WO2019100587A1 - 一种静电雾化超声波辅助生物骨低损伤可控磨削工艺与装置 - Google Patents

一种静电雾化超声波辅助生物骨低损伤可控磨削工艺与装置 Download PDF

Info

Publication number
WO2019100587A1
WO2019100587A1 PCT/CN2018/075017 CN2018075017W WO2019100587A1 WO 2019100587 A1 WO2019100587 A1 WO 2019100587A1 CN 2018075017 W CN2018075017 W CN 2018075017W WO 2019100587 A1 WO2019100587 A1 WO 2019100587A1
Authority
WO
WIPO (PCT)
Prior art keywords
grinding
ultrasonic
disposed
water
electrode
Prior art date
Application number
PCT/CN2018/075017
Other languages
English (en)
French (fr)
Inventor
李长河
杨敏
张彦彬
贾东洲
李润泽
张乃庆
侯亚丽
张效伟
Original Assignee
青岛理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201721568840.3U external-priority patent/CN208808570U/zh
Priority claimed from CN201711164696.1A external-priority patent/CN107789029A/zh
Application filed by 青岛理工大学 filed Critical 青岛理工大学
Priority to GB1918924.0A priority Critical patent/GB2578046B/en
Priority to AU2018373743A priority patent/AU2018373743B2/en
Priority to US16/090,778 priority patent/US11406397B2/en
Publication of WO2019100587A1 publication Critical patent/WO2019100587A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1695Trepans or craniotomes, i.e. specially adapted for drilling thin bones such as the skull
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1644Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans using fluid other than turbine drive fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320016Endoscopic cutting instruments, e.g. arthroscopes, resectoscopes
    • A61B17/32002Endoscopic cutting instruments, e.g. arthroscopes, resectoscopes with continuously rotating, oscillating or reciprocating cutting instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0623Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers coupled with a vibrating horn
    • B05B17/063Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers coupled with a vibrating horn having an internal channel for supplying the liquid or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0638Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers spray being produced by discharging the liquid or other fluent material through a plate comprising a plurality of orifices
    • B05B17/0646Vibrating plates, i.e. plates being directly subjected to the vibrations, e.g. having a piezoelectric transducer attached thereto
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B2017/1602Mills
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1644Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans using fluid other than turbine drive fluid
    • A61B2017/1651Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans using fluid other than turbine drive fluid for cooling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1644Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans using fluid other than turbine drive fluid
    • A61B2017/1653Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans using fluid other than turbine drive fluid for lubrication
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • A61B2017/22005Effects, e.g. on tissue
    • A61B2017/22007Cavitation or pseudocavitation, i.e. creation of gas bubbles generating a secondary shock wave when collapsing
    • A61B2017/22008Cavitation or pseudocavitation, i.e. creation of gas bubbles generating a secondary shock wave when collapsing used or promoted
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B2017/320098Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with transverse or torsional motion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/30Devices for illuminating a surgical field, the devices having an interrelation with other surgical devices or with a surgical procedure
    • A61B2090/306Devices for illuminating a surgical field, the devices having an interrelation with other surgical devices or with a surgical procedure using optical fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/361Image-producing devices, e.g. surgical cameras
    • A61B2090/3614Image-producing devices, e.g. surgical cameras using optical fibre
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2217/00General characteristics of surgical instruments
    • A61B2217/002Auxiliary appliance
    • A61B2217/007Auxiliary appliance with irrigation system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/361Image-producing devices, e.g. surgical cameras
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • A61M11/005Sprayers or atomisers specially adapted for therapeutic purposes using ultrasonics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/36General characteristics of the apparatus related to heating or cooling
    • A61M2205/3606General characteristics of the apparatus related to heating or cooling cooled

Definitions

  • the invention relates to a neurosurgical skull grinding, intraoperative cooling, postoperative wound film forming flexible integrated device, in particular to an electrostatic atomizing ultrasonic assisted biological bone low damage controllable grinding process and device.
  • the pituitary tumor is taken as an example.
  • the surgeon first uses high-speed grinding tools to remove the bone structure such as the nasal septum, the anterior sphenoid sinus and the sphenoid sinus.
  • the structure of the skull base is complicated and distributed.
  • Important nerves such as the optic nerve, trigeminal nerve, carotid artery
  • Diamond abrasive tools are favored by neurosurgeons because of their small trauma to soft tissues.
  • the heat production of diamond abrasive tools during grinding is significantly higher than that of other cutting methods, resulting in osteonecrosis and thermal damage to surrounding tissues.
  • Bone grinding is a common operation in the process of skull base tumor removal. Because the key technology of precise control of the anisotropic hard and brittle material grinding temperature field has not been broken, high temperature thermal damage is the technical bottleneck of current neurosurgical skull grinding. However, the current basic research on bone grinding heat is very limited. Yang et al.
  • thermophysical properties of the nanoparticles are different and have different effects on the surface temperature of the bone [Yang M., Li CH, Zhang YB, et al. Research on microscale skull grinding temperature field under different cooling conditions. Applied Thermal Engineering, 2017, Vol 126pp.525-537].
  • Zhang Dongkun et al. invented a medical surgical six-degree-of-freedom automatic adjustment robotic arm grinding and clamping device (patent number: ZL 201310277636.6), which has three rotations and three movement totals. 6 degrees of freedom, can achieve any posture of the skull surgery operation.
  • the device is mainly operated by advanced surgical instruments, and the automatic adjustment of the mechanical arm with six degrees of freedom and the clamping device installed at the front end of the mechanical arm have obvious advantages in terms of treatment effect, pain relief, recovery period, medical cost, and the like;
  • Zhang Dongkun and others invented a surgical skull grinding temperature online detection and controllable hand-held grinding device (Patent No.: ZL 201310030327.9), which adjusts the grinding wheel speed by monitoring the acoustic emission signal of bone grinding to reduce the grinding process.
  • An acoustic emission sensor is arranged at the connection between the grinding wheel and the casing, and the acoustic emission signal of the bone grinding detected by the acoustic emission sensor is received by the signal analysis processing mode to determine whether an overheating condition occurs, and the rotation speed of the DC motor is controlled by the feedback device;
  • the constant uses the dependence of fluorescence on the temperature to detect the temperature to be measured, and realizes the closed-loop control of the temperature during the grinding process;
  • the reflective shaft is attached with a reflective strip, and the principle of phase contrast measurement is adopted by the optical fiber sensor, and the phase comparison principle is adopted.
  • the laser head and the reflective strip are used as signal generators to detect the rotation speed and torque of the grinding head on-line to realize closed-loop control of pathological bone removal and grinding head life;
  • the electrostatic atomizing inner cooling tool and the electrostatic atomization film forming device are in a sleeve structure. Not only can the coolant be fully atomized and the droplet distribution of the coolant can be controlled, thereby effectively reducing the temperature of the grinding zone, and the medical auxiliary material can be sprayed to the grinding device by the electrostatic atomization film forming device at the same time as the bone grinding.
  • the wound surface is adjusted by adjusting the structure of the retractable sleeve to adjust the position of the electrostatic atomization film forming nozzle, thereby realizing the atomization film forming protection treatment for the grinding wound surface;
  • the high-voltage electric conversion device is sleeved on the outside of the grinding head and fixedly arranged.
  • the wire connecting block is connected to the high-voltage electric conversion device.
  • the high voltage electric conversion device is connected to the power source.
  • An inner cooling hole is disposed in the grinding head handle, the inner cooling hole passes through the grinding head and the grinding head handle, and the wire connecting block is connected to the inner cooling hole through the wire.
  • the inner cooling hole is a double spiral hole. During the grinding process, the compressed air, the coolant or the nano fluid is accelerated in the two spiral holes and directly sprayed into the grinding zone, thereby effectively reducing the temperature of the grinding zone and washing away the wear debris. To extend tool life.
  • a orthopedic surgery assisted robot system (patent number: ZL 201010299237.6) in the field of medical device technology, including the robot body, controller and joystick.
  • the joystick is located at the wrist of the robot body and controlled by the robot.
  • the device is connected to transmit a manual operation signal of the operator, and is used by the surgeon to manipulate and adjust the working position of the robot;
  • the controller is located in the base of the robot body and is connected with the robot body and the joystick to realize autonomous control of the robot body;
  • the robot body is placed on the operating table to assist the main surgeon to complete the operations of osteotomy, grinding and fixation.
  • the grinding drill motor is placed in the moving platform, and the grinding drill motor and the grinding drill motor connector are fixedly connected.
  • the drill motor connecting body is fixedly connected with the moving platform, and the grinding drill body is fixed on the grinding drill motor connecting body, the grinding drill body is provided with a grinding drill top wire hole, and the grinding drill top wire hole cover is installed on the grinding drill body grinding diamond top
  • the grinding drill shaft is connected with the grinding drill motor through the coupling, and the cutting head is connected with the grinding drill shaft through the tightening nut, which can solve the problem of insufficient precision, excessive radiation and high working intensity of the existing artificial cervical disc replacement operation. problem.
  • Tan Yafei et al. disclosed a grinding drill for bone grinding (application number: 201610407670.4), which includes a grinding head and a grinding handle connected with the grinding head.
  • the grinding head is placed on the support through the grinding handle.
  • the central axis of the support rod is parallel to the axis of the shank, and a limiting device is arranged on the support rod, and the position of the limiting device on the support rod is axially moved and locked under the force.
  • a bone grinding device designed a gas-liquid ratio controllable low-temperature physiological saline spray generating device, the physiological salt spray temperature is 0-5 ° C, realized a A bone grinding cooling method with less coolant and high heat exchange efficiency; at the same time, one end of the nozzle is close to the grinding head, and the physiological saline is brought into the bone grinding area by the grinding tangential force to ensure that the grinding head moves in different directions. Both can be effectively cooled.
  • the existing bone grinding devices did not consider the problem of bone chip discharge, and the abrasive tools were severely blocked; the abrasives were weak in hydrophilicity, and the physiological saline could not be effectively injected into the grinding zone for cooling; cooling liquid atomization was not considered, cooling
  • the larger droplet size of the liquid droplets is not conducive to the spreading of the droplets in the grinding zone; the fiber jet of the post-filming device is thicker and has poor gas permeability, which is not conducive to filtering bacteria and dust in the air; it needs to be used in conjunction with other equipment. It brings unnecessary additional damage to the patient, and has the characteristics of large volume and large working space of the surgical device. The operation is difficult and the operation efficiency is low.
  • the present invention provides an electrostatically atomized ultrasonic assisted biological bone low damage controllable grinding device, which realizes the longitudinal-twisting and rotating motion of the abrasive tool, thereby facilitating timely discharge of bone chips, thereby Improve the grinding efficiency, promote the heat discharge with the bone chips, and realize the atomization film formation protection treatment for the grinding wound surface.
  • a specific scheme of an electrostatically atomized ultrasonic assisted biological bone low damage controllable grinding device is as follows:
  • An electrostatically atomized ultrasonic assisted biological bone low damage controllable grinding device comprising:
  • the water-absorbent abrasive tool for grinding the biological bone is connected with the water-trapping abrasive device through the ultrasonic vibration mechanism, and the water-absorbing abrasive device realizes the longitudinal movement and the rotary motion under the driving of the spindle and the ultrasonic vibration mechanism;
  • the cooling and film forming mechanism is disposed on one side of the water-absorbent abrasive device and connected to the ultrasonic generator in the ultrasonic vibration mechanism, and the bottom is provided with a nozzle connected with the medical nano-fluid (mixed with physiological saline and solid nanoparticles), in the nozzle
  • the compressed gas may also be introduced to perform pneumatic-ultrasonic atomization on the medical nano-fluid, and then into the grinding zone in the form of droplets for effective cooling and lubrication; at the same time, the wound is coated;
  • the endoscope is located on the other side of the water-absorbent abrasive.
  • the above device can realize the removal of the skull base tumor through the water-absorbent abrasive under the endoscope, and the cooling of the medical nanometer through the cooling and film-forming mechanism for cooling, the whole device has high integration degree, high grinding efficiency and timely realization of bone chips. Elimination, to ensure the clarity of the endoscope lens, shorten the operation time, and the grinding temperature is low, that is, a device can achieve low damage controllable grinding of the biological bone.
  • the cooling and film forming mechanism comprises a transducer housing, a horn II is arranged in the transducer housing, four piezoelectric ceramic sheets II are arranged on the top of the horn II, and two adjacent piezoelectric ceramic sheets II are arranged.
  • An electrode piece connected to the ultrasonic generator is disposed between the two electrodes, wherein the two electrode pieces share the same electric excitation signal line, and the other side is connected to the ultrasonic generator through the electric excitation signal line from the other side, so that the high frequency electricity is The oscillating signal is converted into an axial high-frequency vibration, and the horn II is closely connected to the piezoelectric ceramic piece II to achieve amplitude amplification.
  • the horn II is internally provided with an inlet passage and an inlet passage, the inlet passage is in communication with the nanofluid inlet of the nozzle, and the inlet passage is in communication with the compressed gas inlet of the nozzle; and an opening is provided in the transducer housing
  • the inlet pipe is connected to the inlet passage through the opening, and the inlet pipe is also connected to the compressed gas inlet through the opening, the horn II is inclined with respect to the water-absorbent tool, and the endoscope is tilted relative to the water-trapping tool.
  • a nanofluid channel in communication with the nanofluid inlet
  • a compressed gas channel in communication with the compressed gas inlet
  • a built-in compressed gas channel communicating with the nanofluid channel is disposed in the nozzle
  • an acceleration chamber is disposed at the bottom of the nanofluid channel
  • a compressed gas passage is connected to the acceleration chamber, and the built-in compressed gas passage enters the nanofluid passage through the swirling compressed gas passage
  • the acceleration chamber includes two communicating diameter reducing sections, the first reducing diameter section and the second reducing diameter section are both rounded, the second reducing section is connected to the third section through the cylinder section, and the third section is eddy current.
  • the vortex chamber includes an expanded diameter section and a reduced diameter section.
  • an inner side of the nozzle is provided with an electrode supported by the electrode tray, and the electrode is connected with an external high-voltage electrostatic generator to charge the medical nano-fluid droplet at the nozzle to further refine the nano-fluid to obtain a microfiber pair.
  • the posterior wound is coated to prevent wound infection, and the high-voltage electric wire is connected to the electrode through the opening of the transducer casing, so that the compressed gas is mixed with the nano-fluid through the swirling compressed gas passage at a set speed after entering the nano-fluid channel to form a high-pressure gas,
  • the three-phase flow of physiological saline and solid nanoparticles further accelerates in the first and second stages in the acceleration chamber, and after acceleration, enters the vortex chamber to form a vortex with the compressed air, further mixes the three-phase flow, and then ejects through the outlet of the nozzle body.
  • the bottom of the transducer housing has a hemispherical structure, and the bottom of the horn II protrudes from the transducer hemispherical structure; a plurality of wafer piezoelectric elements connected to the ultrasonic generator are disposed inside the spherical structure a copper mesh common electrode is disposed on the surface of the piezoelectric element of the wafer, and the electro-active signal line is connected to the piezoelectric element of the wafer;
  • the wafer piezoelectric elements are arranged in a plurality of concentric circles on the circumference of the concentric circles, thus forming a focus adjustment effect, ensuring efficient injection of the nanofluid droplets into the grinding zone.
  • the water-absorbent grinding tool comprises a grinding tool handle, and a spherical grinding head base body is arranged at the bottom of the grinding tool handle, and a plurality of square column-shaped micro-convex bodies are arranged on the surface of the grinding head base, and are adhered between the micro-convex bodies on the surface of the grinding head base.
  • a nano-separator film is attached, and the micro-protrusion is arranged to make the nano-fluid droplets more hydrophilic.
  • the micro-convex features are on the order of micrometers, and adhere to the nano-fluid droplets, and also serve as abrasive grains for the bone material.
  • the role of cutting, the edge of the square column is the cutting edge.
  • an ultrasonic vibrating rod is disposed in the liquid storage cup, and the ultrasonic vibrating rod is connected to the ultrasonic generator, and ultrasonic vibration is performed on the medical nano fluid in the liquid storage cup by the setting of the ultrasonic vibrating rod, wherein the ultrasonic vibrating rod
  • the horn 3 is disposed at the top
  • the piezoelectric ceramic piece III is disposed on the top of the horn III
  • the electrode piece connected to the ultrasonic generator is disposed between the adjacent two layers of the piezoelectric ceramic piece III, and the top cover is connected by screws. Piezoelectric ceramic sheet III and horn III.
  • the spindle is disposed in the outer casing of the electric spindle, and the rotor winding is disposed on the outer circumference of the main shaft, and the stator winding corresponding to the rotor winding is disposed in the outer casing of the electric spindle; the top cover I is disposed on the top of the transducer casing, and the bolt passes through the top cover I.
  • the piezoelectric ceramic piece II is connected to the main shaft, and the top cover I is connected to the electric spindle housing through the connecting rod and the connecting plate; and the endoscope mirror body is bent and the endoscope mirror body is fixedly connected to the electric spindle housing.
  • the ultrasonic vibration mechanism includes four piezoelectric ceramic sheets I, and an electrode sheet connected to the ultrasonic generator is disposed between two adjacent piezoelectric ceramic sheets I, and the bottom piezoelectric ceramic sheet I passes through the horn I Connected to the top of the water-trapping tool.
  • the top and bottom of the electric spindle housing are respectively provided with end caps, the water-trapping abrasive device is disposed through the bottom end cover, and a spiral groove is arranged on the surface of the horn 1 to realize longitudinal torsional resonance of the grinding tool.
  • the fiber spindle housing is internally provided with a fiber channel II, and the endoscope lens body has a fiber channel I communicating with the fiber channel II.
  • the main shaft is connected to the connecting barrel through a coupling, and the piezoelectric ceramic piece I is disposed at the bottom of the connecting barrel, and a sleeve is disposed inside the outer casing of the electric main shaft, and a brush respectively connected to each electrode piece is disposed in the sleeve .
  • the present invention also provides a controllable grinding process for assisting the biological bone low damage, and adopting an electrostatic atomizing ultrasonic wave assisting biological bone low damage controllable grinding device.
  • Ultrasonic vibration of the liquid in the liquid storage cup can be realized by the setting of the ultrasonic vibration rod, which can not only effectively reduce the viscosity of the electrospinning solution and the melt, but also expand the electrostatically spinable concentration range of the device, and can also effectively reduce The diameter of the fiber reduces the structural defects of the fiber, thereby improving the mechanical properties of the spun fiber, ensuring the third-stage atomization of the spinning system for the wound dressing and spraying it on the wound surface in the form of spinning fiber to achieve the grinding Atomized film formation protection treatment of wound surface.
  • the aerodynamics of the medical nanofluid coolant can be realized, and the electrostatic treatment of the droplet can be realized by the setting of the electrode, and the cavitation effect of the droplet by the horn can be realized.
  • the medical nano-fluid at the working surface is subjected to aero-ultrasonic-electrostatic three-stage atomization to obtain ultra-fine droplets, and the nano-fluid droplets are injected into the abrasive/bone wedge-shaped confined space by ultrasonic focusing to effectively grind The area is cooled and lubricated.
  • Figure 1 is a schematic diagram of the electrostatic atomizing ultrasonic assisted biological bone low damage controllable grinding process and device
  • Figure 2 is a cross-sectional view of a longitudinal torsional resonant rotary ultrasonic electric spindle
  • Figure 3 is a schematic view of a portion of the ultrasonic mechanism
  • Figure 4 is a variogram rod exponential segment function
  • Figure 5 (a), 5 (b) is a force analysis diagram of a rectangular spiral groove horn
  • Figure 6 (a), 6 (b) is a triangular fence group through slot horn;
  • Figure 7 is a neurosurgical skull grinding water-absorbent abrasive article
  • Figure 8 is an enlarged view of the upper portion of the abrasive shank
  • Figure 9 is a droplet Young's wetting model
  • Figure 10 is a droplet Wenzel wetting model
  • Figure 11 is a droplet CSSie wetting model
  • Figure 12 is a schematic view of the droplet pinning effect
  • Figure 13 is a three-phase contact boundary of the Wenzel wetting model
  • Figure 14 is a three-phase contact boundary of the Cassie wetting model
  • Figure 15 is a surface dimension diagram of a square pillar convex microstructure
  • Figure 16 is a water-abrasive grinding head base body and a cross-sectional view
  • Figure 17 is a cross-sectional view of the front view of the grinding head
  • Figure 18 is a cross-sectional view of the ultrasonic focusing nozzle with adjustable three-stage atomization focal length
  • Figure 19 is a connection diagram of a nozzle body and a horn
  • Figure 20 is a cross-sectional view of the pneumatic-electrostatic atomizing nozzle
  • 21 is an assembled view of a spherical portion of a spherical crown transducer shell and a bottom view thereof;
  • Figure 22 is a schematic diagram of a focus adjustable transducer
  • Figure 23 is a schematic diagram of electrospinning
  • Figure 24 is a diagram showing the liquid path and gas path system of the cooling and film forming mechanism
  • Figure 25 is a connection diagram of a cooling and film forming mechanism and an electric spindle
  • Figure 26 is a half cross-sectional view of the ultrasonic vibrating bar
  • Figure 27 is a view showing the mounting of the endoscope in the outer casing of the electric spindle
  • Figure 28 is a cross-sectional view of the inside of the scope.
  • the present application proposes an electrostatically atomized ultrasonic assisted biological bone low damage controllable grinding device.
  • FIG. 1 is a schematic diagram of an electrostatically atomized ultrasonic assisted biological bone low damage controllable grinding device, including a longitudinal torsional resonant rotary ultrasonic electric spindle 1 and a water-absorbent abrasive device 2
  • Longitudinal torsional resonant rotary electric spindle 1 can realize the longitudinal-torsional and rotational movement of the horn.
  • the pathological bone tissue can be safely and efficiently removed with the aid of the endoscope 3; cooling and film formation
  • the mechanism 4 performs pneumatic-ultrasound-electrostatic three-stage atomization on the medical nano-fluid, and finally rushes into the grinding zone as droplets under the action of ultrasonic focusing to effectively cool and lubricate; at the same time, the wound is coated to prevent wounds.
  • the ultrasonic vibrating rod 7 can ultrasonically oscillate the medical nanofluid (or medical spinning medium) in the liquid storage cup 6 to prevent agglomeration of the nanoparticles (reducing the viscosity of the spinning medium).
  • the longitudinal torsional resonance rotating ultrasonic electric spindle 1, the cooling and film forming mechanism 4, and the ultrasonic vibrating rod 7 share one ultrasonic generator 5.
  • the longitudinal torsional resonant rotary ultrasonic spindle As shown in Figure 2, the longitudinal torsional resonant rotary ultrasonic spindle.
  • the end cover I101 and the end cover II1022 function as axial positioning, dustproof and sealing of the bearing, and are fixed on the electric spindle housing 103 by screws II1035, spring washers III1036 and screws I1025, and spring washers I1024, respectively. Since the grinding device is at an angle to the horizontal direction during actual operation, the main shaft 104 and the horn I1017 are subjected to both axial and radial forces, so the device uses a tapered roller bearing II1034 and a tapered roller. Bearing I1018.
  • the tapered roller bearing II1034 is positioned by the end cap I101 and the main shaft 104, and the tapered roller bearing I1018 is positioned by the horn I1017 shoulder and the end cap II 1022.
  • the end cap II1022 is sealed with a sealing ring 1023 to prevent leakage of lubricating oil, and also prevents external dust from entering the electric spindle.
  • the sealing ring 1023 can also reduce friction.
  • the spacer I102 and the spacer II1021 can adjust the bearing clearance and the play, and the main shaft 104 generates thermal expansion during the rotation, and the thermal elongation of the main shaft is adjusted by the spacer.
  • the stator winding 107 is integrated with the electric spindle housing 103.
  • the stator winding 107 When the power interface I105 is powered on, the stator winding 107 is energized to generate a rotating magnetic field under the conduction of the power line I106, and a current flows through the rotor winding 108 and is rotated by the magnetic field. Since the main shaft 104 is integral with the rotor winding 108, the main shaft 104 rotates. The main shaft 104 is rotated by the coupling 109 and the screw hole I1010 and connected to the connecting cylinder 1011, and the connecting cylinder 1011 drives the electrode sheet I1015, the electrode sheet II1029, the electrode sheet III1031, and the piezoelectric ceramic sheet I1028 through the center screw I1033 and the spring washer II1032. The horn I1017 rotates.
  • FIG. 3 is a schematic view of a portion of the ultrasonic mechanism.
  • the electrode sheet III1031 and the electrode sheet II1029 are connected from the connection barrel 1011 and connected.
  • the ultrasonic generator 5 converts the alternating current into a high-frequency electric oscillation signal
  • the power supply interface II1013 and the power supply line II1014 are respectively transmitted to the electrode sheet I1015 and the electrode through the short brush 1012 and the long brush 1030 fixed on the sleeve 1016.
  • the piece III1031 and the electrode piece II1029 convert the high-frequency electric oscillation signal into the axial high-frequency vibration by the piezoelectric ceramic piece I1028, but the vibration amplitude is small, and the amplitude requirement required for the skull grinding cannot be satisfied.
  • the lower end of the piezoelectric ceramic piece I1028 is closely connected to the horn I1017, thereby achieving amplification of the amplitude.
  • the amplified amplitude is transmitted to the abrasive tool, causing the abrasive tool to generate vibrations that meet the processing requirements.
  • Fig. 4 is the wave equation of the horn variator exponential function, in the case of simple harmonic vibration, the longitudinal vibration propagates in the variable section horn:
  • is the displacement function of longitudinal vibration
  • the function of the radius of the circular section of the index deformation horn is:
  • N is the area function
  • the expression of the strain distribution is omitted by omitting the time factor e j ⁇ t :
  • the boundary conditions of the horn are free at both ends:
  • Fig. 5(a) and Fig. 5(b) are diagrams showing the force analysis of the rectangular spiral groove of the horn I1017. It can be seen from the figure that the force can be decomposed into the axial force F L and the tangential force F T through the spiral groove, and the relationship between them:
  • is the spiral groove inclination angle
  • the spiral groove can be a rectangular spiral groove or a circular spiral groove, or a triangular, rectangular or trapezoidal fence group through groove, which can decompose the longitudinal wave to excite the torsional vibration.
  • 6(a) and 6(b) are cross-sectional views of the grooving rod of the triangular fence group, the threaded hole at the upper end of the horn I1017 is fastened to the center screw I1033, and the threaded hole at the lower end is fastened to the grinding tool shank 201.
  • the thread direction of the two threaded connections is opposite to the direction of rotation.
  • the water-absorbent grinder 2 includes a grindstone handle 201 and a base of the grindstone 202. 8 is an upper portion of the abrasive shank 201. The upper end of the abrasive shank 201 is threaded and fastened to the screw hole at the lower end of the horn I1017.
  • Figure 9 is the wettability state of the droplet on a smooth flat surface
  • ⁇ e is the intrinsic contact angle of the droplet on the smooth flat surface (Young model)
  • Figures 10 and 11 show the wet state of the droplet on the rough surface.
  • the Wenzel and Cassie models are respectively.
  • the Wenzel model considers the presence of a rough surface such that the actual solid-liquid contact area is larger than the apparent geometric contact area, which is geometrically enhanced by hydrophilicity (or hydrophobicity). As shown in Fig. 10, it is assumed that the droplets always fill the groove structure on the surface, and the apparent contact angle ⁇ * of the rough surface is related to ⁇ e :
  • ⁇ SG , ⁇ SL , ⁇ LG are the surface tension between solid-gas, solid-liquid, and liquid-gas contact surfaces, respectively;
  • r is the surface roughness factor of the material, which is the ratio of the actual contact area to the apparent contact area. , r ⁇ 1. Therefore, by changing the solid surface roughness, the apparent contact angle can be adjusted to change the wettability of the solid surface.
  • Liquid-solid contact is actually composed of liquid-solid and gas-solid contacts, from a thermodynamic point of view:
  • the apparent contact angle ⁇ * of the rough surface is the average of the intrinsic contact angles ⁇ e and 180° of the smooth flat surface:
  • f s is the area fraction of the protruding solids in the composite contact surface (f s ⁇ 1).
  • the three-phase contact boundary of the Wenzel model is long and continuous, while the three-phase contact boundary of the Cassie model is short and discontinuous.
  • the energy barrier of the droplets continuing to spread along the solid wall surface is low, and the three-phase contact boundary is prone to pinning-de-pinning transformation, so the spreading characteristics are good; when the three-phase contact boundary When the film is short and discontinuous, the droplet lag effect is remarkable and the spreading property is poor.
  • the micro-texture of the surface of the abrasive tool can be used to make the abrasive material have water-trapping property, thereby improving the cooling and lubricating performance of the medical nano-fluid droplets. Based on the analysis of the wetting state of the coolant droplets and the solid-liquid-gas three-phase contact boundary, it can be seen that after the droplets impinge on the micro-textured surface of the abrasive, a small contact angle can be spread and the abrasive tool can be overcome.
  • the micro-convex structure is more advantageous than the micro-pit structure to prevent the Wenzel/Cassie wetting state transition, and is more suitable for the preparation of water-absorbent abrasives.
  • the surface dimension of the square pillar convex microstructure, the size of the microprotrusion is a ⁇ a, the height is h, the pitch of the micro convex is b, the roughness factor r and the area occupied by the protruding solids in the contact surface.
  • the score f s is:
  • FIG. 16 is a bottom view of a water-absorbent grinding head and a cross-sectional view. As shown in Figure 16, the grinding head base 202 is composed of 11 octagonal cylinders 202-2 and a partial sphere 202-1, and an octagonal cylinder 202-2.
  • part of the sphere 202-1 is arranged at the top of the octagonal cylinder, part of the sphere 202-1 is connected with the abrasive shank 201, and the octagonal cylinder edge and part of the sphere are distributed in a circle with a radius R 1 on.
  • the micro-convex body 202-3 has a feature size of micron-scale, adheres to the nano-fluid droplets, and also functions as an abrasive grain for cutting the bone material, and the edge of the square column is a cutting edge.
  • the microprotrusions are arranged on the surface of the substrate by soldering.
  • aqueous dispersion of the water-soluble polymer and the water-insoluble polymer was applied to the 420b (or 630) stainless steel surface by drop casting and left to dry.
  • the water soluble polymer and the water insoluble polymer undergo phase separation, forming a nanoseparator in 420b stainless steel and forming a non-nano separator film on the nanoseparator.
  • the nanoseparator film 202-4 can be obtained by washing with a deionized water to remove the non-nano separator film. Due to the intermolecular rearrangement, the nanoseparator film 202-4 is tightly adhered between the microprotrusions 202-3 on the surface of the grinding head substrate 202.
  • the nanoseparator film 202-4 has super hydrophilic properties and has a strong water trapping ability. Therefore, the nano-thickness nano-separator film 202-4 can convert the 420b stainless steel surface into a super-hydrophilic surface while having the property of capturing a medical nano-fluid coolant water film.
  • the top cover I403, the piezoelectric ceramic piece II4015, the electrode piece IV406, the electrode piece V4016, and the electrode piece VI4018 are tightly connected to the horn II4014 by the center screw II401 and the spring washer VI402, and the spherical crown transducer case 404
  • the electrode piece V4016, the piezoelectric ceramic piece II4015, the electrode piece VI4018 and the electrode piece IV406 constitute a transducer.
  • the ultrasonic generator 5 converts the alternating current into a high-frequency electric oscillation signal through the electric excitation signal line I405 and the electric excitation signal line.
  • the spherical crown transducer housing 404 is tightly coupled to the top cover I403 by screws V4019 and spring washers VII4020.
  • the upper end of the electrostatic atomizing nozzle 4013 is formed with a threaded hole VI4013-1 and a threaded hole VII4013-12.
  • the electrostatic atomizing nozzle 4013 is connected by the connecting plate I4021 and the connecting plate II4026 through the screw VI4022, the screw VII4024 and the spring.
  • the washer VIII4023 and the spring washer IX4025 are fixed to the lower end of the horn II4014.
  • Fig. 21 is a cross-sectional view showing the electrostatic atomizing nozzle.
  • the nozzle body structure is complicated and difficult to manufacture, and it is required to have a certain insulating property, so that the ceramic material is processed and manufactured by a rapid molding process.
  • the compressed gas entering from the compressed gas inlet 4013-14 passes through the internal compressed gas passage 4013-3, through the swirling compressed gas passage 4013-11 to set the tangential velocity into the mixing chamber, and the nanometer entering from the nanofluid inlet 4013-13.
  • the fluid is mixed to form a three-phase flow of high pressure gas, physiological saline, solid nanoparticles, accelerated by the acceleration chamber 4013-5, and accelerated into the vortex chamber 4013-6 where vortex is formed with the compressed air entering through the vortex chamber compressed gas passage 4013-4.
  • the three-phase flow is further mixed, and then ejected through the outlet of the nozzle body 4013-2 to form a droplet.
  • the drift region of the corona discharge through the needle electrode 4013-9 collides with the drifting electrons to be charged, and the droplets are charged and controlled to the surface of the workpiece under the action of electric force, aerodynamic force and gravity.
  • the electrode tray 4013-8 is made of an insulating material, and a high voltage electric inlet hole 4013-7 is formed in the electrode tray 4013-8. As shown in FIG. 20, the electrode tray 4013-8 is circumferentially arrayed with eight electrode slots, and the needle electrode 4013-9 (interference fit with the electrode slot, clamped by the elastic deformation force of the insulating material) is mounted on the electrode plug. In the tank, the respective needle electrodes 4013-9 are connected in series by a high voltage electric wire 409, and the through holes are taken out from the high voltage electric wire tray.
  • the positioning threaded ring 4013-10 functions primarily to position the electrode tray 4013-8.
  • Electrostatic atomization mechanism
  • the splitting of the droplet is controlled by pneumatic pressure, surface tension and viscous force.
  • the breakage of the droplets is primarily determined by the pneumatic pressure and surface tension. Suffered a large droplet pneumatic pressure 0.5 ⁇ g ⁇ V 2, where ⁇ g is the gas density, ⁇ V is a gas-liquid relative velocity.
  • the cohesive force generated by the surface tension will hinder the deformation and fracture of the droplets, the cohesive force can be expressed as 4 ⁇ /D, ⁇ is the inherent surface tension of the liquid, and D is the initial droplet diameter. When the diameter of the droplet is reduced, the cohesive force is increased.
  • the fragmentation of charged droplets in the high-speed gas stream is closely related to the gas-liquid relative velocity, gas-liquid property parameters, and charging field.
  • the droplet reaches a steady state in the gas flow, after the electrostatic charge is applied, the We number increases, the surface tension of the liquid decreases, and it is insufficient to resist the pneumatic pressure, and the droplet will be further deformed and broken, so the gas-liquid parameters are the same.
  • the particle size of the droplets is smaller, so as to achieve the purpose of refining the droplet particles; at the same time, the same charge on the surface of the droplets can ensure a more uniform distribution of the droplets. Therefore, the device can realize aerodynamic and ultrasonic atomization and then electrostatically atomize, and a total of three stages of atomization, finally obtaining ultra-fine droplets with uniform distribution.
  • planar wafer piezoelectric element 4011 is bonded, and all of the planar wafer piezoelectric elements 4011 have the same diameter and thickness.
  • the lower end of the planar wafer piezoelectric element 4011 is covered with a copper mesh common electrode 4012, and the copper mesh common electrode 4012 is bonded to all the planar wafer piezoelectric elements 4011 with an adhesive, and the bottom surface of the spherical crown portion is pressed by a pressure table.
  • the bonding end of the copper mesh common electrode 4012 and the planar wafer piezoelectric element 4011 is made flat.
  • the upper surfaces of all the planar wafer piezoelectric elements 4011 on the circles having the radii of r 1 , r 2 , r 3 , r 4 , and r 5 are connected by an electric excitation signal line II4010, and are separately excited by one power source to form a strip. Branch road.
  • the Westervelt sound wave propagation equation is:
  • is a Laplacian operator
  • p is the sound pressure
  • c 0 and ⁇ 0 are the sound velocity and density of the medium respectively
  • B/A is the fluid
  • is the absorption coefficient
  • f is the frequency.
  • the center difference is performed on the equation (26) by the finite difference time domain method.
  • the difference equation is:
  • i, j, k are the coordinates of the three coordinate axes of x, y, and z in the Cartesian coordinate system; dx, dy, and dz respectively represent the spatial step sizes of the three coordinate axes of x, y, and z; dt is the time step Long; n is the calculation time.
  • a sinusoidal point source S 0 (t) is set at the target focus S, and the numerical simulation is performed to obtain a sound pressure signal S 0m (t) which is transmitted to the center point of the phased array number m element, and the signal is obtained.
  • a signal S 0m (Tt) corresponding to the array element m is obtained.
  • the relative initial phase delay ⁇ t m of S 0m (Tt) is calculated by using the least squares function fitting, and then the amplitude of the sinusoidal signal is modulated by the same input sound intensity.
  • the excitation signal of the array element m is:
  • the phase adjustment of each array element is realized, so that the sound beams of each array element reaching a certain point (set focus) of the space have the same phase, by controlling the shape of the sound beam, the sound pressure distribution, the sound beam angle, The result is continuous and dynamic adjustment of the focus size and position.
  • Figure 18 is a cross-sectional view of the ultrasonic focusing nozzle with adjustable three-stage atomization focal length
  • Figure 23 is a schematic view of the spinning.
  • the spinning medium 4029 is a polymer solution or melt, which is installed in the syringe pump 4028. And insert a metal electrode 4030. The electrode is connected to a high voltage electrostatic generator 4027 to charge the liquid.
  • the grounded receiving plate 4032 serves as a cathode.
  • the spinning solution forms droplets suspended from the nozzles under the synergistic action of gravity, self-viscosity and surface tension.
  • the electric field is turned on, charges are generated on the surface of the polymer solution, and the mutual repulsion of the charges and the compression of the surface charges by the opposite charge electrodes produce a force opposite to the surface tension.
  • the voltage is not large enough, the surface tension of the surface of the droplet will prevent the droplets from being ejected while remaining at the nozzle.
  • the applied voltage increases, the hemispherical surface of the droplet to be dropped will be twisted into a cone, and the applied voltage will continue to increase.
  • the charged portion of the solution overcomes the surface tension of the solution to form a
  • the charged jet is ejected from the nozzle.
  • the high voltage electrostatic generator 4027 usually uses a high voltage of 5 to 20 kV.
  • the positive voltage field is beneficial to the release of the surface charge of the fiber, while the negative voltage field provides a relatively stable electric field force. Film formation has different effects.
  • V 2 c (4H 2 /L 2 ) ⁇ [ln(2L/R)-1.5] ⁇ (0.117 ⁇ R 0 ) (33)
  • H the distance between the two electrodes; the distance from the L - nozzle to the plate; the radius of the R - hanging drop; R 0 - the radius of the nozzle.
  • the forces on the surface of the drape are mainly the electric field force, the cohesive stress, the hydrostatic pressure difference, and the pressure difference caused by the surface tension.
  • the tangential electric field force of the surface of the suspended liquid droplet is greater than the tangential viscous stress, a single jet or multiple jets are formed; otherwise, droplets are formed.
  • FIG. 19 shows the liquid and gas system diagram of the device.
  • the liquid path (nanofluid) of the cooling and film forming mechanism is composed of the liquid storage cup I608, the hydraulic pump I609, the pressure regulating valve II6011, the throttle valve II6016, and the turbine flow.
  • the meter II6017 is connected in turn; the liquid path (spinning medium) of the film forming device is composed of a liquid storage cup II6012, a hydraulic pump II6013, a pressure regulating valve III6015, a throttle valve II6016, a turbine flow meter II6017, and a gas flow route air compressor 601, the filter 602, the gas storage tank 603, the pressure regulating valve I605, the throttle valve I606, and the turbine flow meter I607 are connected in sequence.
  • the hydraulic pump is activated and the fluid stored in the reservoir enters the nanofluid inlet 4013-13 of the nozzle body 4013-2 via the fluid pressure regulating valve, fluid throttle valve, and turbine flow meter.
  • the relief valve 6019 functions as a safety valve.
  • the relief valve 6019 opens to allow the coolant to flow back into the recovery tank 6018 via the relief valve 6019.
  • the nanofluid (or spinning medium) flows out of the turbine flowmeter II6017 and enters the inlet pipe 407 (Fig. 18), and enters the nozzle body built-in nanofluid inlet 4013 through the varactor II4014 built-in inlet channel 4014-1 (Fig. 19). 13 (Fig. 20), after three-stage atomization, it is ejected from the nozzle body 4013-2.
  • the air compressor 601 While the hydraulic pump is started, the air compressor 601 is started, and the high pressure gas enters the compressed gas of the nozzle body 4013-2 through the filter 602, the gas storage tank 603, the gas pressure regulating valve I605, the gas throttle valve I606, and the gas turbine flow meter I607.
  • pressure gauge 604 monitors the pressure value in the gas path.
  • the compressed gas flows out of the turbine flowmeter I607 and enters the intake pipe 408 (Fig. 18).
  • the variator II4014 has an intake passage 4014-2 (Fig. 19) that enters the nozzle body with a built-in compressed gas inlet 4013-14 (Fig. 20).
  • the nanofluid is mixed and ejected from the nozzle body 4013-2.
  • the reversing valve II6014 is in the normal position, the liquid storage cup II6012 is not in the liquid path; the reversing valve I6010 is in the working position, and the liquid storage cup I608 is working normally; after the operation is finished, the reversing valve I6010 is closed, and the reversing direction is opened.
  • one end of the connecting rod 4038 is welded to the top cover I403, and one end is welded to the connecting plate III4037.
  • the electric spindle housing 103 is formed with a threaded hole IV1026 and a threaded hole V1027.
  • the cooling and film forming mechanism is fixed to the electric spindle housing 103 by a screw VIII4033, a spring washer X4034, a screw IX4035, a spring washer XI4036, a connecting plate III4037, and a connecting rod 4038.
  • 26 is a half cross-sectional view of the ultrasonic vibrating bar.
  • the center screw III7014 and the spring washer XIII7013 fasten the top cover II703, the piezoelectric ceramic piece III709, the electrode piece VII706, the electrode piece VIII7010, and the electrode piece IX7012, and the transducer case 704 passes the screw.
  • the X701 and the spring washer XII702 are fixed to the top cover II703.
  • the ultrasonic generator 5 converts the alternating current into a high-frequency electric oscillation signal and transmits it to the electrode sheet VII706, the electrode sheet VIII7010, and the electrode sheet IX7012 through the electric excitation signal line IV705 and the electric excitation signal line V7011, respectively, and converts the high-frequency electric oscillation signal.
  • the axial frequency is vibrated and the amplitude is amplified by the horn III707.
  • the horn III707 and the vibrating bar 708 are screwed and connected, and the amplified vibration is transmitted to the vibrating bar 708 to ultrasonically oscillate the medical nanofluid (or medical spinning medium) in the liquid storage cup 6.
  • Ultrasonic vibration of the spinning system in the liquid storage cup 6 by the ultrasonic vibrating rod 7 not only can effectively reduce the viscosity of the electrospinning solution and the melt, expand the electrostatically spinnable concentration range of the device, but also effectively reduce the diameter of the fiber. , reducing the structural defects of the fiber, thereby improving the mechanical properties of the spun fiber.
  • the fiber when a certain amount of ultrasonic wave is applied during fiber formation, the fiber can be stretched under the action of the jet to achieve further refinement, and the ultrasonic effect can improve the fluidity of the polymer solution and improve the spinnability. Sexuality, speeding up the process of solidification of the fiber.
  • Figure 27 shows the mounting of the endoscope in the housing of the motor spindle.
  • the electric spindle housing 103 is formed with a threaded hole II1019 and a threaded hole III1020.
  • the mirror body 303 is fixed on the electric spindle housing 103 by a screw III301, a spring washer IV302, a screw IV304, and a spring washer V305.
  • the electric spindle housing 103 has a fiber channel II307 inside. Inside the mirror body 303 is a fiber channel I306.
  • Figure 28 is a cross-sectional view of the internal body of the mirror body.
  • the mirror body is provided with independent cold light illumination source transmission fiber 308, endoscopic fiber 309, fluorescent excitation light transmission fiber 3010, and image transmission fiber 3011.
  • the fluorescence excitation light can excite the tumor tissue to emit. Fluorescence of the corresponding wavelength, the fluorescent emission light passes through the endoscopic optical fiber 309 and the image transmission optical fiber 3011, and the fluorescent emission light can be seen through the eyepiece, thereby accurately identifying the tumor tissue.
  • the image transmission fiber 3011 is connected to the monitor for facilitating the removal of the identifiable tissue under the illumination of the fiber using the operating surgical instrument for therapeutic purposes. Since the endoscope 3 is tightly coupled with the longitudinal torsional resonant rotary ultrasonic electric spindle 1, the surgeon can conveniently and flexibly realize the operation of any posture in the real time with the aid of the endoscope 3, and realize the flexible removal of the skull base tumor.
  • the longitudinal torsional resonant rotary ultrasonic electric spindle 1 can realize the longitudinal-twisting and rotating motion of the abrasive tool, which is beneficial to the timely discharge of the bone chips and the high grinding efficiency;
  • the grinding head abrasive grains are regularly arranged in a square columnar micro-convex shape, and the surface of the grinding head substrate is treated to obtain a nano-separation film with strong water-capturing ability, and has super hydrophilicity and water-trapping property.
  • the cooling and film forming mechanism 4 atomizes the medical nanofluid coolant by pneumatic-ultrasonic-electrostatic three-stage atomization to obtain ultrafine droplets, and uses the ultrasonic focusing action to inject the nanofluid droplets into the grinding machine.
  • the wedge/shaped wedge restraint space is used to effectively cool and lubricate the grinding zone; after the end of the operation, it will be applied to the spinning system of the wound dressing after three-stage atomization, and then sprayed on the wound surface in the form of spinning fiber to achieve grinding. Atomized film formation protection treatment of wound surface.
  • the integration degree is high, the grinding efficiency is high, and the grinding temperature is low, that is, using a device Controlled grinding of low damage to biological bones.
  • the tapered roller bearing II1034 is positioned by the end cap I101 and the main shaft 104, and the tapered roller bearing II1034 is mounted at one end of the 104 main shaft at the positioning position.
  • Each of the electrode sheets and the piezoelectric ceramic sheets is mounted in the 1011 connecting cylinder by the 1033 center screw I, 1032 spring washer II, and the connecting barrel 1011 is connected to the main shaft 104 through the coupling 109 and the threaded hole I1010.
  • the end cover functions to axially position, dust and seal the bearing.
  • the end cover I101 is mounted on the top end of the electric spindle housing 103 through the spring washer III1036, the screw II1035, and the assembled main shaft 104 and the connecting barrel 1011 are installed according to the positioning position.
  • the sleeve 1016 is mounted within the motor spindle housing 103 and in the position of the motor housing 103.
  • the tapered roller bearing I1018 is positioned by the yaw I1017 shoulder and the end cover II1022.
  • the tapered roller bearing I1018 is mounted at one end of the horn I1017 according to the positioning position, and the prepared water-absorbent grinder 2 is installed by screwing.
  • the horn I1017 is connected to the end of the center screw I1033 in the electric spindle housing 103 through a threaded hole at the top end of the horn I1017.
  • the end cap II 1022 is attached to the end of the electric spindle housing 103 by a screw I1025 and a spring washer I1024.
  • the threaded hole at the upper end of the horn I1017 is tightly connected with the center screw I1033, and the threaded hole at the lower end is tightly connected with the grinding tool shank 201.
  • the thread directions of the two threaded connections are opposite to the rotation direction, and the connection fastening property can be ensured.
  • the circular concentric circles r 1 , r 2 , r 3 , r 4 , and r 5 around the center of the spherical crown transducer casing 404 are respectively processed into 8, 16, 24, 32, 40 circular holes, which are small in circle.
  • the planar planar wafer piezoelectric element 4011 is nested in the hole, and all of the planar wafer piezoelectric elements 4011 have the same diameter and thickness.
  • the copper mesh common electrode 4012 is bonded to the lower ends of all the planar wafer piezoelectric elements 4011 with an adhesive, and the bottom surface of the spherical cap portion is pressed by a pressure table, so that the copper mesh common electrode 4012 and the planar wafer piezoelectric element 4011 are The bonding end is flat.
  • the electrostatic atomizing nozzle 4013 is attached to the end of the horn II4014 by means of a screw VI4022, a spring washer VIII4023, a screw VII4024, a spring washer IX4025, and a connecting plate I4021.
  • the spherical crown transducer shell 404, the electrode sheet V4016, the piezoelectric ceramic sheet II4015, the electrode sheet VI4018, and the electrode sheet IV406 constitute a transducer, and the top cover I403, the electrode sheets, and the piezoelectric ceramic sheets are sequentially stacked and changed.
  • the horn II4014 is mounted together on the transducer by a center screw II401, a spring washer VI402, and is fastened by a spring washer VII4020 and a screw V4019.
  • Each of the electric excitation signal lines II4010 and the inlet pipe 407, the intake pipe 408, and the high voltage wire 409 are respectively connected to the corresponding positions, and finally the assembled cooling and film forming mechanism is welded to the electric spindle housing 103 by the connecting rod 4038.
  • the power interface I105, the power interface II1013 and the ultrasonic generator 5 are simultaneously activated.
  • the reversing valve I6010 is opened, the cooling and film forming mechanism work, and the medical nanofluid is The form of the droplet jet is ejected from the nozzle body 4013-2 into the grinding zone for efficient cooling lubrication, the endoscope system 3 is opened, and surgery is started with the aid of the endoscope.
  • the reversing valve I6010 is closed, the reversing valve II6014 is opened, the film forming apparatus is operated, and the wound is coated with the spun fiber.
  • turn off all power remove the water-absorbent abrasive 2, disinfect the equipment and keep it in a safe place.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Mechanical Engineering (AREA)
  • Neurosurgery (AREA)
  • Surgical Instruments (AREA)

Abstract

本发明公开了一种静电雾化超声波辅助生物骨低损伤可控磨削工艺与装置,它解决了现有技术中骨屑堵塞严重的问题,具有冷却效果好、手术效率高的有益效果,其方案如下:一种静电雾化超声波辅助生物骨低损伤可控磨削装置,包括主轴,可旋转设置;用于磨削生物骨的捕水磨具,主轴通过超声振动机构与捕水磨具连接,在主轴及超声振动机构带动下,捕水磨具实现纵向运动及旋转运动;冷却及成膜机构,设于捕水磨具的一侧与超声振动机构中超声波发生器连接,底部设置与医用纳米储液杯连接的喷嘴,喷嘴内还可通入压缩气体,以对医用纳米流体进行气动-超声雾化,以液滴形式冲入磨削区进行有效冷却及润滑;内窥镜,设于捕水磨具的另一侧。

Description

一种静电雾化超声波辅助生物骨低损伤可控磨削工艺与装置 技术领域
本发明涉及一种神经外科颅骨磨削、术中冷却、术后创口成膜柔性集成装置,特别是涉及一种静电雾化超声波辅助生物骨低损伤可控磨削工艺与装置。
背景技术
在颅底肿瘤摘除手术过程中,以垂体肿瘤为例,外科医生首先利用高速磨具去除鼻中隔、蝶窦前侧骨及蝶窦后侧的蝶鞍等骨结构;由于颅底区结构复杂且分布着重要神经(如视神经、三叉神经、颈动脉),因此外科医生还需磨除包围着这些神经的骨结构,以识别这些神经的位置并保护它们。金刚石磨具因其对软组织创伤小而受到了神经外科医生的青睐,但金刚石磨具在磨削过程的产热量明显高于其它切削方式的产热量,导致骨坏死和周围组织的热损伤,对组织的凝血功能也有一定的影响。骨磨削是颅底肿瘤摘除手术过程中一种常见的操作,由于各向异性硬脆材料磨削温度场精准控制的关键技术尚未突破,高温热损伤是当前神经外科颅骨磨削的技术瓶颈,然而目前对于骨磨削热的基础性研究非常有限。Yang等研究了干式、滴灌式、喷雾式及气雾式纳米流体冷却条件下骨微磨削表面温度,得出气雾式纳米流体冷却具有理想的冷却效果;将羟基磷灰石、SiO 2、Fe 2O 3纳米粒子及碳纳米管添加到生理盐水中,研究了在气雾式纳米流体冷却条件下不同纳米粒子对骨磨削温度的影响规律。结果表明,纳米粒子热物理性质不同,对骨表面温度的影响也不同[Yang M.,Li C.H.,Zhang Y.B.,et al.Research on microscale skull grinding temperature field under different cooling conditions.Applied Thermal Engineering,2017,Vol 126pp.525-537]。
针对目前临床颅骨磨削高温热损伤的瓶颈问题,青岛理工大学李长河教授团队对骨磨削设备展开了研究。经检索,张东坤等发明了一种的医用外科手术六自由度自动调节机械臂磨削夹持装置(专利号:ZL 201310277636.6),该机械臂磨削夹持装置具有3个旋转、3个移动共计6个自由度,可实现任意位姿的颅骨外科手术操作。该装置主要借助先进的手术器械来操作,用六自由度自动调节机械臂以及安装在机械臂前端的夹持装置,在治疗效果、减轻痛苦、恢复周期、医疗成本等方面具有明显优势;
张东坤等发明了一种外科手术颅骨磨削温度在线检测及可控手持式磨削装置(专利号:ZL 201310030327.9),通过监测骨磨削的声发射信号来调整砂轮转速,降低磨削骨过程中的磨削温度,从而有效避免对脑组织的热损伤的技术。在砂轮与壳体连接处有声发射传感器,通过信号分析处理模接收声发射传感器检测的骨磨削时的声发射信号,判断是否出现过热情况,通过反馈装置控制直流电机的转速;
杨敏等发明了一种多自由度颅骨外科手术磨削实验平台(专利号:ZL 201410510448.8),包括微量润滑系统,三自由度平台,电主轴旋转装置,电主轴、磨削力测量装置和磨削温度测量装置。利用三根阶梯状分布的热电偶对磨削温度进行精确地测量,利用磨削测力仪对磨削力进行测量,通过分析实验数据给临床实践提供指导;
杨敏等发明了一种手持式外科手术磨削温度在线检测及纳米流体相变换热式磨削装置(专利 号:ZL 201510218166.5),磨头采用纳米流体相变换热式磨头,通过纳米流体的不断蒸发、冷凝、回流,将磨削区产生的热量带走,降低温度,减少对病人的二次伤害;磨粒周围涂覆对人体安全的荧光粉,通过光纤传感器检测荧光余辉衰变时间常数,利用荧光对温度的依赖性检测待测温度,实现磨削过程中对温度的闭环控制;从动轴上贴有反光条,通过光纤传感器采用比相测量的原理,采用比相测量原理,以激光头和反光条为信号发生器,在线检测磨头的转速和扭矩,实现对病理骨去除情况和磨头寿命的闭环控制;
杨敏等发明了一种冷却与静电雾化成膜的骨外科手术磨削实验装置(专利号:ZL 201510604889.9),静电雾化内冷磨具与静电雾化成膜装置成套筒式结构,不仅能使冷却液充分雾化并使冷却液液滴分布可控,从而有效降低磨削区温度,还能在骨磨削的同时将医用辅料通过静电雾化成膜装置及时喷向磨削后的创面;通过对可伸缩套筒结构的调节,来调节静电雾化成膜喷嘴的位置,实现对磨削创伤面的雾化成膜保护处理;
杨敏等发明了一种静电雾化内冷磨头(专利号:ZL 201510604803.2),高压电转换装置套合在磨头柄的外侧且固定设置,导线连接块与高压电转换装置活动连接,高压电转换装置与电源连接。磨头柄内设置内冷孔,内冷孔贯穿磨头和磨头柄,导线连接块通过导线与内冷孔连接。内冷孔为双螺旋孔道,在磨削过程中压缩空气、冷却液或纳米流体经两个螺旋孔中加速后直接喷射到磨削区,从而能有效降低磨削区温度,并冲走磨屑,延长刀具寿命。
上海交通大学栾楠等发明了一种医疗器械技术领域的骨科手术辅助机器人系统(专利号:ZL 201010299237.6),包括机器人本体、控制器和操纵杆,操纵杆位于机器人本体的手腕处并与机器人控制器相连以传输传递操纵者的手动操作信号,用于主刀医师操纵调整机器人的工作位置;控制器位于机器人本体的底座内并与机器人本体以及操纵杆相连接,可实现对机器人本体的自主控制;机器人本体安放于手术台边辅助主刀医师完成截骨、磨削、固定等操作。
哈尔滨工业大学杜志江等发明了一种六自由度颈椎骨磨削并联机器人(专利号:ZL 201010557067.7),磨钻电机穿设在动平台内,磨钻电机与磨钻电机连接体固定连接,磨钻电机连接体与动平台固定连接,磨钻体固装在磨钻电机连接体上,磨钻体上设有磨钻顶丝孔,磨钻顶丝孔盖安装在磨钻体的磨钻顶丝孔上,磨钻轴通过联轴器与磨钻电机连接,切削头通过收紧螺母与磨钻轴连接,可解决现有人工颈椎间盘置换手术精度不足、辐射过多、医生工作强度大的问题。
重庆迈德菲快科技有限公司谭亚飞等公开了一种用于骨磨削的磨钻(申请号:201610407670.4),包括磨头以及与磨头连接的磨柄,磨头通过磨柄穿设在支撑杆内,支撑杆的中心轴线和刀柄的轴线平行,在支撑杆上设有限位装置,限位装置在支撑杆上的位置在力的作用下轴向移动并锁定。通过移动支撑杆即可控制切除的范围,使用方便且切除效率高,提高了手术的精准度和进度,可控性高,从而提高了使用安全性。
浙江工业大学张丽慧等公开了一种骨磨削装置(申请号:201710436744.1),设计了一种气液比可控的低温生理盐水喷雾产生装置,生理盐水喷雾温度为0-5℃,实现了一种冷却液用量少、换热效率高的骨磨削冷却方法;同时,喷嘴一端与磨头贴近,借助磨削切向力将生理盐水带入骨磨削区域,保证磨头沿不同方向运动时都能获得有效冷却。
经检索,现有的骨磨削装置均没有考虑骨屑排出问题,磨具堵塞严重;磨具亲水性弱,生理盐水不能有效注入磨削区进行冷却;没有考虑冷却液雾化性,冷却液液滴粒径较大,不利于液滴在磨削区的铺展;术后成膜装置纤维射流较粗,透气性差,不利于过滤空气中的细菌和微尘;需配合其他设备使用,会给患者带来不必要的附加损伤,且均有体积庞大、手术装置工作空间大的特点,手术操作难度高、手术效率低。
发明内容
为了克服现有技术的不足,本发明提供了一种静电雾化超声波辅助生物骨低损伤可控磨削装置,该装置实现磨具的纵-扭及旋转运动,有利于骨屑及时排出,从而提高磨削效率,促使热量随骨屑排出,可实现对磨削创伤面的雾化成膜保护处理。
一种静电雾化超声波辅助生物骨低损伤可控磨削装置的具体方案如下:
一种静电雾化超声波辅助生物骨低损伤可控磨削装置,包括:
主轴,可旋转设置;
用于磨削生物骨的捕水磨具,主轴通过超声振动机构与捕水磨具连接,在主轴及超声振动机构带动下,捕水磨具实现纵向运动及旋转运动;
冷却及成膜机构,设于捕水磨具的一侧与超声振动机构中超声波发生器连接,底部设置与医用纳米流体(生理盐水与固体纳米粒子的混合)储液杯连接的喷嘴,喷嘴内还可通入压缩气体,以对医用纳米流体进行气动-超声雾化后,以液滴形式冲入磨削区进行有效冷却及润滑;同时,对术后创口进行包覆;
内窥镜,设于捕水磨具的另一侧。
上述装置可以实现内窥镜下通过捕水磨具对颅底肿瘤的摘除、通过冷却及成膜机构术中喷射医用纳米进行冷却,整个装置集成度高,磨除效率高,实现骨屑的及时排除,保证内窥镜镜头的清晰,缩短手术时间,且磨削温度低,即用一种装置就可实现生物骨的低损伤可控磨削。
进一步地,所述冷却及成膜机构包括换能器外壳,换能器外壳内设置变幅杆Ⅱ,变幅杆Ⅱ顶部设置四层压电陶瓷片Ⅱ,相邻两层压电陶瓷片Ⅱ之间设置与所述超声波发生器连接的电极片,其中两个电极片共用同一根电激励信号线,另一个从另一侧与超声波发生器通过电激励信号线进行连接,这样将高频电振荡信号转换成轴向高频振动,变幅杆Ⅱ与压电陶瓷片Ⅱ紧密连接,实现振幅的放大。
进一步地,所述变幅杆Ⅱ内部设置进液通道与进气通道,进液通道与所述喷嘴的纳米流体入口相通,进气通道与喷嘴的压缩气体入口相通;在换能器外壳设置开口,进液管穿过开口与进液通道相连,进气管同样穿过开口与压缩气体入口相连,变幅杆Ⅱ相对于捕水磨具倾斜设置,内窥镜相对于捕水磨具同样倾斜设置。
或者,喷嘴内设置纳米流体通道(与纳米流体入口相通)与压缩气体通道(与压缩气体入口相通),在喷嘴内还设置与纳米流体通道相通的内置压缩气体通道,纳米流体通道底部设置加速室,压缩气体通道与加速室连通,内置压缩气体通道通过旋向压缩气体通道进入纳米流体通道;
或者,加速室包括两个相通的缩径段,第一缩径段与第二缩径段均呈倒圆台状,第二缩径段通过圆筒段与第三段连接,第三段为涡流室,涡流室包括一扩径段和缩径段。
进一步地,所述喷嘴内侧设置由电极托盘支撑的电极,电极与外置高压静电发生器连接以将喷嘴处的医用纳米流体液滴进行荷电,进一步细化纳米流体,得到超细纤维对术后创口进行包覆,以防止创口感染,高压电线通过换能器外壳开口与电极连接,这样压缩气体通过旋向压缩气体通道以设定速度进入纳米流体通道后与纳米流体混合,形成高压气体、生理盐水、固体纳米粒子三相流,进而在加速室内第一段与第二段加速,加速后进入涡流室在此与压缩空气形成涡流,使三相流进一步混合,然后经喷嘴体出口喷出形成雾滴。雾滴喷出后经过针状电极电晕放电的漂移区与漂移的电子碰撞从而荷电,液滴荷电后在电场力、气动力和重力作用下可控的喷向作用区域表面。
进一步地,所述换能器外壳底部呈半球面结构,变幅杆Ⅱ底部突出换能器半球面结构设置;在该球面结构内侧设置多个与所述超声波发生器连接的圆片压电元件,在圆片压电元件表面设置铜网公共电极,电激励信号线与圆片压电元件连接;
或者,圆片压电元件以多个同心圆的方式布置在同心圆圆周,这样形成了焦点可调作用,保证了纳米流体液滴有效注入磨削区。
进一步地,所述捕水磨具包括磨具柄,在磨具柄底部设置球形磨头基体,磨头基体表面设置多个方柱状微凸体,在磨头基体表面的微凸体之间粘附有纳米分离体膜,微凸体的设置可使纳米流体液滴更加亲水,微凸体特征尺寸在微米级,对纳米流体液滴进行黏附的同时,还起到磨粒对骨材料进行切削的作用,方柱的棱为切削刃。
进一步地,所述储液杯内设置超声振动棒,超声振动棒与所述的超声发生器连接,通过超声振动棒的设置对储液体杯内的医用纳米流体进行超声波振荡,其中,超声波振动棒顶部设置变幅杆Ⅲ,变幅杆Ⅲ顶部设置四层压电陶瓷片Ⅲ,相邻两层压电陶瓷片Ⅲ之间设置与所述超声波发生器连接的电极片,通过螺钉连接顶盖Ⅱ、压电陶瓷片Ⅲ和变幅杆Ⅲ。
进一步地,所述主轴设于电主轴外壳内,主轴外表圆周设置转子绕组,电主轴外壳内设置与转子绕组对应的定子绕组;换能器外壳顶部设置顶盖Ⅰ,螺栓穿过顶盖Ⅰ、压电陶瓷片Ⅱ与主轴连接,顶盖Ⅰ通过连接杆、连接板与电主轴外壳连接;而且内窥镜镜体弯折设置,内窥镜镜体与电主轴外壳固连。
或者,所述超声振动机构包括四层压电陶瓷片Ⅰ,相邻两层压电陶瓷片Ⅰ之间设置与所述超声波发生器连接的电极片,底层压电陶瓷片Ⅰ通过变幅杆Ⅰ与所述的捕水磨具顶部连接。
所述电主轴外壳顶部与底部各设置端盖,所述的捕水磨具穿过底部的端盖设置,而且变幅杆Ⅰ表面设置螺旋槽,以实现磨具纵扭共振。
或者,电主轴外壳内设置内部有光纤通道Ⅱ,内窥镜镜体内部有与光纤通道Ⅱ相通的光纤通道Ⅰ。
进一步地,所述主轴通过联轴器与连接筒连接,连接筒底部设置所述的压电陶瓷片Ⅰ,在电主轴外壳内侧设置套筒,套筒内设置与各个电极片分别连接的电刷。
为了克服现有技术的不足,本发明还提拱了一种辅助生物骨低损伤可控磨削工艺,采用所述的一种静电雾化超声波辅助生物骨低损伤可控磨削装置。
与现有技术相比,本发明的有益效果是:
1)通过超声振动棒的设置,可实现对储液杯内液体进行超声振动,不仅能够有效降低静电纺丝溶液和熔体的粘度,扩大装置的静电可纺浓度范围,而且还可有效减小纤维的直径,降低纤维的结构缺陷,从而提高纺丝纤维的机械性能,保证用于创伤敷料的纺丝体系三级雾化后以纺丝纤维的形式喷在术后创伤面,实现对磨削创伤面的雾化成膜保护处理。
2)通过喷嘴与纳米流体、压缩气体的连接,可实现对医用纳米流体冷却液的气动,通过电极的设置,可实现对雾滴的静电处理,再配合变幅杆对液滴的空化作用,这样对工作面处的医用纳米流体经过气动-超声-静电三级雾化后得到超细液滴,利用超声聚焦作用将纳米流体液滴注入磨具/骨楔形约束空间,有效对磨削区进行冷却润滑。
3)通过主轴的设置,实现捕水磨具的纵-扭及旋转运动,有利于骨屑及时排出且磨削效率高。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。
图1为静电雾化超声波辅助生物骨低损伤可控磨削工艺与装置总装图;
图2为纵扭共振旋转超声电主轴剖视图;
图3为部分超声机构示意图;
图4为变幅杆指数段函数;
图5(a)、5(b)为矩形螺旋槽变幅杆受力分析图;
图6(a)、6(b)为三角形栅栏组通槽变幅杆;
图7为一种神经外科颅骨磨削捕水磨具;
图8为磨具柄上部放大图;
图9为液滴Young氏润湿模型;
图10为液滴Wenzel润湿模型;
图11为液滴Cassie润湿模型;
图12为液滴钉扎效应示意图;
图13为Wenzel润湿模型三相接触边界;
图14为Cassie润湿模型三相接触边界;
图15为方柱凸体微结构表面尺寸图;
图16为捕水磨具磨头基体及剖视图;
图17为磨头主视图剖视图;
图18为三级雾化焦距可调的超声聚焦喷嘴剖视图;
图19为喷嘴体与变幅杆连接图;
图20为气动-静电雾化喷嘴剖视图;
图21为球冠状换能器外壳球冠状部分组装图及其仰视图;
图22为焦距可调换能器原理图;
图23为静电纺丝原理图;
图24为冷却与成膜机构液路及气路系统图;
图25为冷却与成膜机构与电主轴连接图;
图26为超声振动棒半剖图;
图27为内窥镜在电主轴外壳中的安装图;
图28为镜体内部剖视图。
其中,1-纵扭共振旋转超声电主轴,2-捕水磨具,3-内窥镜,4-冷却与成膜机构,5-超声波发生器,6-储液杯,7-超声波振动棒;
101-端盖Ⅰ,102-垫片Ⅰ,103-电主轴外壳,104-主轴,105-电源接口Ⅰ,106-电源线Ⅰ,107-定子绕组,108-转子绕组,109-联轴器,1010-螺纹孔Ⅰ,1011-连接筒,1012-短电刷,1013-电源接口Ⅱ,1014-电源线Ⅱ,1015-电极片Ⅰ,1016-套筒,1017-变幅杆Ⅰ,1018-圆锥滚子轴承Ⅰ,1019-螺纹孔Ⅱ,1020-螺纹孔Ⅲ,1021-垫片Ⅱ,1022-端盖Ⅱ,1023-密封圈,1024-弹簧垫圈Ⅰ,1025-螺钉Ⅰ,1026-螺纹孔Ⅳ,1027-螺纹孔Ⅴ,1028-压电陶瓷片Ⅰ,1029-电极片Ⅱ,1030-长电刷,1031-电极片Ⅲ,1032-弹簧垫圈Ⅱ,1033-中心螺钉Ⅰ,1034-圆锥滚子轴承Ⅱ,1035-螺钉Ⅱ,1036-弹簧垫圈Ⅲ;
201-磨具柄,202-磨头基体;
202-1-部分球体,202-2-八边形柱体,202-3-方柱状微凸体,202-4-纳米分离体膜;
301-螺钉Ⅲ,302-弹簧垫圈Ⅳ,303-镜体,304-螺钉Ⅳ,305-弹簧垫圈Ⅴ,306-光纤通道,307-光纤通道Ⅱ,308-冷光照明光源传输光纤,309-内窥光纤,3010-荧光激发光传输光纤,3011-图像传输光纤;
401-中心螺钉Ⅱ,402-弹簧垫圈Ⅵ,403-顶盖Ⅰ,404-球冠状换能器外壳,405-电激励信号线Ⅰ,406-电极片Ⅳ,407-进液管,408-进气管,409-高压电线,4010-电激励信号线Ⅱ,4011-平面圆片压电元件,4012-铜网公共电极,4013-静电雾化喷嘴,4014-变幅杆Ⅱ,4015-压电陶瓷片Ⅱ,4016-电极片Ⅴ,4017-电激励信号线Ⅲ,4018-电极片Ⅵ,4019-螺钉Ⅴ,4020-弹簧垫圈Ⅶ,4021-连接板Ⅰ,4022-螺钉Ⅵ,4023-弹簧垫圈Ⅷ,4024-螺钉Ⅶ,4025-弹簧垫圈Ⅸ,4026-连接板Ⅱ,4027-高压静电发生器,4028-注射泵,4029-纺丝介质,4030-金属电极,4031-纤维射流,4032-接收板;4033-螺钉Ⅷ,4034-弹簧垫圈Ⅹ,4035-螺钉Ⅸ,4036-弹簧垫圈Ⅺ,4037-连接板Ⅲ,4038-连接杆;
4013-1-螺纹孔Ⅵ,4013-2-喷嘴体,4013-3-内置压缩气体通道,4013-4-压缩气体通道,4013-5-三相流加速室,4013-6-涡流室,4013-7-高压电进线孔,4013-8-电极托盘,4013-9-针状电极,4013-10-定位螺纹环,4013-11-旋向压缩气体通道,4013-12-螺纹孔Ⅶ,4013-13-纳米流体入口,4013-14-压缩气体入口;
4014-1-进液通道,4014-2-进气通道;
601-空气压缩机,602-过滤器,603-储气罐,604-压力表,605-调压阀Ⅰ,606-节流阀Ⅰ,607-涡轮流量计Ⅰ,608-储液杯Ⅰ,609-液压泵Ⅰ,6010-换向阀Ⅰ,6011-调压阀Ⅱ,6012-储液杯Ⅱ,6013-液压泵Ⅱ,6014-换向阀Ⅱ,6015-调压阀Ⅲ,6016-节流阀Ⅱ,6017-涡轮流量计Ⅱ,6018-回收箱,6019-溢流阀;
701-螺钉Ⅹ,702-弹簧垫圈Ⅻ,703-顶盖Ⅱ,704-换能器外壳,705-电激励信号线Ⅳ,706-电极片Ⅶ,707-变幅杆Ⅲ,708-振动棒,709-压电陶瓷片Ⅲ,7010-电极片Ⅷ,7011-电激励信号线Ⅴ,7012-电极片Ⅸ,7013-弹簧垫圈ⅩⅢ,7014-中心螺钉Ⅲ。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
正如背景技术所介绍的,现有技术中存在的不足,为了解决如上的技术问题,本申请提出了一种静电雾化超声波辅助生物骨低损伤可控磨削装置。
本申请的一种典型的实施方式中,图1所示为一种静电雾化超声波辅助生物骨低损伤可控磨削装置总装图,包含纵扭共振旋转超声电主轴1,捕水磨具2,内窥镜3,焦距可调的超声聚焦辅助三级雾化冷却与成膜机构4,超声波发生器5,储液杯6,超声波振动棒7。纵扭共振旋转超声电主轴1可实现变幅杆的纵-扭及旋转运动,装夹捕水磨具2后在内窥镜3辅助下可安全高效对病理骨组织进行去除;冷却与成膜机构4对医用纳米流体进行气动-超声-静电三级雾化,最终在超声聚焦作用下以液滴形式冲入磨削区进行有效冷却及润滑;同时对术后创口进行包覆,以防止创口感染;超声波振动棒7可对储液杯6中的医用纳米流体(或医用纺丝介质)进行超声波振荡,以防止纳米粒子的团聚(降低纺丝介质粘度)。其中,纵扭共振旋转超声电主轴1、冷却与成膜机构4及超声波振动棒7共用一个超声波发生器5。
如图2所示为纵扭共振旋转超声电主轴。端盖Ⅰ101和端盖Ⅱ1022起对轴承轴向定位、防尘和密封的作用,分别用螺钉Ⅱ1035、弹簧垫圈Ⅲ1036及螺钉Ⅰ1025、弹簧垫圈Ⅰ1024固定在电主轴外壳103上。由于在实际操作时磨削装置与水平方向要成一定角度,因此主轴104及变幅杆Ⅰ1017都要承受轴向和径向两个方向的力,因此装置采用圆锥滚子轴承Ⅱ1034和圆锥滚子轴承Ⅰ1018。圆锥滚子轴承Ⅱ1034由端盖Ⅰ101和主轴104轴肩定位,圆锥滚子轴承Ⅰ1018由变幅杆Ⅰ1017轴肩和端盖Ⅱ1022定位。端盖Ⅱ1022采用密封圈1023密封以防止润滑油外泄,同时还能防止外界灰尘进入电主轴中,此外密封圈1023还可以减少摩擦。垫片Ⅰ102及垫片Ⅱ1021可以调整轴承间隙、游隙,主轴104在转动过程中生热膨胀,通过垫片调整主轴的热伸长。定子绕组107与电主轴外壳103是一体的,电源接口Ⅰ105接通电源时,在电源线Ⅰ106的传导作用下定子绕组107通电产生旋转磁场,转子绕组108中有电流通过并受磁场的作用而旋转,由于主轴104与转子绕组108是一体的,从而主轴104旋转。主轴104通过联轴器109及螺纹孔Ⅰ1010与连接筒1011连接而旋转,而连接筒1011通过中心螺钉Ⅰ1033及弹簧垫圈Ⅱ1032带动电极片Ⅰ1015、电极片Ⅱ1029、电极片Ⅲ1031、压电陶瓷片Ⅰ1028、变幅杆Ⅰ1017旋转。
图3为部分超声机构示意图。电极片Ⅲ1031及电极片Ⅱ1029从连接筒1011引出后连接。工作 时,超声波发生器5将交流电转换成高频电振荡信号,由电源接口Ⅱ1013及电源线Ⅱ1014通过固定在套筒1016上的短电刷1012、长电刷1030分别传递给电极片Ⅰ1015、电极片Ⅲ1031及电极片Ⅱ1029,通过压电陶瓷片Ⅰ1028将高频电振荡信号转换成轴向高频振动,但该振动振幅较小,不能满足颅骨磨削所需的振幅要求。因此,压电陶瓷片Ⅰ1028的下端与变幅杆Ⅰ1017紧密连接,从而实现振幅的放大。最后,将经过放大的振幅传递给磨具,使磨具产生能够满足加工要求的振动。
图4为变幅杆指数段函数,简谐振动的情况下,纵向振动在变截面变幅杆中传播的波动方程:
Figure PCTCN2018075017-appb-000001
式中:ξ为纵向振动的位移函数;k为圆波数,k=ω/c,ω为角频率,
Figure PCTCN2018075017-appb-000002
为纵波在变幅杆中的传播速度;E为材料杨氏模量。
如图4所示,变幅杆在坐标原点(x=0处)的横截面积为S 1,x=l处的横截面积为S 2;而作用在变幅杆输入端(x=0处)以及输出端(x=l处)的力和纵波振动速度分别为F 1,ξ 1′和F 2,ξ 2′。指数形变幅杆圆截面半径的函数为:
R=R 1e -βx                                  (2)
式中:
Figure PCTCN2018075017-appb-000003
N为面积函数,
Figure PCTCN2018075017-appb-000004
可求得式(1)的解为:
Figure PCTCN2018075017-appb-000005
式中:
Figure PCTCN2018075017-appb-000006
为了方便计算,省略去时间因子e jωt,则应变分布的表达式:
Figure PCTCN2018075017-appb-000007
变幅杆的边界条件为两端自由:
根据边界条件(5)以及式(3)、式(4),可得a 1=ξ 1
Figure PCTCN2018075017-appb-000009
代入式(3)中,可得到质点沿轴向的位移分布方程:
Figure PCTCN2018075017-appb-000010
根据式(6)可以得出:
Figure PCTCN2018075017-appb-000011
把频率方程K′l=nπ代入到式(7)中,可得到指数型变幅杆的放大系数M P
M P=e βl=N                              (8)
图5(a)、图5(b)为变幅杆Ⅰ1017矩形螺旋槽受力分析图。由图可知,通过螺旋槽可把力分解为轴向力F L及切向力F T,它们之间的关系:
Figure PCTCN2018075017-appb-000012
式中:θ为螺旋槽倾斜角。
由机械振动理论可知,F T产生扭转振动,F L产生纵向振动。在螺旋槽处的扭矩M可表示为:
M=∫rf dS                           (10)
式中:r为螺旋面上任意一点到中心轴线的距离;f为螺旋面上任意一点的切向应力;dS为r处的微分,且:
S=πr 2-π(r-r 1) 2,r 1<r<r 2                       (11)
式中:r 1为螺旋槽底部到中心轴线的距离;r 2为螺旋槽顶部到中心轴线的距离。对式(11)进行求导得:
dS=2πr 1dr                          (12)
将式(12)代入式(10)得:
Figure PCTCN2018075017-appb-000013
式(13)积分后可得:
Figure PCTCN2018075017-appb-000014
由式(14)可知,利用螺旋槽不仅可以产生纵向振动,还可以产生扭转振动,从而实现变幅杆的纵-扭复合振动。螺旋槽可为矩形螺旋槽或圆弧形螺旋槽,也可为三角形、矩形或梯形栅栏组通槽,都可对纵波进行分解,从而激励出扭转振动。图6(a)、图6(b)为三角形栅栏组通槽变幅杆剖视图,变幅杆Ⅰ1017上端的螺纹孔与中心螺钉Ⅰ1033紧固连接,下端的螺纹孔与磨具柄201紧固连接,两螺纹连接的螺纹方向均与旋转方向相反。
如图7所示,捕水磨具2包括磨具柄201及磨头202基体。图8为磨具柄201上部,磨具柄201上端加工有螺纹,与变幅杆Ⅰ1017下端螺纹孔紧固连接。
图9为液滴在光滑平坦表面的润湿性态,β e为液滴在光滑平坦表面的本征接触角(Young模型),图10及图11为液滴在粗糙表面的润湿状态,分别为Wenzel及Cassie模型。
Wenzel模型认为粗糙表面的存在使得实际固-液接触面积大于表观几何接触面积,在几何上增强了亲水性(或疏水性)。如图10所示,假设液滴始终填满表面上的凹槽结构,粗糙表面的表观接触角β*与β e的关系:
cosβ*=r(γ SGSL)/γ LG=r cosβ e                    (15)
式中:γ SG、γ SL、γ LG分别为固-气、固-液、液-气接触面间表面张力;r是材料表面额粗糙度因子,为实际接触面积与表观接触面积之比,r≥1。因此,通过改变固体表面粗糙度,可以调控表观接触角,从而改变固体表面的润湿性能。
如图11,在Cassie模型中,认为液滴在粗糙表面上的接触是一种复合接触,液滴不能填满粗糙表面上的凹槽,凹中液滴下存有截留空气,从而表观上的液-固接触实际是由液-固和气-固接触共同组成,从热力学角度:
dG=f sSLSG)dx+(1-f sLG dx+γ LG dxcosβ*              (16)
液滴平衡时,粗糙表面的表观接触角β*是光滑平坦表面本征接触角β e和180°的平均值:
cosβ*=f s(1+cosβ e)-1                      (17)
式中:f s为复合接触面中突起固体所占的面积分数(f s<1)。
影响表面液滴动态行为最重要的因素是三相接触边界。如图12所示,液滴平衡时,接触角为β(状态d);加入少量液体,固-液-气三相接触边界保持不动,接触角必然增大到β 2(状态e);反之,如果抽取少量液体,同时保持固-液-气三相接触边界不动,接触角必然减少到β 1(状态c)。假设固-液-气三相接触边界只有3个界面张力,平衡时,状态d、e、c均有:
Figure PCTCN2018075017-appb-000015
处于平衡铺展位置下的液滴若想继续沿固体壁面铺展,需要克服固体对接触边界的钉扎作用。在神经外科颅骨磨削冷却过程中,不断的有冷却液进入磨削区。前一滴冷却液液滴以一定速度和角度撞击在骨表面后铺展成液膜,对冷却及润滑性效果最有利的状态是后来的液滴撞击在前一滴液滴所处位置时继续铺展,即冷却液液滴能克服粗糙骨表面对其接触边界的钉扎作用。图13、14中的虚线分别为处于Wenzel及Cassie润湿状态液滴的固-液-气三相接触边界。由图可知,Wenzel模型的液滴三相接触边界较长且连续,而Cassie模型的液滴三相接触边界较短且不连续。当三相接触边界较长且连续时,液滴沿固体壁面继续铺展需要跨越的能量势垒低,三相接触边界容易发生钉扎-去钉扎转变,因而铺展特性好;当三相接触边界较短且不连续时,液滴滞后效应明显,铺展特性差。
由于人体颅骨表面对冷却液液滴的亲/疏水性不可知且不能控制,可通过设计磨具表面微织构使磨具具有捕水性,从而提高医用纳米流体液滴的冷却及润滑性能。综合对冷却液液滴的润湿状态及固-液-气三相接触边界的分析,可知液滴撞击在磨具微织构表面后,能发生较小接触角的铺展,且能克服磨具对其接触边界的钉扎效应,即液滴润湿状态更接近Wenzel模型,是对颅骨磨削冷却及润滑最有利的表面。而微凸体结构比微凹坑结构更有利于防止Wenzel/Cassie润湿状态转换,更适 合制备捕水磨具。
如图15所示的方柱凸体微结构表面尺寸图,微凸体尺寸为a×a,高为h,微凸体间距为b,粗糙度因子r和接触面中突起固体所占的面积分数f s为:
Figure PCTCN2018075017-appb-000016
引入两个三维表面特征值:σ=b/a,τ=h/a,将式(19)代入(15)、(17)可得到:
Figure PCTCN2018075017-appb-000017
Figure PCTCN2018075017-appb-000018
由式(20)可知,对于Wenzel模型,σ不变时,提高τ可以使疏水材料更疏水,亲水材料更亲水;τ不变时,降低σ可以使疏水材料更疏水,亲水材料更亲水。
由式(21)可知,对于Cassie模型,某种疏水材料一定的β e(>90°),如果要提高材料的疏水性能(即更大的β*),需要σ越大;而对于亲水材料一定的β e(<90°),如果要提高材料的亲水性能(即更小的β*),需要σ越小。
基于以上分析,设计神经外科颅骨磨削捕水磨具。磨具材料采用420b或630不锈钢,其是目前临床颅骨手术应用最广泛的材料,且其与水基液体的Young氏接触角为85°,即材料本身就有弱亲水性,对制备超亲水表面更有利。图16为捕水磨具磨头基体及剖视图,如图16所示,磨头基体202由11个八边形柱体202-2及部分球体202-1组成,八边形柱体202-2依次上下拼接,部分球体202-1设于八边形柱体的顶部,部分球体202-1与磨具柄201连接,且八边形柱体边缘与部分球体分布在在半径为R 1的圆上。
由式(20)可知,微凸体边长及间距不变时,提高微凸体高度可使纳米流体液滴更亲水,设计磨头基体微观结构如图17所示,磨具旋转速度为ω,各八边形柱体上均布方柱状微凸体202-3,凸体202-3的边缘分布在半径为R 2的圆上。微凸体202-3特征尺寸在微米级,对纳米流体液滴进行黏附的同时,还起到磨粒对骨材料进行切削的作用,方柱的棱为切削刃。微凸体通过焊接方式排布在基体表面。
通过滴铸法将水溶性聚合物和非水溶性聚合物的水性分散体施加于420b(或630)不锈钢表面并放置干燥。在干燥过程中,水溶性聚合物和非水溶性聚合物经历相分离,在420b不锈钢形成纳米分离体并在纳米分离体上面形成非纳米分离体膜。通过用去离子水清洗去除非纳米分离体膜,可得到纳米分离体膜202-4。由于分子间重排,纳米分离体膜202-4紧紧粘附在磨头基体202表面的微凸体202-3之间。由于纳米分离体膜202-4具有超亲水性特性并具有强的捕水能力。因此,纳米厚度的纳米分离体膜202-4可将420b不锈钢表面转化为超亲水表面,同时具有捕获医用纳米流体冷却液水膜的特性。
如图18所示,顶盖Ⅰ403、压电陶瓷片Ⅱ4015、电极片Ⅳ406、电极片Ⅴ4016及电极片Ⅵ4018通过中心螺钉Ⅱ401及弹簧垫圈Ⅵ402与变幅杆Ⅱ4014紧密连接,球冠状换能器外壳404、电极片Ⅴ4016、 压电陶瓷片Ⅱ4015、电极片Ⅵ4018及电极片Ⅳ406组成换能器,工作时,超声波发生器5将交流电转换成高频电振荡信号通过电激励信号线Ⅰ405、电激励信号线Ⅲ4017分别传递给电极片Ⅳ406、电极片Ⅴ4016及电极片Ⅵ4018,将高频电振荡信号转换成轴向高频振动,变幅杆Ⅱ4014与压电陶瓷片Ⅱ4015紧密连接,实现振幅的放大,以对纳米流体进行超声空化作用。球冠状换能器外壳404由螺钉Ⅴ4019及弹簧垫圈Ⅶ4020与顶盖Ⅰ403紧密连接。
如图19及图20所示,静电雾化喷嘴4013上端加工有螺纹孔Ⅵ4013-1、螺纹孔Ⅶ4013-12,静电雾化喷嘴4013由连接板Ⅰ4021及连接板Ⅱ4026通过螺钉Ⅵ4022、螺钉Ⅶ4024及弹簧垫圈Ⅷ4023、弹簧垫圈Ⅸ4025固定在变幅杆Ⅱ4014下端。图21所示为静电雾化喷嘴剖视图,喷嘴体结构复杂不易加工制造,且要求具有一定的绝缘性能,故使用陶瓷材料通过快速成型工艺加工制造。由压缩气体入口4013-14进入的压缩气体经由内置压缩气体通道4013-3,通过旋向压缩气体通道4013-11以设定切向速度进入混合室,与由纳米流体入口4013-13进入的纳米流体混合形成高压气体、生理盐水、固体纳米粒子三相流,通过加速室4013-5加速,加速后进入涡流室4013-6在此与通过涡流室压缩气体通道4013-4进入的压缩空气形成涡流,使三相流进一步混合,然后经喷嘴体4013-2出口喷出形成雾滴。雾滴喷出后经过针状电极4013-9电晕放电的漂移区与漂移的电子碰撞从而荷电,液滴荷电后在电场力、气动力和重力作用下可控的喷向工件表面。
电极托盘4013-8由绝缘材料制成,在电极托盘4013-8上开有一个高压电进线孔4013-7。如图20所示,电极托盘4013-8沿圆周阵列8个电极插槽,将针状电极4013-9(与电极插槽过盈配合,通过绝缘材料的弹性变形力夹紧)安装在电极插槽内,用高压电线409将各针状电极4013-9串联起来,并从高压电线托盘接出通孔接出。定位螺纹环4013-10主要起到定位电极托盘4013-8的作用。
静电雾化机理:
当液滴与周围的气体之间有较高的相对速度时,液滴的分裂是由气动压力、表面张力和粘性力控制的。对于粘度较低的液体,液滴的破碎主要由气动压力和表面张力决定。大液滴所受的气动压力为0.5ρ gΔV 2,其中ρ g是气体密度,ΔV是气液相对速度。然而,表面张力产生的内聚力将阻碍液滴发生变形破碎,内聚力可以表示为4σ/D,σ是液体固有的表面张力,D为初始液滴直径。液滴直径减小时,内聚力加大,当内聚力和气动压力造成的拉应力两者平衡时,液滴保持稳定,若两者不能互相抵消,液滴就会变形甚至破碎。根据作用在液滴上的气动力产生的拉应力和表面张力产生的内聚力两者平衡的原则,可得出无量纲数:
Figure PCTCN2018075017-appb-000019
可知当We大于8时,液滴受力不平衡,发生变形。另外根据(22)可以求出与ΔV相对应的最大稳态液滴直径:
Figure PCTCN2018075017-appb-000020
荷电液滴在库仑斥力的作用下,表面张力变弱,变弱后的表面张力值为:
Figure PCTCN2018075017-appb-000021
式中:r为液滴半径;q为液滴的荷电量;ε为周围空气介电常数。从式(24)中可看出当带电量q增加时,表面张力下降,由此可知液滴表面荷电有助于雾化。此时荷电液滴的We可以表示为:
Figure PCTCN2018075017-appb-000022
由式(25)可见,高速气流中荷电液滴的破碎与气液相对速度、气液物性参数以及充电场有密切的关系。此外,若液滴在气流中达到稳定状态,荷上静电以后,We数增大,液体表面张力减小,不足以抵抗气动压力,液滴将进一步发生变形、破碎,所以在气液参数相同的情况下,荷上静电后雾滴粒径更小,从而达到细化雾滴颗粒的目的;同时液滴表面相同的电荷,可保证液滴的分布更加均匀。因此,该装置可实现气动及超声雾化后再由静电雾化,共经三级雾化,最终得到分布均匀的超细液滴。
如图21所示,围绕中心的同心圆r 1、r 2、r 3、r 4、r 5上分别分布8、16、24、32、40个圆形小孔,圆形小孔内嵌套粘结平面圆片压电元件4011,所有平面圆片压电元件4011直径、厚度都相同。在平面圆片压电元件4011下端覆盖有铜网公共电极4012,用胶黏剂将铜网公共电极4012与所有平面圆片压电元件4011粘结,并采用压力台压紧球冠状部分的底面,使得铜网公共电极4012与平面圆片压电元件4011的粘接端平整。半径分别为r 1、r 2、r 3、r 4、r 5的圆上的所有平面圆片压电元件4011上表面用电激励信号线Ⅱ4010接为一路,并由一路电源单独激励,形成一条支路。
Westervelt声波传播方程式为:
Figure PCTCN2018075017-appb-000023
式中:▽为拉普拉斯算子;p为声压;c 0和ρ 0分别为介质的声速和密度;β=1+B/(2A)为声波非线性系数,B/A为流体介质的非线性系数;δ=2c 0 3α/ω 2为声波扩散系数;α为吸收系数;ω=2πf为角频率;f为频率。
采用时域有限差分法对式(26)进行中心差分,差分方程式为:
Figure PCTCN2018075017-appb-000024
其中,
Figure PCTCN2018075017-appb-000025
Figure PCTCN2018075017-appb-000026
i,j,k分别为直角坐标系下x、y、z三个坐标轴方向的坐标;dx、dy、dz分别表示x、y、z三个坐标轴方向的空间步长;dt为时间步长;n为计算时刻。
如图22所示,在目标焦点S处设置正弦函数点生源S 0(t),数值仿真得到传到相控阵编号为m阵元中心点的声压信号S 0m(t),将该信号按时间序列进行反转后,得到对应阵元m的信号S 0m(T-t)。利用最小二乘函数拟合计算一段时间内S 0m(T-t)的相对初始相位延迟Δt m,然后以同一输入声强对正弦信号幅值进行调制,阵元m的激励信号为:
S 0m(t)=P 0sin(ω(t+Δt m))                        (28)
通过对阵元激励信号进行调控实现各阵元相位的调控,使得各阵元到达空间某点(设定焦点)的声束具有相同的相位,通过控制声束形状、声压分布、声束角度,最终实现焦点尺寸及位置的连续、动态可调。
图18所示为三级雾化焦距可调的超声聚焦喷嘴剖视图,图23是纺丝原理图,如图所示,纺丝介质4029为聚合物溶液或熔体,其装在注射泵4028中,并插入一个金属电极4030。该电极与高压静电发生器4027相连,使液体带电。接地的接收板4032作为阴极。电场未启动时,由注射泵4028给活塞一个连续恒定的推力,注射泵4028中的纺丝介质4029以固定速率被挤出到针头上。当高压电场未开启时,纺丝液在其重力、自身粘度和表面张力的协同作用下形成液滴悬挂于喷口。电场开启时,聚合物溶液表面会产生电荷,电荷相互排斥和相反电荷电极对表面电荷的压缩,均会产生一种与表面张力相反的力。电压不够大时,液滴表面的表面张力将阻止液滴喷出而保持在喷嘴处。当外加的电压增大时,即将滴下的液滴半球型表面就会扭曲成一个锥体,继续加大外加电压,当电压超过某一临界值时,溶液中带电部分克服溶液的表面张力形成一股带电的喷射流从喷嘴处喷出。在电场的作用下,当纤维射流4031被拉伸到一定程度时,就会发生弯曲及进一步的分裂拉伸现象,此时由于射流4031的比表面积迅速增大而使溶剂快速挥发,最终在收集网上被收集并固化形成非织造布状的纤维毡。高压静电发生器4027通常情况下选用5~20kV的高压,此外,正电压场有利于纤维表面电荷的释放,而负电压场能提供较为稳定的电场力,两者对不同的聚合物静电雾化成膜有着不同影响。
静电纺丝基本理论:
当带电液滴被引入电场后,电荷聚集在液滴表面,从而产生一个驱使液滴向外分裂的电荷斥力(表示为带电液滴表面的静电压力P E=σ 2/2ε 0,与液滴表面电荷密度σ和真空中介电常数ε 0有关),它与液滴表面的倾向于使液滴收缩的表面张力(表示为喷头末端液体表面张力γ,和液滴半径R有关的压力P C=2γ/R)形成一种非稳态的平衡,这个平衡可以用下式表示:
ΔP=2γ/R-e 2/(32ε 0π 2R 4)                    (29)
式中,e-液滴所带的总电荷;R-液滴半径。
可以看出,当液滴半径减小(电荷密度增加)时,由静电产生的压力就会增加。当液滴表面产生的张力与静电斥力相等时,处于电场中的带电液滴达到平衡,假设此时带电液滴的直径为D,换算成液滴表面的电荷密度,可以得到下式:
Figure PCTCN2018075017-appb-000027
式中,M-液滴的质量。
当电荷斥力超过这个极限时,喷头末端的液滴就会分裂成多个小液滴,形成静电雾化现象。这个液滴稳定的极限称之为“瑞利稳定极限”。假设液体射流为圆柱形,那么“瑞利稳定极限”的条件可以用下式表示:
ΔP=γ/R-τ 2/(8ε 0π 2R 4)                                     (31)
式中,τ-液体射流长度单位所带的电荷,换算成射流表面的电荷密度为:
Figure PCTCN2018075017-appb-000028
从上式可以看出,达到“瑞利稳定极限”的条件时,在泰勒锥表面形成圆柱形射流所需的电荷比静电雾化要小,这种特例就是静电纺丝。
从泰勒锥顶端喷射出射流的临界电压的计算公式为:
V 2c=(4H 2/L 2)·[ln(2L/R)-1.5]·(0.117πγR 0)                 (33)
式中:H-两电极之间的距离;L-喷头伸出极板的距离;R-悬滴的半径;R 0-喷头半径。
悬垂液滴表面受到的力主要有电场力、黏应力、流体静压力差以及表面张力引起的压力差。当悬垂液滴表面的切向电场力大于切向黏应力时,形成单射流或多射流;反之,形成液滴。
如图19所示,当储液杯6中储有医用纳米流体时,可实现对纳米流体气动及超声雾化后再进行静电雾化,得到分布均匀的超细液滴,对磨削区进行有效冷却及润滑;当储液杯6中储有应用于创伤敷料的静电纺丝体系时,同理可得到超细纤维,对术后创口进行包覆。图24所示为该装置的液路及气路系统图,冷却与成膜机构的液路(纳米流体)由储液杯Ⅰ608、液压泵Ⅰ609、调压阀Ⅱ6011、节流阀Ⅱ6016、涡轮流量计Ⅱ6017依次连接组成;成膜装置的液路(纺丝介质)由储液杯Ⅱ6012、液压泵Ⅱ6013、调压阀Ⅲ6015、节流阀Ⅱ6016、涡轮流量计Ⅱ6017依次连接组成;气路由空气压缩机601、过滤器602、储气罐603、调压阀Ⅰ605、节流阀Ⅰ606、涡轮流量计Ⅰ607依次连接组成。工作时,启动液压泵,储存在储液罐中的流体经流体调压阀、流体节流阀和涡轮流量计进入到喷嘴体4013-2的纳米流体入口4013-13。溢流阀6019起到安全阀的作用,当液路中的压力超过调定压力时,溢流阀6019打开,使冷却剂经溢流阀6019流回到回收箱6018中。纳米流体(或纺丝介质)从涡轮流量计Ⅱ6017流出后进入进液管407(图18),通过变幅杆Ⅱ4014内置进液通道4014-1(图19)进入喷嘴体内置纳米流体入口4013-13(图20),经三级雾化后从喷嘴体4013-2喷出。
启动液压泵的同时,启动空气压缩机601,高压气体经过滤器602、储气罐603、气体调压阀Ⅰ605、气体节流阀Ⅰ606和气体涡轮流量计Ⅰ607进入到喷嘴体4013-2的压缩气体入口4013-14,压力表604监测气路中的压力值。压缩气体从涡轮流量计Ⅰ607流出后进入进气管408(图18),通过变幅杆Ⅱ4014内置进气通道4014-2(图19)进入喷嘴体内置压缩气体入口4013-14(图20),与纳米流体混合后从喷嘴体4013-2喷出。
手术过程中,换向阀Ⅱ6014处于常态位,储液杯Ⅱ6012液路不通;换向阀Ⅰ6010处于工作位,储液杯Ⅰ608液路正常工作;手术结束后,关闭换向阀Ⅰ6010,打开换向阀Ⅱ6014,储液杯Ⅱ6012液路工作。通过调节气路和液路中的调压阀、节流阀和流量计,纳米流体(或纺丝介质)和高压气体的压力、流量可根据需要达到最优的微量润滑效果。
如图25所示,连接杆4038一端焊接在顶盖Ⅰ403上,一端焊接在连接板Ⅲ4037上。电主轴外壳103上加工有螺纹孔Ⅳ1026、螺纹孔Ⅴ1027,冷却与成膜机构由螺钉Ⅷ4033、弹簧垫圈Ⅹ4034、螺钉Ⅸ4035、弹簧垫圈Ⅺ4036、连接板Ⅲ4037、连接杆4038固定在电主轴外壳103上。
图26为超声振动棒半剖图,中心螺钉Ⅲ7014及弹簧垫圈ⅩⅢ7013将顶盖Ⅱ703、压电陶瓷片 Ⅲ709、电极片Ⅶ706、电极片Ⅷ7010、电极片Ⅸ7012紧固连接,换能器外壳704通过螺钉Ⅹ701及弹簧垫圈Ⅻ702固定在顶盖Ⅱ703上。工作时,超声波发生器5将交流电转换成高频电振荡信号通过电激励信号线Ⅳ705、电激励信号线Ⅴ7011分别传递给电极片Ⅶ706、电极片Ⅷ7010及电极片Ⅸ7012,将高频电振荡信号转换成轴向高频振动,并由变幅杆Ⅲ707实现振幅的放大。变幅杆Ⅲ707与振动棒708通过螺纹紧固连接,将放大后的振动传递给振动棒708,对储液杯6中的医用纳米流体(或医用纺丝介质)进行超声波振荡。
超声波振动棒7对储液杯6中的纺丝体系进行超声波振荡,不仅能够有效降低静电纺丝溶液和熔体的粘度,扩大装置的静电可纺浓度范围,而且还可有效减小纤维的直径,降低纤维的结构缺陷,从而提高纺丝纤维的机械性能。如图21所示,在纤维成型时施加一定功率的超声波,可以使纤维在喷射流的作用下被拉伸达到进一步细化的目的,同时超声波作用可以改善聚合物溶液的流动性,提高可纺性,加快纤维的凝固成型过程。
利用纵扭共振旋转超声电主轴1实现变幅杆的纵-扭及旋转运动,装夹捕水磨具2后在内窥镜3辅助下可安全高效对病理骨组织进行去除;冷却及成膜4对纳米流体进行气动-超声-静电三级雾化,最终在超声聚焦作用下以液滴形式冲入磨削区进行有效冷却及润滑;术后对创口进行包覆,以防止创伤面感染。
图27所示为内窥镜在电主轴外壳中的安装图。电主轴外壳103上加工有螺纹孔Ⅱ1019、螺纹孔Ⅲ1020,镜体303由螺钉Ⅲ301、弹簧垫圈Ⅳ302、螺钉Ⅳ304、弹簧垫圈Ⅴ305固定在电主轴外壳103上,电主轴外壳103内部有光纤通道Ⅱ307,镜体303内部有光纤通道Ⅰ306。图28所示为镜体内部剖视图,镜体内设有各自独立的冷光照明光源传输光纤308、内窥光纤309、荧光激发光传输光纤3010、图像传输光纤3011,荧光激发光可激发肿瘤组织发射出相应波长的荧光,该荧光发射光经内窥光纤309、图像传输光纤3011,通过目镜可以看到荧光发射光,从而准确识别出肿瘤组织。图像传输光纤3011接到监视器上,便于运用操作手术器械在光纤照明下对可识别的组织进行切除达到治疗目的。由于内窥镜3是与纵扭共振旋转超声电主轴1是紧密连接的,外科医生在内窥镜3辅助下可实时方便灵活实现任意位姿的操作,实现颅底肿瘤的柔性去除。
本方案具体工作过程如下:
一种静电雾化超声波辅助生物骨低损伤可控磨削装置,纵扭共振旋转超声电主轴1可实现磨具的纵-扭及旋转运动,有利于骨屑及时排出且磨削效率高;磨具为捕水磨具2,磨头磨粒采用方柱状微凸体规则排布,且磨头基体表面经处理得到具有强捕水能力的纳米分离体膜,同时具有超亲水及捕水性能,从而增强磨削区对流换热;冷却与成膜机构4将医用纳米流体冷却液气动-超声-静电三级雾化后得到超细液滴,利用超声聚焦作用将纳米流体液滴注入磨具/骨楔形约束空间,有效对磨削区进行冷却润滑;手术结束后将应用于创伤敷料的纺丝体系三级雾化后以纺丝纤维的形式喷在术后创伤面,实现对磨削创伤面的雾化成膜保护处理。用一种装置就可以实现内窥镜下对颅底肿瘤的磨除、术中冷却及术后创口成膜,集成度高,磨除效率高,且磨削温度低,即用一种装置就可实现生物骨的低损伤可控磨削。
使用该装置时,圆锥滚子轴承Ⅱ1034由端盖Ⅰ101和主轴104轴肩定位,按定位位置将圆锥滚子轴 承Ⅱ1034安装在104主轴一端。通过1033中心螺钉Ⅰ、1032弹簧垫圈Ⅱ将各电极片、压电陶瓷片安装在1011连接筒内,再通过联轴器109、螺纹孔Ⅰ1010将连接筒1011与主轴104连接。端盖起对轴承轴向定位、防尘和密封的作用,通过弹簧垫圈Ⅲ1036、-螺钉Ⅱ1035将端盖Ⅰ101安装在电主轴外壳103顶端,按定位位置将组装好的主轴104与连接筒1011安装在电主轴外壳103内,并按定位位置将套筒1016安装在电主轴外壳103内。圆锥滚子轴承Ⅰ1018由变幅杆Ⅰ1017轴肩和端盖Ⅱ1022定位,按定位位置将圆锥滚子轴承Ⅰ1018安装在变幅杆Ⅰ1017一端,并通过螺纹连接将制备好的捕水磨具2安装在变幅杆Ⅰ1017末端。通过变幅杆Ⅰ1017顶端的螺纹孔将变幅杆Ⅰ1017与电主轴外壳103内中心螺钉Ⅰ1033末端连接。涂覆润滑脂后通过螺钉Ⅰ1025、弹簧垫圈Ⅰ1024将端盖Ⅱ1022安装在电主轴外壳103末端。变幅杆Ⅰ1017上端的螺纹孔与中心螺钉Ⅰ1033紧固连接,下端的螺纹孔与磨具柄201紧固连接,两螺纹连接的螺纹方向均与旋转方向相反,可保证连接紧固性。
围绕球冠状换能器外壳404中心的同心圆r 1、r 2、r 3、r 4、r 5上分别加工均布的8、16、24、32、40个圆形小孔,圆形小孔内嵌套粘结平面圆片压电元件4011,所有平面圆片压电元件4011直径、厚度都相同。用胶黏剂将铜网公共电极4012与所有平面圆片压电元件4011下端粘结,并采用压力台压紧球冠状部分的底面,使得铜网公共电极4012与平面圆片压电元件4011的粘接端平整。利用螺钉Ⅵ4022、弹簧垫圈Ⅷ4023、螺钉Ⅶ4024、弹簧垫圈Ⅸ4025及连接板Ⅰ4021将静电雾化喷嘴4013安装在变幅杆Ⅱ4014末端。球冠状换能器外壳404、电极片Ⅴ4016、压电陶瓷片Ⅱ4015、电极片Ⅵ4018及电极片Ⅳ406组成换能器,将顶盖Ⅰ403、各电极片、压电陶瓷片依次叠装好后与变幅杆Ⅱ4014一起通过中心螺钉Ⅱ401、弹簧垫圈Ⅵ402安装在换能器上,并通过弹簧垫圈Ⅶ4020及螺钉Ⅴ4019进行紧固。分别将各电激励信号线Ⅱ4010及进液管407、进气管408、高压电线409连接到相应位置,最后利用连接杆4038将组装好的冷却与成膜机构焊接在电主轴外壳103上。
手术开始前,同时启动电源接口Ⅰ105、电源接口Ⅱ1013及超声波发生器5,待捕水磨具2稳定旋转、纵扭振动时,打开换向阀Ⅰ6010,冷却与成膜机构工作,医用纳米流体以液滴射流的形式从喷嘴体4013-2喷出进入磨削区进行高效冷却润滑,打开内窥镜系统3,在内窥镜辅助下开始手术。磨削结束后,关闭换向阀Ⅰ6010,打开换向阀Ⅱ6014,成膜装置工作,利用纺丝纤维对术后创口进行包覆。手术结束后,关闭所有电源,将捕水磨具2卸下,对设备进行消毒并妥善保管。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围。

Claims (10)

  1. 一种静电雾化超声波辅助生物骨低损伤可控磨削装置,其特征在于,包括:
    主轴,可旋转设置;
    用于磨削生物骨的捕水磨具,主轴通过超声振动机构与捕水磨具连接,在主轴及超声振动机构带动下,捕水磨具实现纵向运动及旋转运动;
    冷却及成膜机构,设于捕水磨具的一侧与超声振动机构中超声波发生器连接,底部设置与医用纳米流体储液杯连接的喷嘴,喷嘴内还可通入压缩气体,以对医用纳米流体进行气动-超声雾化后,以液滴形式冲入磨削区进行有效冷却及润滑;
    内窥镜,设于捕水磨具的另一侧。
  2. 根据权利要求1所述的一种静电雾化超声波辅助生物骨低损伤可控磨削装置,其特征在于,所述冷却及成膜机构包括换能器外壳,换能器外壳内设置变幅杆Ⅱ,变幅杆Ⅱ顶部设置四层压电陶瓷片Ⅱ,相邻两层压电陶瓷片Ⅱ之间设置与所述超声波发生器连接的电极片。
  3. 根据权利要求2所述的一种静电雾化超声波辅助生物骨低损伤可控磨削装置,其特征在于,所述变幅杆Ⅱ内部设置进液通道与进气通道,进液通道与所述喷嘴的纳米流体入口相通,进气通道与喷嘴的压缩气体入口相通;
    或者,喷嘴内设置纳米流体通道与压缩气体通道,在喷嘴内还设置与纳米流体通道相通的内置压缩气体通道,纳米流体通道底部设置加速室,压缩气体通道与加速室连通;
    或者,加速室包括两个相通的缩径段,第一缩径段与第二缩径段均呈倒圆台状,第二缩径段通过圆筒段与第三段连接,第三段为涡流室。
  4. 根据权利要求1所述的一种静电雾化超声波辅助生物骨低损伤可控磨削装置,其特征在于,所述喷嘴内侧设置由电极托盘支撑的电极,电极与高压静电发生器连接以将喷嘴处的医用纳米流体液滴荷电,进一步细化纳米流体。
  5. 根据权利要求2所述的一种静电雾化超声波辅助生物骨低损伤可控磨削装置,其特征在于,所述换能器外壳底部呈半球面结构,在该球面结构内侧设置多个与所述超声波发生器连接的圆片压电元件,在圆片压电元件表面设置铜网公共电极;
    或者,圆片压电元件以多个同心圆的方式布置在同心圆圆周。
  6. 根据权利要求1所述的一种静电雾化超声波辅助生物骨低损伤可控磨削装置,其特征在于,所述捕水磨具包括磨具柄,在磨具柄底部设置球形磨头基体,磨头基体表面设置多个方柱状微凸体,在磨头基体表面的微凸体之间粘附有纳米分离体膜。
  7. 根据权利要求1所述的一种静电雾化超声波辅助生物骨低损伤可控磨削装置,其特征在于,所述储液杯内设置超声振动棒,超声振动棒与所述的超声发生器连接。
  8. 根据权利要求4所述的一种静电雾化超声波辅助生物骨低损伤可控磨削装置,其特征在于,所述主轴设于电主轴外壳内,主轴外表圆周设置转子绕组,电主轴外壳内设置与转子绕组对应的定子绕组;
    或者,所述超声振动机构包括四层压电陶瓷片Ⅰ,相邻两层压电陶瓷片Ⅰ之间设置与所述超声波发生器连接的电极片,底层压电陶瓷片Ⅰ通过变幅杆Ⅰ与所述的捕水磨具顶部连接;变幅杆Ⅰ表面设置螺旋槽;
    或者,电主轴外壳内设置内部有光纤通道Ⅱ,内窥镜镜体内部有与光纤通道Ⅱ相通的光纤通道Ⅰ。
  9. 根据权利要求8所述的一种静电雾化超声波辅助生物骨低损伤可控磨削装置,其特征在于,所述主轴通过联轴器与连接筒连接,连接筒底部设置所述的压电陶瓷片Ⅰ,在电主轴外壳内侧设置套筒,套筒内设置与各个电极片分别连接的电刷。
  10. 一种辅助生物骨低损伤可控磨削工艺,其特征在于,采用根据权利要求1-9中任一项所述的一种静电雾化超声波辅助生物骨低损伤可控磨削装置。
PCT/CN2018/075017 2017-11-21 2018-02-02 一种静电雾化超声波辅助生物骨低损伤可控磨削工艺与装置 WO2019100587A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB1918924.0A GB2578046B (en) 2017-11-21 2018-02-02 Electrostatic atomization ultrasonic aided low-damage and controllable biologic bone grinding process and device
AU2018373743A AU2018373743B2 (en) 2017-11-21 2018-02-02 Electrostatic-atomization ultrasonic wave assisted low-damage and controllable biologic bone grinding process and apparatus
US16/090,778 US11406397B2 (en) 2017-11-21 2018-02-02 Electrostatic atomization ultrasonic aided low-damage and controllable biologic bone grinding process and device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201721568840.3 2017-11-21
CN201721568840.3U CN208808570U (zh) 2017-11-21 2017-11-21 一种静电雾化超声波辅助生物骨低损伤可控磨削装置
CN201711164696.1A CN107789029A (zh) 2017-11-21 2017-11-21 一种静电雾化超声波辅助生物骨低损伤可控磨削工艺与装置
CN201711164696.1 2017-11-21

Publications (1)

Publication Number Publication Date
WO2019100587A1 true WO2019100587A1 (zh) 2019-05-31

Family

ID=66631797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/075017 WO2019100587A1 (zh) 2017-11-21 2018-02-02 一种静电雾化超声波辅助生物骨低损伤可控磨削工艺与装置

Country Status (3)

Country Link
AU (1) AU2018373743B2 (zh)
GB (1) GB2578046B (zh)
WO (1) WO2019100587A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113208688A (zh) * 2021-03-19 2021-08-06 桂林医学院 一种颅骨切开设备
CN113967051A (zh) * 2021-10-12 2022-01-25 长沙理工大学 气固两相循环冷却医用磨钻装置
CN114774654A (zh) * 2022-04-22 2022-07-22 中国石油大学(华东) 一种高效率消除焊接残余应力的非淹没空化水射流装置及方法
CN116900827A (zh) * 2023-09-14 2023-10-20 内蒙古工业大学 一种研磨液可调节的超声磨削装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210369295A1 (en) * 2020-06-02 2021-12-02 Covidien Lp Ultrasonic transducer casing, ultrasonic transducer assembly, and ultrasonic surgical instrument

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5624393A (en) * 1996-01-03 1997-04-29 Diamond; Eric L. Irrigation system for surgical instruments
WO1999033510A1 (en) * 1997-12-31 1999-07-08 Hydrocision, Inc. Fluid jet cutting system for cardiac applications
US6443969B1 (en) * 2000-08-15 2002-09-03 Misonix, Inc. Ultrasonic cutting blade with cooling
CN2759423Y (zh) * 2004-12-31 2006-02-22 李江明 一种用于手术中去除骨质的超声凿
CN204135897U (zh) * 2014-09-03 2015-02-04 青岛理工大学 纳米流体微量润滑静电雾化可控射流内冷工艺用系统
CN204971447U (zh) * 2015-09-21 2016-01-20 青岛理工大学 一种静电雾化内冷磨头
CN205006970U (zh) * 2015-09-21 2016-02-03 青岛理工大学 一种冷却与静电雾化成膜的骨外科手术磨削实验装置
CN206355101U (zh) * 2016-09-23 2017-07-28 武汉多可特医疗器械有限公司 一种内置冷却水道的开颅铣
CN107789030A (zh) * 2017-11-21 2018-03-13 青岛理工大学 一种神经外科超声聚焦辅助三级雾化冷却与术后创口成膜装置
CN107789031A (zh) * 2017-11-21 2018-03-13 青岛理工大学 一种手持式神经外科旋转超声共振捕水磨削装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09266914A (ja) * 1996-03-29 1997-10-14 Suzuki Motor Corp 超音波ハンドピース
US9271751B2 (en) * 2007-05-29 2016-03-01 Ethicon Endo-Surgery, Llc Ultrasonic surgical system
US9044261B2 (en) * 2007-07-31 2015-06-02 Ethicon Endo-Surgery, Inc. Temperature controlled ultrasonic surgical instruments
KR101765248B1 (ko) * 2012-11-19 2017-08-04 후아이스 아이피 홀딩 엘엘씨 자가접합 오스테오톰
EP3247435B1 (en) * 2015-01-23 2021-03-10 William Tan Ultrasonic vaporizing element

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5624393A (en) * 1996-01-03 1997-04-29 Diamond; Eric L. Irrigation system for surgical instruments
WO1999033510A1 (en) * 1997-12-31 1999-07-08 Hydrocision, Inc. Fluid jet cutting system for cardiac applications
US6443969B1 (en) * 2000-08-15 2002-09-03 Misonix, Inc. Ultrasonic cutting blade with cooling
CN2759423Y (zh) * 2004-12-31 2006-02-22 李江明 一种用于手术中去除骨质的超声凿
CN204135897U (zh) * 2014-09-03 2015-02-04 青岛理工大学 纳米流体微量润滑静电雾化可控射流内冷工艺用系统
CN204971447U (zh) * 2015-09-21 2016-01-20 青岛理工大学 一种静电雾化内冷磨头
CN205006970U (zh) * 2015-09-21 2016-02-03 青岛理工大学 一种冷却与静电雾化成膜的骨外科手术磨削实验装置
CN206355101U (zh) * 2016-09-23 2017-07-28 武汉多可特医疗器械有限公司 一种内置冷却水道的开颅铣
CN107789030A (zh) * 2017-11-21 2018-03-13 青岛理工大学 一种神经外科超声聚焦辅助三级雾化冷却与术后创口成膜装置
CN107789031A (zh) * 2017-11-21 2018-03-13 青岛理工大学 一种手持式神经外科旋转超声共振捕水磨削装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113208688A (zh) * 2021-03-19 2021-08-06 桂林医学院 一种颅骨切开设备
CN113967051A (zh) * 2021-10-12 2022-01-25 长沙理工大学 气固两相循环冷却医用磨钻装置
CN113967051B (zh) * 2021-10-12 2024-01-12 长沙理工大学 气固两相循环冷却医用磨钻装置
CN114774654A (zh) * 2022-04-22 2022-07-22 中国石油大学(华东) 一种高效率消除焊接残余应力的非淹没空化水射流装置及方法
CN114774654B (zh) * 2022-04-22 2024-06-07 中国石油大学(华东) 一种高效率消除焊接残余应力的非淹没空化水射流装置及方法
CN116900827A (zh) * 2023-09-14 2023-10-20 内蒙古工业大学 一种研磨液可调节的超声磨削装置
CN116900827B (zh) * 2023-09-14 2023-12-08 内蒙古工业大学 一种研磨液可调节的超声磨削装置

Also Published As

Publication number Publication date
AU2018373743B2 (en) 2020-07-02
GB201918924D0 (en) 2020-02-05
GB2578046B (en) 2021-12-15
AU2018373743A1 (en) 2019-11-21
GB2578046A (en) 2020-04-15

Similar Documents

Publication Publication Date Title
WO2019100587A1 (zh) 一种静电雾化超声波辅助生物骨低损伤可控磨削工艺与装置
WO2019100588A1 (zh) 一种神经外科超声聚焦辅助三级雾化冷却与术后创口成膜装置
CN107789029A (zh) 一种静电雾化超声波辅助生物骨低损伤可控磨削工艺与装置
US10568642B2 (en) Bone surgery grinding experimental device capable of cooling and electrostatic atomization film formation
CN105105819B (zh) 一种冷却与静电雾化成膜的骨外科手术磨削实验装置
Yang et al. Machinability of ultrasonic vibration-assisted micro-grinding in biological bone using nanolubricant
CN107789031A (zh) 一种手持式神经外科旋转超声共振捕水磨削装置
CN105147356B (zh) 一种静电雾化内冷磨头
CN204971447U (zh) 一种静电雾化内冷磨头
CN107789030A (zh) 一种神经外科超声聚焦辅助三级雾化冷却与术后创口成膜装置
US7785278B2 (en) Apparatus and methods for debridement with ultrasound energy
CN105451671B (zh) 具有冷却液体传导的超声波切割刀片
US3942519A (en) Method of ultrasonic cryogenic cataract removal
US6283974B1 (en) Surgical tip for phacoemulsification
US7896855B2 (en) Method of treating wounds by creating a therapeutic combination with ultrasonic waves
US8562547B2 (en) Method for debriding wounds
US9486234B2 (en) Surgical saw blade
CN105682579A (zh) 带有双端部执行器的超声外科手术器械
AU2007286660A1 (en) Portable ultrasound device for the treatment of wounds
US11406397B2 (en) Electrostatic atomization ultrasonic aided low-damage and controllable biologic bone grinding process and device
CN205006970U (zh) 一种冷却与静电雾化成膜的骨外科手术磨削实验装置
WO2015171754A1 (en) Debridement apparatus using linear lorentz-force motors
CN208808570U (zh) 一种静电雾化超声波辅助生物骨低损伤可控磨削装置
CN104771202B (zh) 一种磨削温度在线检测及纳米流体相变换热式磨削装置
CN208769899U (zh) 一种神经外科超声聚焦辅助三级雾化冷却与术后创口成膜装置和生物骨低损伤可控磨削装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18880591

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018373743

Country of ref document: AU

Date of ref document: 20180202

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 201918924

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20180202

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18880591

Country of ref document: EP

Kind code of ref document: A1