CN101629992A - 磷酸铁锂动力电池剩余容量的估算方法 - Google Patents

磷酸铁锂动力电池剩余容量的估算方法 Download PDF

Info

Publication number
CN101629992A
CN101629992A CN200910103972A CN200910103972A CN101629992A CN 101629992 A CN101629992 A CN 101629992A CN 200910103972 A CN200910103972 A CN 200910103972A CN 200910103972 A CN200910103972 A CN 200910103972A CN 101629992 A CN101629992 A CN 101629992A
Authority
CN
China
Prior art keywords
battery
lithium
residual capacity
iron
equation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200910103972A
Other languages
English (en)
Other versions
CN101629992B (zh
Inventor
邓力
崔健
马君伟
朱可
张国松
徐骋曦
郑群英
刘和平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN2009101039722A priority Critical patent/CN101629992B/zh
Publication of CN101629992A publication Critical patent/CN101629992A/zh
Application granted granted Critical
Publication of CN101629992B publication Critical patent/CN101629992B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Secondary Cells (AREA)

Abstract

本发明提供一种磷酸铁锂动力电池剩余容量的估算方法,包括如下步骤:建立磷酸铁锂动力电池的电化学模型;根据该电化学模型的电压方程用卡尔曼滤波算法获得电池剩余容量=电池正负极中固相锂离子平均浓度/充満电时锂离子最大浓度。本方法基于磷酸铁锂动力电池的电化学模型,模型准确性好,精度高;采用扩展卡尔曼滤波算法进行递归估计,具有估计准确、累计误差小的特点。扩展卡尔曼滤波算法是在进行递推滤波的同时利用观测数据提供的信息,不断地修正状态估计,减小状态估计误差。

Description

磷酸铁锂动力电池剩余容量的估算方法
技术领域
本发明涉及一种磷酸铁锂动力电池剩余容量的估计方法,具体涉及通过磷酸铁锂动力电池电化学模型和扩展卡尔曼滤波算法相结合,对磷酸铁锂动力电池剩余容量进行估计的方法。
背景技术
由于电动汽车能很好地解决一直困扰人们的环保和能源问题,而得到蓬勃发展。目前应用于电动汽车的动力电池主要有铅酸电池、镍氢电池和锂离子电池。此三种动力电池各有优缺点,而磷酸铁锂动力电池能更好地满足电动汽车对车载电池的要求,并以其高效率输出,即便处于高温状态性能也很稳定,安全性好,极好的反复循环性能,寿命长等优点而迅速得到广泛的应用。
电池的剩余容量又称荷电状态(state of charge,SOC)是电池状态的主要参数之一,为电动汽车整车控制策略提供依据。由于电池生产技术的限制,动力电池为电动汽车整车成本较高的部件之一,也是目前电动汽车推广的关键技术问题,研究电池的检测和状态监控,合理利用电池,提高电池使用寿命,降低维护成本等,都必须将电池剩余容量控制在一个合理的范围之内。准确和可靠地获得电池剩余容量是电池智能管理控制系统中最基本也是最首要的任务。
目前国内外在对电池剩余容量的准确估计已做了不少研究,常用的估计算法有安时积分法、开路电压法和模糊神经网络法等等。
安时计量法是目前应用最广泛,最简单易行的电量估计方法,它是利用电流在时间段的积分来计算电池的剩余容量。该方法存在累计误差越来越大的问题,且不适宜于电池的在线估计。
开路电压法是利用电池的开路电压与SOC的单调关系,通过建立剩余容量(SOC)-开路电压(OCV)之间的关系曲线,根据检测到的开路电压值确定SOC值。该方法对SOC-OCV关系测量较严格,只适用于SOC随OCV变化明显的电池。
模糊神经网络法依靠大量的样本数据来训练建好的模糊神经网络模型,这种方法对训练方法和训练数据的依赖性很大。目前国内外绝大多数成果停留在计算机仿真结果阶段,离具体实际应用还有一定距离。
对于磷酸铁锂动力电池而言,其电池组充放电倍率大,电流变化剧烈,电池管理系统的SOC需要精度高。而且最好是实时在线估计,电动汽车整车控制策略是根据电池组的SOC随时调整的,在任何时刻都必须提供当前的SOC值。要保证电动汽车长期运行,估计就不能存在累计误差,即使在初始存在误差的情况下,也要求能够通过运行一段时间收敛到真实值附近。目前国家标准要求误差不超过8%,而现有技术的估计方法不容易满足。
发明内容
针对现有技术存在的上述不足,本发明的目的是提供一种可以更准确估计磷酸铁锂动力电池剩余容量,并且累计误差小,能自动收敛到真实值的基于磷酸铁锂动力电池的电化学模型用扩展卡尔曼滤波算法对磷酸铁锂动力电池剩余容量进行估计的方法。
本发明的目的是这样实现的:磷酸铁锂动力电池剩余容量的估算方法,由外部检测电路检测得到磷酸铁锂动力电池k时刻的电池端电压值yk(即为实际观测值)和电池的电流值Ik(即模型的输入值uk),并输入固入程序的计算机芯片中,由计算机芯片进行估算,执行步骤包括:
(1)建立磷酸铁锂动力电池的电化学模型,得到端电压方程;
(2)根据该电化学模型的端电压方程用卡尔曼滤波算法获得电池剩余容量:
电池剩余容量=电池负极中固相锂离子平均浓度/充満电时锂离子最大浓度。
进一步,其电化学模型中的固相锂离子浓度方程可假设锂离子均匀分布和由多项式近似的方法来处理,从而得到扩展卡尔曼滤波算法的状态方程。
相比现有技术,本发明具有如下优点:
1、本方法基于磷酸铁锂动力电池的电化学模型,模型准确性好,精度高;采用扩展卡尔曼滤波算法进行递归估计,具有估计准确、累计误差小的特点。
2、扩展卡尔曼滤波算法是在进行递推滤波的同时利用观测数据提供的信息,不断地修正状态估计,减小状态估计误差。扩展卡尔曼滤波算法适用于平稳与非平稳过程,并且具有递推性,但又不同于其他的递归滤波器结构,它只需要记住前一步的估计结果,由此大大减少了存贮器的使用量,算法简洁,易于单片机和数字信号控制器上实现。只需在电池首次使用中对SOC进行标定,就可对电池的荷电状态进行实时监测,根据输出不断地修正SOC值,使剩余容量在长时间内都有较高的精度。
3、磷酸铁锂动力电池的电化学模型采用了多孔电极理论以及固相和液相扩散动力学,并进行适当的简化,得到扩展卡尔曼滤波算法所需要的状态方程和观测方程【状态方程见实施例的(7)式,观测方程见实施例的(8)式】。只要标定了剩余容量的初始值和初始时刻的误差方差,就可利用扩展卡尔曼滤波算法对电池在每一时刻的剩余容量进行估计。
4、将扩展卡尔曼滤波算法编入控制检测软件中下载到单片机和数字信号控制器上,可以在线估计单节电池的剩余容量,对于电动车的多节(80节)电池的管理起到很好的效果,实现每节电池的剩余容量分部估计,极大的减少了车载电池管理系统的计算量。
5、本方法对初始估计值存在的误差不敏感,能通过一段时间的运行自动收敛到真实值,具有很好的真值收敛性。
附图说明
图1是磷酸铁锂动力电池模型原理图。
图2是利用扩展卡尔曼滤波算法估算磷酸铁锂动力电池剩余容量的软件流程图。
具体实施方式
一种磷酸铁锂动力电池剩余容量的估算方法,包括如下步骤:
1、建立磷酸铁锂动力电池的电化学模型【电池电化学模型见实施例的(6)式】;
2、根据该电化学模型的电压方程用卡尔曼滤波算法获得电池剩余容量:
电池剩余容量=电池负极中固相锂离子平均浓度与充満电时锂离子最大浓度之比;
其中,电池负极中固相锂离子浓度通过扩展卡尔曼滤波算法获得;充満电时锂离子最大浓度为出厂时标定值,为常数。
为了与磷酸铁锂动力电池电化学模型相匹配,本发明提出一种更直接反应电池剩余容量的方式,即用电池负极中的固相锂离子平均浓度与充満电时最大的锂离子浓度之比来描述电池的SOC。固相锂离子平均浓度反应了当前电池所能放出的容量,也就是此时刻的剩余容量,最大锂离子浓度反应了电池所能放出的最大容量,两者比也就是SOC值。而且商业磷酸铁锂动力电池的性能由负极决定,其电化学性能也非常稳定,则用负极的固相平均浓度可很好的反应剩余容量。
本方法的磷酸铁锂动力电池的电化学模型是根据多孔电极理论把电池正负极内的反应粒子和电解液看做有层次的结构,反应粒子视为一个个的小球体,浸润在电解液中。考虑电池在充放电时锂离子嵌入和脱出反应粒子,在正负极中由扩散定律、物质守恒、电荷守恒以及电化学动力学方程可分别列出正负极中固相和液相的锂离子浓度、电位的偏微分方程。再由锂离子均匀分布对固相和液相中的锂离子浓度做多项式近似,然后结合各方程的初始和边界条件即可得到简化的电化学模型。模型中的固相锂离子平均浓度与最大浓度之比(即表征电池的剩余容量SOC)对时间的偏导数的方程作为扩展卡尔曼滤波算法的状态方程,电池端电压方程作为扩展卡尔曼滤波算法的观测方程,然后根据扩展卡尔曼滤波算法即可估计出磷酸铁锂动力电池的剩余容量。
参见图1,磷酸铁锂动力电池的电化学模型,在充放电时,两端的集流体与外电路相连。正负极内充满了固相活性颗粒和电解液,活性颗粒近似为小球体,锂离子从活性颗粒中嵌入和脱出到电解液中。中间的隔膜起到交换锂离子的作用。从负极集流体内端到正极集流体内端建立横坐标x,在球形活性颗粒上建立球坐标r。
由菲克第二定律可得到球形活性颗粒内锂离子扩散方程,如式
∂ c s ∂ t = D s r 2 ∂ ∂ r ( r 2 ∂ c s ∂ r ) - - - ( 1 )
其中Ds为固相扩散系数,它描述了在球坐标r下固相锂离子浓度Cs随时间t的变化。且球体中心锂离子扩散流为零,假设颗粒与电解液的界面电流密度均匀,即可得到两个边界条件。对于液相,即电解液中,由于物质守恒,可列出液相锂离子浓度ce在x坐标下关于电流密度jLi和坐标x的偏微分方程,如式
∂ ( ϵ e c e ) ∂ t = ∂ ∂ x ( D e eff ∂ ∂ x c e ) + 1 - t + 0 F j Li - - - ( 2 )
其中εe是液相体积分数,De eff是液相有效扩散系数,t+ 0是锂离子迁移数,F是法拉第常数。在两个集流体上液相密度对坐标x的偏导数为零,即为液相方程的两个边界条件。
对于固相和液相,充放电时电池内部离子必满足电荷守恒,如式
∂ ∂ x ( σ eff ∂ ∂ x φ s ) - j Li = 0 - - - ( 3 )
∂ ∂ x ( κ eff ∂ ∂ x φ e ) + ∂ ∂ x ( κ D eff ∂ ∂ x ln c e ) + j Li = 0 - - - ( 4 )
两式分别是固相电位φs和液相电位φe关于电流密度和坐标x的偏微分方程,其中σeff是固相有效传导率,κeff是有效离子传导率,κD eff是有效扩散传导率。固相电位在隔膜两边的变化为零即为固相电位方程的边界条件,液相电位在集流体上的变化为零即为液相电位方程的边界条件。
对于正负极则各有四个固相液相锂离子浓度以及电位方程。其中正负极电流密度jLi可由Butler-Volmer电化学动力学方程得到,如式
j Li = a s i 0 { exp [ α a F RT η ] - exp [ - α c F RT η ] } - - - ( 5 )
其中as是活性颗粒比表面积,i0是交换电流密度,αa和αc分别是阳极和阴极转移系数,R是通用气体常数,T是温度,η是过电压。过电压为固相与液相电位之差再减去开路电压。
这样就可联立上述式子得到电池端电压的表达式,也即为电池的电化学模型。而上述方程均为偏微分方程,求解相对困难,必须对这些方程进行简化以便于运算。
假设固相锂离子浓度均匀分布和充放电时锂离子扩散嵌入或脱出电极中的每一个活性颗粒,这样引入平均固相锂离子浓度Cs avg。利用锂离子浓度均匀分布可有效地解决菲克定律中固相锂离子浓度求解困难的问题,通过简化运算得到平均固相锂离子浓度Cs avg与电流密度jLi和时间t的关系。因为锂离子浓度均匀分布,则正负极中的电流密度jLi就是充放电电流与正负极体积的比。由平均固相锂离子浓度Cs avg和正负极的电流密度jLi则可对上述的一系列偏微分方程进行简化计算,最终可得到简化的电化学模型,如式:
V ( t ) = η p - η n + φ e , p - φ e , n + U oc ( SOC ) - R f A I . - - - ( 6 )
模型中电池端电压包含了电池的开路电压Uoc(SOC)、过电压ηpn、液相电位之差φe,pe,n以及欧姆过电压其中开路电压是剩余容量的函数,需要通过充放电实验测得;通过运算,液相电位之差和欧姆过电压与电流密度jLi成正比,过电压是平均固相锂离子浓度Cs avg和电流密度jLi的函数。
如此,负极平均固相锂离子浓度Cs,n avg除以负极最大锂离子浓度Cs,n avg即为电池的剩余容量SOC,即 SOC = C s , n avg / C s , n max . 由简化运算可得
∂ SOC ∂ t = aI - - - ( 7 )
其中a是常数,这个方程可作为扩展卡尔曼滤波算法的状态方程,剩余容量SOC即为状态,电流I为输入量,即为电池的充放电电流。
端电压方程也可表示为剩余容SOC和电流I的函数,如下式
V = Uoc ( SOC ) - bI - cI ( 1 1 - SOC SOC + 1 d - SOC SOC ) - - - ( 8 )
其中b、c、d为常数,Uoc(SOC)为SOC的函数,此式可作为扩展卡尔曼滤波算法的观测方程,端电压V为观测值。
对于上述的状态方程,加上模型的噪声误差,对其离散化可得下式
xk+1=f(xk,uk)+wk                                    (9)
式中,xk是电池剩余容量,uk是充放电电流Ik,wk是模型噪声。
同样,加上观测噪声,观测方程如下
yk=g(xk,uk)+vk                                   (10)
式中,yk是电池端电压,vk是观测噪声。可以认为模型噪声wk和观测噪声vk为相互独立的高斯白噪声。
为了表达上的方便,现定义
E[wk]2=Q          E[vk]2=R
C k = ∂ g ( x k , u k ) ∂ x k | x k = x ^ k - - - - ( 11 )
以上为基于磷酸铁锂动力电池的电化学模型用扩展卡尔曼滤波算法对磷酸铁锂动力电池剩余容量进行估计的方法的一些相关公式和它们之间的相互转换关系。
本发明也可结合本申请人同时申请的“一种电动汽车磷酸铁锂动力电池检测装置”实用新型专利申请的硬件系统,将其计算方法公式固入芯片中,即可实现检测误差小,可精确计算磷酸铁锂动力电池荷电状态,能对车载磷酸铁锂动力电池的剩余容量进行估算。
本发明方法累计误差小,能自动收敛到真实值,本方法基于磷酸铁锂动力电池的电化学模型,采用扩展卡尔曼滤波算法对磷酸铁锂动力电池剩余容量进行估计的软件实施见图2软件流程图所示。对磷酸铁锂动力电池的剩余容量进行扩展卡尔曼滤波算法估计,软件编程包括以下步骤:
1、首先对扩展卡尔曼滤波算法初始化,即赋值初始SOC值和初始误差方差值,然后对以后每一时刻的SOC值如图2进行递推运算;
2、由外部检测电路先测得k时刻的电池端电压值yk(即为实际观测值)和电池的电流值Ik(即模型的输入值uk);
3、利用上一时刻k-1的最优估计值
Figure G2009101039722D00071
代入状态方程计算此时刻的先验估计值
Figure G2009101039722D00072
利用最优估计误差方差
Figure G2009101039722D00073
与模型噪声误差方差之和计算此时刻的先验估计误差方差
Figure G2009101039722D00074
4、把先验估计值
Figure G2009101039722D00075
和Ik代入观测方程得到模型的先验估计电压值
Figure G2009101039722D00076
同时也可计算得到此时刻的观测方程系数Ck
5、计算扩展卡尔曼滤波算法增益Lk,利用扩展卡尔曼滤波算法增益来对先验估计值
Figure G2009101039722D00077
和先验估计误差方差
Figure G2009101039722D00078
进行修正,即得到k时刻的SOC的最优估计值
Figure G2009101039722D00079
和最优估计误差方差
Figure G2009101039722D000710
6、将SOC的最优估计值和最优估计误差方差
Figure G2009101039722D000712
这两个值作为k+1时刻电池SOC的初始值进行计算。如此循环进行,即得到每一时刻的最优估计值。每循环一次就将扩展卡尔曼滤波器的最优估计值输出到显示装置,即作为此时刻的磷酸铁锂动力电池的剩余容量SOC。

Claims (2)

1、磷酸铁锂动力电池剩余容量的估算方法,其特征在于,由外部检测电路检测得到磷酸铁锂动力电池k时刻的电池端电压值yk和电池的电流值Ik,并输入固入程序的计算机芯片中,计算机芯片进行估算,执行步骤包括:
(1)建立磷酸铁锂动力电池的电化学模型,得到端电压方程;
(2)根据该电化学模型的端电压方程用卡尔曼滤波算法获得电池剩余容量:电池剩余容量=电池负极中固相锂离子平均浓度/充満电时锂离子最大浓度。
2.根据权利要求1所述的磷酸铁锂动力电池剩余容量的估算方法,其特征在于,其电化学模型中的固相锂离子浓度方程可假设锂离子均匀分布和由多项式近似的方法来处理,从而得到扩展卡尔曼滤波算法的状态方程。
CN2009101039722A 2009-05-27 2009-05-27 磷酸铁锂动力电池剩余容量的估算方法 Expired - Fee Related CN101629992B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009101039722A CN101629992B (zh) 2009-05-27 2009-05-27 磷酸铁锂动力电池剩余容量的估算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009101039722A CN101629992B (zh) 2009-05-27 2009-05-27 磷酸铁锂动力电池剩余容量的估算方法

Publications (2)

Publication Number Publication Date
CN101629992A true CN101629992A (zh) 2010-01-20
CN101629992B CN101629992B (zh) 2011-11-16

Family

ID=41575167

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009101039722A Expired - Fee Related CN101629992B (zh) 2009-05-27 2009-05-27 磷酸铁锂动力电池剩余容量的估算方法

Country Status (1)

Country Link
CN (1) CN101629992B (zh)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011153949A1 (zh) * 2010-06-11 2011-12-15 奇瑞汽车股份有限公司 一种确定电动汽车剩余里程的方法
CN102636759A (zh) * 2012-05-02 2012-08-15 上海樟村电子有限公司 一种准确实时计算电池电量soc的方法
CN102788957A (zh) * 2011-05-20 2012-11-21 镇江恒驰科技有限公司 一种动力电池荷电状态估算方法
CN102981125A (zh) * 2012-11-30 2013-03-20 山东省科学院自动化研究所 一种基于rc等效模型的动力电池soc估计方法
CN103033753A (zh) * 2011-10-09 2013-04-10 深圳市海盈科技有限公司 一种快速判断磷酸铁锂电池(组)荷电保持率(SoC)的方法
CN103135064A (zh) * 2013-01-25 2013-06-05 文创太阳能(福建)科技有限公司 一种磷酸铁锂电池电量在线检测方法
CN103267953A (zh) * 2013-06-05 2013-08-28 安徽安凯汽车股份有限公司 一种磷酸铁锂动力电池soc的估算方法
CN103744027A (zh) * 2013-12-20 2014-04-23 河北汉光重工有限责任公司 一种基于卡尔曼滤波的自校正电池soc估算方法
CN104181470A (zh) * 2014-09-10 2014-12-03 山东大学 一种基于非线性预测扩展卡尔曼滤波的电池soc估计方法
CN105319508A (zh) * 2014-06-05 2016-02-10 福特全球技术公司 用于电池荷电状态估计的方法和系统
CN105320033A (zh) * 2014-07-28 2016-02-10 福特全球技术公司 用于车辆控制的温度相关的电化学电池模型
CN105388127A (zh) * 2015-10-30 2016-03-09 清华大学深圳研究生院 一种全钒液流电池各离子浓度的在线检测方法和系统
CN105467328A (zh) * 2015-12-29 2016-04-06 哈尔滨工业大学 一种锂离子电池荷电状态估计方法
CN105487017A (zh) * 2016-01-22 2016-04-13 国网黑龙江省电力有限公司检修公司 一种变电站ups用阀控式密封铅酸蓄电池状态估计与预测方法
CN105699906A (zh) * 2016-01-25 2016-06-22 湘潭大学 一种利用硬度表征锂离子电池电极材料电量的方法
CN103033753B (zh) * 2011-10-09 2016-11-30 深圳市海盈科技有限公司 一种快速判断磷酸铁锂电池或电池组荷电保持率(SoC)的方法
RU2621885C2 (ru) * 2015-10-22 2017-06-07 Акционерное общество "Научно-производственный центр "Полюс" Способ оценки остаточной емкости литий-ионного аккумулятора
CN106970328A (zh) * 2017-01-17 2017-07-21 深圳市沛城电子科技有限公司 一种soc估算方法及装置
CN107238802A (zh) * 2017-06-16 2017-10-10 长沙新材料产业研究院有限公司 磷酸铁锂‑钛酸锂电池生命周期的预测方法
EP3279819A4 (en) * 2015-04-03 2018-12-26 Baidu Online Network Technology (Beijing) Co., Ltd. Method, system and computer device for capacity prediction based on kalman filter
CN110023775A (zh) * 2016-11-14 2019-07-16 远景Aesc能源元器件有限公司 电池容量显示装置和电池容量显示方法
CN110398691A (zh) * 2019-06-26 2019-11-01 重庆大学 基于改进自适应双无迹卡尔曼滤波器的锂离子动力电池SoC估计方法
CN110678765A (zh) * 2018-01-09 2020-01-10 株式会社Lg化学 用于测试电池单体的性能的设备和方法
CN110888056A (zh) * 2019-11-20 2020-03-17 上海交通大学 适用于车载动力锂离子电池的在线soc观测器搭建方法及系统
CN111177924A (zh) * 2019-12-27 2020-05-19 曾锦全 一种固态电池性能模型的建立方法及固态电池性能的预测方法
CN111665449A (zh) * 2019-03-06 2020-09-15 东汉新能源汽车技术有限公司 一种薄膜固态锂电池soc的检测方法
CN113836471A (zh) * 2020-06-23 2021-12-24 南京南瑞继保电气有限公司 一种锂离子电池最大可放电容量估计方法及系统
CN114187970A (zh) * 2021-11-30 2022-03-15 清华大学 一种基于电化学机理的锂离子电池内外特性仿真方法
CN114545265A (zh) * 2022-03-01 2022-05-27 上海玫克生储能科技有限公司 基于电化学模型的电池荷电状态的估算方法及装置
CN115084693A (zh) * 2022-06-28 2022-09-20 上海玫克生储能科技有限公司 一种锂电池固相浓度修正方法、系统及存储介质
CN117630684A (zh) * 2024-01-26 2024-03-01 昆明理工大学 基于电热耦合模型的锂离子电池内部温度在线估计方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103135066A (zh) * 2013-01-25 2013-06-05 文创太阳能(福建)科技有限公司 一种分段磷酸铁锂电池电量的测量方法

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011153949A1 (zh) * 2010-06-11 2011-12-15 奇瑞汽车股份有限公司 一种确定电动汽车剩余里程的方法
CN102788957B (zh) * 2011-05-20 2014-11-12 镇江恒驰科技有限公司 一种动力电池荷电状态估算方法
CN102788957A (zh) * 2011-05-20 2012-11-21 镇江恒驰科技有限公司 一种动力电池荷电状态估算方法
CN103033753A (zh) * 2011-10-09 2013-04-10 深圳市海盈科技有限公司 一种快速判断磷酸铁锂电池(组)荷电保持率(SoC)的方法
CN103033753B (zh) * 2011-10-09 2016-11-30 深圳市海盈科技有限公司 一种快速判断磷酸铁锂电池或电池组荷电保持率(SoC)的方法
CN102636759A (zh) * 2012-05-02 2012-08-15 上海樟村电子有限公司 一种准确实时计算电池电量soc的方法
CN102981125B (zh) * 2012-11-30 2015-11-18 山东省科学院自动化研究所 一种基于rc等效模型的动力电池soc估计方法
CN102981125A (zh) * 2012-11-30 2013-03-20 山东省科学院自动化研究所 一种基于rc等效模型的动力电池soc估计方法
CN103135064A (zh) * 2013-01-25 2013-06-05 文创太阳能(福建)科技有限公司 一种磷酸铁锂电池电量在线检测方法
CN103267953A (zh) * 2013-06-05 2013-08-28 安徽安凯汽车股份有限公司 一种磷酸铁锂动力电池soc的估算方法
CN103267953B (zh) * 2013-06-05 2015-09-09 安徽安凯汽车股份有限公司 一种磷酸铁锂动力电池soc的估算方法
CN103744027A (zh) * 2013-12-20 2014-04-23 河北汉光重工有限责任公司 一种基于卡尔曼滤波的自校正电池soc估算方法
CN105319508A (zh) * 2014-06-05 2016-02-10 福特全球技术公司 用于电池荷电状态估计的方法和系统
CN105319508B (zh) * 2014-06-05 2020-01-07 福特全球技术公司 用于电池荷电状态估计的方法和系统
CN105320033A (zh) * 2014-07-28 2016-02-10 福特全球技术公司 用于车辆控制的温度相关的电化学电池模型
CN104181470A (zh) * 2014-09-10 2014-12-03 山东大学 一种基于非线性预测扩展卡尔曼滤波的电池soc估计方法
EP3279819A4 (en) * 2015-04-03 2018-12-26 Baidu Online Network Technology (Beijing) Co., Ltd. Method, system and computer device for capacity prediction based on kalman filter
RU2621885C2 (ru) * 2015-10-22 2017-06-07 Акционерное общество "Научно-производственный центр "Полюс" Способ оценки остаточной емкости литий-ионного аккумулятора
CN105388127B (zh) * 2015-10-30 2018-01-26 清华大学深圳研究生院 一种全钒液流电池各离子浓度的在线检测方法和系统
CN105388127A (zh) * 2015-10-30 2016-03-09 清华大学深圳研究生院 一种全钒液流电池各离子浓度的在线检测方法和系统
CN105467328B (zh) * 2015-12-29 2018-07-03 哈尔滨工业大学 一种锂离子电池荷电状态估计方法
CN105467328A (zh) * 2015-12-29 2016-04-06 哈尔滨工业大学 一种锂离子电池荷电状态估计方法
CN105487017A (zh) * 2016-01-22 2016-04-13 国网黑龙江省电力有限公司检修公司 一种变电站ups用阀控式密封铅酸蓄电池状态估计与预测方法
CN105487017B (zh) * 2016-01-22 2018-07-03 国网黑龙江省电力有限公司检修公司 一种变电站ups用阀控式密封铅酸蓄电池状态估计与预测方法
CN105699906B (zh) * 2016-01-25 2018-03-30 湘潭大学 一种利用硬度表征锂离子电池电极材料电量的方法
CN105699906A (zh) * 2016-01-25 2016-06-22 湘潭大学 一种利用硬度表征锂离子电池电极材料电量的方法
CN110023775A (zh) * 2016-11-14 2019-07-16 远景Aesc能源元器件有限公司 电池容量显示装置和电池容量显示方法
CN106970328A (zh) * 2017-01-17 2017-07-21 深圳市沛城电子科技有限公司 一种soc估算方法及装置
CN107238802A (zh) * 2017-06-16 2017-10-10 长沙新材料产业研究院有限公司 磷酸铁锂‑钛酸锂电池生命周期的预测方法
CN110678765A (zh) * 2018-01-09 2020-01-10 株式会社Lg化学 用于测试电池单体的性能的设备和方法
CN110678765B (zh) * 2018-01-09 2021-07-27 株式会社Lg化学 用于测试电池单体的性能的设备和方法
CN111665449A (zh) * 2019-03-06 2020-09-15 东汉新能源汽车技术有限公司 一种薄膜固态锂电池soc的检测方法
CN110398691A (zh) * 2019-06-26 2019-11-01 重庆大学 基于改进自适应双无迹卡尔曼滤波器的锂离子动力电池SoC估计方法
CN110888056A (zh) * 2019-11-20 2020-03-17 上海交通大学 适用于车载动力锂离子电池的在线soc观测器搭建方法及系统
CN110888056B (zh) * 2019-11-20 2022-05-06 上海交通大学 适用于车载动力锂离子电池的在线soc观测器搭建方法及系统
CN111177924A (zh) * 2019-12-27 2020-05-19 曾锦全 一种固态电池性能模型的建立方法及固态电池性能的预测方法
CN113836471A (zh) * 2020-06-23 2021-12-24 南京南瑞继保电气有限公司 一种锂离子电池最大可放电容量估计方法及系统
CN113836471B (zh) * 2020-06-23 2024-06-18 南京南瑞继保电气有限公司 一种锂离子电池最大可放电容量估计方法及系统
CN114187970A (zh) * 2021-11-30 2022-03-15 清华大学 一种基于电化学机理的锂离子电池内外特性仿真方法
WO2023098715A1 (zh) * 2021-11-30 2023-06-08 清华大学 基于电化学机理的锂离子电池内外特性仿真方法
CN114545265A (zh) * 2022-03-01 2022-05-27 上海玫克生储能科技有限公司 基于电化学模型的电池荷电状态的估算方法及装置
CN115084693A (zh) * 2022-06-28 2022-09-20 上海玫克生储能科技有限公司 一种锂电池固相浓度修正方法、系统及存储介质
CN117630684A (zh) * 2024-01-26 2024-03-01 昆明理工大学 基于电热耦合模型的锂离子电池内部温度在线估计方法
CN117630684B (zh) * 2024-01-26 2024-05-10 昆明理工大学 基于电热耦合模型的锂离子电池内部温度在线估计方法

Also Published As

Publication number Publication date
CN101629992B (zh) 2011-11-16

Similar Documents

Publication Publication Date Title
CN101629992B (zh) 磷酸铁锂动力电池剩余容量的估算方法
Lyu et al. A lead-acid battery's remaining useful life prediction by using electrochemical model in the Particle Filtering framework
CN106909716B (zh) 计及容量损耗的磷酸铁锂电池建模及soc估计方法
Santhanagopalan et al. State of charge estimation using an unscented filter for high power lithium ion cells
CN110286332B (zh) 一种基于多新息理论的电动汽车动力电池soc估计方法
CN105891724B (zh) 基于扩展单粒子模型的锂离子电池荷电状态在线估计方法
CN104991980A (zh) 锂离子电池的电化学机理建模方法
CN101493503B (zh) 用电化学阻抗谱表征电池的方法
CN109239602B (zh) 一种动力电池的欧姆内阻的估算方法
CN102468521A (zh) 用于估计蓄电池健康状态的方法和装置
CN106443478A (zh) 基于闭环混合算法的磷酸铁锂电池剩余电量的估算方法
CN102565710A (zh) 用于估计蓄电池健康状态的方法和装置
CN111948546A (zh) 一种锂电池健康度评估方法及系统
CN109507598A (zh) 贝叶斯正则化的lm-bp神经网络的锂电池soc预测方法
CN111366864B (zh) 一种基于固定压升区间的电池soh在线估计方法
CN107831448A (zh) 一种并联型电池系统的荷电状态估计方法
CN106597288A (zh) 一种电源soc估算方法
CN103499727A (zh) 一种测定锂离子电池电解液中添加剂反应电位的方法
CN114280480B (zh) 一种基于数值模型分解锂离子电池直流内阻的方法
CN103135066A (zh) 一种分段磷酸铁锂电池电量的测量方法
CN109033619A (zh) 一种18650型锂电池放电循环的瞬态温度模型建模方法
Wang et al. Lithium-ion battery security guaranteeing method study based on the state of charge estimation
CN112580289A (zh) 一种混合电容器功率状态在线估计方法及系统
CN108583326A (zh) 一种电动汽车电池组均衡控制方法
CN113156316B (zh) 盐水电池soc估算算法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20111116

Termination date: 20150527

EXPY Termination of patent right or utility model