于与上述各实施方式示出的微波/毫米波传感器装置相同的结构,附加相同的标号而省略说明。
(第7实施方式)
图10示出第7实施方式的微波/毫米波传感器装置的电路结构图,仅从直流电源DC2对放射型振荡器基板S7进行直流供电,通过信号解析处理部P对从放射型振荡器基板S7中取出的检测信号(IF信号)进行解析以及处理。在本实施方式的微波/毫米波传感器装置中,作为高频晶体管1使用双极性晶体管,并采用双极性应晶体管的自己偏置电路结构,与第6实施方式的放射型振荡器基板S6的差异点在于,在由于电阻7引起的电压下降之后向栅极侧RF扼流圈电路5a供电。另外,对于与上述各实施方式示出的微波/毫米波传感器装置相同的结构,附加相同的标号而省略说明。
(第8实施方式)
图11示出第8实施方式的微波/毫米波传感器装置的电路结构图,仅从直流电源DC2对放射型振荡器基板S8进行直流供电,通过信号解析处理部P对从放射型振荡器基板S8中取出的检测信号(IF信号)进行解析以及处理。在本实施方式的微波/毫米波传感器装置中,采用电压分割型自己偏置电路结构,在第1栅极侧RF扼流圈电路5a1与第2栅极侧RF扼流圈电路5a2之间连接了栅极。另外,对于与上述各实施方式示出的微波/毫米波传感器装置相同的结构,附加相同的标号而省略说明。
(第9实施方式)
图12示出第9实施方式的微波/毫米波传感器装置的电路结构图,仅从直流电源DC2对放射型振荡器基板S9进行直流供电,通过信号解析处理部P对从放射型振荡器基板S9中取出的检测信号(IF信号)进行解析以及处理。在本实施方式的微波/毫米波传感器装置中,采用源极电阻旁路型的电压分割型自己偏置电路结构,对源极侧的接地电路并联连接电容器。另外,对于与上述各实施方式示出的微波/毫米波传感器装置相同的结构,附加相同的标号而省略说明。
在上述第4实施方式~第9实施方式的微波/毫米波传感器装置中,示出了应用了与第1实施方式的微波/毫米波传感器装置中采用的固定偏置方法不同的偏置方法的结构,但除了这些以外,也有各种直流偏置方法,也可以根据RF带中的期望的振荡条件、IF带中的期望的增益条件、IF带中的期望的反馈条件、以及耗尽型或增强型等高频晶体管的种类等,来采用适当的偏置方法。另外,也可以利用热敏电阻或正温度系数热敏电阻、PN结正向电压Vf的温度特性等,在直流偏置电路内使用这些温敏元件,进行由于环境温度引起的本传感器装置的特性的温度补偿等,而提高传感器特性。
(第10实施方式)
图13示出第10实施方式的微波/毫米波传感器装置的电路结构图,仅从直流电源DC2对放射型振荡器基板S10进行直流供电,通过信号解析处理部P对从放射型振荡器基板S10中取出的检测信号(IF信号)进行解析以及处理。本实施方式的微波/毫米波传感器装置是在上述第8实施方式中采用的电压分割(直流反馈)型自己偏置电路结构中采用对IF带负载单元即电阻7并联连接了电容器7c的漏极负载旁路型的电压分割型自己偏置电路结构而得到的。另外,对于与上述各实施方式示出的微波/毫米波传感器装置相同的结构,附加相同的标号而省略说明。
在放射型振荡器基板S10中,通过适当设定电容器7c的电容值,可以使IF信号放大功能具有低频放大(高频衰减)的频率特性,使不需要的频带的噪声、信号衰减,对传感器特性的提高具有效果。例如,在电阻7的值是100Ω、且IF信号是DC~1kHz的频带的信号的情况下,如果将电容器7c的值设为1.5μF,则成为截至频率
Figure GSB00000120922600231
Figure GSB00000120922600232
的高频衰减特性,可以使1kHz以上的不需要的频带的噪声、信号衰减。
(第11实施方式)
图14示出第11实施方式的微波/毫米波传感器装置的电路结构图,放射型振荡器基板S11具备同一结构的第1放射型振荡器S11a和第2放射型振荡器S11b,以连接第1、第2放射型振荡器S11a、S11b的各高频晶体管1的源极,使两个高频晶体管1的源极电流之和成为恒定的方式进行偏置,在IF带中进行差动放大动作。另外,对于与上述各实施方式示出的微波/毫米波传感器装置相同的结构,附加相同的标号而省略说明。
在放射型振荡器基板S11中,通过设为第1放射型振荡器S11a和第2放射型振荡器S11b的差动结构,具有可以减少在直流放大时特别成为问题的温度漂移这样的优点。另外,如果使第1放射型振荡器S11a的振荡RF信号与第2放射型振荡器S11b的振荡RF信号空间上进行电磁场耦合等而实现同步,并适当设定第1放射型振荡器S11a与第2放射型振荡器S11b之间的距离,则可以根据IF信号得到入射给第1放射型振荡器S11a和第2放射型振荡器S11b的接收RF信号(来自被测定物的反射波)的相位差的信息。另外,也可以在第1放射型振荡器S11a或第2放射型振荡器S11b中的某一个中,不设置导体贴片而不振荡并施加适当的偏置,仅将另一个用作传感器装置。
(第12实施方式)
图15示出第12实施方式的微波/毫米波传感器装置的电路结构图,在放射型振荡器基板S12中,对高频晶体管1的栅极不连接RF扼流圈电路而仅连接导体贴片4,通过由于振荡中的高频晶体管1自身引起的自己偏置而省略了栅极侧偏置电路。另外,对于与上述各实施方式示出的微波/毫米波传感器装置相同的结构,附加相同的标号而省略说明。
(第13实施方式)
图16示出第13实施方式的微波/毫米波传感器装置的电路结构图,在放射型振荡器基板S13中,代替高频晶体管1,而使用了由多个晶体管的组合构成的三电极高频放大元件1aa。该三电极高频放大元件1aa是达林顿连接双极性晶体管的例子。另外,对于与上述各实施方式示出的微波/毫米波传感器装置相同的结构,附加相同的标号而省略说明。
(第14实施方式)
图17示出第14实施方式的微波/毫米波传感器装置的电路结构图,在放射型振荡器基板S14中,代替高频晶体管1,而使用了由多个晶体管的组合构成的三电极高频放大元件1bb。该三电极高频放大元件1bb是Cascode连接场效应晶体管的例子。另外,对于与上述各实施方式示出的微波/毫米波传感器装置相同的结构,附加相同的标号而省略说明。
(第15实施方式)
图18示出第15实施方式的微波/毫米波传感器装置的电路结构图,在放射型振荡器基板S15中,代替高频晶体管1,而使用了双栅场效应晶体管1cc。双栅场效应晶体管1cc是具有四个端子,其中两个端子是相当于控制端子的栅极,所以还可以将该双栅场效应晶体管1cc用作三电极高频放大元件。另外,对于与上述各实施方式示出的微波/毫米波传感器装置相同的结构,附加相同的标号而省略说明。
在上述第13~第15实施方式的微波/毫米波传感器装置中,例示出作为由多个晶体管的组合构成的三电极高频放大元件,使用达林顿连接双极性晶体管、Cascode连接场效应晶体管、以及双栅场效应晶体管的结构,但不限于此,只要是具有在RF带中满足振荡条件的负性电阻,并且同时在DC~IF带中具有放大增益的三电极放大电路元件,则可以应用于本发明。
(第16实施方式)
图19示出第16实施方式的微波/毫米波传感器装置的电路结构图,在放射型振荡器基板S16中,代替作为IF带负载单元的电阻7,而使用了恒流电路7aa。该恒流电路7aa是利用了场效应晶体管的恒流特性的电路结构。另外,对于与上述各实施方式示出的微波/毫米波传感器装置相同的结构,附加相同的标号而省略说明。
(第17实施方式)
图20示出第17实施方式的微波/毫米波传感器装置的电路结构图,在放射型振荡器基板S17中,代替作为IF带负载单元的电阻7,而使用了恒流电路7bb。该恒流电路7bb是利用了场效应晶体管和恒压二极管的电路结构。另外,对于与上述各实施方式示出的微波/毫米波传感器装置相同的结构,附加相同的标号而省略说明。
(第18实施方式)
图21示出第18实施方式的微波/毫米波传感器装置的电路结构图,在放射型振荡器基板S18中,代替作为IF带负载单元的电阻7,而使用了恒流电路7cc。该恒流电路7cc是通过晶体管实现的电流镜电路结构。另外,对于与上述各实施方式示出的微波/毫米波传感器装置相同的结构,附加相同的标号而省略说明。
(第19实施方式)
图22示出第19实施方式的微波/毫米波传感器装置的电路结构图,在放射型振荡器基板S19中,代替作为IF带负载单元的电阻7,而使用了恒流电路7dd。该恒流电路7dd是将上述第17实施方式中的吐出型的恒流电路7bb变换成吸入型的电路结构。另外,对于与上述各实施方式示出的微波/毫米波传感器装置相同的结构,附加相同的标号而省略说明。
(第20实施方式)
图23示出第20实施方式的微波/毫米波传感器装置的电路结构图,在放射型振荡器基板S20中,代替作为IF带负载单元的电阻7,而使用了恒流电路7ee。该恒流电路7ee包括:检测电流量的电流传感器部7ee1;输出控制基准值的基准部7ee2;对从电流传感器部7ee1中供给的检测值与来自基准部7ee2的基准值进行比较而输出差分的基准比较部7ee3;以及根据来自基准比较部7ee3的差分信息进行控制以使电流接近控制基准值的电流控制部7ee4。对于各部的电路结构,虽然考虑了多种,但只要例如将电流传感器部7ee1设为小值的电阻器,将基准部7ee2设为基准恒压源,将基准比较部7ee3设为通过运算放大器实现的电压误差放大器,将电流控制部7ee4设为晶体管,则对通过在该电阻器中流过电流而引起的电位下降与基准电压源电压进行比较而进行电流控制,可以通过简易的电路结构来实现恒流动作。另外,对于与上述各实施方式示出的微波/毫米波传感器装置相同的结构,附加相同的标号而省略说明。
在上述第16~第20实施方式的微波/毫米波传感器装置中,作为IF带负载单元使用了恒流电路,但不限于此,可以通过在IF带中得到期望的阻抗的负载单元,利用高频晶体管具有的IF带放大增益即可。另外,在IF信号的频率比较高时,也可以将在该频率中得到高阻抗的电感值的电感(线圈等)用作IF带负载单元。另外,也可以在IF带负载单元内使用温敏元件,来进行由于环境温度引起的本传感器装置的特性的温度补偿。
另外,在上述各实施方式的微波/毫米波传感器装置中,在放射型振荡器基板中具备一对大致扇形导体贴片4,但构成共振腔的导体贴片的形状没有特别限定,并非必须一对轴对称的导体贴片。以下,对本发明中可以应用的共振腔的改变例进行说明。
图24A以及图24B示出轴对称地设置了一对矩形形状的导体贴片4a的第1改变例的概略结构,图25A以及图25B示出轴对称地设置了一对矩形形状的导体贴片4b的第2改变例的概略结构,图26A以及图26B示出轴对称地设置了一对圆形的导体贴片4c的第3改变例的概略结构。另外,也可以使用三角形等多边形、椭圆形、以及扇形等导体贴片。在图24A、图25A、图26A中,为了表示主要的极化面,而用箭头E表示电场的朝向。与上述改变例同样地,在以下示出的共振腔的第4改变例至第12改变例的概略结构图中,用箭头E表示电场的朝向。GND导体面255通过导体贴片4a~4c,相当于内层GND12。对于导体贴片4a~4c电介体基板259相当于表面侧电介体基板10。导体贴片4a~4c以及GND导体面255、电介体基板259构成共振腔,构成用于振荡动作的反馈电路的一部分,但只要可以适当地得到该反馈,则无需一定设置电介体基板259、GND导体面255。例如,如果通过钣金加工来制作导体贴片,并有保持该导体贴片板的机构,则电介体基板259的部分也可以是中空。另外,也可以如图27A以及图27B所示的第4改变例那样,将用于促使上述反馈的片式电容器等反馈用部件248搭载于导体贴片4b上。另外,由于在没有GND导体面255时,在导体贴片板的两面方向上放射,所以如果利用该两面放射,则可以作为检测比有GND导体面255的情况更宽的角度范围的传感器而发挥功能。
在图28A以及图28B所示的第5改变例中,在大致扇形形状的导体贴片4、4的周围,设置有GND导体面256、和连接该GND导体面256与GND导体面255的通孔35,防止信号在电介体基板259内部传达并从基板的端漏出而损失。只要适当地设定GND导体面256的尺寸、形状,则可以将该损失量的信号能量用作本来的放射能量,而代替使信号在电介体基板259内部传达。
在图29A以及图29B所示的第6改变例中,由矩形形状的导体贴片4d、4d、和与这些导体贴片4d、4d保持适当的空隙244地配置的接地导体面256d,构成振荡用的共振腔。
在图30A以及图30B所示的第7改变例中,在与高频晶体管1连接的矩形形状的导体贴片4e1、4e1的附近,设置有不与高频晶体管1连接的矩形形状的导体贴片4e2、4e2,将导体贴片4e1与导体贴片4e2之间以及接地导体面256e隔开空隙244e,构成了振荡用的共振腔。
在图31A以及图31B所示的第8改变例中,由半椭圆状的导体贴片4f、4f、和与这些导体贴片4f、4f保持适当的空隙244f而配置的接地导体面256f,构成了振荡用的共振腔。根据场所改变该空隙244f的宽度,而满足振荡条件。
导体贴片以及空隙的形状不限于上述图28A~图31B所示的结构例,只要满足振荡条件,则不论是什么样的结构,都可以应用于本发明。另外,导体贴片以及空隙、GND导体面、电介体基板构成用于振荡动作的反馈电路的一部分,但只要可以适当地得到该反馈,则无需一定设置导电体基板259、GND导体面255。另外,在没有GND导体面255时,在导体贴片面的两侧方向上放射。
在图32A以及图32B所示的第9改变例中,由狭缝245和接地导体面256构成了振荡用的共振腔。该狭缝245相对图24A例示的矩形形状的导体贴片4a处于补对的关系,满足振荡条件。当然,如果满足振荡条件,则狭缝245的形状没有特别限定。在本结构例中,为了对高频晶体管1的栅极和漏极施加不同的直流偏置电压,设置有直流性地分离栅极与漏极而高频性地导通的电容耦合部246。该电容耦合部246可以使用通过间隙实现的电容、MIM(Metal-Insulator-Metal,金属-绝缘体-金属)电容、或电容器部件等来实现,无需一定设置电介体基板259、GND导体面255。另外,在没有GND导体面255时,在导体贴片面的两侧方向上放射。
对于上述的导体贴片,示出了将任意一对导体贴片相对高频晶体管1对称地设置的例子,但也可以使用非对称形状的导体贴片。
在图33A以及图33B所示的第10改变例中,非对称地构成了矩形形状的第1导体贴片4g1和矩形形状的第2导体贴片4g2。即使这样将第1导体贴片4g1和第2导体贴片4g2设为非对称形状,由于由导体贴片整体的尺寸(在图33A中用L表示)基本上决定共振频率,所以只要满足振荡条件,则可以作为天线与振荡电路成为浑然一体的类型的放射型振荡器动作。
在图34A以及图34B所示的第11改变例中,由大致半圆形的导体贴片4h、4h、和与这些导体贴片4h、4h保持适当的空隙245h地配置的接地导体面256h,在放射面侧形成环状狭缝型天线,构成了振荡用的共振腔。
在图35A以及图35B所示的第12改变例中,在矩形形状的导体贴片4、4的周边,适当地配置不与高频晶体管1连接的导体贴片247,而设为可以控制放射指向性。通过适当设定导体贴片4i、4i与导体贴片247的位置关系、尺寸关系,可以实现八木天线(Yagi antenna)那样的动作。
(第21实施方式)
接下来,根据图36A~图37,对本发明的微波/毫米波传感器装置的第21实施方式进行说明。另外,图36B以及图36C是示意地示出第21实施方式的微波/毫米波传感器装置的概略纵剖面的图36A中的A-A’线的箭头方向剖面图。图37是示出第21实施方式的微波/毫米波传感器装置的概略结构的电路图。
在本实施方式的微波/毫米波传感器装置中,也使用作为“以在共振腔中发生负性电阻的形式使三电极高频放大元件集成化,并且使向空间放射电磁波的天线功能共用的放射型振荡器”而发挥功能的放射型振荡器基板S21。该放射型振荡器基板S21与上述第1实施方式中的放射型振荡器基板S1同样地,由在表面侧电介体基板10与背面侧电介体基板11之间介有接地导体层即内层GND 12的三层基板结构构成,并在设置于放射型振荡器基板S21的放射面的高频晶体管1与导体贴片4的附近的内层GND12中设置狭缝21a,从而电介体共振器21b与导体贴片4电磁场耦合(参照图36B)。
这样,通过使电介体共振器21b与导体贴片4电磁场耦合,期待振荡频率的稳定化。另外,还可以如图36C所示,通过使空洞共振器21c狭缝耦合来实现振荡频率稳定化。或者,还可以通过将外部的稳定的RF信号作为外部注入锁定信号而通过微带线等供给给狭缝21a,使放射型振荡器的振荡锁定成该外部注入锁定信号,而使振荡频率稳定化。另外,如果在形成导体贴片4的表面层16侧配置各种共振器,则还可以不经由狭缝21a而直接电磁场耦合。
另外,在放射型振荡器基板S21的放射面侧,设置由金属导体或针对金属导体在必要部分进行涂层而得到的塑料树脂材料等制作的喇叭状的放射结构部30,该放射结构部30的放射面侧开口被图案化了频率选择性电路图案的基板31闭塞。即,在本实施方式的微波/毫米波传感器装置中,通过设为将喇叭状的放射结构部30设置在放射型振荡器基板S21的放射面侧的喇叭结构,可以确保某开口而使放射波束变得尖锐,提高检测灵敏度。而且,通过图案化了频率选择性电路图案的基板31作为对所需频率的电波选择性地进行滤波的频率选择性滤波单元而发挥功能,可以抑制不需要信号的辐射。
作为上述频率选择性滤波单元而发挥功能的基板31例如在希望使振荡频率的两倍的不需要的高次谐波输出衰减的情况下,可以通过按照适当的间隔图案化了以该高次谐波的波长的1/2波长的电气长度为长边的正方形带导体31a而实现。即,可以使这些带导体31a共振、捕捉高次谐波,来抑制高次谐波放射。此时的频率选择性滤波单元作为带阻滤波器而发挥功能。
此处,频率选择性电路图案一般被称为FSS(Frequency SelectiveSurface,频率选择表面),通过除了由图36A所示的长方形带导体31a实现的带阻滤波器以外,还适当设定导体图案的形状,可以实现带通滤波器、高通滤波器、以及低通滤波器等。在有多个希望抑制的不需要信号的情况等下,使用与各个频率对应的滤波器即可。
另一方面,在放射型振荡器基板S21的背面层17侧(电介体共振器21b配置侧),安装有使用金属导体或对金属导体进行涂层而得到的塑料树脂材料等制作的遮蔽罩32。另外,设置在放射型振荡器基板S21的表面层16侧的表面GND导体图案21d、与设置在内层GND导体图案12和背面层17侧的背面GND导体图案21e经由GND通孔21f电连接。另外,为了防止振荡RF信号在表面侧电介体基板10或背面侧电介体基板11内传播并从基板的缘的侧面放射,在导体贴片4的周围以及基板外周的各GND导体图案12、21d、21e中,优选以振荡波长的1/10左右的间隔配置GND通孔21f而电连接。
进而,在放射型振荡器基板S21的背面侧电介体基板11上,设置电源稳定化电路33、用于对IF信号电压进行数字数据化的A/D变换电路34,防止由于外来噪声引起的检测信号劣化。从数据输出端子35中输出由A/D变换电路34将模拟值变换为数字值而得到的IF信号电压值。另外,电源稳定化电路33使从直流漏极电压供给端子35中供给的直流稳定化。
接下来,根据图37,对本实施方式的微波/毫米波传感器装置中的放射型振荡器基板S21中形成的电路结构进行说明。在微波晶体管1的栅极2和漏极3上分别连接了导体贴片4,在栅极2、漏极3、以及源极8上分别连接了RF扼流圈电路5a~5c。对漏极3,通过利用了结型场效应晶体管(JFET)的栅极接地漏极电流(Idss)的恒流电路37,连接电源稳定化电路33,对栅极2和源极8分别连接自己偏置用的电阻器并接地。
从漏极3侧的RF扼流圈电路5b与恒流电路37之间取出IF信号电压,并通过A/D变换电路34进行了将模拟值变换成数字值的信号处理之后,从数据输出端子35中输出。即,在本实施方式的微波/毫米波传感器装置中,通过将恒流电路37的高阻抗(几kΩ~)设为晶体管的IF带中的漏极负载,确保充分的IF带放大增益,同时与简单地将高电阻设为漏极负载的情况相比,抑制漏极负载中的功耗。
另外,为了使本实施方式的微波/毫米波传感器装置动作,对直流漏极电压供给端子36连接直流电源,使放射型振荡器振荡,将该振荡放射信号作为发送RF信号而照射到被测定物,将来自被测定物的反射波作为接收RF信号而输入给栅极2与漏极3之间,通过零拍混频动作而在栅极2与漏极3或栅极2与源极8之间产生的IF信号电压使微波晶体管1的漏极电流变化。其结果,在恒流电路37的RF扼流圈电路5b侧产生放大的IF信号电压,通过A/D变换电路34对该IF信号电压进行数字信号化并从数据输出端子35中输出,通过省略图示的信号解析部进行解析。
另外,在本实施方式的微波/毫米波传感器装置中,放射型振荡器基板S21的结构没有特别限定,而也可以对第1~第20放射型振荡器基板S1~S20,设置放射结构部30以及遮蔽罩32、频率选择性电路图案。另外,也可以由使用了LTCC(Low Temperature Co-firedCeramics)等的三维方式的集成电路来构成放射结构部30和放射型振荡器基板S21。
(第22实施方式)
接下来,根据图38A以及图38B,对本发明的第22实施方式的微波/毫米波传感器装置进行说明。在本实施方式的微波/毫米波传感器装置的概略结构中,将与上述第1~第21实施方式的微波/毫米波传感器装置中使用的放射型振荡器基板S1~S21中的某一个同样的结构的放射型振荡器基板S22收容在波束放射型共振器内部,从省略图示的直流电源向筐体内的放射型振荡器基板S22进行直流供电,并且从放射型振荡器基板S22中取出IF信号(模拟信号或被A/D变换的数字信号),适当地进行处理。
放射型振荡器基板S22搭载于从由金属导体或针对金属导体在必要部分进行涂层而得到的塑料树脂材料构成的筐体40的外援部擂钵状地凹下的平坦的底部即接地导体面41,在从该接地导体面41离开距离d(振荡波长λ的N/2左右、N=1、2、3...)的电气长度的放射面侧配置有部分透射性反射单元即部分透射性反射基板50。部分透射性反射基板50构成为在其一个面(例如与接地导体面41面对的内侧面)具有由形成有格子状导体图案的格子状导体图案形成区域51以及不具有导体图案的导体区域52构成的部分透射性反射面,由部分透射性反射面(由格子状导体图案形成区域51以及导体区域52构成的面)和接地导体面41构成波束放射型共振器。
通过这样构成,放射型振荡器基板S22的放射型振荡器成为被内含在上述波束放射型共振器中的形式,通过波束放射型共振器使放射型振荡器的振荡RF信号稳定化。另外,由于不放射共振频率以外的信号,所以可以防止不需要的辐射,由于不会入射共振频率以外的不需要的外部电波,所以有效地防止误动作。另外,通过适当设计格子状导体图案形成区域51的格子间隔、格子宽度、格子状导体图案形成区域51的宽度、以及形状等,可以得到低旁波瓣(side lobe)高增益的放射指向性。
本实施方式示出的筐体40的接地导体面41兼作作为波束放射型共振器的反射面的作用、和作为放射型振荡器基板S22的接地导体的作用,但只要在波束放射型共振器内部的适当的位置收容放射型振荡器,以使振荡频率以波束放射型共振器的共振频率稳定化,则也可以不必兼作各个作用。另外,本实施方式示出的波束放射型共振器在部分透射性反射基板50的一个面上图案化金属膜而构成部分透射性反射面,但只要在从接地导体面41距离d的位置保持部分透射性反射面,则并非特别需要基板。
另外,在本实施方式的微波/毫米波传感器装置中,放射型振荡器基板S22的结构没有特别限定,也可以相对第1~第21放射型振荡器基板S1~S21,设置放射结构部30以及遮蔽罩32、形成有频率选择性电路图案的部分透射性反射面。另外,也可以由使用了LTCC(Low Temperature Co-fired Ceramics)等的三维方式的集成电路来构成波束放射型共振器和放射型振荡器基板S22。
(第23实施方式)
接下来,根据图39A以及图39B,对本发明的第23实施方式的微波/毫米波传感器装置进行说明。在本实施方式的微波/毫米波传感器装置的概略结构中,在与上述第1~第21实施方式的微波/毫米波传感器装置中使用的放射型振荡器基板S1~S21中的某一个同样的结构的放射型振荡器基板S23的放射面侧,配置有部分透射性反射基板50’,该部分透射性反射基板50’是隔开距离d2(振荡波长λ的N/2左右、N=1、2、3...)使由格子状导体图案形成区域51a以及导体区域52a构成的第1部分透射性反射面、和由格子状导体图案形成区域51b以及导体区域52b构成的第2部分透射性反射面对向而成的,由该部分透射性反射基板50’构成波束放射型共振器。此处,由于构成为在将第1部分透射性反射面的反射率设为R1、将第2部分透射性反射面的反射率设为R2的情况下,设定成R1>R2的条件,而从反射率小的部分透射性反射面侧使波束放射型共振器与放射型振荡器电磁场耦合,所以从省略图示的直流电源向筐体内的放射型振荡器基板S23进行直流供电,并且从放射型振荡器基板S23中取出IF信号(模拟信号或A/D变换后的数字信号),适当地进行处理。
另外,本实施方式中的放射型振荡器基板S23与上述第22实施方式同样地,搭载于筐体40的接地导体面41上,并在筐体40的外缘上端载置部分透射性反射基板50’,从而适当地保持放射型振荡器基板S23与波束放射型共振器之间,但该筐体40由于与共振器的结构无关,所以只要是可以适当地保持放射型振荡器基板S23与透射性反射基板50’的保持结构,则也可以任意变更。
另外,在本实施方式中,作为实现波束放射型共振器的部分透射性反射基板50’的结构,在厚度是d2的电介体基板的一个面中图案化金属膜图案而形成第1部分透射性反射面、并在另一个面中图案化金属膜图案而形成第2部分透射性反射面,但只要是可以隔开距离d2而保持第1部分透射性反射面与第2部分透射性反射面的结构,则无需一定使用电介体基板。
根据本实施方式的微波/毫米波传感器装置,由于具备通过部分透射性反射基板50’实现的波束放射型共振器,所以放射型振荡器基板S23的振荡RF信号对波束放射型共振器电磁场耦合而实现频率稳定化。另外,由于不放射共振频率以外的信号,所以可以防止不需要的辐射,由于不会入射共振频率以外的不需要的外部电波,所以有效地防止误动作。另外,通过适当设计格子状导体图案形成区域51a、51b的格子间隔、格子宽度、格子状导体图案形成区域51a、51b的宽度、以及形状等,可以得到低旁波瓣高增益的放射指向性。
另外,如果本实施方式的微波/毫米波传感器装置的部分透射性反射基板50’那样,在低损失/低热膨胀率的电介体基板中,部件化实施了通过薄膜技术实现的高尺寸精度的金属膜图案的波束放射型共振器,则可以吸收由于与其组合的放射型振荡器基板S23的振荡频率特性偏差、由于组装尺寸误差而引起的振荡频率特性偏差等。因此,在考虑了本发明的微波/毫米波传感器装置的量产化的情况下,具有可以提供高成品率且稳定的质量的传感器装置这样的优点。
另外,在本实施方式的微波/毫米波传感器装置中,放射型振荡器基板S23的结构没有特别限定,而也可以对第1~第21放射型振荡器基板S1~S21,在放射面侧配置波束放射型共振器。另外,也可以由使用了LTCC(Low Temperature Co-fired Ceramics)等的三维方式的集成电路来构成与部分透射性反射基板50’同样的结构的波束放射型共振器和放射型振荡器基板S23。
(第24实施方式)
接下来,根据图40A以及图40B,对本发明的第24实施方式的微波/毫米波传感器装置进行说明。在本实施方式的微波/毫米波传感器装置的概略结构中,将与上述第1~第21实施方式的微波/毫米波传感器装置中使用的放射型振荡器基板S1~S21中的某一个同样的结构的放射型振荡器基板S24与频率选择单元组合,从省略图示的直流电源向筐体40’内的基板安装面42中安装的放射型振荡器基板S24进行直流供电,并且从放射型振荡器基板S24中取出IF信号(模拟信号或被A/D变换的数字信号),适当地进行处理。
在放射型振荡器基板S24的放射面侧,配置作为高次谐波选择单元而发挥功能的高次谐波选择基板60,通过该高次谐波选择基板60选择振荡RF信号的期望的高次谐波,作为发送高次谐波信号向被测定物放射,在放射面接收从被测定物反射的反射高次谐波信号,通过由放射型振荡器自身实现的零拍高次谐波混频而取得IF信号,检测被测定物。另外,在本实施方式中,也通过筐体40’来保持高次谐波选择单元即高次谐波选择基板60和放射型振荡器基板S24,但由于该筐体40’与高次谐波选择单元的功能没有关系,所以只要是可以适当地保持放射型振荡器基板S24和高次谐波选择基板S60的保持结构,则也可以任意变更。
高次谐波选择基板60具有阻止基波并使期望的高次谐波通过的滤波器的功能,在电介体基板的一个面(例如与基板安装面42面对的内侧面),作为频率选择性电路图案,在导体区域61中设置有长方形的裂缝部62。假设在希望放射振荡频率的两倍的高次谐波的情况下,通过以适当的间隔配置以该高次谐波的波长的1/2波长的电气长度为长边的狭缝部62,可以使该狭缝部62振荡高次谐波,并使该高次谐波通过。此时的高次谐波选择单元作为带通滤波器而发挥功能。
频率选择性电路图案一般被称为FSS(Frequency SelectiveSurface),除了由长方形的狭缝部61实现的带通滤波器以外,还可以通过适当设定导体图案的形状,来实现带阻滤波器、高通滤波器等。例如在设为希望放射两倍波,且放射型振荡器基板S24具有的放射输出特性中的基波和两倍波的电力强大、且三倍以上的电力微弱的情况下,使用用于仅阻止基波的带阻滤波器、高通滤波器即可,无需总是使用本实施方式中采用的高次谐波选择基板60那样的带通滤波器。
此处,在筐体40’的基板安装面42是金属的情况下,高次谐波选择基板60中的频率选择性电路图案面和基板安装面42作为反射面而发挥功能,如果将这些距离设为振荡波长λ的N/2左右(N=1、2、3...)的电气长度,则成为第23实施方式那样的动作。但是,在本实施方式中,将频率选择性电路图案面可以用作仅使期望的高次谐波通过的滤波器即可,而无需一定用作波束放射型共振器的反射面。因此,筐体40’的基板安装面42无需一定是金属,筐体40’也可以是简单的保持机构。
根据本实施方式的微波/毫米波传感器装置,将振荡RF信号的期望的高次谐波作为发送高次谐波信号而向被测定物放射,在放射面中接收从被测定物中反射的反射高次谐波信号,通过由放射型振荡器自身实现的零拍高次谐波混频来取得IF信号,而可以检测被测定物,所以具有即使使用fmax小的低成本低性能晶体管来构成放射型振荡器基板,也可以实现比较高的频率下的传感器装置的优点,虽然与使用基波的情况相比,放射功率变得微弱,但可以用作近距离的传感器装置。
另外,在本实施方式的微波/毫米波传感器装置中,对放射型振荡器基板S24的结构没有特别限定,而也可以对第1~第21放射型振荡器基板S1~S21,在放射面侧配置形成有高次谐波选择电路图案面的高次谐波选择基板60。另外,也可以由使用了LTCC(LowTemperature Co-fired Ceramics)等的三维方式的集成电路来构成高次谐波选择基板60和放射型振荡器基板S24。
(第25实施方式)
接下来,根据图41A以及图41B,对本发明的第25实施方式的微波/毫米波传感器装置进行说明。在本实施方式的微波/毫米波传感器装置的概略结构中,将与上述第1~第21实施方式的微波/毫米波传感器装置中使用的放射型振荡器基板S1~S21中的某一个同样的结构的放射型振荡器基板S25与频率选择单元组合,从省略图示的直流电源向筐体40内的接地导体面41中安装的放射型振荡器基板S25进行直流供电,并且从放射型振荡器基板S25中取出IF信号(模拟信号或被A/D变换的数字信号),适当地进行处理。
本实施方式的微波/毫米波传感器装置与上述第24实施方式的微波/毫米波传感器装置同样地,将振荡RF信号的期望的高次谐波作为发送高次谐波信号而向被测定物放射,在放射面中接收从被测定物中反射的反射高次谐波信号,通过由放射型振荡器自身实现的零拍高次谐波混频来取得IF信号,而检测被测定物,作为频率选择单元使用波束放射型共振器。
在放射型振荡器基板S25的放射面侧,配置有部分透射性反射基板50’,该部分透射性反射基板50’是隔开距离d2(振荡RF信号的高次谐波的波长λ’的N/2左右、N=1、2、3...)的电气长度使由格子状导体图案形成区域51a以及导体区域52a构成的第1部分透射性反射面、和由格子状导体图案形成区域51b以及导体区域52b构成的第2部分透射性反射面对向而成的,由该部分透射性反射基板50’构成波束放射型共振器。这样构成的波束放射型共振器由于作为使该共振频率附近的信号通过的滤波器而发挥功能,所以在该情况下高次谐波信号通过。
另一方面,放射型振荡器基板S25搭载于从由金属导体或针对金属导体在必要部分进行涂层而得到的塑料树脂材料构成的筐体40的外缘部磨钵状地凹下的平坦的底部即接地导体面41,在从该接地导体面41离开距离d1(振荡波长λ的N/2左右、N=1、2、3...)的电气长度的放射面侧保持有部分透射性反射基板50’。作为实现波束放射型共振器的部分透射性反射基板50’的结构,在厚度是d2的电介体基板的一个面中图案化金属膜图案而形成第1部分透射性反射面、并在另一个面中图案化金属膜图案而形成第2部分透射性反射面,但只要是可以隔开距离d2而保持第1部分透射性反射面与第2部分透射性反射面的结构,则无需一定使用电介体基板。
而且,在本实施方式中,由于筐体40的接地导体面41是导电性,所以部分透射性反射基板50’的第2部分透射性反射面和接地导体面41作为反射面而发挥功能,将两者的距离d1设为振荡波长λ的N/2左右(N=1、2、3...)的电气长度,从而构成共振振荡RF信号的波束放射型共振器。进而,由离开距离d2的第1部分透射性反射面(由格子状导体图案形成区域51a以及导体区域52a构成的面)和第2部分透射性反射面(由格子状导体图案形成区域51b以及导体区域52b构成的面),构成共振高次谐波信号的波束放射型共振器。在该情况下,部分透射性反射基板50’的第2部分透射性反射面兼作共振振荡RF信号的波束放射型共振器和共振高次谐波信号的波束放射型共振器的部分透射性反射面。
根据这样构成的微波/毫米波传感器装置,放射型振荡器基板S25的振荡频率通过由部分透射性反射基板50’的第2部分透射性反射面和筐体40的接地导体面41构成的波束放射型共振器被稳定化,并且,通过由部分透射性反射基板50’的第1部分透射性反射面和第2部分透射性反射面构成的波束放射型共振器选择并输出高次谐波。因此,与上述第24实施方式的微波/毫米波传感器装置同样地,具有即使使用fmax小的低成本低性能晶体管来构成放射型振荡器基板,也可以实现比较高的频率下的传感器装置的优点。另外,在将保持放射型振荡器基板S25的筐体的基板载置面设为非导电性的情况下,由于不构成波束放射型共振器,所以仅存在由部分透射性反射基板50’的第1部分透射性反射面和第2部分透射性反射面构成的作为滤波器的波束放射型共振器。
另外,在本实施方式的微波/毫米波传感器装置中,放射型振荡器基板S25的结构没有特别限定,而也可以对第1~第21放射型振荡器基板S1~S21,形成共振振荡RF信号的波束放射型共振器和共振高次谐波的波束放射型共振器。另外,也可以由使用了LTCC(LowTemperature Co-fired Ceramics)等的三维方式的集成电路来构成筐体40和部分透射性反射基板50’。
(第26实施方式)
接下来,根据图42,对本发明的第26实施方式的微波/毫米波传感器装置进行说明。在本实施方式的微波/毫米波传感器装置的概略结构中,将与上述第1~第21实施方式的微波/毫米波传感器装置中使用的放射型振荡器基板S1~S21中的某一个同样的结构的放射型振荡器基板S26保持在基板保持板70中,在放射型振荡器基板S26的放射面侧作为频率选择单元配置了波导管滤波器80。
波导管滤波器80具备:将放射型振荡器的放射波变换成波导管的传送波的变换部81;由光圈板等波导管电路构成的滤波器82;以及通过该滤波器82使期望的高次谐波选择通过,并使通过的高次谐波放射的喇叭天线83。另外,在变换部81中,例如按照锥状结构,直至期望的大小的波导管为止,使管的粗细逐渐变化,如果假设放射型振荡器基板S26是比期望的大小的波导管小的尺寸,则无需锥状结构,是可以将来自放射型振荡器基板S26的放射波高效地变换成波导管的传送波的结构即可。
本实施方式的微波/毫米波传感器装置与上述第24实施方式以及第25实施方式的微波/毫米波传感器装置同样地,将振荡RF信号的期望的高次谐波作为发送高次谐波信号而向被测定物放射,在放射面中接收从被测定物中反射的反射高次谐波信号,通过由放射型振荡器自身实现的零拍高次谐波混频来取得IF信号,而检测被测定物,具有即使使用fmax小的低成本低性能晶体管来构成放射型振荡器基板,也可以实现比较高的频率下的传感器装置的优点。
(第27实施方式)
接下来,根据图43,对本发明的第27实施方式的微波/毫米波传感器装置进行说明。在本实施方式的微波/毫米波传感器装置中,相对放射型振荡器基板S27中的高频晶体管1,使栅极电压或漏极电压变化,从而使振荡频率或振荡振幅变化。
在放射型振荡器基板S27中,例如在第1实施方式中采用的放射型振荡器基板S1中,代替直流电源DC1或DC2而使用信号源,并使高频晶体管1的栅极或漏极的偏置电压值变化,从而使振荡频率或振荡振幅变化而进行调制。通过利用晶体管自身具有的电容分量、电介性量的偏置依赖性来使共振腔的共振频率变化,使振荡频率变化,从而实现频率调制。利用振荡振幅的偏置依赖性来实现振幅调制。
在图43所示的放射型振荡器基板S27中,可以使高频晶体管1的漏极的偏置条件变化,使振荡频率或振荡振幅变化而进行调制。其是在上述第1实施方式中采用的放射型振荡器基板S1中代替电阻7而设置偏置控制电路90来实现的。
在这样构成的放射型振荡器基板S27中的调制动作中,经由电流控制端子91将来自调制信号源SS的调制信号输入给偏置控制电路90,根据该调制信号,构成偏置控制电路90的晶体管92的集电极电流变化,即,高频晶体管1的漏极偏置变化,振荡频率或振荡振幅变化。另外,与第1实施方式同样地从IF输出端子14中取出IF信号,但偏置控制电路90还作为高频晶体管1的IF带负载单元而发挥功能。
这样,在本实施方式的微波/毫米波传感器装置中,可以实现通过一般的微波/毫米波传感器装置进行的FM-CW传感器动作、脉冲传感器动作等,可以提供检测被测定物的位置信息等的传感器装置。
(第28实施方式)
接下来,根据图44A~图44C,对本发明的第28实施方式的微波/毫米波传感器装置进行说明。图44A是放射型振荡器基板S28的表面图,图44B是图44A中的A-A’线的箭头方向剖面图,图44C是放射型振荡器基板S28的背面图。在本实施方式的微波/毫米波传感器装置中,设置有对放射型振荡器基板S28中的放射型振荡器电磁场耦合的电压控制的阻抗可变部。对该阻抗可变部施加期望的调制信号电压而使振荡频率变化,从而调制振荡RF信号。
在本实施方式的微波/毫米波传感器装置中,在放射型振荡器基板S28的导体贴片4、4附近,设置不与振荡RF信号共振那样的与波长相比充分小的尺寸的导体图案100,对该导体图案100作为可变电容元件连接变容二极管101。另外,导体图案100无需设置在基板上的与导体贴片4相同的表面层16侧,而与放射型振荡器电磁场耦合即可,所以也可以设置在导体贴片4附近的内层12中。上述变容二极管101的阴极与导体图案100连接,阳极与设置在内层GND 12中的通孔102连接。施加给变容二极管101的调制信号从与电流控制端子104连接的调制信号源SS通过RF扼流圈电路103输入给阴极。
决定本实施方式的微波/毫米波传感器装置的振荡频率的共振器由夹住内层GND 12和表面侧电介体基板10的导体贴片4构成,振荡RF信号的电磁场集中到表面侧电介体基板10的导体贴片4附近,所以通过变容二极管101使导体贴片4附近的阻抗变换,从而振荡频率变化。即使在导体图案100与振荡RF信号共振那样的尺寸的情况下,也可以进行频率调制,但在不希望对放射指向性造成影响的情况下,优选设置与波长相比充分小的尺寸的导体图案100。另外,通过可变电容元件实现的频率调制与通过微波晶体管1的偏置电压变化来实现的频率调制相比,具有振荡输出功率的变动少这样的优点。
这样,在本实施方式的微波/毫米波传感器装置中,可以实现通过一般的微波/毫米波传感器装置进行的FM-CW传感器动作等,可以提供检测被测定物的位置信息等的传感器装置。
(第29实施方式)
接下来,根据图45A~图45C,对本发明的第29实施方式的微波/毫米波传感器装置进行说明。图45A是放射型振荡器基板S29的表面图,图45B是图45C中的A-A’线的箭头方向剖面图,图45C是放射型振荡器基板S29的背面图。本实施方式的微波/毫米波传感器装置是设置对放射型振荡器基板S29中的放射型振荡器电磁场耦合的电介体共振器,进而设置使该电介体共振器附近的阻抗变化的可变电容元件而得到的。对该阻抗可变部施加期望的调制信号电压而使振荡频率变化,从而调制振荡RF信号。
通过在放射型振荡器基板S29的导体贴片4附近的内层GND 12中设置耦合狭缝110,电介体共振器111与导体贴片4电磁场耦合。进而,电介体共振器111与微带线112被配置成电磁场耦合,对该微带线112作为可变电容元件而连接变容二极管113。变容二极管113的阴极与微带线112连接,阳极通过通孔114与内层GND 12连接。对变容二极管113施加的外部调制信号通过RF扼流圈电路115输入给阴极。从调制信号源SS经由供电端子116向RF扼流圈电路115进行供电。
在本实施方式的微波/毫米波传感器装置中,由于决定放射型振荡器的振荡频率的共振器主要是电介体共振器111,所以通过变容二极管113使电介体共振器111附近的阻抗变化,从而进行频率调制,可以实现FM-CW传感器动作等。另外,通过可变电容元件实现的频率调制与通过微波晶体管1的偏置电压变化来实现的频率调制相比,具有振荡输出功率的变动少这样的优点。
这样,在本实施方式的微波/毫米波传感器装置中,也可以与上述第28实施方式的微波/毫米波传感器装置同样地,实现通过一般的微波/毫米波传感器装置进行的FM-CW传感器动作等,可以提供检测被测定物的位置信息等的传感器装置。
(第30实施方式)
接下来,根据图46A~图46C,对本发明的第30实施方式的微波/毫米波传感器装置进行说明。图46A是放射型振荡器基板S30的表面图,图46B是图46C中的A-A’线的箭头方向剖面图,图46C是放射型振荡器基板S30的背面图。本实施方式的微波/毫米波传感器装置可以向放射型振荡器基板S30中的放射型振荡器供给注入锁定信号,使振荡RF信号与注入锁定信号同步,或者使上述注入锁定信号的频率变化,从而使与其同步的振荡RF信号的振荡频率变化。
放射型振荡器基板S30构成为,设置经由设置在内层GND 12中的狭缝120使电介体共振器121与导体贴片4电磁场耦合,而与该电介体共振器121电磁场耦合那样的微带线122,从信号源123向该微带线122输入注入锁定信号,从而使放射型振荡器的振荡RF信号与注入锁定信号同步。
另外,从信号源123向放射型振荡器基板S30供给的注入锁定信号的频率fi是与其同步的振荡RF信号的频率fo的1/N(N=1、2、3...)即可。在N=2、3...的情况下,振荡RF信号与在放射型振荡器内部中发生的注入锁定信号的期望的高次谐波信号同步。
这样,在本实施方式的微波/毫米波传感器装置中,如果通过使注入锁定信号的频率变化,而使与其同步的振荡RF信号的频率变化,则与上述第28~第29实施方式的微波/毫米波传感器装置同样地,也可以实现通过一般的微波/毫米波传感器装置进行的FM-CW传感器动作等,可以提供检测被测定物的位置信息等的传感器装置。而且,还具有通过使用稳定的注入锁定信号并使其与振荡RF信号同步,而可以使振荡频率稳定化这样的优点。
(第31实施方式)
接下来,根据图47A~图47C,对本发明的第31实施方式的微波/毫米波传感器装置进行说明。图47A是放射型振荡器基板S31的表面图,图47B是图47C中的A-A’线的箭头方向剖面图,图47C是放射型振荡器基板S31的背面图。本实施方式的微波/毫米波传感器装置可以向放射型振荡器基板S31中的放射型振荡器供给注入锁定信号,使振荡RF信号与注入锁定信号同步,或者使上述注入锁定信号的频率变化,从而使与其同步的振荡RF信号的振荡频率变化。
放射型振荡器基板S31构成为,设置经由设置在内层GND 12中的狭缝130使导体贴片4与微带线131电磁场耦合,从信号源132向该微带线131输入注入锁定信号,从而使放射型振荡器的振荡RF信号与注入锁定信号同步。另外,从信号源123向放射型振荡器基板S31供给的注入锁定信号的频率fi是与其同步的振荡RF信号的频率fo的1/N(N=1、2、3...)即可。在N=2、3...的情况下,振荡RF信号与在放射型振荡器内部中发生的注入锁定信号的期望的高次谐波信号同步。
这样,在本实施方式的微波/毫米波传感器装置中,如果通过使注入锁定信号的频率变化,而使与其同步的振荡RF信号的频率变化,则与上述第28~第30实施方式的微波/毫米波传感器装置同样地,也可以实现通过一般的微波/毫米波传感器装置进行的FM-CW传感器动作等,可以提供检测被测定物的位置信息等的传感器装置。而且,还具有通过使用稳定的注入锁定信号并使其与振荡RF信号同步,而可以使振荡频率稳定化这样的优点。
(第32实施方式)
接下来,根据图48A~图48C,对本发明的第32实施方式的微波/毫米波传感器装置进行说明。图48A是放射型振荡器基板S32的表面图,图48B是图48C中的A-A’线的箭头方向剖面图,图48C是放射型振荡器基板S32的背面图。本实施方式的微波/毫米波传感器装置构成为,通过放射型振荡器基板S32的高频晶体管1的直流偏置电路将注入锁定信号输入给放射型振荡器,使放射型振荡器的振荡RF信号与注入锁定信号同步。
在放射型振荡器基板S32中,在RF扼流圈电路5a与直流电源DC1之间连接注入锁定信号源140,设置在用于防止注入锁定信号进入直流电源DC1侧的注入锁定信号频率下有效的扼流圈电路141,将注入锁定信号输入给放射型振荡器。
放射型振荡器基板S32中的RF扼流圈电路5a由于对放射型振荡器的振荡RF信号频率附近有效,所以在输入了振荡RF信号频率附近的频率的注入锁定信号时,注入锁定信号被RF扼流圈电路5a反射而几乎不输入到放射型振荡器,所以使注入锁定信号的电力增加、或者将注入锁定信号频率设定成振荡RF信号频率的1/2或1/3等,使振荡RF信号与注入锁定信号的高次谐波同步。
这样,在本实施方式的微波/毫米波传感器装置中,如果通过使注入锁定信号的频率变化,而使与其同步的振荡RF信号的频率变化,则与上述第28~第31实施方式的微波/毫米波传感器装置同样地,也可以实现通过一般的微波/毫米波传感器装置进行的FM-CW传感器动作等,可以提供检测被测定物的位置信息等的传感器装置。而且,还具有通过使用稳定的注入锁定信号并使其与振荡RF信号同步,而可以使振荡频率稳定化这样的优点。
(第33实施方式)
接下来,根据图49,对本发明的第33实施方式的微波/毫米波传感器装置进行说明。本实施方式的微波/毫米波传感器装置构成为,向放射型振荡器基板S33通过空间输入注入锁定信号,使放射型振荡器的振荡RF信号与注入锁定信号同步。
在本实施方式的微波/毫米波传感器装置中,在从放射型振荡器基板S33适当离开的位置(至少不妨碍向被测定物T放射振荡RF信号以及从被测定物T接收反射波的位置),设置注入锁定信号源150和放射器151,将注入锁定信号照射到放射型振荡器,使放射型振荡器的振荡RF信号与注入锁定信号同步。
这样,在本实施方式的微波/毫米波传感器装置中,如果通过使注入锁定信号的频率变化,而使与其同步的振荡RF信号的频率变化,则与上述第28~第32实施方式的微波/毫米波传感器装置同样地,也可以实现通过一般的微波/毫米波传感器装置进行的FM-CW传感器动作等,可以提供检测被测定物的位置信息等的传感器装置。而且,还具有通过使用稳定的注入锁定信号并使其与振荡RF信号同步,而可以使振荡频率稳定化这样的优点。
(第34实施方式)
接下来,根据图50A~图50C,对本发明的第34实施方式的微波/毫米波传感器装置进行说明。图50A是放射型振荡器基板S34的表面图,图50B是图50C中的A-A’线的箭头方向剖面图,图50C是放射型振荡器基板S34的背面图。在本实施方式的微波/毫米波传感器装置中,将放射型振荡器基板S34的放射型振荡器用作VCO(Voltage Controlled Oscillator,压控振荡器),构成PLL(PhaseLocked Loop,锁相环)电路。
放射型振荡器基板S34构成为,设置经由设置在内层GND 12中的狭缝160使导体贴片4与微带线161电磁场耦合,将该微带线161向PLL部162连接,向PLL部162输入放射型振荡器的振荡RF信号的电力的一部分,从PLL部162将控制电压Vt施加给栅极电压供给端子6a。此时的放射型振荡器作为通过栅极电压来控制振荡频率的放射型VCO动作。另外,PLL部162也可以设置在放射型振荡器基板S34等中而集成化。
对于取出放射型振荡器的振荡RF信号电力的一部分并传送给PLL部162的方法,除了本实施例那样的使用了狭缝160的方法以外还考虑各种方法。例如,可以考虑:将来自RF扼流圈电路的振荡RF信号的漏泄输入给PLL部的方法;如第28实施方式中的放射型振荡器基板28那样设置导体图案100而从与放射型振荡器的电磁场耦合部中取出振荡RF信号并输入给PLL部的方法;第29实施方式中的从放射型振荡器基板29的微带线112那样的与电介体共振器的耦合线路中取出振荡RF信号并输入给PLL部的方法;以及通过外部天线等空间性地收集放射型振荡器的放射RF信号的一部分并输入给PLL部的方法等。
另外,PLL部162的电路结构也没有特别限定,而可以考虑各种结构。例如,举出如下结构等:由通过晶体振子实现的基准频率振荡电路、相位比较器、分频电路、以及滤波器电路构成,对针对放射型振荡器的振荡RF信号进行分频而得到的频率与基准频率进行相位比较,将相位比较电路的输出作为控制电压Vt输入给放射型振荡器。
这样,在本实施方式的微波/毫米波传感器装置中,通过使稳定的基准频率信号与振荡RF信号同步,可以使振荡频率稳定化。另外,可以在PLL部中使用可编程分频电路而设为可以改变分频比,并使振荡RF信号的频率变化,从而如果使与其同步的振荡RF信号的频率变化,则与上述第28~第33实施方式的微波/毫米波传感器装置同样地,可以实现通过一般的微波/毫米波传感器装置进行的FM-CW传感器动作等,可以提供检测被测定物的位置信息等的传感器装置。
另外,根据几个实施方式说明了本发明的微波/毫米波传感器装置,但本发明不仅限于这些实施方式,而只要不变更权利要求书记载的结构,则可以实现的所有微波/毫米波传感器装置被包含在权利范围内。
另外,本发明的微波/毫米波传感器装置中的低成本、低功耗这样的特征在使用了多个传感器的系统、测量试验装置中使用的情况下实用上是有利的,特别在部件成本高、由于传送损失的增加或设备性能而成为低电力效率的毫米波带传感器系统、装置中具有较大的优势性。
特别,本发明的微波/毫米波传感器装置的特征即单纯的结构在依赖于精密且微细的薄膜加工技术的毫米波设备和使用了它们的毫米波带装置的制造工序中的部件管理中,在抑制特性的偏差并确保制造上的高成品率的点上是有利的,可以实现高可靠性、低成本的本发明的微波/毫米波传感器装置适用于车载传感器(雷达)系统、用于防止犯罪、医疗、及护理等的电波监视系统、精密振荡传感器系统、以及有源成像阵列等。
在上述车载传感器系统中,在车体的前后左右搭载多个本发明的微波/毫米波传感器装置,使它们分别进行适当的调制动作等,对从该多个微波/毫米波传感器装置中的任意的装置中得到的IF信号的相位信息、延迟时间差等综合地进行信号处理、信号解析,向自动控制、驾驶员进行通知等。其与使用了单独的传感器装置的情况相比,可以实现多角且正确的感测、高分辨率感测,并且,无需通过电动机等机械性地使传感器的方位变动,还可以电器地高速确定目标值的方位。特别,本发明的微波/毫米波传感器装置由于可以低成本、低功耗地提供,所以可以以普及价格带实现具有使用了多个传感器装置的高度的冲突防止等安全行驶功能、入库时的驾驶辅助功能、以及起因于车体周围的死角的事故防止功能等的车载传感器系统。
在上述用于防止犯罪、医疗、及护理等的电波监视系统中,在住宅的周围的多个位置设置本发明的微波/毫米波传感器装置,根据从各个位置的传感器装置中得到的IF信号来警告可疑的入侵者的存在、场所、以及移动路径等信息;或者在医院内的多个患者用床上天花板分别设置本发明的微波/毫米波传感器装置而构成网络,对各个患者的存在、呼吸的样子等进行监视,在异常时警告等。在这样的使用多个传感器装置的系统的构筑中,单体传感器装置的低成本是重要的,本发明的微波/毫米波传感器装置是有利的。特别,本发明的微波/毫米波传感器装置由于是高灵敏度特性,所以可以减弱放射功率而动作,并且,作为使用与便携电话等中广泛应用的准微波带的电波相比对其他电子机器的动作造成的影响更小的准毫米波带、毫米波带的电波的传感器装置,可以低成本地提供,所以在需要排除对医疗机器、心脏起搏器等造成误动作的外部电波的影响的医院内,其有用性特别高。
上述精密振荡传感器系统将本发明的微波/毫米波传感器装置的输出电波(发送RF信号)点照射到建筑物的壁面等的任意的位置,并接收来自壁面等的反射波(接收RF信号)而取得IF信号,作为IF信号电压的变化,而检测该面的微小振动、长时间缓慢变化的面位置和面歪斜、平面度等。通过在检测前预先记录由于本发明的微波/毫米波传感器装置与被测定物之间的驻波而引起的零拍的IF信号、即DC电压值并进行校准,可以对微米量级的被测定物的变化进行检测。例如,通过在多个位置对建筑的壁面耐火板进行监视,可以高灵敏度地检测由于壁面的老朽化引起的耐火板剥落、皲裂裂纹、以及下降等,可以低成本地构筑危险回避系统。可以低成本地构筑还可以检测通过目视和光传感器无法检测的耐火板的内侧(粘接面)的剥落、皲裂裂纹的系统。
在上述有源成像阵列中,在本发明的微波/毫米波传感器装置中,N行M列的矩阵状地配置放射型振荡器,通过矩阵控制使任意的放射型振荡器或所有放射型振荡器动作、扫描,并对从各个放射型振荡器中得到的IF信号综合地进行信号处理、信号解析处理,从而进行被测定物的形状、形状变动等的成像。
产业上的可利用性
如上述说明,本发明的微波/毫米波传感器装置是高电力效率且高灵敏度,同时是单纯结构,且可以低成本地实现,所以对测量试验装置、车载传感器系统、以及各种医疗机器等的有用性是极其高的。

Claims (16)

1.一种微波/毫米波传感器装置,其特征在于:
放射型振荡器,以发生负性电阻的形式使共振腔与三电极高频放大元件集成化并且使其在RF带中进行振荡动作,并且使该共振腔共用向空间放射电磁波的天线功能,
该放射型振荡器的振荡放射波是发送RF信号,该发送RF信号被被测定物反射而产生的反射波是接收RF信号,
使用上述放射型振荡器接收该接收RF信号,在构成该放射型振荡器的RF带中输入到振荡动作中的上述三电极高频放大元件的该RF信号通过与该放射型振荡器自身的振荡RF信号的零拍混频来取得IF信号,进而
基于由信号解析处理单元解析以及处理通过同时利用在RF带中振荡动作中的上述三电极高频放大元件具有的从直流到IF带中的放大增益所放大的IF信号,进行被测定物的检测。
2.根据权利要求1所述的微波/毫米波传感器装置,其特征在于:
上述放射型振荡器的三电极高频振荡元件中的三电极是被控制电流流入电极、被控制电流流出电极、以及控制电极,
在上述三电极高频放大元件的被控制电流流入电极,连接使直流偏置电压以及IF信号通过并阻止RF信号的RF扼流圈电路,
在该RF扼流圈电路与直流电源的供电路之间插入IF带负载单元,从该IF带负载单元与上述RF扼流圈电路之间取出上述IF信号。
3.根据权利要求1所述的微波/毫米波传感器装置,其特征在于:
上述放射型振荡器的三电极高频振荡元件中的三电极是被控制电流流入电极、被控制电流流出电极、以及控制电极,
在上述三电极高频放大元件的被控制电流流出电极,连接使直流偏置电压以及IF信号通过并阻止RF信号的RF扼流圈电路,
在该RF扼流圈电路与直流电源的供电路之间插入IF带负载单元,从该IF带负载单元与上述RF扼流圈电路之间取出上述IF信号。
4.根据权利要求1~3中的任意一项所述的微波/毫米波传感器装置,其特征在于:
在上述放射型振荡器中设置振荡稳定化用共振腔,使该振荡稳定化用共振腔与放射型振荡器电磁场耦合。
5.根据权利要求1~3中的任意一项所述的微波/毫米波传感器装置,其特征在于:
在上述放射型振荡器的放射面侧,设置有能够提高发送RF信号的放射指向性的喇叭结构。
6.根据权利要求1~3中的任意一项所述的微波/毫米波传感器装置,其特征在于包括:
频率选择性滤波单元,从上述放射型振荡器的放射面隔开适当距离而配置,对所需频率的电波选择性地进行滤波。
7.根据权利要求1~3中的任意一项所述的微波/毫米波传感器装置,其特征在于:
具备可以搭载上述放射型振荡器的接地导体面的筐体,在从该筐体的接地导体面离开λ/2波长或其整数倍的电气长度量的放射面侧配置部分透射性反射面,
由相对向的部分透射性反射面和接地导体面,构成波束放射型共振器。
8.根据权利要求1~3中的任意一项所述的微波/毫米波传感器装置,其特征在于:
在上述放射型振荡器的放射面侧,配置使两个部分透射性反射面对向而构成的波束放射型共振器,
将一个反射面的反射率设为R1,将另一个反射面的反射率设为R2,在R1>R2的情况下,使反射率小的R2面侧对向于上述放射面侧,使该波束放射型共振器与放射型振荡器电磁场耦合。
9.根据权利要求1~3中的任意一项所述的微波/毫米波传感器装置,其特征在于:
通过使向上述放射型振荡器的三电极高频放大元件供电的直流偏置值变化,使振荡频率或振荡振幅变化。
10.根据权利要求1~3中的任意一项所述的微波/毫米波传感器装置,其特征在于:
在决定上述发送RF信号的振荡频率的共振腔中,设置由可变电容元件实现的阻抗可变部,通过施加给可变电容元件的外部信号,使振荡频率变化。
11.根据权利要求1~3中的任意一项所述的微波/毫米波传感器装置,其特征在于:
设为可以向上述放射型振荡器供给外部注入锁定信号,使振荡频率稳定化。
12.根据权利要求11所述的微波/毫米波传感器装置,其特征在于:
通过使上述外部注入锁定信号的频率变化,而使发送RF信号的振荡频率变化。
13.一种微波/毫米波传感器装置,其特征在于:
放射型振荡器,以发生负性电阻的形式使共振腔与三电极高频放大元件集成化并且使其在RF带中进行振荡动作,并且使该共振腔共用向空间放射电磁波的天线功能,
具备选择从该放射型振荡器的放射面中放射的振荡RF信号的期望的高次谐波并使其透射的高频谐波选择单元,
振荡RF信号的期望的高次谐波是发送高次谐波信号,该发送高次谐波信号被被测定物反射而产生的反射波是接收高次谐波信号,
使用上述放射型振荡器接收该接收高次谐波信号,在构成该放射型振荡器的RF带中输入到振荡动作中的上述三电极高频放大元件的该接收高次谐波信号通过与该放射型振荡器自身的振荡RF信号的零拍高次谐波混频来取得IF信号,进而
基于由信号解析处理单元解析以及处理通过同时利用在RF带中振荡动作中的上述三电极高频放大元件具有的从直流到IF带中的放大增益所放大的IF信号,进行被测定物的检测。
14.根据权利要求13所述的微波/毫米波传感器装置,其特征在于:
上述高次谐波选择单元是从上述放射型振荡器的放射面侧隔开适当距离而配置的,并设为对所需频率的电波选择性地进行滤波的频率选择性电路图案面。
15.根据权利要求13所述的微波/毫米波传感器装置,其特征在于:
在上述高次谐波选择单元中,从上述放射型振荡器的放射面侧隔开适当距离而配置使两个部分透射性反射面对向而构成的波束放射型共振器,使该波束放射型共振器的共振频率成为期望的高次谐波的频率。
16.根据权利要求13所述的微波/毫米波传感器装置,其特征在于:
上述高次谐波选择单元设为选择期望的高次谐波并使其透射而放射的波导管滤波器。
CN2008800176410A 2007-04-02 2008-03-31 微波/毫米波传感器装置 Expired - Fee Related CN101680945B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007096545 2007-04-02
JP096545/2007 2007-04-02
PCT/JP2008/056834 WO2008120826A1 (ja) 2007-04-02 2008-03-31 マイクロ波・ミリ波センサ装置

Publications (2)

Publication Number Publication Date
CN101680945A CN101680945A (zh) 2010-03-24
CN101680945B true CN101680945B (zh) 2013-07-24

Family

ID=39808404

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008800176410A Expired - Fee Related CN101680945B (zh) 2007-04-02 2008-03-31 微波/毫米波传感器装置

Country Status (5)

Country Link
US (1) US8212718B2 (zh)
EP (1) EP2144080B1 (zh)
JP (1) JP5422834B2 (zh)
CN (1) CN101680945B (zh)
WO (1) WO2008120826A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI623152B (zh) * 2016-05-10 2018-05-01 為昇科科技股份有限公司 具反向功率分配器功能之天線單元及其陣列模組

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1816522B1 (en) 2004-11-22 2013-12-25 Hodogaya Chemical Co., Ltd. Electrophotographic photosensitive body
JP4396739B2 (ja) * 2007-07-25 2010-01-13 ソニー株式会社 情報伝達方法、情報伝達システム、情報受信装置及び情報送信装置
CN102204084B (zh) 2008-09-26 2014-10-15 独立行政法人情报通信研究机构 微波/毫米波通信装置
JP5565823B2 (ja) * 2008-10-07 2014-08-06 独立行政法人情報通信研究機構 パルス信号発生装置
JP5761585B2 (ja) * 2008-10-07 2015-08-12 国立研究開発法人情報通信研究機構 パルスレーダ装置
JP5364921B2 (ja) 2008-10-08 2013-12-11 独立行政法人情報通信研究機構 パルス無線通信装置
US8860120B2 (en) * 2010-09-22 2014-10-14 Nxp, B.V. Field modulating plate and circuit
TWI430902B (zh) * 2010-12-15 2014-03-21 Wistron Neweb Corp 無線訊號收發器及盲點偵測系統
US8786507B2 (en) * 2011-04-27 2014-07-22 Blackberry Limited Antenna assembly utilizing metal-dielectric structures
DE102011075552A1 (de) * 2011-05-10 2012-11-15 Robert Bosch Gmbh Schaltungsanordnung für Radaranwendungen
CN102918712B (zh) * 2011-06-02 2015-09-30 松下电器产业株式会社 天线装置
US9188477B2 (en) * 2011-08-18 2015-11-17 Linear Technology Corporation Radar system and method for providing information on movements of object's surface
CN102508236A (zh) * 2011-10-27 2012-06-20 中国兵器工业集团第二一四研究所苏州研发中心 一种调频多普勒测距信号处理装置
US8610989B2 (en) * 2011-10-31 2013-12-17 International Business Machines Corporation Optoelectronic device employing a microcavity including a two-dimensional carbon lattice structure
EP2682722A1 (de) * 2012-07-02 2014-01-08 eesy-id GmbH Verfahren zur Auslenkungserfassung
JP2014215166A (ja) * 2013-04-25 2014-11-17 株式会社ワイヤーデバイス 距離測定装置
US9405136B2 (en) * 2013-07-23 2016-08-02 Board Of Regents, The University Of Texas System Magnetic-free non-reciprocal devices exhibiting non-reciprocity through angular momentum biasing
US9490874B2 (en) * 2013-10-18 2016-11-08 Keyssa, Inc. Contactless communication unit connector assemblies with signal directing structures
JP6537871B2 (ja) * 2014-04-17 2019-07-03 日本電波工業株式会社 発振器及び発振器アレー
US9958540B2 (en) * 2015-02-24 2018-05-01 S-1 Corporation Ultra-wideband transceiver, signal transmission and reception method thereof, and ultra-wideband radar sensor including the same
JP2017161452A (ja) * 2016-03-11 2017-09-14 Ntn株式会社 振動検査装置
US9887169B2 (en) * 2016-03-11 2018-02-06 Keyssa Systems, Inc. Signal isolation structures for EM communication
WO2018047937A1 (ja) 2016-09-08 2018-03-15 Nok株式会社 ミリ波レーダー用カバー
CN106299623A (zh) * 2016-09-27 2017-01-04 北京小米移动软件有限公司 无线保真WiFi天线及制造方法
US9985733B1 (en) 2016-11-22 2018-05-29 Keysight Technologies, Inc. System and method for performing over-the-air (OTA) testing of a device under test (DUT) having an integrated transmitter-antenna assembly
US9800355B1 (en) * 2016-12-18 2017-10-24 Keysight Technologies, Inc. System and method for performing over-the-air (OTA) testing of a device under test (DUT) having an integrated transmitter-antenna assembly using near field and intermediate field measurements
EP3568680A4 (en) * 2017-02-15 2020-10-21 Timbre Technologies, Inc. RADIATION DETECTOR INCLUDING A FIELD-EFFECT TRANSISTOR IN A RESONANT CAVITY NANOSTRUCTURE
CN207263916U (zh) * 2017-09-08 2018-04-20 中山市尊宝实业有限公司 定向雷达发射和接收感应板
CN110337759B (zh) * 2017-10-13 2022-05-13 株式会社友华 高频模块
KR102069280B1 (ko) * 2017-12-08 2020-01-22 (주)코러싱 마이크로 스트립 구조의 발진기를 가진 마이크로파 센서
US10608582B2 (en) * 2017-12-20 2020-03-31 Globalfoundries Inc. Local oscillator distribution for a millimeter wave semiconductor device
CN108847865A (zh) * 2018-08-24 2018-11-20 南京濠暻通讯科技有限公司 一种用于第五代移动通信mimo系统的天线模块
DE112019005233T5 (de) 2018-11-27 2021-07-15 Hitachi Astemo, Ltd. Radarvorrichtung
CN110109082A (zh) * 2019-04-17 2019-08-09 天津大学 一种共天线的太赫兹主动雷达成像阵列
US11349520B2 (en) * 2019-04-21 2022-05-31 Siklu Communication ltd. Generation of millimeter-wave frequencies for microwave systems
US10778277B1 (en) 2019-04-21 2020-09-15 Siklu Communication ltd. Methods and systems for utilizing millimeter-wave radio components in synthesizing microwave signals
GB2597783A (en) * 2020-08-06 2022-02-09 Elekta ltd A new high-power RF source with analogue RF frequency filter
CN112490659B (zh) * 2020-11-04 2023-01-03 南京理工大学 小型化低相噪自振荡有源天线
CN113437531B (zh) * 2021-05-20 2022-07-12 西安电子科技大学 一种超小型化的角度不敏感的超材料吸波器
CN219039354U (zh) * 2021-11-19 2023-05-16 深圳迈睿智能科技有限公司 激励信号幅值可调的微波探测装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000111636A (ja) * 1998-09-30 2000-04-21 Denso Corp レーダ装置の高周波回路及びレーダ装置
CN1613018A (zh) * 2002-01-09 2005-05-04 蒂科电子公司 用于车辆接近速度传感器的前端传感器
CN1672292A (zh) * 2002-07-23 2005-09-21 汽车系统实验室公司 多波束天线
JP2006074395A (ja) * 2004-09-01 2006-03-16 Makita Corp 発振回路
CN1885062A (zh) * 2005-06-24 2006-12-27 西门子公司 车辆速度传感器

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE629903A (zh) * 1962-03-22
US3231832A (en) * 1963-07-25 1966-01-25 Hughes Aircraft Co Conical-cavity negative resistance oscillator having flexible diaphragm for tuning
US3416099A (en) * 1967-05-26 1968-12-10 Varian Associates Bulk-effect negative-resistance microwave device employing a half wave open circuit resonator structure
US3416098A (en) * 1967-05-26 1968-12-10 Varian Associates Bulk-effect negative-resistance microwave apparatus employing a coaxial microwave circuit structure
US3443244A (en) * 1967-08-23 1969-05-06 Varian Associates Coaxial resonator structure for solid-state negative resistance devices
US3474351A (en) * 1968-01-25 1969-10-21 Edward J Cook High frequency apparatus employing a displacement current coupled solidstate negative-resistance device
US3533016A (en) * 1968-10-01 1970-10-06 Us Air Force Magnetically tunable negative resistance diode microwave oscillator
US3562665A (en) * 1969-05-20 1971-02-09 Rca Corp Microwave oscillator including two bulk negative resistance devices in a three-terminal cavity
US3624550A (en) * 1969-06-16 1971-11-30 Varian Associates Microwave oscillator circuit for a bulk-effect negative-resistance device
US3596204A (en) * 1969-07-02 1971-07-27 Varian Associates Tunable coaxial cavity semiconductor negative resistance oscillator
US3605034A (en) * 1969-08-28 1971-09-14 Sperry Rand Corp Coaxial cavity negative resistance amplifiers and oscillators
US3603896A (en) * 1969-12-30 1971-09-07 Motorola Inc Microwave printed circuit negative resistance oscillator
US3621463A (en) * 1970-04-27 1971-11-16 Bell Telephone Labor Inc Negative resistance diode coaxial oscillator with resistive spurious frequency suppressor
US3659293A (en) * 1970-06-02 1972-04-25 Bendix Corp Range-detecting doppler radar
US3691556A (en) * 1970-06-03 1972-09-12 Memco Electronics Ltd Detection of movement in confined spaces
US3704429A (en) * 1970-06-19 1972-11-28 Sperry Rand Corp Negative resistance diode coaxial cavity oscillator with resistor for suppressing undesired modes
US3644843A (en) * 1970-06-22 1972-02-22 Sperry Rand Corp Temperature stable negative resistance diode coaxial cavity energy converter operating in an antiresonant mode
US3750165A (en) * 1971-08-16 1973-07-31 Johnson Service Co Intrusion detection apparatus having a high frequency diode oscillator-mixer element
US3896435A (en) * 1972-03-03 1975-07-22 James Nickolas Constant Simple radar for detecting the presence, range and speed of targets
US3735286A (en) * 1972-05-01 1973-05-22 Associates V Varactor tuned coaxial cavity negative resistance diode oscillator
JPS4924057A (zh) * 1972-06-24 1974-03-04
FR2221855B1 (zh) * 1972-12-12 1975-12-12 Thomson Csf
US3913035A (en) * 1974-07-01 1975-10-14 Motorola Inc Negative resistance high-q-microwave oscillator
US4009444A (en) * 1974-08-30 1977-02-22 The United States Of America As Represented By The United States Energy Research And Development Administration Passive radio frequency peak power multiplier
SE383595B (sv) * 1974-09-09 1976-03-15 Incentive Ab Mikrovagsoscillator
FR2346896A1 (fr) * 1975-11-21 1977-10-28 Thomson Csf Circuit hyperfrequence a resistance negative comportant une ou plusieurs paires de diodes et dispositifs utilisant ledit circuit
US4044357A (en) * 1975-12-04 1977-08-23 Westinghouse Electric Corporation FM/CW radar including a novel receiver protector of general utility
US4053854A (en) * 1976-06-07 1977-10-11 Motorola Inc. Q switching microwave oscillator
US4083016A (en) * 1976-12-27 1978-04-04 Varian Associates, Inc. Coupled-cavity microwave oscillator
US4075578A (en) * 1977-04-21 1978-02-21 Motorola, Inc. Accumulating cavity microwave oscillator
US4097823A (en) * 1977-06-30 1978-06-27 Raytheon Company Transmitter wherein outputs of a plurality of pulse modulated diode oscillators are combined
FR2458819A1 (fr) * 1979-06-12 1981-01-02 Thomson Csf Tete hyperfrequence d'emission et de reception simultanees, emetteur-recepteur en ondes millimetriques et radar utilisant une telle tete
US4328470A (en) * 1980-05-12 1982-05-04 The United States Of America As Represented By The Secretary Of The Navy Pulse modulated IMPATT diode modulator
US4467284A (en) * 1981-05-27 1984-08-21 Farkas Zoltan D Radio frequency storage pulser
JP2614037B2 (ja) * 1985-06-18 1997-05-28 財団法人 半導体研究振興会 超高周波負性抵抗半導体発振器
US5511238A (en) * 1987-06-26 1996-04-23 Texas Instruments Incorporated Monolithic microwave transmitter/receiver
US5606737A (en) * 1992-03-09 1997-02-25 Fujitsu Limited Oscillator mixer and a multiplier mixer for outputting a baseband signal based upon an input and output signal
US5774091A (en) * 1993-04-12 1998-06-30 The Regents Of The University Of California Short range micro-power impulse radar with high resolution swept range gate with damped transmit and receive cavities
JPH07120546A (ja) 1993-10-22 1995-05-12 Matsushita Electric Works Ltd ドップラモジュール
GB2291551B (en) * 1994-06-24 1998-03-18 Roscoe C Williams Limited Electronic viewing aid
US5600253A (en) * 1995-05-08 1997-02-04 Eaton Corporation At Eaton Center Electromagnetic wave reflective type, low cost, active proximity sensor for harsh environments
GB9703234D0 (en) * 1997-02-17 1997-04-09 Federal Ind Ind Group Inc Microwave pulse generator and pulse-echo ranging system
JPH10284946A (ja) 1997-04-04 1998-10-23 Uniden Corp 受信回路
JP3297728B2 (ja) * 1997-07-11 2002-07-02 独立行政法人通信総合研究所 マイクロ波ミリ波放射型発振装置
JP3146260B2 (ja) * 1999-03-05 2001-03-12 郵政省通信総合研究所長 平面放射型発振装置
EP1184678A3 (en) * 2000-08-28 2003-01-29 Stanley Electric Co., Ltd. Radar transceiver
JP4853025B2 (ja) * 2003-11-05 2012-01-11 株式会社村田製作所 発振器およびそれを用いるレーダ装置
JP4456998B2 (ja) 2004-12-28 2010-04-28 日立オートモティブシステムズ株式会社 速度センサおよびそれを用いた対地車速センサ
US7760038B2 (en) * 2005-12-07 2010-07-20 Electronics And Telecommunications Research Institute Voltage controlled oscillator capable of tuning negative resistance
EP2003787B1 (en) 2006-03-31 2013-11-20 National Institute of Information and Communications Technology Wireless network system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000111636A (ja) * 1998-09-30 2000-04-21 Denso Corp レーダ装置の高周波回路及びレーダ装置
CN1613018A (zh) * 2002-01-09 2005-05-04 蒂科电子公司 用于车辆接近速度传感器的前端传感器
CN1672292A (zh) * 2002-07-23 2005-09-21 汽车系统实验室公司 多波束天线
JP2006074395A (ja) * 2004-09-01 2006-03-16 Makita Corp 発振回路
CN1885062A (zh) * 2005-06-24 2006-12-27 西门子公司 车辆速度传感器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
周南山.微带线设计和微波传感器.《上海第二工业大学学报》.2005,第22卷(第4期),5~9. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI623152B (zh) * 2016-05-10 2018-05-01 為昇科科技股份有限公司 具反向功率分配器功能之天線單元及其陣列模組

Also Published As

Publication number Publication date
US8212718B2 (en) 2012-07-03
CN101680945A (zh) 2010-03-24
EP2144080A4 (en) 2012-06-20
JP5422834B2 (ja) 2014-02-19
JPWO2008120826A1 (ja) 2010-07-15
EP2144080A1 (en) 2010-01-13
EP2144080B1 (en) 2020-03-18
US20100117891A1 (en) 2010-05-13
WO2008120826A1 (ja) 2008-10-09

Similar Documents

Publication Publication Date Title
CN101680945B (zh) 微波/毫米波传感器装置
US7324039B2 (en) Short-range automotive radar transceiver
JP5761585B2 (ja) パルスレーダ装置
TWI464441B (zh) 具有距離閘功能之微波偵測器
US9678196B2 (en) Sensor for detecting parking lot
JPWO2006033204A1 (ja) 高周波発振回路および送受信装置
US7394334B2 (en) Dielectric resonance apparatus, oscillation apparatus, and transmission/reception apparatus
JP3297728B2 (ja) マイクロ波ミリ波放射型発振装置
CN102204084B (zh) 微波/毫米波通信装置
JP7094976B2 (ja) 高周波モジュール
US6144264A (en) High Q-factor oscillator circuit
KR101791449B1 (ko) 움직임 감지 마이크로파 센서
CN116914408A (zh) 天线装置、通信装置和图像捕获系统
US9590302B2 (en) Active antenna module
JP2005509286A (ja) 高周波測定用集積半導体素子およびその使用
Singer et al. A SIMMWIC 76 GHz front-end with high polarization purity
WO2009082300A1 (en) Tuneable antenna arrangement
KR100417767B1 (ko) 광대역 레이더 검출기 회로
Cheng et al. A 217.6–227-GHz CMOS Signal Generator with Injection Locking Technique
JP2008311790A (ja) マイクロ波・ミリ波通信装置
RU49629U1 (ru) Приемопередающий модуль радиоволнового доплеровского канала охранного извещателя

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130724