CN101611166A - 化学气相生长装置、膜的形成方法及半导体装置的制造方法 - Google Patents

化学气相生长装置、膜的形成方法及半导体装置的制造方法 Download PDF

Info

Publication number
CN101611166A
CN101611166A CNA2007800514874A CN200780051487A CN101611166A CN 101611166 A CN101611166 A CN 101611166A CN A2007800514874 A CNA2007800514874 A CN A2007800514874A CN 200780051487 A CN200780051487 A CN 200780051487A CN 101611166 A CN101611166 A CN 101611166A
Authority
CN
China
Prior art keywords
mentioned
film
capturing device
chemical vapor
phase growing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2007800514874A
Other languages
English (en)
Inventor
上杉宏之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Fujitsu Semiconductor Ltd
Original Assignee
Fujitsu Semiconductor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Semiconductor Ltd filed Critical Fujitsu Semiconductor Ltd
Publication of CN101611166A publication Critical patent/CN101611166A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation by radiant heating of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

采用MOCVD法在基材(10)上形成TiN膜时,通过加热器(2)将喷头(3)与捕集构件(5)之间的空间温度加热至TDMAT的热分解温度以上。然后,从喷头3将含TDMAT的原料气体等喷出至腔室(1)内。结果是,喷出至腔室(1)内的TDMAT,通过加热器(2)在喷头(3)与捕集构件(5)之间的空间中热分解为TiN、碳及烃。而且,TiN、碳及烃向着基材(10)移动。但是,碳及烃被捕集构件(5)捕集。另一方面,TiN则原样通过捕集构件(5)到达基材(10)。结果是,在基材(10)的表面生长不含碳及烃的TiN膜。

Description

化学气相生长装置、膜的形成方法及半导体装置的制造方法
技术领域
本发明涉及适于形成阻挡金属膜的化学气相生长装置、成膜方法及半导体装置的制造方法。
背景技术
在形成构成半导体装置的布线时,形成TiN膜及Ti膜等阻挡金属膜。作为TiN膜的形成方法,可以举出溅射法及MOCVD(Metal Organic ChemicalVapor Deposition)法等。MOCVD法具有覆盖度高的优点。
通过MOCVD法形成TiN膜时,作为原料主要采用四(二甲基氨基)钛(TDMAT:Ti[N(CH3)2]4)。由于TDMAT在较低温度下发生热分解,因此在Al布线形成后的使用中特别有效。
然而,由于TDMAT中含碳,因此,碳及烃容易进入TiN膜中。若碳及烃进入TiN膜,则TiN膜的比电阻增大,得不到所希望的特性。
于是,在以往的方法中,在形成厚度约10nm以下的TiN膜后,对该TiN膜照射等离子体,由此进行去除碳及烃的处理。将TiN膜的厚度控制在约10nm以下的理由是,若比10nm厚时,即使照射等离子体也不能完全去除碳等的缘故。还有,照射等离子体时的RF功率为750W左右。
但是,采用该方法时,所需要的TiN膜的厚度越厚,则处理次数越多。例如,当需要20nm厚TiN膜时,至少需要两次TiN膜的形成及两次等离子体的照射。作为极端的例子,当需要100nm厚TiN膜时,至少需要10次TiN膜的形成及10次离子体的照射等。因此,生产率不能说充分好。另外,照射等离子体的次数越多,则对已形成的晶体管等半导体元件的破坏越大。
若提高照射等离子体时的RF功率,则可以提高生产率,但对半导体元件的破坏也相应地加大。反之,若降低RF功率,虽然能够减少对半导体元件的破坏,但生产率相应地降低。
专利文献1:JP特开2006-161163号公报
专利文献2:JP特开2001-326192号公报
专利文献3:JP特开2000-286215号公报
发明内容
本发明的目的在于,提供一种在TDMAT法中能够抑制碳及烃混入TiN膜的化学气相生长装置、膜的形成方法及半导体装置的制造方法。
本申请的发明人为了解决上述课题进行悉心研究的结果,研究出下列所示本发明的诸技术方案。
本发明的化学气相生长装置具有:腔室、设置在该腔室内的基座(Susceptor)、以及供给装置,所述供给装置用于向该腔室内供给含有机金属的原料气体。进而,还设置有加热装置和捕集装置,所述加热装置通过对从上述供给装置供给的有机金属进行加热从而使之分解,所述捕集装置将因上述有机金属的分解而产生的碳和烃在到达上述基座之前进行捕集。
本发明半导体装置的制造方法,是将基材载置于上述化学气相生长装置的上述基座上,然后,通过化学气相生长使膜在上述基材上生长。
附图说明
图1是表示本发明实施方式的化学气相生长装置结构的示意图。
图2A是表示半导体装置制造方法的剖视图。
图2B是表示继图2A的半导体装置制造方法的剖视图。
图2C是表示继图2B的半导体装置制造方法的剖视图。
图2D是表示继图2C的半导体装置制造方法的剖视图。
图2E是表示继图2D的半导体装置制造方法的剖视图。
图2F是表示继图2E的半导体装置制造方法的剖视图。
图2G是表示继图2F的半导体装置制造方法的剖视图。
具体实施方式
下面,参照附图具体地说明本发明的实施方式。图1是表示本发明实施方式的化学气相生长装置(CVD装置)结构的示意图。
如图1所示,在本实施方式中,在腔室1的上部设置有喷头3,该喷头3用于喷出含有机金属的原料气体。作为有机金属,可以举出四(二甲基氨基)钛(TDMAT:Ti[N(CH3)2]4)以及四(二乙基氨基)钛(TDEAT:Ti[N(C2H5)2]4),但又不限于这些。另外,也可以从喷头3喷出氮气、氦气、氩气等载气。另外,为了供给氮原子,原料气体中还可以含有氨。
另外,在腔室1的下部设置有用于载置半导体基板等基材10的载物台(基座)4。还有,作为基材10,例如,可以采用硅基板、化合物半导体基板、在这些基板上形成有绝缘膜和/或绝缘膜等的基材。进而,在喷头3与载物台4之间设置有用于捕集碳原子及烃分子的捕集构件5。捕集构件5,例如由Pt、Ru、Rh、Pd、Os、Ir等的Pt族元素构成。另外,在腔室1的内部设置有用于加热喷头3与捕集构件5之间空间的加热器2。
下面,说明采用具有上述构成的CVD装置,通过MOCVD法在基材10上形成TiN膜的方法。
首先,在载物台4上载置基材10。然后,通过加热器2将喷头3与捕集构件5之间的空间加热至TDMAT发生热分解的温度(150℃左右)以上。然后,从喷头3向腔室1内喷出含TDMAT的原料气体及载气。其结果,喷出至腔室1内的TDMAT,通过加热器2在喷头3与捕集构件5之间的空间中热分解为TiN、碳(C)及烃(CHx)。而且,TiN、碳及烃向基材10移动。但是,在向基材10的移动的路径上设置有捕集构件5。因此,碳及烃被捕集构件5捕集。另一方面,TiN则原样通过捕集构件5到达基材10。结果是,在基材10的表面生长不含碳及烃的TiN膜。
如上所述,根据本发明,可使不含碳及烃的TiN膜生长在基材10上。为此,不必进行TiN膜形成后从TiN膜去除碳及烃的等离子体处理。因此,即使需要厚的TiN膜的情况下,也不必分几次生长TiN膜。从而,可大幅减少所需的处理次数及处理时间,提高生产率。而且,也可以防止伴随等离子体处理引起的半导体元件等的损坏。另外,由于不需要等离子体处理用装置,因此,能够使CVD装置的总体结构简洁化。
还有,当形成TiN膜时,优选事先将氨等含有氮原子的物质包含在原料气体中。这是因为,当原料气体中除了TDMAT等外没有其他的含氮原子的物质时,由于氮原子不足而形成Ti膜,或形成Ti过多的TiN膜。反之,当要形成Ti膜时,也可采用仅含TDMAT的原料气体。
另外,在形成TiN膜或Ti膜时,没有必要加热基材10。在现有的CVD装置中,由于不存在相当于加热器2的构件,因此,必须将基材10的温度加热至400℃左右,然后在其表面上使TDMAT等热分解,但在本实施方式中,基材10表面上的热分解不是必须的。此前,含Al布线的基材避免将其加热至高于400℃的温度,因此,能够使用的有机金属的种类受到限制。与此相比,在本实施方式中,通过加热器2的加热有机金属发生热分解,因此不必加热基材,也可以使用在高温下热分解的有机金属。
喷头3与捕集构件5之间空间的温度,只要处于TDMAT等有机金属发生热分解的温度以上即可,如过高,则只会增加加热器2的负荷。因此,该空间的温度优选为150℃~800℃左右。
下面,说明采用上述CVD装置制造半导体装置的方法。图2A~图2G是按照工序的顺序表示半导体装置制造方法的剖视图。
首先,如图2A所示,通过STI(shallow trench isolation)法,在半导体基板101的表面形成元件分离绝缘膜102。还有,元件分离绝缘膜102也可以采用LOCOS(local oxidation of silicon)法等形成。然后,在由元件分离绝缘膜102划定的元件区域内,形成电场效应晶体管。在形成电场效应晶体管时,首先形成栅极绝缘膜103及栅极电极104。然后,依次形成低浓度杂质扩散层106、侧壁绝缘膜105及高浓度杂质扩散层107。
然后,如图2B所示,形成覆盖电场效应晶体管的层间绝缘膜108。接着,在层间绝缘膜108上形成到达至高浓度杂质扩散层107的接触孔109。
其次,采用图1所示的CVD装置,通过MOCVD法,如图2C所示地,在接触孔109的底面和侧面、以及层间绝缘膜108的表面上,形成作为阻挡金属膜的TiN膜110。还有,也可以通过在形成TiN膜110之前形成Ti膜,从而将阻挡金属膜形成为两层结构。
接着,如图2D所示,在TiN膜110上形成用于填埋接触孔109的W膜111。在形成W膜111时,也可采用图1所示的CVD装置。
然后,如图2E所示,采用CMP(chemical mechanical polishing)法等,将W膜111及TiN膜110研磨至层间绝缘膜108的表面露出。结果是,在接触孔109内留下由TiN膜110及W膜111构成的接触插塞(contact plug)。
接着,如图2F所示,形成与接触插塞连接的布线。在形成布线时,采用图1所示的CVD装置形成TiN膜112,形成Al膜113,采用图1所示的CVD装置形成TiN膜114,并对他们制作布线图案。还有,在Al膜113的形成与TiN膜114的形成之间,也可采用图1所示的CVD装置形成Ti膜。另外,在形成Al膜113时,也可采用图1所示的CVD装置。
形成布线后,如图2F所示,形成覆盖布线的层间绝缘膜115。接着,在层间绝缘膜115上形成到达至布线的通孔116。
接着,采用与形成由TiN膜110及W膜111构成的接触插塞同样的方法,在通孔116内形成由TiN膜117及W膜118构成的通孔塞(via plug)。
然后,形成上层布线等,完成半导体装置。
还有,在上述说明中,作为有机金属仅举出TDMAT或TDEAT,但也可采用其他有机金属。另外,所形成的膜也不限于TiN膜或Ti膜。
另外,本发明的用途不限于形成阻挡金属膜,例如,将TiN膜作为硬掩膜形成时,将TiN膜或Ti膜作为电极的全部或一部分形成等时,也可以利用本发明。
工业实用性
按照本发明,有机金属在到达基座之前被分解,因分解生成的碳及烃被捕集装置捕集,因此可以防止碳及烃混入基材上形成的膜中。由此,无需采用用于去除碳及烃的等离子体处理等。另外,由于无需加热基材本身,因此,也能够采用分解温度较高的有机金属。

Claims (18)

1.一种化学气相生长装置,其特征在于,该化学气相生长装置具有:
腔室;
基座,该基座设置在上述腔室内;
供给装置,该供给装置用于向上述腔室内供给含有机金属的原料气体;
加热装置,该加热装置通过对从上述供给装置供给的有机金属进行加热从而使之分解;
捕集装置,该捕集装置将因上述有机金属的分解而产生的碳和烃在到达上述基座之前进行捕集。
2.按照权利要求1所述的化学气相生长装置,其特征在于,上述捕集装置含有铂族元素。
3.按照权利要求1所述的化学气相生长装置,其特征在于,上述捕集装置含有由Pt、Ru、Rh、Pd、Os以及Ir组成的组中选出的至少一种元素。
4.按照权利要求1所述的化学气相生长装置,其特征在于,上述有机金属含有Ti及N。
5.按照权利要求4所述的化学气相生长装置,其特征在于,上述捕集装置使Ti及N通过。
6.一种膜的形成方法,其特征在于,
该膜的形成方法具有将基材载置于化学气相生长装置的基座上的工序,以及通过化学气相生长使膜在上述基材上生长的工序;
所述化学气相生长装置具有:
腔室;
基座,该基座设置在上述腔室内;
供给装置,该供给装置用于向上述腔室内供给含有机金属的原料气体;
加热装置,该加热装置通过对从上述供给装置供给的有机金属进行加热从而使之分解;
捕集装置,该捕集装置将因上述有机金属的分解而产生的碳和烃在到达上述基座之前进行捕集。
7.按照权利要求6所述的膜的形成方法,其特征在于,作为上述捕集装置使用含铂族元素的装置。
8.按照权利要求6所述的膜的形成方法,其特征在于,作为上述捕集装置,使用含有由Pt、Ru、Rh、Pd、Os以及Ir组成的组中选出的至少一种元素的装置。
9.按照权利要求6所述的膜的形成方法,其特征在于,作为上述有机金属使用含Ti及N的有机金属。
10.按照权利要求9所述的膜的形成方法,其特征在于,作为上述捕集装置采用使Ti及N通过的捕集装置。
11.一种半导体装置的制造方法,其特征在于,
该半导体装置的制造方法具有将基材载置于化学气相生长装置的基座上的工序,以及通过化学气相生长使膜在上述基材上生长的工序;
所述化学气相生长装置具有:
腔室;
基座,该基座设置在上述腔室内;
供给装置,该供给装置用于向上述腔室内供给含有机金属的原料气体;
加热装置,该加热装置通过对从上述供给装置供给的有机金属进行加热从而使之分解;
捕集装置,该捕集装置将因上述有机金属的分解而产生的碳和烃在到达上述基座之前进行捕集。
12.按照权利要求11所述的半导体装置的制造方法,其特征在于,作为上述捕集装置使用含有铂族元素的捕集装置。
13.按照权利要求11所述的半导体装置的制造方法,其特征在于,作为上述捕集装置,使用含有由Pt、Ru、Rh、Pd、Os以及Ir组成的组中选出的至少一种元素的捕集装置。
14.按照权利要求11所述的半导体装置的制造方法,其特征在于,作为上述有机金属使用含Ti及N的有机金属。
15.按照权利要求14所述的半导体装置的制造方法,其特征在于,作为上述捕集装置,采用使Ti及N通过的捕集装置。
16.按照权利要求11所述的半导体装置的制造方法,其特征在于,将上述膜作为阻挡金属膜而形成。
17.按照权利要求11所述的半导体装置的制造方法,其特征在于,将上述膜作为硬掩膜而形成。
18.按照权利要求11所述的半导体装置的制造方法,其特征在于,将上述膜作为电极的至少一部分而形成。
CNA2007800514874A 2007-03-15 2007-03-15 化学气相生长装置、膜的形成方法及半导体装置的制造方法 Pending CN101611166A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2007/055287 WO2008111231A1 (ja) 2007-03-15 2007-03-15 化学気相成長装置、膜の形成方法及び半導体装置の製造方法

Publications (1)

Publication Number Publication Date
CN101611166A true CN101611166A (zh) 2009-12-23

Family

ID=39759179

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2007800514874A Pending CN101611166A (zh) 2007-03-15 2007-03-15 化学气相生长装置、膜的形成方法及半导体装置的制造方法

Country Status (5)

Country Link
US (1) US8409983B2 (zh)
JP (1) JP5088363B2 (zh)
KR (1) KR101066897B1 (zh)
CN (1) CN101611166A (zh)
WO (1) WO2008111231A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102312216A (zh) * 2010-06-30 2012-01-11 鸿富锦精密工业(深圳)有限公司 在滚轮表面形成氮化钛薄膜的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101969099A (zh) * 2009-07-28 2011-02-09 中芯国际集成电路制造(上海)有限公司 相变存储单元和其加热层的制作方法
US8623468B2 (en) * 2012-01-05 2014-01-07 Taiwan Semiconductor Manufacturing Company, Ltd. Methods of fabricating metal hard masks
US10734219B2 (en) * 2018-09-26 2020-08-04 Asm Ip Holdings B.V. Plasma film forming method

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5139825A (en) * 1989-11-30 1992-08-18 President And Fellows Of Harvard College Process for chemical vapor deposition of transition metal nitrides
JP3224469B2 (ja) * 1994-02-28 2001-10-29 三菱電機株式会社 薄膜形成法及びその装置
US6365495B2 (en) 1994-11-14 2002-04-02 Applied Materials, Inc. Method for performing metallo-organic chemical vapor deposition of titanium nitride at reduced temperature
US5789024A (en) * 1996-05-15 1998-08-04 New Jersey Institute Of Technology Subnanoscale composite, N2-permselective membrane for the separation of volatile organic compounds
US5763007A (en) * 1996-06-25 1998-06-09 The Aerospace Corporation Method of Controlling Reactions between tetrakis dialkylamine titanium and ammonia for producing titanium nitride films
TW365031B (en) * 1996-10-31 1999-07-21 Texas Instruments Inc TiN+Al films and processes
US6080446A (en) * 1997-08-21 2000-06-27 Anelva Corporation Method of depositing titanium nitride thin film and CVD deposition apparatus
TW455912B (en) * 1999-01-22 2001-09-21 Sony Corp Method and apparatus for film deposition
KR100629540B1 (ko) 1999-02-09 2006-09-27 어플라이드 머티어리얼스, 인코포레이티드 감소된 온도에서의 티타늄 질화물의 금속 유기 화학 기상 증착 수행 방법
JP4505072B2 (ja) 1999-03-25 2010-07-14 独立行政法人科学技術振興機構 化学蒸着方法及び化学蒸着装置
JP4346741B2 (ja) * 1999-08-05 2009-10-21 キヤノンアネルバ株式会社 発熱体cvd装置及び付着膜の除去方法
US6602783B1 (en) 1999-10-06 2003-08-05 Air Products And Chemicals, Inc. Deposition of titanium amides
JP2001326192A (ja) 2000-05-16 2001-11-22 Applied Materials Inc 成膜方法及び装置
JP2003041365A (ja) * 2001-07-31 2003-02-13 Hitachi Kokusai Electric Inc 基板処理装置
US6576538B2 (en) * 2001-08-30 2003-06-10 Micron Technology, Inc. Technique for high efficiency metalorganic chemical vapor deposition
KR100695887B1 (ko) 2004-12-09 2007-03-20 삼성전자주식회사 티타늄질화막 형성 방법 및 상기 티타늄질화막을 이용한금속-절연체-금속 커패시터의 하부전극 형성 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102312216A (zh) * 2010-06-30 2012-01-11 鸿富锦精密工业(深圳)有限公司 在滚轮表面形成氮化钛薄膜的方法

Also Published As

Publication number Publication date
JP5088363B2 (ja) 2012-12-05
KR101066897B1 (ko) 2011-09-27
WO2008111231A1 (ja) 2008-09-18
US20090286398A1 (en) 2009-11-19
KR20100004924A (ko) 2010-01-13
JPWO2008111231A1 (ja) 2010-06-24
US8409983B2 (en) 2013-04-02

Similar Documents

Publication Publication Date Title
CN101715602B (zh) 成膜方法和成膜装置
US9469899B2 (en) Selective deposition of noble metal thin films
JP4074461B2 (ja) 成膜方法および成膜装置、半導体装置の製造方法
US20070014919A1 (en) Atomic layer deposition of noble metal oxides
US11942365B2 (en) Multi-region diffusion barrier containing titanium, silicon and nitrogen
US20060121733A1 (en) Selective formation of metal layers in an integrated circuit
US20020190379A1 (en) W-CVD with fluorine-free tungsten nucleation
TW201315836A (zh) 光激發可用於原子層沉積之介電層的化學物之方法與設備
KR20080012379A (ko) 반도체 장치의 제조 방법 및 기판 처리 장치
EP1042529A1 (en) Method for selectively depositing bismuth based ferroelectric films
WO2018222920A1 (en) Multi-region diffusion barrier containing titanium, silicon and nitrogen
CN101490818B (zh) 半导体装置的制造方法以及半导体装置的制造装置
CN102365715A (zh) 金属硅化物膜的形成方法
US20030219979A1 (en) Methods and apparatus for forming a metal layer on an integrated circuit device using a tantalum precursor
CN101611166A (zh) 化学气相生长装置、膜的形成方法及半导体装置的制造方法
US7524766B2 (en) Method for manufacturing semiconductor device and substrate processing apparatus
TW437058B (en) Vapor growth method and device for metal oxide dielectric film
US6734100B2 (en) Method of forming ruthenium thin film using plasma enhanced process
EP1662556A1 (en) Process for producing oxide thin film and production apparatus therefor
US7947597B2 (en) Methods of titanium deposition
KR100382742B1 (ko) 반도체 소자의 커패시터 형성방법
JP4205565B2 (ja) 薄膜製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20091223