RU2621885C2 - Способ оценки остаточной емкости литий-ионного аккумулятора - Google Patents

Способ оценки остаточной емкости литий-ионного аккумулятора Download PDF

Info

Publication number
RU2621885C2
RU2621885C2 RU2015145496A RU2015145496A RU2621885C2 RU 2621885 C2 RU2621885 C2 RU 2621885C2 RU 2015145496 A RU2015145496 A RU 2015145496A RU 2015145496 A RU2015145496 A RU 2015145496A RU 2621885 C2 RU2621885 C2 RU 2621885C2
Authority
RU
Russia
Prior art keywords
battery
charge
residual capacity
voltage
value
Prior art date
Application number
RU2015145496A
Other languages
English (en)
Other versions
RU2015145496A (ru
Inventor
Виктор Григорьевич Букреев
Михаил Михайлович Хандорин
Original Assignee
Акционерное общество "Научно-производственный центр "Полюс"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Научно-производственный центр "Полюс" filed Critical Акционерное общество "Научно-производственный центр "Полюс"
Priority to RU2015145496A priority Critical patent/RU2621885C2/ru
Publication of RU2015145496A publication Critical patent/RU2015145496A/ru
Application granted granted Critical
Publication of RU2621885C2 publication Critical patent/RU2621885C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]

Landscapes

  • Secondary Cells (AREA)

Abstract

Изобретение относится к способам контроля состояния литий-ионных аккумуляторов в процессе их эксплуатации и может быть использовано при управлении ресурсом аккумуляторных батарей систем электропитания космических аппаратов. Технический результат: обеспечение необходимой точности оценивания остаточной емкости литий-ионного аккумулятора без прерывания режима эксплуатации и при ограничениях на вычислительные ресурсы микропроцессорной измерительной системы. Сущность: способ включает измерение напряжения аккумулятора и определение его остаточной емкости по зависимости от величины напряжения. При этом в рабочем режиме работы аккумулятора на основе его математической модели с экспериментально определенными параметрами, зависящими от степени заряженности и измеряемого значения тока разряда/заряда, оценивают текущее значение
Figure 00000032
напряжения аккумулятора, которое сравнивают с измеряемым текущим значением Uj(t) напряжения аккумулятора. Вычисляют степень заряженности
Figure 00000033
,
где j - номер текущей итерации вычислений; k - коэффициент, характеризующий сходимость процесса вычислений
Figure 00000034
к установившемуся значению,
Figure 00000035
E0max, E0min - соответственно, максимальное и минимальное значения ЭДС аккумулятора, определяемые паспортными данными; εj(t) - ошибка вычислений
Figure 00000036
напряжения аккумулятора,
Figure 00000037
. При выполнении условия εj(t)≈0 оценивают остаточную емкость
Figure 00000038
, где СПОЛН. - известная полная емкость аккумулятора, определенная экспериментальным образом в зависимости от числа циклов его разряда/заряда. 2 ил., 2 табл.

Description

Предлагаемое техническое решение относится к способам контроля состояния литий-ионных аккумуляторов в процессе их эксплуатации и может быть использовано при управлении ресурсом аккумуляторных батарей систем электропитания космических аппаратов.
Известен способ оценки степени заряженности аккумуляторной батареи (патент РФ №2524050 от 19.07.2011, БИПМ №21 от 27.07.2014), в котором измеряется ток и напряжение батареи, их значения используются для оценки напряжения аккумуляторной батареи на основе предварительно определенной модели, идентифицируется параметр модели батареи таким образом, чтобы разность между измеренным напряжением и оцененным его значением сходилась к нулю.
Известен также способ оценки степени заряженности батареи (патент РФ №2491566 от 18.02.2011 БИПМ №24 от 27.08.2013), в котором измеряют ток и напряжение на клеммах батареи, задают ее модель. Используя фильтр переменных состояния, оценивают на модели напряжение аккумуляторной батареи. Идентифицируют степень заряженности аккумуляторной батареи таким образом, чтобы разность между измеренным значением напряжения и его оценочным значением стремилась к нулю. При этом измеренные и вычисленные на модели значения напряжения подвергают фильтрационной обработке с помощью низкочастотного фильтра.
Данные способы не позволяют получить с требуемой точностью значение остаточной емкости батареи в процессе ее эксплуатации, что связано с изменяемыми характеристиками аккумуляторов и требующих значительных вычислительных ресурсов цифровых устройств контроля состояния батареи.
Известен способ определения остаточной емкости литий-химического источника тока (ЛХИТ) и устройство для его реализации (патент РФ №2326475 от 21.02.2007, БИПМ №16 от 10.06.2008). В данном способе для определения остаточной емкости ЛХИТ контролируют провал напряжения при импульсном разряде, при этом импульсный разряд тестируемого ЛХИТ осуществляют током (20÷80) мА в течение 10÷200 мс, а значение остаточной емкости определяют по величине провала напряжения при импульсном разряде из предварительно полученной для данного типа ЛХИТ зависимости провала напряжения при импульсном разряде от остаточной емкости. Зависимость провала напряжения от остаточной емкости ЛХИТ хранится в памяти устройства, реализующего данный способ.
К недостаткам способа можно отнести невысокую точность определения остаточной емкости аккумулятора вследствие значительной нестабильности его параметров в процессе эксплуатации. Кроме того, необходимость организации специального тестового режима нагружения аккумулятора существенно затрудняет реализацию и применение данного способа.
Наиболее близким по технической сущности является способ определения остаточной емкости литий-ионного аккумулятора (патент РФ №2533328 от 04.07.2013, БИПМ №32 от 20.11.2014) путем его импульсного нагружения током, измерения величины падения напряжения на его клеммах и определения остаточной емкости по заранее снятой зависимости величины падения напряжения от остаточной емкости аккумулятора. Особенностью способа является то, что нагружение аккумулятора производят в течение 0,01-0,1 секунд током, не менее чем в 5 раз превышающим максимально допустимый ток непрерывного разряда для данного типоразмера аккумулятора, но меньшим, чем допустимый импульсный ток нагрузки. Дополнительно контролируют ток рабочей нагрузки аккумулятора, а его импульсное нагружение током осуществляют при минимальном значении тока рабочей нагрузки аккумулятора или в периоды его работы на холостом ходу. При осуществлении способа в условиях постоянной высокой рабочей нагрузки по току или при отсутствии за весь цикл его разряда периодов работы на холостом ходу, на время импульсного нагружения аккумулятора током и измерения падения напряжения на клеммах аккумулятора его отключают от рабочей нагрузки.
Этот способ характеризуется недостаточной точностью определения остаточной емкости аккумулятора, определяемой нестационарностью его параметров. Кроме того, требование организации дополнительных тестовых режимов работы аккумулятора не позволяет использовать такой способ в устройствах контроля аккумуляторных батарей в процессе эксплуатации систем электропитания таких объектов, как космические аппараты.
Техническим результатом предлагаемого решения является обеспечение необходимой точности оценивания остаточной емкости литий-ионного аккумулятора без прерывания режима эксплуатации и при ограничениях на вычислительные ресурсы микропроцессорной измерительной системы.
Для решения такой задачи в способе оценки остаточной емкости литий-ионного аккумулятора, включающего измерение напряжения аккумулятора и определение его остаточной емкости по заранее снятой зависимости величины напряжения аккумулятора от остаточной емкости, в рабочем режиме работы аккумулятора на основе его математической модели с экспериментально определенными параметрами, зависящими от степени заряженности, и измеряемого значения тока разряда/заряда оценивают текущее значение
Figure 00000001
напряжения аккумулятора, которое сравнивают с измеряемым текущим значением Uj(t) напряжения аккумулятора, вычисляют степень заряженности
Figure 00000002
где j - номер текущей итерации вычислений; k - коэффициент, характеризующий сходимость процесса вычислений
Figure 00000003
к установившемуся значению,
Figure 00000004
E0max, E0min - соответственно максимальное и минимальное значения ЭДС аккумулятора, определяемые его паспортными данными; εj(t) - ошибка вычислений
Figure 00000005
напряжения аккумулятора,
Figure 00000006
и при выполнении условия εj(t)≈0 оценивают остаточную емкость
Figure 00000007
где СПОЛН. - известная полная емкость аккумулятора, определенная экспериментальным образом в зависимости от числа циклов его разряда/заряда.
В нормальных условиях эксплуатации литий-ионного аккумулятора (ЛИА) его электрохимические процессы достаточно адекватно описываются математической моделью Тевенина [Hongwen Н., Rui X., Jinxin F. // Energies. 2011. №4. P. 582-598., Rahmoun A., Biechl H. //
Figure 00000008
elektrotechniczny (Electrical Review). 2012. №7b. P. 152-156]:
Figure 00000009
где Uп(t) - поляризационное напряжение ЛИА;
Rп(SOC), Cп(SOC), E0(SOC), R0(SOC) - поляризационное сопротивление, поляризационная емкость, ЭДС, активное сопротивление, функционально зависящие от степени SOC заряженности; i(t) - ток разряда/заряда аккумулятора.
Для рабочих режимов работы ЛИА функциональные зависимости Rп(SOC), Cп(SOC), E0(SOC), R0(SOC) определяются экспериментальным путем в дискретных i-х точках разрядной и зарядной характеристик аккумулятора. В результате предварительно формируются табличные данные
Figure 00000010
дискретные значения которых определяются степенью заряженности SOCi, и сохраняются в памяти микропроцессора устройства контроля аккумуляторной батареи. Так как начальный и конечный участки разрядной характеристики с экспоненциальной зависимостью параметров ЛИА от остаточной емкости занимают около 20% емкости аккумулятора [Таганова А. А. Герметичные химические источники тока. Элементы и аккумуляторы, оборудование для испытаний и эксплуатации. СПб.: Химиздат, 2005. - 264 с.], то для обеспечения необходимой адекватности модели (3) в рабочих режимах ЛИА значения
Figure 00000011
определяются не менее чем в 20 точках. Такое количество экспериментальных данных позволяет применить равномерную сетку дискретных значений SOCi, обеспечивающих необходимую точность определения параметров аккумулятора. Следует отметить, что значения параметров Rп(SOC), Cп(SOC) в модели Тевенина для разряда и заряда аккумулятора будут отличаться при одинаковых значениях SOCi, поэтому для их представления требуется два массива табличных данных.
Для оценки параметров модели Тевенина необходимо проведение экспериментов, при которых аккумулятор подвергается импульсному воздействию тока величиной I. При этом длительность импульсов должна превышать величину τ=RПCП. Для определения значений параметров временной отрезок, в течение которого происходит импульсное воздействие током, разделяется на интервалы, позволяющие установить параметры модели ЛИА на основе совокупности следующих условий: - ЭДС Е0 в j-й момент времени вычисляется согласно равенствам:
Figure 00000012
- полное внутреннее сопротивление RS=R0+RП удовлетворяет системе уравнений:
Figure 00000013
- постоянная t времени определяется путем подсчета времени, необходимого для возвращения напряжения UЛИА(t) к величине UЛИА(t)=0.882E0 после отключения тока.
Далее принимаем R0=0.25Rs, и вычисляем RП=RS-R0,
Figure 00000014
Расчет оценки
Figure 00000015
напряжения аккумулятора на j-х интервалах вычислений производится путем численного решения системы уравнений (3) методом Рунге-Кутта. Очевидно, что по мере протекания разрядно/зарядного тока степень заряженности аккумулятора изменяется, что приводит к появлению разности εj(t) между измеряемым напряжением Uj(t) на выходе аккумулятора и оценкой
Figure 00000016
этого напряжения по модели (3).
В предлагаемом способе использование значения ошибки εj(t) по напряжению ЛИА для оценки его степени заряженности базируется при условии, если значение степени заряженности аккумулятора, определенное на основе модели вида (3), не превышает значение реальной SOC, то величина ошибки принимает отрицательный знак (εj(t)<0), в противном случае ошибка имеет положительные значения (εj(t)>0).
Количественная оценка степени заряженности на j-м интервале дискретности вычислений с учетом ошибки εj(t) по напряжению осуществляется на основе рекуррентного уравнения (1). Первоначальное значение степени
Figure 00000017
заряженности аккумулятора устанавливается в соответствии с рабочим режимом и может принимать значения из диапазона от 0 до 1. Коэффициент k, выполняющий роль масштабирующего параметра в уравнении (1), отражает сходимость [Турчак Л.И., Плотников П.В. Основы численных методов: Учебное пособие. - 2-е изд., перераб. и доп. - М.: ФИЗМАТЛИТ, 2003. - 304 с. на стр. 29] вычислений
Figure 00000018
и выбирается из условия:
Figure 00000019
где E0max, E0min - соответственно, максимальное и минимальное значения ЭДС аккумулятора, определяемые его паспортными данными.
Условие (6) характеризует отношение приращения степени заряженности ΔSOC(t) к приращению ЭДС аккумулятора ΔЕ0=E0max-E0min за цикл разряда.
Для оценки остаточной емкости СОСТ. (t) аккумулятора необходимо иметь значение СПОЛН. полной емкости и вычисленное значение степени заряженности. При выполнении условий эксплуатации и допустимых значений параметров рабочих режимов аккумулятора его остаточная емкость на j-х интервалах дискретности вычислений определяется по уравнению (2).
Работоспособность способа оценки остаточной емкости подтверждается имитационным моделированием в среде Matlab Simulink, где в качестве эквивалента реального аккумулятора использовалась модель батареи ЛИГП-10 ТУ 3482-063-20503890-2006. Параметры модели приведены в табл. 1.
Figure 00000020
Вычислительный алгоритм решения дифференциальных уравнений (3), описывающих модель Тевенина, выполнен на стандартных элементах среды Matlab. Параметры модели определяются на основе экспериментальных данных при помощи специальной программы, реализующей оптимизационный алгоритм координатного спуска. Значения этих параметров при различной степени заряженности ЛИА приведены в табл. 2.
Figure 00000021
Первый численный эксперимент был поставлен для проверки адекватности оценки значений степени заряженности ЛИА при различных начальных значениях
Figure 00000022
. Так в результате проведения тестовых испытаний установлено, что предлагаемый способ обеспечивает требуемую погрешность оценивания степени заряженности, при этом точность определения SOC(t) практически не зависит от изменения начальных значений
Figure 00000023
(Фиг. 1).
Следующий численный эксперимент был выполнен с использованием имитационной модели в среде Matlab и модели Тевенина для оценки точности способа определения остаточной емкости, вычислительная структура которого была построена из логических блоков среды Matlab. Входным сигналом для имитационной модели ЛИА является ток разряда или заряда, изменяющийся случайным образом один раз за 10 с. При этом оценка остаточной емкости аккумулятора обеспечивается с точностью до 2.5%
(Фиг. 2), где оценочные (расчетные) значения остаточной емкости ЛИА представлены сплошной линией, экспериментальные (действительные) значения - штриховой линией.
На начальном интервале времени (примерно 6000 с) погрешность определения SOC(t) не превышает значение погрешности в начальный момент времени, так как осуществляется приближение расчетного значения
Figure 00000024
степени заряженности к действительному значению SOC(t). После завершения вычислительного процесса (при εj(t)≈0 погрешность оценки остаточной емкости сокращается до минимального значения и составляет примерно 2,5%.
Объем памяти для хранения коэффициентов сплайнов при 32-битной разрядности микропроцессора определяется исходя из следующих условий: шести параметров модели Тевенина, двух режимов эксплуатации (разряд и заряд), что составляет 320 байт. Хранение промежуточных данных при решении дифференциальных уравнений (3) методом Рунге-Кутта потребует 16 байт ОЗУ. С учетом необходимого резерва памяти для вычислительных алгоритмов ответственных микропроцессорных систем специального применения общий объем оперативной памяти не будет превышать 320 байт. Затраты процессорного времени для одной итерации вычислений оценки остаточной емкости ЛИА и метода Рунге-Кутта на языке Си с использованием 32-разрядной арифметики с плавающей точкой не превышает 20 мс.
Работоспособность и эффективность предлагаемого способа оценки остаточной емкости ЛИА доказана путем численных экспериментов в среде Matlab Simulink на имитационной модели аккумулятора ЛИГП-10. Вычисления в данной математической среде позволяют оценивать степень заряженности ЛИА с погрешностью не более 2%, а остаточную емкость не более 2,5%, что полностью удовлетворяет требованиям к цифровым устройствам контроля состояния батарей таких систем, как системы электропитания космических аппаратов.
Таким образом, в результате выполнения всех вышеприведенных вычислений обеспечивается необходимая точность определения остаточной емкости аккумулятора в режиме реального времени и без прерывания режима эксплуатации с минимальными затратами на вычислительные ресурсы микропроцессорной измерительной системы.
Кроме того, точность определения оценки
Figure 00000025
степени заряженности ЛИА в предложенном способе оценки остаточной емкости не зависит от начальных условий вычислительного процесса.

Claims (5)

  1. Способ оценки остаточной емкости литий-ионного аккумулятора, включающий измерение напряжения аккумулятора и определение его остаточной емкости по зависимости от величины напряжения, отличающийся тем, что в рабочем режиме работы аккумулятора на основе его математической модели с экспериментально определенными параметрами, зависящими от степени заряженности и измеряемого значения тока разряда/заряда, оценивают текущее значение
    Figure 00000026
    напряжения аккумулятора, которое сравнивают с измеряемым текущим значением Uj(t) напряжения аккумулятора, вычисляют степень заряженности
  2. Figure 00000027
  3. где j - номер текущей итерации вычислений; k - коэффициент, характеризующий сходимость процесса вычислений
    Figure 00000028
    к установившемуся значению,
    Figure 00000029
    E0max, E0min - соответственно максимальное и минимальное значения ЭДС аккумулятора, определяемые паспортными данными, εj(t) - ошибка вычислений
    Figure 00000026
    напряжения аккумулятора,
    Figure 00000030
    и при выполнении условия εj(t)≈0 оценивают остаточную емкость
  4. Figure 00000031
    ,
  5. где СПОЛН. - известная полная емкость аккумулятора, определенная экспериментальным образом в зависимости от числа циклов его разряда/заряда.
RU2015145496A 2015-10-22 2015-10-22 Способ оценки остаточной емкости литий-ионного аккумулятора RU2621885C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015145496A RU2621885C2 (ru) 2015-10-22 2015-10-22 Способ оценки остаточной емкости литий-ионного аккумулятора

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015145496A RU2621885C2 (ru) 2015-10-22 2015-10-22 Способ оценки остаточной емкости литий-ионного аккумулятора

Publications (2)

Publication Number Publication Date
RU2015145496A RU2015145496A (ru) 2017-04-27
RU2621885C2 true RU2621885C2 (ru) 2017-06-07

Family

ID=58642145

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015145496A RU2621885C2 (ru) 2015-10-22 2015-10-22 Способ оценки остаточной емкости литий-ионного аккумулятора

Country Status (1)

Country Link
RU (1) RU2621885C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2662045C1 (ru) * 2017-11-21 2018-07-23 Алексей Николаевич Ворошилов Способ определения степени заряженности аккумулятора

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000268886A (ja) * 1999-03-18 2000-09-29 Toyota Central Res & Dev Lab Inc 二次電池の残存容量推定方法
RU2326475C1 (ru) * 2007-02-21 2008-06-10 Сергей Анатольевич Фатеев Способ определения остаточной емкости литиевого химического источника тока (хит) и устройство для его реализации
CN101629992A (zh) * 2009-05-27 2010-01-20 重庆大学 磷酸铁锂动力电池剩余容量的估算方法
RU2491566C1 (ru) * 2010-02-18 2013-08-27 Ниссан Мотор Ко., Лтд. Устройство оценки состояния батареи и способ оценки состояния батареи
RU2533328C1 (ru) * 2013-07-04 2014-11-20 Открытое акционерное общество "Сафоновский завод гидрометеорологических приборов" (ОАО "Сафоновский завод "Гидрометприбор") Способ определения остаточной емкости аккумулятора

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000268886A (ja) * 1999-03-18 2000-09-29 Toyota Central Res & Dev Lab Inc 二次電池の残存容量推定方法
RU2326475C1 (ru) * 2007-02-21 2008-06-10 Сергей Анатольевич Фатеев Способ определения остаточной емкости литиевого химического источника тока (хит) и устройство для его реализации
CN101629992A (zh) * 2009-05-27 2010-01-20 重庆大学 磷酸铁锂动力电池剩余容量的估算方法
RU2491566C1 (ru) * 2010-02-18 2013-08-27 Ниссан Мотор Ко., Лтд. Устройство оценки состояния батареи и способ оценки состояния батареи
RU2533328C1 (ru) * 2013-07-04 2014-11-20 Открытое акционерное общество "Сафоновский завод гидрометеорологических приборов" (ОАО "Сафоновский завод "Гидрометприбор") Способ определения остаточной емкости аккумулятора

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
М. М. ХАНДОРИН, В. Г. БУКРЕЕВ. Оценка остаточной емкости литий-ионного аккумулятора в режиме реального времени. Электрохимическая энергетика, 2014, т. 14, N 2, с. 78-84, в частности с. 80-83. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2662045C1 (ru) * 2017-11-21 2018-07-23 Алексей Николаевич Ворошилов Способ определения степени заряженности аккумулятора

Also Published As

Publication number Publication date
RU2015145496A (ru) 2017-04-27

Similar Documents

Publication Publication Date Title
US11408942B2 (en) Method for predicting service life of retired power battery
CN110927605B (zh) 电池健康状态的估计方法及装置
Song et al. Current profile optimization for combined state of charge and state of health estimation of lithium ion battery based on Cramer–Rao bound analysis
EP3018753B1 (en) Battery control method based on ageing-adaptive operation window
US20060284600A1 (en) Method for control and monitoring using a state estimator having variable forgetting factors
Nemes et al. Modeling and simulation of first-order Li-Ion battery cell with experimental validation
Zhang et al. Battery state estimation using unscented kalman filter
KR102377027B1 (ko) 배터리의 충전 상태를 추정하는 방법 및 그 방법을 실행하는 배터리 관리 시스템
Li et al. A new parameter estimation algorithm for an electrical analogue battery model
Chao et al. State-of-health estimator based-on extension theory with a learning mechanism for lead-acid batteries
CN112305438A (zh) 电池内阻的测量方法、装置、终端及存储介质
Blanco et al. An Equivalent Circuit Model With Variable Effective Capacity for $\hbox {LiFePO} _ {4} $ Batteries
CN106291375A (zh) 一种基于电池老化的soc估算方法和装置
FI114048B (fi) Menetelmä ja laitteisto akkujen kuvaamiseksi ohjelmallisilla mittareilla
JP2024026232A (ja) 蓄電池制御装置および制御方法
JP2022170227A (ja) 電池状態推定装置、電力システム
CN112630661A (zh) 一种电池荷电状态soc估算方法和装置
CN117110891A (zh) 锂离子电池荷电状态估计值的计算方法和计算装置
CN109273781B (zh) 电芯监测方法和电芯监测装置
RU2621885C2 (ru) Способ оценки остаточной емкости литий-ионного аккумулятора
CN113189500A (zh) 电池电量计算方法、装置、计算机设备和存储介质
CN117148187A (zh) 一种基于ocv校准的soh估算方法、系统及电子设备
CN115754772A (zh) 一种电池容量衰减处理方法、装置、设备和存储介质
CN113125965B (zh) 电池析锂检测方法、装置、设备及存储介质
Santos et al. Lead acid battery SoC estimation based on extended Kalman Filter method considering different temperature conditions

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner