CN101677826B - 超声外科系统 - Google Patents

超声外科系统 Download PDF

Info

Publication number
CN101677826B
CN101677826B CN200880017836.5A CN200880017836A CN101677826B CN 101677826 B CN101677826 B CN 101677826B CN 200880017836 A CN200880017836 A CN 200880017836A CN 101677826 B CN101677826 B CN 101677826B
Authority
CN
China
Prior art keywords
fluid
end effector
ultrasonic surgical
surgical system
effector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200880017836.5A
Other languages
English (en)
Other versions
CN101677826A (zh
Inventor
K·L·豪瑟
F·B·斯图伦
S·J·米尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ethicon Endo Surgery Inc
Original Assignee
Ethicon Endo Surgery Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ethicon Endo Surgery Inc filed Critical Ethicon Endo Surgery Inc
Publication of CN101677826A publication Critical patent/CN101677826A/zh
Application granted granted Critical
Publication of CN101677826B publication Critical patent/CN101677826B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3203Fluid jet cutting instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B2017/320044Blunt dissectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B2017/320069Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic for ablating tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B2017/32007Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with suction or vacuum means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B2017/320071Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with articulating means for working tip
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B2017/320072Working tips with special features, e.g. extending parts
    • A61B2017/320074Working tips with special features, e.g. extending parts blade
    • A61B2017/320075Working tips with special features, e.g. extending parts blade single edge blade, e.g. for cutting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B2017/320084Irrigation sleeves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B2017/320089Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic node location
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2217/00General characteristics of surgical instruments
    • A61B2217/002Auxiliary appliance
    • A61B2217/005Auxiliary appliance with suction drainage system

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Mechanical Engineering (AREA)
  • Biomedical Technology (AREA)
  • Dentistry (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Abstract

本发明描述了一种超声外科系统,其包括:超声传输构件,其具有近端和远端;超声致动的端部执行器,其附接在超声传输构件的远端处;加压流体递送系统,其包括与至少一个流体源连通的流体喷嘴。流体喷嘴被布置成能够以一定的速率向软组织递送加压流体,以在使用过程中移动软组织远离端部执行器。

Description

超声外科系统
技术领域
本发明整体涉及外科手术系统,更具体地讲,涉及超声外科系统。
背景技术
在外科医生在外科手术中使用超声仪器切割和凝固组织。在超声仪器的谐振频率下电激励压电元件以产生振动,该振动通过谐振器传输并被放大,以产生相同频率的机械驻波振动。仪器的超声传输组件具有细长传输波导管,该细长传输波导管可将该振动传输至仪器远端的端部执行器(如切割刀片)。端部执行器可以主要在纵向振动,以在相邻组织内产生局部热量,但已经特别地设计了某些仪器,从而端部执行器主要在横向(垂直于纵轴)或扭转方向(围绕纵轴)振动来处理组织。
端部执行器的远端对应于振动反节点。端部执行器的近端通常附接到略远离超声传输组件的最远振动节点的波导管上。这种布置允许在端部执行器未填充组织时,将仪器调谐至优选的谐振频率。在一些实施例中,当被输入的特定频率的超声能量激励时,端部执行器的长度略小于通过端部执行器材料传播的声波波长的四分之一。
由不同材料形成的超声外科端部执行器可以表现出显著不同的声学特性和机械特性。这些特性可以与材料性质有关,例如超声传播波长、传导性传热、机械疲劳强度以及声学传输效率。例如,由(例如)具有相对高的弹性模量/密度比率的陶瓷材料制成的端部执行器比由(例如)具有相对低的弹性模量/密度比率的金属材料制成的端部执行器具有更长的超声传播波长。
某些超声外科仪器的端部执行器由Ti-6Al-4V钛合金制成。以55.5kHz的超声频率操作时,钛合金的超声传播波长为约87mm,从而端部执行器的长度为约22mm。对于某些外科手术应用而言,外科医生可能更喜欢比目前可获得的端部执行器稍长的端部执行器。
材料中的声波波长等于材料中的声速除以超声能量输入的频率(周/秒)。因此,提供具有较长端部执行器的仪器的一种方法是降低超声能量输入的频率。例如,将频率从大约55.5kHz减至大约27.8kHz可使钛合金的特征波长增至大约174mm。然而,激励频率是有实际下限的。以低于20kHz的频率振动的端部执行器会产生人类可听到的令人痛苦的声音,并且显然在外科手术室中是不理想的。
提供具有较长端部执行器的仪器的另一种方法是选择声音在其中传播较快的端部执行器材料。材料中的声速取决于材料密度和弹性模量。基本上,具有高弹性模量/密度比率的材料比具有相对低比率的材料传播超声能量的速度更快。某些陶瓷材料(包括氧化铝(Al2O3))显示具有的特征波长是某些钛合金的大约两倍。不幸的是,陶瓷材料非常易碎,并且陶瓷端部执行器在正常处理、调整和操作过程中易受破损的影响。
除了提供较长的端部执行器,还可以希望提高端部执行器的声学传输效率,以降低端部执行器的“自动加热”并缩短切割和凝固组织的时间。某些材料(例如蓝宝石、钛和铝)可以比其他材料(例如铜和钢)更有效率地传输超声能量。外科手术超声端部执行器的声学传输效率可以与无量纲的声波系数相关,本领域通称为“Q”系数,其用于Ti-6Al-4V钛合金和某些铝合金为在10,000至20,000的范围内。某些钢的Q系数可以低至250。对于其中应当尽量降低端部执行器自动加热的应用而言,端部执行器可以由具有高Q系数的材料形成。然而,可以有某些外科手术应用,例如当端部执行器被浸入体液使用时,其中端部执行器的快速自动加热为所需的。对于这种应用而言,端部执行器可以由具有较低Q系数的材料形成,以便快速在组织中产生热量,从而切割和凝固组织。
端部执行器材料的导热率也可以显著影响端部执行器切割和凝固组织的速度。如果端部执行器向组织导热的速度过快,则组织可能会被烧焦。但如果端部执行器向组织导热的速度过慢,则设备的切割和/或凝固组织速度可能过慢。根据外科手术应用,由Ti-6Al-4V合金形成的导热率为约7W/m-K的端部执行器可以保持过多热量,而由铝形成的导热率为约200W/m-K的端部执行器可从组织中吸走过多热量。
端部执行器材料的机械疲劳强度可以显著影响端部执行器的使用寿命和因此外科手术操作过程中端部执行器可使用的次数。疲劳强度有时称为材料的持久极限,并且对应于材料实际上经过无限循环次数的可以可逆地受到应力作用的应力。Ti-6Al-4V合金的疲劳强度为约413kPa,而铝的疲劳强度为约138kPa。另外,铝比钛合金更软,在使用过程中更易于被其他外科器械损坏,从而可能导致还可以降低端部执行器的耐疲劳性的断裂引发阶段。
显然,外科手术超声端部执行器的设计至少在某种程度上是非常复杂的,因为某些外科手术应用所需的具有声学特性和机械特性的组合的单一端部执行器材料的可用选择是非常有限的。例如,希望提供比当前端部执行器具有更长的超声传播波长和更大的疲劳强度,同时又保持当前端部执行器的声效率和热特性的外科手术超声端部执行器。
美国专利No.6,375,635公开了另一种使用液体射流切割组织的外科仪器。该仪器包括朝仪器的远端引导高压液体的压力腔,该压力腔包括具有喷射口的喷嘴。该仪器还包括在仪器操作时接纳液体喷射流的与喷射口相对的排空腔。
发明内容
在第一个方面,超声外科系统包括:超声传输构件,其具有近端和远端。超声致动的端部执行器,其附接在超声传输构件的远端处。加压流体递送系统,其包括与至少一个流体源连通的流体喷嘴。流体喷嘴被布置和构造为以一定的速率向软组织递送加压流体,以在使用过程中移动软组织离开端部执行器。
在第二个方面,超声外科系统包括超声传输构件和附接到该超声传输构件上的超声致动的端部执行器。护套能够相对于所述端部执行器移动。该护套具有:第一构型,其中护套覆盖端部执行器,以阻碍端部执行器与组织进行交互;第二构型,其中端部执行器暴露于护套外,以与组织进行交互。
在第三个方面,提供了用超声外科系统处理组织的方法。该方法包括将附接在超声传输构件远端处的超声致动的端部执行器靠近组织放置。使用加压流体递送系统(其包括与至少一个流体源连通的流体喷嘴)以一定的速率将加压流体导向到软组织上,以移动软组织离开端部执行器。
在第四个方面,超声外科系统包括这样的外科仪器,其具有适于对患者进行外科手术的远端和适于由操作者控制的近端。该仪器包括具有足够爆破强度的压力腔,以向仪器的远端引导高压流体。压力腔包括至少一个具有喷射口的喷嘴。喷嘴被成形为当流体在高压下流经其内时形成液体射流。排空腔包括具有一定的横截面积且在与其具有预定的距离处设置在喷射口对面的射流接纳口,该射流接纳口用于在仪器操作时接纳液体射流,并以液柱的形式递送来自外科手术部位的液体。超声外科系统能够将超声能量施加到压力腔、液体射流、排空腔和液柱中的一个或多个。
在第五个方面,超声外科系统包括具有近端和远端的超声传输构件。超声致动的端部执行器附接在超声传输构件的远端处。端部执行器是一种复合物型端部执行器,其包括布置在金属材料基质中的金刚石颗粒。金刚石颗粒暴露在端部执行器的表面处,用于在使用过程中接触组织。
附图和以下说明中示出了本发明的一个或多个实施例的详情。本发明的其他特征、对象、和优点从说明和附图以及权利要求书中将显而易见。
附图说明
图1示出了能够递送加压流体的超声外科仪器的实施例;
图2a和图2b示出了图1的外科手术设备的远端在使用中的细部图;
图3示出了能够递送加压流体的超声外科仪器的另一个实施例;
图4为包括可移动护套组件的超声外科仪器的另一个实施例的透视图;
图5和图6分别为图4的超声外科仪器处于伸展和收缩构型时的局部侧面截面图;
图7为图5的超声外科仪器的远端接触组织时的局部细部侧面截面图;
图8为图6的超声外科仪器的远端以收缩构型切割骨骼时的局部细部侧面截面图;
图9-11为包括可移动护套组件的超声外科仪器的另一个实施例的局部视图;
图12示出了包括加压流体递送系统和可移动护套组件的超声外科仪器的另一个实施例;
图13和图14分别为沿着图12的线13-13截取的伸展和收缩构型的超声外科仪器的侧面截面图;
图15为超声外科仪器的另一个实施例的截面图;
图16为超声传输组件的一个实施例的透视图;
图17为沿着图16的线17-17截取的超声传输组件的截面图;
图18为超声传输组件的另一个实施例的透视图;
图19为超声外科仪器的另一个实施例的图解视图;以及
图20为图19的超声外科仪器的远端的细部图。
具体实施方式
在详细阐述本发明之前,应该指出的是,本发明在其应用或使用中并不局限于附图和具体实施方式中详细示出的部件的构造和布置。示例性实施例可以实施或结合到其他实施例、变更形式和修改形式中,并可以通过多种方式实施或执行。此外,除非另外指明,本文所用的术语和公式是为了方便向读者描述示例性实施例的目的而选择的,并不是为了限制本发明。
参见图1,示例性超声外科系统10包括配有超声换能器14和手持件壳体16的超声信号发生器12。超声换能器14将来自超声信号发生器12的电信号转换成机械能,该机械能导致超声换能器14和超声端部执行器18以超声频率进行主要纵向振动。合适的发生器为得自EthiconEndo-Surgery,Inc.(Cincinnati,Ohio)的GEN04型发生器。当声波组件20通电时,振动驻波通过声波组件20产生。超声端部执行器18的远端可以以55.5kHz的超声频率进行峰间振幅为大约10-200微米的纵向振动。细长的内护套22保持波导管24和超声端部执行器18的近端。在沿着声波组件20的任何点处的振动振幅取决于沿着声波组件在其处测量振动的位置。振动驻波中的最小交点或零交点通常称为节点(即纵向运动通常最小之处),纵向驻波的最大绝对值或峰值通常称为反节点。在一些实施例中,反节点与距其最近的节点之间的距离为四分之一波长(λ/4)。
可以对声波组件20的元件进行声波调谐,使得任何组件的长度均为二分之一波长(nλ/2)的整数倍,其中波长λ是预选的或形成声波组件20的纵向振动驱动频率fd的波长,并且其中n为任何正整数。另外设想声波组件20可以结合任何合适的声波元件布置。向端部执行器施加振动的详情在(例如)美国专利No.6,254,623、No.6,976,969、No.7,163,548以及于2005年10月7日提交的序列号为11/246,826、名称为“Actuation Mechanism For Use With An Ultrasonic SurgicalInstrument(与超声外科仪器一起使用的致动机构)”的美国专利申请中有所描述,其所有详情在此以引用方式并入,犹如本文完全示出。
仍然参见图1,超声外科系统10还包括流体递送系统30。流体递送系统30包括加压流体源32(如包括泵、压缩机等)、用于将加压流体从加压流体源导向到手持件壳体16的导管34。导管34通过阀门38(如电磁阀)连接到外护套36。外护套36的内径大于内护套22的外径,从而在两者间形成加压流体可通过的流体通道。流体通道与位于外护套36远端处的流体出口40连通。在图示实施例中,流体出口40形成位置接近端部执行器18的远端41的喷嘴。
在一些实施例中,超声外科系统10包括允许用户控制流体递送的控制装置(在本例中,采用按钮42的形式)。如图所示,按钮42位于手持件壳体16上。作为一个实例,按压按钮42(如用户用手指)将信号发送至阀门38,其导致阀门打开,从而允许流体进入内护套22与外护套36之间的流体通道。释放按钮42时,信号中断,阀门38关闭,从而抑制流体进入流体通道。设想了其他实例。例如,可以将控制装置42连接到控制器(未示出)上,其根据来自控制装置的输入控制阀门的操作。控制装置42可以包括多个输入端(如按钮、开关、转盘等),其对应于允许用户控制多个流体递送参数的多种多重设定值。作为一个实例,流体递送系统30可以包括多重不同流体类型(如液体和气体)的流体源。控制装置42可以允许用户选择通过流体通道朝流体出口40递送的不同的流体类型或加压流体类型的组合。在另一个实施例中,按钮42可以是通过按压和释放按钮即可打开或关闭的按钮式机械阀门。
在一个替代系统的实施例中,超声外科系统10不包括内护套22,流体通道是用外护套36形成的,加压流体在波导管24与外护套之间流动。在另一个系统的实施例中,使用延伸通过波导管24和超声端部执行器18的中央腔(元件35)来递送加压流体。
又如,可以提供如图中虚线所示的多重加压流体源32a和加压流体源32b,其中每一个加压流体源提供不同类型的流体。例如,流体源32a可以提供空气(或其他气体),而流体源32可以提供盐水(或其他液体)。在一些实施例中,流体源32a和流体源32b可以在不同压力下提供流体。在一个实施例中,手持件壳体16可以包括连接/断开端口54,其能够与位于导管34a和导管34b末端处的连接器56(如形成流体密封性密封件的螺纹件、摩擦件等)配合。用户可以通过将所需的加压流体源32a、加压流体源32b连接至端口54来选择不同的流体类型,并且在某些情况下断开不需要的加压流体源。
现在参见图2a和图2b,可将加压流体射流44以使软组织移置的速率经过端部执行器18导向到软组织46的附近。图2a示出了被移置的软组织46,图2b示出了用加压流体移置的软组织46,以暴露骨骼48。例如,在需要处理较硬的材料(例如骨骼48)同时避免损伤软组织时,移置软组织46可以为有利的。例如,在矫形外科手术(例如脊柱外科手术)中,可能需要使用端部执行器18切割骨骼,同时避免切到周围的软组织。通过端部执行器18导向流体可以具有在使用过程中冷却端部执行器18的额外的优点。
为移动软组织46而不损伤组织的流体递送速率取决于若干因素,例如所需的组织移置量、周围组织的类型、被移置组织的量、流体类型和流体压力。可以通过出口40的尺寸和压力组合来控制流体的速率。在一些实施例中,盐水可以为使用的流体,并且其递送速率在约20毫升/秒与100毫升/秒之间,例如递送速率为约50毫升/秒。在另一个实施例中,空气可以为使用的流体,并且其递送压力在约5磅/平方英寸与20磅/平方英寸之间,例如递送压力为约10磅/平方英寸。在一些具体实施中,用户可通过提供可调节的压力系统对控制装置42(图1)进行压力调节,从而实现用户对流体出口速率的调节。在另一个实施例中,能够在加压流体源处进行压力调节。
在一些实施例中,抽吸系统50可以结合流体递送系统30使用。抽吸系统50可以与超声外科系统10分离(如图所示)、或抽吸系统可以附接到超声外科系统上或作为超声外科系统的一部分。抽吸系统50包括被连接到真空源(未示出)的抽吸腔52,该真空源能够在抽吸腔内产生负压。抽吸系统50用于在使用过程中将流体和/或碎片抽离治疗部位。
虽然图1-2b示出的是同轴设计,其中外护套36围绕着内护套22并与其共同延伸,但可以设想其他的实施例。例如图3示出的实施例,其中高压导管54、相邻的护套22用于递送加压流体以移置软组织。在另一个实施例中,可使用多个高压导管54递送加压流体以移置软组织。作为另外一种选择,可以在内护套22与外护套36之间、超声端部执行器18与外护套36之间或通过穿过端部执行器形成的腔(未示出)提供抽吸。
图4示出了能够移置软组织的超声外科系统60的另一个实施例。正如其他系统可以被采用,超声外科系统60仅为示例性的。超声外科系统60包括端部执行器62、手持件64、仪器柄部66和超声传动杆组件68。手持件64包括用于将来自信号发生器的电信号(如55,000Hz的正弦波形)转换成机械振动的超声换能器69(如压电换能器)。示例性的信号发生器为HP054型信号发生器,可从EthiconEndo-Surgery,Inc.商购获得。端部执行器62可以为例如DH105型提供的解剖钩,也得自Ethicon Endo-Surgery,Inc.。
现在参见图5,超声外科系统60包括可移动的护套组件70,其包括在固定节点76处固定到波导管74上的连接元件72。波导管74包括被接纳在连接元件72的环状槽80内以抑制连接元件相对于波导管轴向移动的安装段78。连接元件72包括轴向部分82和径向部分84。轴向部分82具有环状槽80,径向部分84形成可移动护套组件70的阻挡件。
可移动的元件86以滑动方式连接到连接元件72。可移动的元件86包括远离连接元件72就位的远侧部分88和靠近连接元件就位的近侧部分90。径向部分84被接纳在可移动元件86的内表面94中形成的狭槽92内。狭槽92轴向延伸,以允许可移动元件相对于连接元件72的轴向移动。
偏置构件96(在本实施例中为弹簧)位于连接元件72与可移动元件86之间。偏置构件96坐落在可移动元件86的径向延伸坐落表面98和连接元件72的径向部分84上。径向延伸坐落表面98对远端限定狭槽92。偏置构件96使可移动元件86朝如图5所示的延展构型偏离。在延展构型中,可移动元件86向远侧延伸于端部执行器62之外。由于偏置构件96通过接合连接元件72的径向部分84而施加的偏置力,因而径向延伸坐落表面100抑制可移动元件86的进一步轴向移动。坐落表面100对近端形成狭槽92。
图6示出了收缩构型的可移动护套组件70,其中力F克服了偏置构件96向可移动元件86施加的轴向偏置力。该力F导致可移动元件86相对于波导管74和连接元件72向近端轴向移动,同时狭槽92相对于连接元件的径向部分94移动。确定狭槽92的尺寸,以允许可移动元件86进行足够的轴向移动,使得端部执行器62暴露在可移动元件的远端102之外。
由偏置构件96向可移动元件86施加的使软组织46移动而不损伤组织的所需偏置力可以取决于若干因素,例如所需的组织移置量、周围组织的类型、被移置组织的量等。然而,应当选择这样的偏置力,使得当远端102接触相对硬的材料(例如骨骼)时,可移动元件86在(例如)手动施加力的作用下轴向收缩。例如,图7示出了延展构型的可移动护套组件70,其中可移动元件86的远端102远离端部执行器62就位并接触软组织(例如硬脑膜104),从而在可移动元件86的远端向前移动时移置组织。当远端102接触相对硬的材料(例如骨骼106)时,仪器继续向前移动导致端部执行器62延伸到远端102之外,从而暴露端部执行器,并将可移动护套组件置于如图8所示的回缩位置。当仪器远离骨骼106移动时,端部执行器62相对于可移动元件86移动,从而缩回可移动元件中。
参见图9,可移动护套组件110的可供选择的实施例包括连接到波导管(如,以类似于连接元件72的方式)的连接元件112以及可旋转地连接到连接元件112的可移动元件114。在该实施例中,可移动元件114通过销轴116可旋转地连接到连接元件112,销轴116限定了可移动元件114可绕其旋转的枢轴。可以用偏置构件(未示出,如扭力弹簧)使可移动元件114朝如图9所示的未偏转构型偏置。作为另外一种选择,可以选择可移动元件材料使其具有足够的弯曲硬挺度,使得可移动元件114自身可用作使可移动元件朝未偏转构型偏置的悬臂弹簧。
现在参见图10和图11,可移动元件114包括狭槽118,其尺寸被确定为允许端部执行器62由此通过。特别参见图11,当向可移动元件114施加足以克服偏置力的力F时,可移动元件以箭头120的方向旋转。例如,在切割操作中,当可移动元件114旋转到端部执行器被暴露时,狭槽118的位置和尺寸允许端部执行器62由此通过。如上所述,偏置构件向可移动元件114施加的偏置力可以被选择为移动软组织而不损伤组织,并且当可移动元件114接触相对硬的材料(例如骨骼)时,允许(例如)使用手动施加的力使可移动元件114旋转。
参见图12,超声外科系统122中结合了上述部件中的某些。超声外科系统122包括流体递送系统124和可移动护套组件126两者。流体递送系统包括流体源32和通过(例如)阀门132连接到流体入口130的导管128。可移动护套组件126包括连接元件134和以滑动方式连接到其上的可移动元件136。与上述的可移动元件114一样,对于(例如)切割操作,可移动元件136可相对于端部执行器18缩回,以暴露端部执行器。
图13和图14示出了延展构型(图13)和回缩构型(图14)的可移动元件136。如图13所示,在延展构型中,流体开口138在连接元件134的轴向部分135与可移动元件136之间形成。流体开口138允许加压流体朝流体出口流动到流体通道140中。在一些实施例中,加压流体可以用来向可移动元件136提供偏置力,以使可移动元件朝其伸长位置偏置。图14示出了回缩构型的可移动元件136。在回缩构型中,可移动元件136的表面142接合连接元件134的表面144,从而关闭了流体开口138,并形成抑制流体流入流体通道140的密封。可以理解的是,在此实施例中,可移动元件136和连接元件134形成允许控制流体流向流体出口的机械阀。在一些具体实施中,由可移动元件136和连接元件134形成的机械阀可以通过调节流体开口138的尺寸对加压流体流进行逐级控制。这可允许在“全开”流速与“全闭”流速之间调节流体流。
在另一个实施例中,手动调节可移动元件136,从而形成手动可调的机械阀,其中用户可以手动控制流体开口138的尺寸。在又一个实施例中,可移动元件136用于在可移动护套处于伸长位置时切断流体流,其仅在护套回缩时(如在切割过程中)才允许流体流动。
图15A-15D示出了包括可调式机械阀的示例性实施例,该可调式机械阀可通过相对于另一个旋转一个元件或元件141和元件143两者而打开或关闭。元件141和元件143分别包括用于将流体递送到流体出口的流体通道145和流体通道147。图15C示出了连接成封闭构型的元件141和元件143,其中它们各自的通道145和通道147相对于彼此旋转了90度。图15D示出了相对于彼此旋转的元件141和元件143,从而打开流体路径149和流体路径151。
重新参见图1-14,端部执行器18和端部执行器62以及相连的波导管可以由钛合金(例如Ti-6Al-4V)、铝合金、或任何其他合适的材料整体形成。作为另外一种选择,端部执行器可以单独由与波导管相同的材料或替代材料形成。然后可以通过(例如)螺纹连接或焊接接头将端部执行器附接到波导管。如本领域所熟知的那样,端部执行器的近端可以位于波导管最远端的振动节点附近。端部执行器的远端对应于振动反节点的位置。因此,端部执行器的长度大约等于端部执行器的材料组合物在特定的超声能量输入频率下所特有的声波波长的四分之一。例如,当端部执行器由Ti-6Al-4V形成时,其特征波长为大约87mm,端部执行器的长度为大约22mm。
然而,可能有利的是使用材料组合物来形成端部执行器18、端部执行器62,从而提供复合型端部执行器。现在参见图16,其示出用于超声外科仪器的超声传输组件150的第一实施例的远侧部分的透视图。图17为沿着图16中的线17-17截取的组件150的剖视图。组件150包括可以类似于上述波导管的波导管152。波导管152的远端附接到复合型端部执行器154在第一振动节点156附近的近端。节点156的位置也可以稍微临近端部执行器154的近端。图16示出的坐标系统定义了平行于z轴的组件150的纵轴158。复合型端部执行器154包括具有圆形横截面的圆柱形的第一部分160。第一部分160具有与纵轴158同轴并在端部执行器154的远端与近端之间延伸的钻孔162(也称为腔体)。圆柱形的第二部分164可以设置在钻孔162内,并可以大体上填充钻孔162。应该指出的是,虽然示出的第一部分160中的钻孔162延伸至振动节点156附近,但该方法的替代性实施例允许钻孔162延伸通过材料的一个或多个波长的一部分,长达并包括穿过整个波导管152。
第一部分160可以由第一材料形成,其可以是多种合适的材料中的任何一种,包括钛合金(例如Ti-6Al-4V)和铝合金(例如7075-T6)。第一部分160向第二部分164提供较坚韧的外覆盖,以抵抗超声外科仪器在正常处理、调整和操作过程中的结构应力。当第一部分160被(例如)由超声外科仪器的超声驱动单元提供的超声能量输入激励时,会形成(例如)具有第一波长的特征性(其中“特征性”是指材料通常表现出的声学特性)振动。超声能量输入的实例在约55.5kHz的频率下为大约3瓦特。第一波长的实例为大约87mm。
第二部分164由第二材料形成,其可以是多种合适的材料中的任何一种,包括氧化铝、氮化铝、氧化锆、碳化硅、氮化硅氧烷、蓝宝石和红宝石。第二部分164可以仅延伸端部执行器154的部分长度或整个长度。当第二部分164单独被超声能量输入激励时,会形成(例如)具有第二波长的特征性振动。第二波长可以大体上大于第一部分160的第一波长。第二波长的实例为大约174mm。
第一部分160和第二部分164可以用多种合适的方法中的任何一种方法或组合方法接合在一起,包括(但不限于)铜焊、烧结和机械连接。当第一部分160和第二部分164接合在一起并被超声能量输入激励时,复合型端部执行器154形成具有介于第一波长与第二波长之间的复合波长的特征性振动。
相似地,端部执行器154的其他材料性质中的一种或多种,包括导热率、超声功率传输效率和疲劳强度可以具有复合的特征值。此外,与材料性质相关的每一个复合特征值可以在由第一部分160与第二部分164为该材料性质特征值限定的范围内。
例如,在一些实施例中,形成第一部分160的材料(例如钛合金)可以被选择为具有相对低的导热率,而形成第二部分164的材料(例如铝合金)可以被选择为具有相对高的导热率。在一个实施例中,第二部分164可以介于端部执行器154的总宽度W的约30%至70%之间(如约50%),同时第一部分160构成宽度W的剩余部分。该示例性布置应当提供介于由任一种材料单独制成的端部执行器的传热系数之间的某个复合传热系数。有利的是,可以提供能够将热量从作用区域中的组织转移走的端部执行器,但热量转移速度不要快到无法进行快速组织横切的程度。
如图17所示,第二部分164可以沿其整个长度具有均一的直径。在其他具体实施中,第二部分164和/或第一部分160的直径可以均一地或甚至相对于彼此渐缩。可以使用牢固的粘结方式将第一部分160和第二部分164接合在一起,并在接口表面之间的整个区域内具有极小的缝隙,以始终确保复合型端部执行器154的最佳性能。制造复合型端部执行器154的方法可以包括提供由第一材料(例如钛合金)形成的第一杆,以及通过(例如)钻孔法在第一杆的近端与远端之间形成延伸的纵向钻孔。例如,第一杆的外径可以为约5毫米,纵向钻孔的直径可以为约4毫米。该方法还可以包括提供由第二材料(例如人造蓝宝石)形成的第二杆,并设定第二杆的直径,以使其紧密配合在第一杆的纵向钻孔内。该方法还可以包括使用连接处理将第一杆连接到第二杆。该连接方法可以为(例如)烧结法、铜焊法、机械法或这种方法的组合。
烧结法和铜焊法在心脏起搏器行业中是熟知的,其用于制备穿过起搏器壳体的密闭且耐用的生物相容性电引线“馈通”。烧结法包括陶瓷-金属封接法,其可以用于将陶瓷(例如95%的氧化铝或100%的氧化铝(蓝宝石))粘结到金属(例如钛、不锈钢或钼)。陶瓷(例如图17中的端部执行器154的第二部分164)可以使用粉末耐火金属或薄膜喷镀金属化技术进行金属化。然后可以用高压将金属化的陶瓷保持在金属(例如图17中的端部执行器154的第一部分160)上,并经受一段时间的高热,使陶瓷与金属粘结在一起。
另外可以用铜焊合金(如银、金或金-铜)将第二部分164和第一部分160铜焊在一起,但这种铜焊合金通常对于超声能量输入的传播是“有损耗的”(即,它们不能有效地传播声能,并往往会快速产生热量)。然而,在端部执行器154的组成中使用有损耗材料,包括由有损耗材料(例如银、金等)形成第二部分164,会潜在地使端部执行器154尤其适用于流体性环境。例如,外科医生通常使用超声外科仪器切割和/或凝固浸在体液中的组织,体液会快速消散来自端部执行器的热量。因此,切割和/或凝固组织所需的时间显著增加,这对患者来说代价是非常高的。可以为这种外科手术操作提供这样的超声仪器,该超声仪器具有由有损耗材料构成的端部执行器,并且即使在将端部执行器浸入体液中时也特别适于切割和凝固组织。有损耗材料的自动加热与接触端部执行器154的组织的自动加热结合在一起,允许系统提供使组织中的蛋白质变性以及切割/凝固组织所必需的热量。另外,通过在有损耗材料内核周围使用钛合金或其他无损耗合金的外护套,可以控制复合型端部执行器的自动加热量。
将第二部分164机械接合或连接到第一部分160可以包括将第二部分压入配合到第一部分160的钻孔中,或将第一部分机械压紧到第二部分上。作为另外一种选择,可以使用热方法,例如,其中将第一部分160加热,使其钻孔直径增大,然后将第二部分164放入钻孔中。然后可以允许组件冷却,以使得第一部分160紧密收缩到第二部分164上。在另一个实施例中,第一部分160和第二部分164为螺纹接合在一起。也可以使用如对本领域的技术人员显而易见的各种其他熟知的机械方法。
本领域的技术人员将会认识到,复合型端部执行器可以包括多个部分,其中每一个部分可以具有多种构造中的任何一种,而且各个部分可以使用多种接合方式中的任何一种接合在一起。每一个部分可以由与任何其他部分相同或不同的材料制成。因此,可以提供具有所需特性组合的复合型端部执行器,这些特性涉及(但不限于)被超声能量输入激励时的复合波长、结构强度、构型(包括长度)、质量分布、制造成本、使用寿命、热传导和热发生。每一个部分可以由多种材料中的一种形成,其中每一种材料在被超声能量输入激励时显示具有材料性质的特征值,并且其中复合型端部执行器在被超声能量输入激励时显示具有与每一种材料的特征值中的任何一种都不同的复合特征值。
另外可以为具有由某种材料形成的多个部分的超声外科仪器提供复合型端部执行器,使得复合型端部执行器在被超声能量输入激励时显示具有加强的抗断裂蔓延性能。这些部分中的至少一个可以是接合到相邻部分的层合部分,使得层合部分中始发的断裂不会通过相邻的部分蔓延。
现在参见图18,在一些实施例中,端部执行器170可以包括设置在金属基质174(例如烧结或热等静压的钛合金或铝合金)上的硬质小颗粒172(例如钻石、氧化铝颗粒等)。可以用粘结剂或作为涂层的一部分施加颗粒。颗粒172暴露在端部执行器170的表面处,以便其可接触组织。添加颗粒172提高了端部执行器170接触组织时的磨蚀作用。在一些具体实施中,由于增加的磨蚀作用,可能有利的是在使用过程中冲洗端部执行器170。
参见图19,其示出液体射流外科手术系统180的实施例。液体射流外科手术系统180采用了液体射流外科仪器182,该液体射流外科仪器是外科手术手持件,其具有包括主体186的近端,主体186具有被构造为放置在用户手中的抓握区域188。外科仪器182具有包括压力腔192和排空腔194的远端190。
在该图示实施例中,外科仪器182还包括护套196,其至少部分地围绕压力腔192和排空腔194,并为腔体提供支承,以在仪器182操作时帮助保持压力腔192与排空腔194之间的几何构型。压力腔192还包括在其远端的喷嘴198,当压力腔192提供的高压液体流经时,会形成液体射流。排空腔194包括位于其远端的射流接纳开口200,开口200在与其具有预定的距离处设置在射流喷嘴198的对面,以在仪器182操作时接纳液体射流。
在一些实施例中,压力腔192和排空腔194被构造和支承为使得腔体的远端足够坚硬,以抑制腔体(例如)接触外科手术操作区内的表面时发生挠曲,腔体挠曲有可能导致液体射流的方向错误,使射流射不到射流接纳开口200中,从而可能导致患者组织的意外损伤。压力腔192通过高压液体供应导管206与高压泵204流体连通。高压液体供应导管206另外必须具有能够抵抗使用仪器182进行具体的外科手术应用时预期的最高液体压力的爆破强度。在一些实施例中,高压液体供应导管206具有能够抵抗至少50,000磅/平方英寸(表压)的防破裂不锈钢海波管。在一些实施例中,海波管可以螺旋状盘绕,以提高外科仪器182的柔韧性和可操纵性。在一个实施例中,高压液体供应导管206具有可连接到压力腔192上的Kevlar纤维增强型尼龙管。
高压泵204与高压液体供应导管206流体连通,该高压泵可为能够提供进行所需外科手术操作需要的液体压力的任何合适的泵。本领域的普通技术人员将容易认识到,多种类型的高压泵都可以用于本发明目的,包括(但不限于)活塞泵和隔膜泵。在一些实施例中,高压泵204包括连接到可重复使用的泵驱动控制台210上的一次性活塞泵或隔膜泵。高压泵204具有与低压液体供应管道212流体连通的入口,低压液体供应管道212接纳来自液体供应贮存器214的液体。泵驱动控制台210优选地包括电动机,其可用于向高压泵204提供驱动力,以提供液体供应导管206中的高压液体。液体射流外科手术系统180的各种其他详情在美国专利No.7,122,017中有所描述,该专利全文以引用方式并入本文。
超声外科系统220位于可向液体射流外科手术系统180部件中的某些施加超声能量的位置。超声外科系统220包括具有超声换能器224的超声信号发生器222。超声换能器224将来自超声信号发生器222的电信号转换成主要引起超声换能器的振动的机械能。换能器224可以设计为使系统纵向、横向或扭转振动。在一个实施例中,换能器是(例如)位于压力腔192附近的径向模式换能器,以将压力脉冲施加到加压流体。
现在参见图20,超声换能器224(图19)可以将振动能量施加到压力腔192、排空腔194、高压液体射流202和排空腔内的排空管水柱中的任何一个或多个。首先,可以将超声能量施加到压力腔192。这可以通过(例如)以纵向方式振动压力腔192,从而由于驻波而形成压力腔的收缩和膨胀运动来实现。顶端195的动态运动形成压力脉冲。又如,换能器224可以包围压力腔102或形成压力腔的一部分,并以径向模式被激励。在这种激励的作用下,如果换能器是腔体的一部分,则换能器224使压力腔102(柔韧的压力腔)或流体的直径缩短,从而形成压力脉冲。通过向压力腔192施加超声能量,可以增强液体射流切割能力。在某些情况下,压力腔192自身可用于切割或凝固组织。
在一些实施例中,可以(例如)以与上文所述相似的方式将超声能量施加到排空腔194。通过向排空腔194施加超声能量,可以抑制排空腔194内的堵塞。在某些情况下,排空腔194自身可以用于切割或凝固组织。
在一些实施例中,可以向高压水喷202施加超声能量。这可以通过以纵向方式振动压力腔192,从而由于驻波而形成压力腔的收缩和膨胀运动来实现。顶端195的动态运动形成向水流202施加振动的压力脉冲。又如,换能器224可以包围压力腔102或形成压力腔的一部分,并以径向模式被激励。在这种激励的作用下,如果换能器是腔体的一部分,则换能器224使压力腔102(柔韧的压力腔)或流体的直径缩短,从而形成转移至水流202的压力脉冲。在一些实施例中,可以以与上文所述类似的方式向排空腔194内的液柱施加超声能量。
以上描述了多个详细的实施例。然而应当理解,可以进行多种修改。因此,其他实施例在以下权利要求书的范围内。

Claims (10)

1.一种超声外科系统,包括:
超声传输构件,其具有近端和远端;
超声致动的端部执行器,其附接在所述超声传输构件的所述远端处;和
加压流体递送系统,其包括与至少一个流体源连通的流体喷嘴,所述流体喷嘴被布置并被构造为以一定的速率向软组织递送加压流体射流,以在使用过程中移动所述软组织远离所述端部执行器,
所述超声传输构件为波导管,所述超声外科系统还包括能够由用户抓握的手持件,所述手持件包括操作地连接到波导管的超声换能器,所述手持件包括位于其上的允许用户控制加压流体递送的用户控制装置。
2.根据权利要求1所述的超声外科系统,还包括:
内护套,其设置在所述超声传输构件周围;和
外护套,其设置在所述内护套周围并与所述内护套径向间隔,以限定用于将所述加压流体导向到所述流体喷嘴的流体通道。
3.根据权利要求1所述的超声外科系统,还包括外护套,其设置在所述超声传输构件周围,以限定用于将所述加压流体导向到所述流体喷嘴的流体通道。
4.根据权利要求1所述的超声外科系统,其能够以至少约20毫升/秒的速率递送来自所述流体喷嘴的流体。
5.根据权利要求1所述的超声外科系统,其中,所述加压流体递送系统包括多个流体源。
6.根据权利要求5所述的超声外科系统,其中,所述多个流体源包括:第一流体源,其含有第一流体;和第二流体源,其含有不同于所述第一流体的第二流体。
7.根据权利要求5所述的超声外科系统,其中所述多个流体源包括:第一流体源,其能够以第一压力提供流体;和第二流体源,其能够以不同于所述第一压力的第二压力提供流体。
8.根据权利要求1所述的超声外科系统,其中,所述端部执行器为复合型端部执行器,该复合型端部执行器包括:
第一部分,其包括第一材料,所述第一材料具有第一导热率;和
第二部分,其包括第二材料,所述第二材料具有高于所述第一导热率的第二导热率。
9.根据权利要求1所述的超声外科系统,其中,所述端部执行器为复合型端部执行器,该复合型端部执行器包括:
第一部分,其包括有损耗材料,所述有损耗材料在使用过程中自动加热以向组织提供热量;和
第二部分,其包括无损耗材料,所述无损耗材料在使用过程中限制向组织提供的热量。
10.根据权利要求1所述的超声外科系统,其中,所述端部执行器为复合型端部执行器,其包括设置在金属材料基质中的金刚石颗粒,所述金刚石颗粒被暴露在所述端部执行器的表面处,用于在使用过程中接触组织。
CN200880017836.5A 2007-05-29 2008-05-13 超声外科系统 Active CN101677826B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/807,474 2007-05-29
US11/807,474 US9271751B2 (en) 2007-05-29 2007-05-29 Ultrasonic surgical system
PCT/US2008/063485 WO2008150650A1 (en) 2007-05-29 2008-05-13 Ultrasonic surgical system

Publications (2)

Publication Number Publication Date
CN101677826A CN101677826A (zh) 2010-03-24
CN101677826B true CN101677826B (zh) 2014-01-29

Family

ID=40089098

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200880017836.5A Active CN101677826B (zh) 2007-05-29 2008-05-13 超声外科系统

Country Status (9)

Country Link
US (1) US9271751B2 (zh)
EP (4) EP3510952B1 (zh)
JP (1) JP5542664B2 (zh)
CN (1) CN101677826B (zh)
AU (1) AU2008260378B2 (zh)
BR (1) BRPI0811641B8 (zh)
CA (1) CA2689263A1 (zh)
PL (1) PL3510952T3 (zh)
WO (1) WO2008150650A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105727425A (zh) * 2014-12-29 2016-07-06 爱尔博电子医疗仪器公司 用于创建脉冲流体射流的供应系统、具有供应系统的应用系统和用于操作供应系统的控制方法

Families Citing this family (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9801708B2 (en) 2004-11-05 2017-10-31 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8840645B2 (en) 2004-11-05 2014-09-23 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US7905904B2 (en) 2006-02-03 2011-03-15 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US8361113B2 (en) 2006-02-03 2013-01-29 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8118836B2 (en) 2004-11-05 2012-02-21 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8298262B2 (en) 2006-02-03 2012-10-30 Biomet Sports Medicine, Llc Method for tissue fixation
US7909851B2 (en) 2006-02-03 2011-03-22 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US8137382B2 (en) 2004-11-05 2012-03-20 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US8088130B2 (en) 2006-02-03 2012-01-03 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8303604B2 (en) 2004-11-05 2012-11-06 Biomet Sports Medicine, Llc Soft tissue repair device and method
US9017381B2 (en) 2007-04-10 2015-04-28 Biomet Sports Medicine, Llc Adjustable knotless loops
US7658751B2 (en) 2006-09-29 2010-02-09 Biomet Sports Medicine, Llc Method for implanting soft tissue
US7749250B2 (en) 2006-02-03 2010-07-06 Biomet Sports Medicine, Llc Soft tissue repair assembly and associated method
US8128658B2 (en) 2004-11-05 2012-03-06 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to bone
US8998949B2 (en) 2004-11-09 2015-04-07 Biomet Sports Medicine, Llc Soft tissue conduit device
US8562645B2 (en) 2006-09-29 2013-10-22 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US11311287B2 (en) 2006-02-03 2022-04-26 Biomet Sports Medicine, Llc Method for tissue fixation
US9078644B2 (en) 2006-09-29 2015-07-14 Biomet Sports Medicine, Llc Fracture fixation device
US9538998B2 (en) 2006-02-03 2017-01-10 Biomet Sports Medicine, Llc Method and apparatus for fracture fixation
US9149267B2 (en) 2006-02-03 2015-10-06 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8562647B2 (en) 2006-09-29 2013-10-22 Biomet Sports Medicine, Llc Method and apparatus for securing soft tissue to bone
US11259792B2 (en) 2006-02-03 2022-03-01 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US8597327B2 (en) 2006-02-03 2013-12-03 Biomet Manufacturing, Llc Method and apparatus for sternal closure
US8652171B2 (en) 2006-02-03 2014-02-18 Biomet Sports Medicine, Llc Method and apparatus for soft tissue fixation
US8652172B2 (en) 2006-02-03 2014-02-18 Biomet Sports Medicine, Llc Flexible anchors for tissue fixation
US8936621B2 (en) 2006-02-03 2015-01-20 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US8574235B2 (en) 2006-02-03 2013-11-05 Biomet Sports Medicine, Llc Method for trochanteric reattachment
US8251998B2 (en) * 2006-08-16 2012-08-28 Biomet Sports Medicine, Llc Chondral defect repair
US8771352B2 (en) 2011-05-17 2014-07-08 Biomet Sports Medicine, Llc Method and apparatus for tibial fixation of an ACL graft
US8968364B2 (en) 2006-02-03 2015-03-03 Biomet Sports Medicine, Llc Method and apparatus for fixation of an ACL graft
US8506597B2 (en) 2011-10-25 2013-08-13 Biomet Sports Medicine, Llc Method and apparatus for interosseous membrane reconstruction
US8801783B2 (en) 2006-09-29 2014-08-12 Biomet Sports Medicine, Llc Prosthetic ligament system for knee joint
US10517587B2 (en) 2006-02-03 2019-12-31 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US9271713B2 (en) 2006-02-03 2016-03-01 Biomet Sports Medicine, Llc Method and apparatus for tensioning a suture
US20080177287A1 (en) * 2006-09-14 2008-07-24 William Rassman Hair harvesting apparatus
US8500818B2 (en) 2006-09-29 2013-08-06 Biomet Manufacturing, Llc Knee prosthesis assembly with ligament link
US9918826B2 (en) 2006-09-29 2018-03-20 Biomet Sports Medicine, Llc Scaffold for spring ligament repair
US11259794B2 (en) 2006-09-29 2022-03-01 Biomet Sports Medicine, Llc Method for implanting soft tissue
US8672969B2 (en) 2006-09-29 2014-03-18 Biomet Sports Medicine, Llc Fracture fixation device
JP5115088B2 (ja) 2007-08-10 2013-01-09 セイコーエプソン株式会社 手術具
US20100305710A1 (en) 2009-05-28 2010-12-02 Biomet Manufacturing Corp. Knee Prosthesis
US8623040B2 (en) 2009-07-01 2014-01-07 Alcon Research, Ltd. Phacoemulsification hook tip
JP5749265B2 (ja) * 2009-08-14 2015-07-15 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. 超音波外科装置及びケイ素導波管、並びにその使用方法
US9737735B2 (en) 2009-08-14 2017-08-22 Ethicon Llc Ultrasonic surgical apparatus with silicon waveguide
US10258505B2 (en) 2010-09-17 2019-04-16 Alcon Research, Ltd. Balanced phacoemulsification tip
EP2694125A4 (en) * 2011-04-01 2015-01-14 Christopher Burnside Gordon HARVEST MACHINE WITH A LIQUID CELL AND CELLULAR DISPENSING SYSTEM
DE102011110136A1 (de) 2011-08-15 2013-02-21 Olympus Winter & Ibe Gmbh Schaft eines laparoskopischen Instrumentes
US9357991B2 (en) 2011-11-03 2016-06-07 Biomet Sports Medicine, Llc Method and apparatus for stitching tendons
US9381013B2 (en) 2011-11-10 2016-07-05 Biomet Sports Medicine, Llc Method for coupling soft tissue to a bone
US9370350B2 (en) 2011-11-10 2016-06-21 Biomet Sports Medicine, Llc Apparatus for coupling soft tissue to a bone
US9357992B2 (en) 2011-11-10 2016-06-07 Biomet Sports Medicine, Llc Method for coupling soft tissue to a bone
KR101433272B1 (ko) 2012-03-09 2014-08-25 이메드 주식회사 초음파를 이용한 외과 수술용 기구
JP5485481B1 (ja) * 2012-06-01 2014-05-07 オリンパスメディカルシステムズ株式会社 超音波プローブ
CN103721308A (zh) * 2012-10-15 2014-04-16 北京速迈医疗科技有限公司 一种增强空化效果的超声清创手术系统
US9757119B2 (en) 2013-03-08 2017-09-12 Biomet Sports Medicine, Llc Visual aid for identifying suture limbs arthroscopically
US9918827B2 (en) 2013-03-14 2018-03-20 Biomet Sports Medicine, Llc Scaffold for spring ligament repair
US9421023B2 (en) * 2013-06-12 2016-08-23 Cybersonics, Inc. Ultrasonic transducer with shock pulsing masses
US9622767B2 (en) 2013-09-11 2017-04-18 Covidien Lp Ultrasonic surgical instrument with cooling system
JP2015058234A (ja) * 2013-09-20 2015-03-30 セイコーエプソン株式会社 医療用液体噴射装置
US9901358B2 (en) * 2013-11-15 2018-02-27 Ethicon Llc Ultrasonic surgical instrument with integral blade cleaning feature
US9763688B2 (en) 2013-11-20 2017-09-19 Ethicon Llc Ultrasonic surgical instrument with features for forming bubbles to enhance cavitation
US10136886B2 (en) 2013-12-20 2018-11-27 Biomet Sports Medicine, Llc Knotless soft tissue devices and techniques
JP2015159870A (ja) * 2014-02-26 2015-09-07 セイコーエプソン株式会社 手術機器
US9615822B2 (en) 2014-05-30 2017-04-11 Biomet Sports Medicine, Llc Insertion tools and method for soft anchor
US9700291B2 (en) 2014-06-03 2017-07-11 Biomet Sports Medicine, Llc Capsule retractor
US10039543B2 (en) 2014-08-22 2018-08-07 Biomet Sports Medicine, Llc Non-sliding soft anchor
EP3189800B1 (de) * 2014-12-29 2019-04-03 Erbe Elektromedizin GmbH Computerlesbarer speicher mit instruktionen zur implementierung eines steuerverfahrens zum betreiben einer versorgungseinrichtung
US9955980B2 (en) 2015-02-24 2018-05-01 Biomet Sports Medicine, Llc Anatomic soft tissue repair
US20160262786A1 (en) * 2015-03-10 2016-09-15 Ethicon Endo-Surgery, Llc Surgical blades with fatigue resistant properties
US9974534B2 (en) 2015-03-31 2018-05-22 Biomet Sports Medicine, Llc Suture anchor with soft anchor of electrospun fibers
US10492885B2 (en) * 2015-12-17 2019-12-03 Ethicon Llc Ultrasonic surgical instrument with cleaning port
US10456156B2 (en) 2016-03-29 2019-10-29 Covidien Lp Devices, systems, and methods for cooling a surgical instrument
US10342566B2 (en) 2016-03-29 2019-07-09 Covidien Lp Devices, systems, and methods for cooling a surgical instrument
US10660663B2 (en) * 2016-05-25 2020-05-26 Ethicon Llc Ultrasonic surgical instrument blade with heat reduction feature
WO2019100587A1 (zh) * 2017-11-21 2019-05-31 青岛理工大学 一种静电雾化超声波辅助生物骨低损伤可控磨削工艺与装置
US10881424B2 (en) 2018-02-13 2021-01-05 Covidien Lp Removable fluid reservoir and ultrasonic surgical instrument including the same
US11103273B2 (en) * 2018-12-14 2021-08-31 Rasim Kakony Powered hair restoration and surgical assembly
US11844563B2 (en) 2019-11-19 2023-12-19 Covidien Lp Energy-based surgical instruments incorporating cooling features
RU201584U1 (ru) * 2020-07-27 2020-12-22 Игорь Георгиевич Киселев Хирургический инструмент для разделения и санации биологических тканей
CN112244946B (zh) * 2020-11-16 2021-08-03 徐树建 一种用于甲状腺的剥离装置

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6266848A (ja) 1985-09-20 1987-03-26 住友ベークライト株式会社 外科手術用具
US4700716A (en) 1986-02-27 1987-10-20 Kasevich Associates, Inc. Collinear antenna array applicator
US4827911A (en) 1986-04-02 1989-05-09 Cooper Lasersonics, Inc. Method and apparatus for ultrasonic surgical fragmentation and removal of tissue
WO1988003783A1 (en) * 1986-11-27 1988-06-02 Sumitomo Bakelite Company, Limited Ultrasonic surgical apparatus
US5496267A (en) * 1990-11-08 1996-03-05 Possis Medical, Inc. Asymmetric water jet atherectomy
US5957882A (en) * 1991-01-11 1999-09-28 Advanced Cardiovascular Systems, Inc. Ultrasound devices for ablating and removing obstructive matter from anatomical passageways and blood vessels
US5378150A (en) * 1992-06-18 1995-01-03 Harrel; Stephen K. Methods and apparatus for controlling the aerosol envelope generated by ultrasonic devices
US5569161A (en) 1992-10-08 1996-10-29 Wendell V. Ebling Endoscope with sterile sleeve
JPH06142112A (ja) * 1992-11-12 1994-05-24 Olympus Optical Co Ltd 超音波処置装置
JPH08107899A (ja) * 1994-10-11 1996-04-30 Aloka Co Ltd 超音波手術装置
US5569461A (en) * 1995-02-07 1996-10-29 Minnesota Mining And Manufacturing Company Topical antimicrobial composition and method
US6156029A (en) * 1997-11-25 2000-12-05 Eclipse Surgical Technologies, Inc. Selective treatment of endocardial/myocardial boundary
US5897523A (en) 1998-04-13 1999-04-27 Ethicon Endo-Surgery, Inc. Articulating ultrasonic surgical instrument
US6179805B1 (en) * 1998-06-04 2001-01-30 Alcon Laboratories, Inc. Liquefracture handpiece
US6375635B1 (en) 1999-05-18 2002-04-23 Hydrocision, Inc. Fluid jet surgical instruments
US6117152A (en) * 1999-06-18 2000-09-12 Ethicon Endo-Surgery, Inc. Multi-function ultrasonic surgical instrument
US6254623B1 (en) 1999-06-30 2001-07-03 Ethicon Endo-Surgery, Inc. Ultrasonic clamp coagulator surgical instrument with improved blade geometry
US6524251B2 (en) 1999-10-05 2003-02-25 Omnisonics Medical Technologies, Inc. Ultrasonic device for tissue ablation and sheath for use therewith
US6325811B1 (en) 1999-10-05 2001-12-04 Ethicon Endo-Surgery, Inc. Blades with functional balance asymmetries for use with ultrasonic surgical instruments
US7135029B2 (en) 2001-06-29 2006-11-14 Makin Inder Raj S Ultrasonic surgical instrument for intracorporeal sonodynamic therapy
US6932771B2 (en) 2001-07-09 2005-08-23 Civco Medical Instruments Co., Inc. Tissue warming device and method
US6736814B2 (en) * 2002-02-28 2004-05-18 Misonix, Incorporated Ultrasonic medical treatment device for bipolar RF cauterization and related method
PT1490005E (pt) 2002-03-15 2008-04-23 Gen Hospital Corp Dispositivos para a destruição selectiva de tecido adiposo por arrefecimento controlado
US6893434B2 (en) 2002-05-13 2005-05-17 Axya Medical, Inc. Ultrasonic soft tissue cutting and coagulation systems including a retractable grasper
US7118566B2 (en) 2002-05-16 2006-10-10 Medtronic, Inc. Device and method for needle-less interstitial injection of fluid for ablation of cardiac tissue
JP2006503682A (ja) 2002-10-25 2006-02-02 ハイドロシジョン・インコーポレーテッド 液体噴流支援型の組織操作を組み込んだ手術装置及びその使用法
US8162966B2 (en) * 2002-10-25 2012-04-24 Hydrocision, Inc. Surgical devices incorporating liquid jet assisted tissue manipulation and methods for their use
JP2004267462A (ja) 2003-03-07 2004-09-30 Olympus Corp 超音波穿刺システム
US7566318B2 (en) 2003-04-11 2009-07-28 Cardiac Pacemakers, Inc. Ultrasonic subcutaneous dissection tool incorporating fluid delivery
US20070275348A1 (en) * 2003-10-23 2007-11-29 Lemon Ronald R Sonic and Ultrasonic Surgical Tips
US7163548B2 (en) 2003-11-05 2007-01-16 Ethicon Endo-Surgery, Inc Ultrasonic surgical blade and instrument having a gain step
US20050267502A1 (en) * 2003-12-18 2005-12-01 Hochman Mark N Disposable safety cutting tool
US20050234484A1 (en) 2004-02-27 2005-10-20 Houser Kevin L Ultrasonic surgical blade having transverse and longitudinal vibration
US20050222598A1 (en) * 2004-04-05 2005-10-06 Manoa Medical, Inc., A Delaware Corporation Tissue cutting device
WO2006034281A1 (en) 2004-09-21 2006-03-30 Discus Dental Impressions Dental instruments having durable coatings
US20060079879A1 (en) 2004-10-08 2006-04-13 Faller Craig N Actuation mechanism for use with an ultrasonic surgical instrument
DE102005009802A1 (de) * 2005-03-03 2006-09-07 Kaltenbach & Voigt Gmbh Medizinisches Werkzeug oder Handstück zum Schneiden einer Hartmaterialwand und Verfahren zum Schneiden einer Materialwand unter Verwendung eines medizinischen Handstücks mit Werkzeug
US20060211989A1 (en) 2005-03-04 2006-09-21 Rhinehart Edward J Fluid delivery systems, devices and methods for delivery of fluids
US8092475B2 (en) 2005-04-15 2012-01-10 Integra Lifesciences (Ireland) Ltd. Ultrasonic horn for removal of hard tissue
US8142460B2 (en) * 2005-04-15 2012-03-27 Integra Lifesciences (Ireland) Ltd. Bone abrading ultrasonic horns
JP4481922B2 (ja) 2005-05-13 2010-06-16 オリンパスメディカルシステムズ株式会社 医療用処置具
AU2006273620A1 (en) * 2005-07-26 2007-02-01 Ultrasurge Technologies Surgical instrument
JP4030565B2 (ja) 2006-03-06 2008-01-09 株式会社三共 遊技機
US8142461B2 (en) * 2007-03-22 2012-03-27 Ethicon Endo-Surgery, Inc. Surgical instruments
JP4960479B2 (ja) 2010-06-03 2012-06-27 株式会社東芝 製造計画作成装置及びプログラム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105727425A (zh) * 2014-12-29 2016-07-06 爱尔博电子医疗仪器公司 用于创建脉冲流体射流的供应系统、具有供应系统的应用系统和用于操作供应系统的控制方法
CN105727425B (zh) * 2014-12-29 2020-02-07 爱尔博电子医疗仪器公司 用于创建脉冲流体射流的供应系统及其控制方法

Also Published As

Publication number Publication date
EP2157922A1 (en) 2010-03-03
AU2008260378B2 (en) 2013-12-19
US9271751B2 (en) 2016-03-01
CA2689263A1 (en) 2008-12-11
WO2008150650A1 (en) 2008-12-11
EP3510951B1 (en) 2021-12-15
JP5542664B2 (ja) 2014-07-09
BRPI0811641A2 (pt) 2014-11-11
EP3510952B1 (en) 2022-05-25
US20080300611A1 (en) 2008-12-04
EP3513748A1 (en) 2019-07-24
CN101677826A (zh) 2010-03-24
JP2010528711A (ja) 2010-08-26
EP2157922B1 (en) 2019-06-26
EP2157922A4 (en) 2011-06-29
AU2008260378A1 (en) 2008-12-11
BRPI0811641B8 (pt) 2021-06-22
BRPI0811641B1 (pt) 2019-06-18
EP3510952A1 (en) 2019-07-17
EP3510951A1 (en) 2019-07-17
PL3510952T3 (pl) 2022-09-12

Similar Documents

Publication Publication Date Title
CN101677826B (zh) 超声外科系统
AU2007201176B2 (en) Composite end effector for an ultrasonic surgical instrument
CN106999198B (zh) 通过超声外科器械的轴组件用于传送流体的特征结构
CN101765495B (zh) 有效长度增加的超声端部操纵装置
EP1492592B1 (en) High efficiency medical transducer with ergonomic shape and method of manufacture
AU688384B2 (en) Bipolar ultrasonic surgery
JP2017535398A (ja) 後退によるブレード冷却を使用した超音波外科用器具
EP1436109A1 (en) Floating probe for ultrasonic transducers
JPH0367411B2 (zh)
CN108289694B (zh) 提供超声组织乳化和超声剪切的外科器械
CN101836878A (zh) 用于碎石仪的负压调节装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant