CN101660136B - 封装固体高纯金属有机化合物的容器及其应用 - Google Patents

封装固体高纯金属有机化合物的容器及其应用 Download PDF

Info

Publication number
CN101660136B
CN101660136B CN2009100353746A CN200910035374A CN101660136B CN 101660136 B CN101660136 B CN 101660136B CN 2009100353746 A CN2009100353746 A CN 2009100353746A CN 200910035374 A CN200910035374 A CN 200910035374A CN 101660136 B CN101660136 B CN 101660136B
Authority
CN
China
Prior art keywords
chamber
container
metal organic
organic compound
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2009100353746A
Other languages
English (en)
Other versions
CN101660136A (zh
Inventor
孙祥祯
陈化冰
潘毅
俞冬雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Nata Opto Electronic Material Co Ltd
Original Assignee
Jiangsu Nata Opto Electronic Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Nata Opto Electronic Material Co Ltd filed Critical Jiangsu Nata Opto Electronic Material Co Ltd
Priority to CN2009100353746A priority Critical patent/CN101660136B/zh
Publication of CN101660136A publication Critical patent/CN101660136A/zh
Application granted granted Critical
Publication of CN101660136B publication Critical patent/CN101660136B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

本发明涉及封装固体高纯金属有机化合物的容器及其应用,包括筒体、上盖、进气管和出气管,在筒体中设置一竖立的隔板,隔板将筒体的内腔分成左腔和右腔,并在筒体的下部设置一网孔板,网孔板将左腔分成左上腔和左下腔,网孔板将右腔分成右上腔和右下腔,并在左下腔与右上腔之间设置一连接管,连接管将右上腔与左下腔相连通;进气管从上盖插入并与左上腔相连通,出气管从上盖插入并穿过右上腔与右下腔相连通;在上盖上开有两加料口,一加料口与左上腔相通,另一加料口与右上腔相通。该封装容器用于MOCVD时,腔体盛装固体源,容器的有效体积可得到充分利用,载气在容器内部经过的路程延长到原来的四倍以上,气体与固体源的接触几率大为增加。

Description

封装固体高纯金属有机化合物的容器及其应用
技术领域
本发明涉及有机金属化学气相沉积技术,尤其涉及为实现化学气相沉积过程对金属有机化合物固体源的蒸气压稳定及封装的容器,属于光电子新材料技术领域。
背景技术
高纯三甲基铟等金属有机化合物,是金属有机化学气相沉积技术(MOCVD)、化学束外延(CBE)过程中生长光电子材料的重要原料,广泛应用于生长磷化铟、铟镓砷氮(InGaAsN)、铟镓砷(InGaAs)、铟镓磷(InGaP)等化合物半导体薄膜材料。纯净的三甲基铟在室温下为固体,当用于MOCVD时需要将该固体源封装在钢瓶内,然后控制钢瓶温度,使其蒸气压达到一定值,再通过持续流动的载气,将在使用温度下气-固平衡状态气相中的三甲基铟带入MOCVD或CBE生长系统。
实际使用发现用普通钢瓶封装三甲基铟时,三甲基铟的利用率较低;又由于三甲基铟在使用环境下是固体,而固体的晶粒大小不可能十分均匀,造成装入普通瓶内的固体三甲基铟各部位的松紧不均匀,很容易引起所谓的“沟流现象”,这将严重影响到三甲基铟蒸气压的稳定性,导致化合物半导体薄膜材料生长过程的蒸气压不稳定,从而影响生成的化合物半导体薄膜材料的质量。为了解决这一技术难题,科研工作者进行了多种尝试,提出了多项技术解决方案,主要有:1、在三甲基铟的封装容器中加入多孔型惰性支撑物(K.Sanoyoshi and T.Yago,JP1265511),使固体三甲基铟附着于多孔物体的表面和孔道中,尽量减少三甲基铟固体之间的相互聚集作用,增加载气气流与三甲基铟的作用几率;2、封装钢瓶采用双腔室结构(M.L.Timmons,R.J.Colby,R.S.Stennick,EP1160355,JP2002083777),内外两个腔室用多孔型金属板隔开,内腔室装三甲基铟固体并连接进气管,外腔室连接出气管。由于多孔金属隔板上面小孔的孔径很小,不仅固体源到达不了外腔室,而且进入内腔室的载气只有与固体源有了比较充分的接触、积累到一定压力之后,才能通过该金属隔板进入外腔室;3、将两只装有三甲基铟固体源的钢瓶反向串联(G.R.Antell,GB2223509),增加载气气流与三甲基铟固体的作用机会。
上述第1、第2两种方法虽然在一定程度上改善了三甲基铟蒸气压的稳定性,提高了三甲基铟的使用率,但都存在同样的不足,主要是封装钢瓶的有效体积被严重降低,钢瓶内构件比较复杂、制造和安装要求很高,并且,随着工艺要求不断增加固体源装料量,这两种类型的大容量钢瓶在设备加工方面的困难将越来越大。第3种方法虽然不存在以上问题,但是源瓶拆装麻烦,接头较多,增加漏气的几率,同时封装钢瓶的费用及运输费用将成倍增加;双瓶串联技术既不经济,也远不如单瓶使用方便。。
发明内容
本发明的目的是克服现有技术存在的不足,提供一种新型封装固体高纯金属有机化合物的容器,旨在充分利用容器内部的有效体积,提高被封装的固体金属有机化合物的使用率。
本发明的目的通过以下技术方案来实现:
封装固体高纯金属有机化合物的容器,包括筒体、上盖、进气管和出气管,所述上盖盖于筒体上,特点是:在所述筒体中设置一竖立的隔板,所述隔板将筒体的内腔分成左腔和右腔,并在筒体的下部设置一网孔板,所述网孔板将左腔分成左上腔和左下腔,所述网孔板将右腔分成右上腔和右下腔,并在所述左下腔与右上腔之间设置一连接管,所述连接管将右上腔与左下腔相连通;另外,所述进气管从上盖插入并与左上腔相连通,所述出气管从上盖插入并穿过右上腔与右下腔相连通;在所述上盖上开有两加料口,一加料口与左上腔相通,另一加料口与右上腔相通。
进一步地,上述的封装固体高纯金属有机化合物的容器,其中,所述网孔板与筒体底面的垂直高度在3~8mm。
更进一步地,上述的封装固体高纯金属有机化合物的容器,其中,所述左上腔与右上腔的容积比为6∶4~8∶2。
更进一步地,上述的封装固体高纯金属有机化合物的容器,其中,所述网孔板上均匀分布圆形筛孔,筛孔的孔径在5mm~8mm。
更进一步地,上述的封装固体高纯金属有机化合物的容器,其中,所述进气管和出气管的管路上均设置有隔膜。
本发明封装固体高纯金属有机化合物的容器应用于金属有机化学气相沉积过程,特点是包括以下步骤:
①从上盖上的两加料口分别按比例向左上腔和右上腔内加入固体金属有机化合物,加完后用配套的堵帽封住两加料口;
②通过进气管和出气管将封装容器接入金属有机化学气相沉积过程所使用的载气气路当中;
③将封装容器的温度调节到设定温度并保持此温度的稳定性,使瓶内固体金属有机化合物的蒸气压稳定;
④打开进气阀和出气阀,使固体金属有机化合物的蒸气随载气流入气相沉积系统,生长出化合物半导体薄膜材料。
再进一步地,上述的封装固体高纯金属有机化合物的容器在金属有机化学气相沉积过程中的应用,所述固体金属有机化合物为三甲基铟或二茂基镁,其纯度大于或等于99.999%。
再进一步地,上述的封装固体高纯金属有机化合物的容器在金属有机化学气相沉积过程中的应用,步骤③采用具有精密温控并可调制到要求使用温度的冷阱进行控温。
再进一步地,上述的封装固体高纯金属有机化合物的容器在金属有机化学气相沉积过程中的应用,所述载气是氢气、氮气、氩气或氦气。
本发明技术方案突出的实质性特点和显著的进步主要体现在:
(1)本发明容器内部结构比较简单,制作、安装都比较方便;与串接使用两只普通插底管钢瓶的技术相比,本发明避免了需要将两只钢瓶从外部彼此相连的缺点,减少了漏气的环节,给操作使用带来了极大的方便;
(2)本发明兼具现有技术多种做法的优点,腔体盛装固体源,固体源的加入比例能够按需调节,封装容器的有效体积能够得到充分利用;
(3)当本发明提供的封装容器用于MOCVD时,与使用同样大小的普通钢瓶相比,载气在容器内部经过固体源的路程延长到原来的四倍以上,大大增加了气体与固体的接触几率,使得气体出口管内金属有机化合物的气相分压更加稳定,不仅满足了后道气相沉积工序的工艺要求,也使得瓶内固体源的整体利用率提高到97%以上;
(4)本发明与串接使用两只普通插底管钢瓶的技术相比,减少了一只钢瓶,使用经费大大降低。
附图说明
下面结合附图对本发明技术方案作进一步说明:
图1:本发明的主视示意图;
图2:本发明的俯视示意图。
图中各附图标记的含义见下表:
  附图标记   含义   附图标记 含义   附图标记 含义
  1   堵帽   2   隔膜   3   堵帽
  4   进气管   5   上盖   6   筒体
  7   连接管   8   网孔板   9   出气管
  10   隔板   11   加料口
具体实施方式
如图1、图2所示,封装固体高纯金属有机化合物的容器,包括筒体6、上盖5、进气管4和出气管9,筒体6呈圆柱形,上盖5盖于筒体6上,在筒体6中设置一竖立的隔板10,隔板10将筒体6的内腔分成左腔和右腔,左腔与右腔相隔绝,且左腔的容积大于右腔的容积,并在筒体6的下部设置一水平网孔板8,网孔板8与筒体6底面的垂直高度在3~8mm,网孔板8上均匀分布若干圆形筛孔,筛孔的孔径在5mm~8mm;网孔板8将左腔分成左上腔和左下腔,左上腔通过网孔板8上的筛孔与左下腔相连通,网孔板8将右腔分成右上腔和右下腔,右上腔通过网孔板8上的筛孔与右下腔相连通,左上腔与右上腔的容积比为6∶4~8∶2;并在左下腔与右上腔之间设置一连接管7,连接管7将右上腔与左下腔相连通;另外,进气管4从上盖5插入并与左上腔相连通,出气管9从上盖5插入并穿过右上腔与右下腔相连通;在上盖5上开有两加料口11,一加料口与左上腔相通,另一加料口与右上腔相通。其中,进气管4和出气管9的管路上均设置有隔膜2,进气管4和出气管9的管口用堵帽1封住,上盖5上的两加料口11用堵帽3封住。
上述封装固体金属有机化合物的容器,在金属有机化学气相沉积过程中可以起到良好的应用效果。应用时包括以下步骤:
①从上盖5上的两加料口分别按比例向左上腔和右上腔内加入固体金属有机化合物,固体金属有机化合物为三甲基铟或二茂基镁,其纯度大于或等于99.999%,加完后用配套的堵帽封住两加料口11;
②通过进气管4和出气管9将封装容器接入金属有机化学气相沉积过程所使用的载气气路当中,载气为氢气、氮气、氩气或氦气;
③将封装容器的温度调节到设定温度并保持此温度的稳定性,采用具有精密温控并可调制到要求使用温度的冷阱进行控温,使瓶内固体金属有机化合物的蒸气压稳定;
④打开进气阀和出气阀,使固体金属有机化合物的蒸气随载气流入气相沉积系统,生长出化合物半导体薄膜材料。
具体应用时,被封装的固体源可以是三甲基铟、二茂基镁等室温下为固体的金属有机化合物,其纯度≥99.999%,甚至于≥99.9999%;所使用的载气可以是氢气、氮气、氩气或者氦气。
可明显看出,载气在容器内部经过固体源的路程大大延长,载气先进入装有固体金属有机化合物的左上腔,并向下扩散,继而穿透网孔板8进入左下腔,再通过连接管7进入装有固体金属有机化合物的右上腔,并向下扩散,再穿透网孔板8进入右下腔,最后通过出气管9流出,其路程延长到原来的四倍以上。这样可以有效降低影响固体金属有机化合物蒸气压饱和度的沟流现象,提高固体金属有机化合物的使用率。
经实际检测试验,当外界环境温度发生改变时,本发明封装容器的气体出口管内金属有机化合物的气相分压非常稳定,几乎不受到任何影响,为整个MOCVD过程提供了可靠保证。
综上所述,本发明容器内部结构比较简单,制作、安装都比较方便;与串接使用两只普通插底管钢瓶的技术相比,本发明避免了需要将两只钢瓶从外部彼此相连的缺点,减少了漏气的环节,给操作使用带来了极大的方便;本发明兼具现有技术多种做法的优点,腔体盛装固体源,固体源的加入比例能够按需调节,封装容器的有效体积能够得到充分利用;当本发明提供的封装容器用于MOCVD时,与使用同样大小的普通钢瓶相比,载气在容器内部经过固体源的路程延长到原来的四倍以上,大大增加了气体与固体的接触几率,使得气体出口管内金属有机化合物的气相分压更加稳定,不仅满足了后道气相沉积工序的工艺要求,也使得瓶内固体源的整体利用率提高到95%以上。本发明与串接使用两只普通插底管钢瓶的技术相比,减少了一只钢瓶,使用经费大大降低,经济效益和社会效应显著,具有很好的实际应用意义。
需要理解到的是:上述说明并非是对本发明的限制,在本发明构思范围内,所进行的添加、变换、替换等,也应属于本发明的保护范围。

Claims (9)

1.封装固体高纯金属有机化合物的容器,包括筒体(6)、上盖(5)、进气管(4)和出气管(9),所述上盖(5)盖于筒体(6)上,其特征在于:在所述筒体(6)中设置一竖立的隔板(10),所述隔板(10)将筒体(6)的内腔分成左腔和右腔,并在筒体(6)的下部设置一网孔板(8),所述网孔板(8)将左腔分成左上腔和左下腔,所述网孔板(8)将右腔分成右上腔和右下腔,并在所述左下腔与右上腔之间设置一连接管(7),所述连接管(7)将右上腔与左下腔相连通;另外,所述进气管(4)从上盖(5)插入并与左上腔相连通,所述出气管(9)从上盖(5)插入并穿过右上腔与右下腔相连通;在所述上盖(5)上开有两加料口,一加料口与左上腔相通,另一加料口与右上腔相通。
2.根据权利要求1所述的封装固体高纯金属有机化合物的容器,其特征在于:所述网孔板(8)与筒体(6)底面的垂直高度在3~8mm。
3.根据权利要求1所述的封装固体高纯金属有机化合物的容器,其特征在于:所述左上腔与右上腔的容积比为6∶4~8∶2。
4.根据权利要求1所述的封装固体高纯金属有机化合物的容器,其特征在于:所述网孔板(8)上均匀分布圆形筛孔,筛孔的孔径在5mm~8mm。
5.根据权利要求1所述的封装固体高纯金属有机化合物的容器,其特征在于:所述进气管(4)和出气管(9)的管路上均设置有隔膜(2)。
6.权利要求1所述的封装固体高纯金属有机化合物的容器应用于金属有机化学气相沉积过程,其特征在于包括以下步骤:
①从上盖(5)上的两加料口分别按比例向左上腔和右上腔内加入固体金属有机化合物,加完后用配套的堵帽封住两加料口;
②通过进气管(4)和出气管(9)将封装容器接入金属有机化学气相沉积过程所使用的载气气路当中;
③将封装容器的温度调节到设定温度并保持此温度的稳定性,使瓶内固体金属有机化合物的蒸气压稳定;
④打开进气阀和出气阀,使固体金属有机化合物的蒸气随载气流入气相沉积系统,生长出化合物半导体薄膜材料。
7.根据权利要求6所述的封装固体高纯金属有机化合物的容器应用于金属有机化学气相沉积过程,其特征在于:所述固体金属有机化合物为三甲基铟或二茂基镁,其纯度大于或等于99.999%。
8.根据权利要求6所述的封装固体高纯金属有机化合物的容器应用于金属有机化学气相沉积过程,其特征在于:步骤③采用具有精密温控并可调制到要求使用温度的冷阱进行控温。
9.根据权利要求6所述的封装固体高纯金属有机化合物的容器应用于金属有机化学气相沉积过程,其特征在于:所述载气是氢气、氮气、氩气或氦气。
CN2009100353746A 2009-09-17 2009-09-17 封装固体高纯金属有机化合物的容器及其应用 Active CN101660136B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009100353746A CN101660136B (zh) 2009-09-17 2009-09-17 封装固体高纯金属有机化合物的容器及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009100353746A CN101660136B (zh) 2009-09-17 2009-09-17 封装固体高纯金属有机化合物的容器及其应用

Publications (2)

Publication Number Publication Date
CN101660136A CN101660136A (zh) 2010-03-03
CN101660136B true CN101660136B (zh) 2011-06-29

Family

ID=41788386

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009100353746A Active CN101660136B (zh) 2009-09-17 2009-09-17 封装固体高纯金属有机化合物的容器及其应用

Country Status (1)

Country Link
CN (1) CN101660136B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103922257B (zh) * 2014-04-25 2016-05-04 安徽亚格盛电子新材料有限公司 直接充装mo源的装置
CN107458768A (zh) * 2017-07-27 2017-12-12 沈阳拓荆科技有限公司 一种储存和运输化学源的钢瓶
CN107477351A (zh) * 2017-08-10 2017-12-15 安徽亚格盛电子新材料有限公司 一种用于装填固态金属有机源的专用钢瓶
CN110885970A (zh) * 2018-09-11 2020-03-17 北京北方华创微电子装备有限公司 固体前驱体蒸汽的稳压和纯化装置以及ald沉积设备
CN111172513A (zh) * 2020-03-09 2020-05-19 江苏南大光电材料股份有限公司 封装固体高纯金属有机化合物的容器及其应用
TWI726715B (zh) * 2020-05-08 2021-05-01 台灣積體電路製造股份有限公司 半導體晶圓的製造方法及半導體製造設備

Also Published As

Publication number Publication date
CN101660136A (zh) 2010-03-03

Similar Documents

Publication Publication Date Title
CN101660136B (zh) 封装固体高纯金属有机化合物的容器及其应用
CN101235486A (zh) 一种封装固体高纯金属有机化合物的容器及其应用
CN201512580U (zh) 一种新型封装固体高纯金属有机化合物的容器
EP0147890B1 (en) Apparatus for processing articles in a controlled environment
CN202246871U (zh) 一种集成化的多腔室星型结构真空镀膜设备
CN112458434B (zh) 固态前驱体的封装容器及其在气相沉积过程中的应用
CN1590583B (zh) 三甲基铟的填充方法及填充容器
CN108998775A (zh) 固体金属有机化合物的封装容器
CN216035807U (zh) 一种半导体用前驱体材料包装容器
CN1804117A (zh) 固体金属有机化合物封装容器及其应用
CN208201118U (zh) 固体金属有机化合物串联式温差使用系统
CN212667712U (zh) 用于灌装固体mo源的钢瓶
CN212175034U (zh) 封装固体高纯金属有机化合物的容器
CN202898520U (zh) 共用真空系统的双腔真空装载腔
CN215050680U (zh) 一种固态前驱体的封装容器
CN109628907B (zh) 一种用于真空镀膜机的多抽气口布局
CN110953476B (zh) 一种mo源四联钢瓶
CN103109363B (zh) 真空处理装置
CN215251159U (zh) 一种固态前驱体封装容器
CN111172513A (zh) 封装固体高纯金属有机化合物的容器及其应用
CN210261978U (zh) 一种具有高流量饱和度的简易式mo源钢瓶
CN209873090U (zh) 一种用于真空镀膜机的多抽气口布局
CN210261979U (zh) 一种小型mo源圆柱型钢瓶
CN210601021U (zh) 一种用于三甲基铟存储的钢瓶
CN210398365U (zh) 一种具有稳定流量饱和度的mo源双曲面钢瓶

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant