CN101601158B - 提高用于聚合物电解质膜燃料电池的双极板的不锈钢的表面性能的方法 - Google Patents

提高用于聚合物电解质膜燃料电池的双极板的不锈钢的表面性能的方法 Download PDF

Info

Publication number
CN101601158B
CN101601158B CN200780048358XA CN200780048358A CN101601158B CN 101601158 B CN101601158 B CN 101601158B CN 200780048358X A CN200780048358X A CN 200780048358XA CN 200780048358 A CN200780048358 A CN 200780048358A CN 101601158 B CN101601158 B CN 101601158B
Authority
CN
China
Prior art keywords
weight
steel
still less
stainless steel
stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200780048358XA
Other languages
English (en)
Other versions
CN101601158A (zh
Inventor
李正熙
金英焕
金钟熙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Holdings Inc
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020070134585A external-priority patent/KR100931457B1/ko
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Priority claimed from PCT/KR2007/006908 external-priority patent/WO2008082162A1/en
Publication of CN101601158A publication Critical patent/CN101601158A/zh
Application granted granted Critical
Publication of CN101601158B publication Critical patent/CN101601158B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • H01M8/021Alloys based on iron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Fuel Cell (AREA)

Abstract

本发明公开了一种提高用于聚合物电解质膜燃料电池的双极板的不锈钢的表面性能的方法,所述用于聚合物电解质膜燃料电池的双极板的不锈钢具有低界面接触电阻和优异的耐蚀性。根据本发明的一个示例性实施例,用于提高不锈钢的表面性能的方法包括以下步骤:用硫酸水溶液酸洗不锈钢,所述不锈钢包含以重量计:0.02%或更少的C、0.02%或更少的N、0.4%或更少的Si、0.2%或更少的Mn、0.04%或更少的P、0.02%或更少的S、25%-32%的Cr、0.1%-5%的Mo、0.1%-2%的Cu、0.5%或更少的Ti、0.5%或更少的Nb和余量的Fe以及其它不可避免的元素;然后用水清洗所述不锈钢;然后将所述不锈钢浸渍在硝酸和氢氟酸的混合溶液中,以形成钝化层。

Description

提高用于聚合物电解质膜燃料电池的双极板的不锈钢的表面性能的方法
技术领域
本发明涉及一种提高用于聚合物电解质膜燃料电池的双极板的不锈钢的表面性能的方法,所述用于聚合物电解质膜燃料电池的双极板的不锈钢具有低界面接触电阻和优异的耐蚀性,更具体地讲,本发明涉及一种用于提高不锈钢的表面性能并同时确保低界面接触电阻和优异的耐蚀性的方法。 
背景技术
近年来,能量消耗、环境污染等已经成为全球问题,因此,已经越来越多地将氢能和利用氢能的燃料电池作为化石燃料的替代品。燃料电池将氢的化学能转化成电能。燃料电池可以使用各种燃料,且极少产生污染。此外,由于发电效率高(40%或更高),所以节能效果高。 
这些燃料电池可以广泛地用在各种应用领域,包括:运输工具,例如汽车、船、飞机等;电源,例如发电厂、家用电源等;便携式电子家用电器等等。 
因为聚合物燃料电池使用具有离子导电率的固体聚合物膜作为电解液,所以聚合物燃料电池可以在室温和大气压下工作。另外,因为聚合物燃料电池具有低的工作温度(大约80℃)、短的工作时间和高的功率密度,所以聚合物燃料电池已经作为用于运输工具、便携式和家用电器等的电源而备受关注。 
通常,固体聚合物燃料电池包括多个双极板,每个双极板具有形成在其中的通道。通常,这样的双极板由从包括石墨、碳、Ti合金、不锈钢和导电塑料的组中选择的一种形成。 
然而,由不锈钢形成的双极板具有以下问题,即,由于形成在双极板的表面中的钝化层的半导体特性,所以双极板的表面和膜电极组件之间的界面接触电阻会增大。 
此外,聚合物燃料电池在酸环境下工作,但是当不锈钢双极板不确保其耐蚀性时,电解质膜的离子导电率会由于金属离子的析出而减小,因此,电 极催化剂会被污染,这导致燃料电池的性能劣化。 
发明内容
技术问题 
因此,本发明旨在解决现有技术的这些缺陷,因此,本发明的目的在于提供一种提高用于聚合物电解质膜燃料电池的双极板的不锈钢的表面性能并同时确保低界面接触电阻和优异的耐蚀性的方法。 
技术方案 
本发明的一个实施例是通过提供一种提高用于聚合物电解质膜燃料电池的双极板的不锈钢的表面性能的方法来实现的,所述用于聚合物电解质膜燃料电池的双极板的不锈钢具有低界面接触电阻和优异的耐蚀性,所述方法包括以下步骤:用硫酸水溶液酸洗不锈钢,所述不锈钢包含以重量计:0.02%或更少的C、0.02%或更少的N、0.4%或更少的Si、0.2%或更少的Mn、0.04%或更少的P、0.02%或更少的S、25%至32%的Cr、0.1%至5%的Mo、0.1%至2%的Cu、0.5%或更少的Ti、0.5%或更少的Nb和余量的Fe以及其它不可避免的元素;然后用水清洗不锈钢;然后将不锈钢浸渍在硝酸和氢氟酸的混合溶液中,以形成钝化层。 
附图说明
附图与说明书一起对本发明的示例性实施例进行举例说明,并与描述一起用来解释本发明的原理。 
图1是示出根据本发明一个示例性实施例的包括双极板的燃料电池的透视图,其中,所述双极板由表面性能得到提高的不锈钢形成。 
图2是示意性地示出使用饱和甘汞电极作为参比电极在15%(重量)的硫酸溶液中在70℃测量的本发明的钢1的电位的曲线图。 
图3是示意性地示出使用饱和甘汞电极作为参比电极在包含15%(重量)的硝酸和5%(重量)的氢氟酸的混合溶液中测量的本发明的钢1的电位的曲线图。 
图4是示出用于测量不锈钢双极板的界面接触电阻的装置的剖视图。 
图5是示出如在表1中列出的本发明的钢1的表面性能的化学改进之前/之后的X-射线光电子光谱(XPS)分析结果的曲线图。 
图6是示意性地示出如在表1中列出的本发明的钢和对比钢的表面性能的化学改进之后测量的不锈钢的界面接触电阻的曲线图。 
图7是示意性地示出对如在表1中列出的本发明的钢1测量电化学极化测试之后的电流密度的曲线图。 
图8是示意性地示出根据本发明一个示例性实施例的不锈钢的表面的XPS分析结果的曲线图,其中,所述不锈钢的表面性能通过化学改进和等离子体渗氮工艺而得以提高。 
具体实施方式
在下文中,将参照附图描述根据本发明的优选实施例。这里,为了清楚起见,省去了不相关的元件。另外,相同的标号始终表示相同的元件。 
图1是示出根据本发明一个示例性实施例的包括双极板的燃料电池的透视图,其中,所述双极板由表面性能得到提高的不锈钢形成。 
如图1中所示,固体聚合物燃料电池100包括:膜电极组件110,其包括电解质、电极(阳极和阴极)和气体密封垫;多个双极板120,其具有形成在其中的通道;气体入口130和气体出口140;端板,具有氢气入口150和氢气出口160。 
通常,双极板120可以由从包括石墨、碳、Ti合金、不锈钢和导电塑料的组中选择的一种来形成。 
因为不锈钢具有优异的延展性,所以可以将其制造成薄板。因此,具有通道的双极板120可以由诸如压模成型和液压成型之类的廉价制造方法形成。不锈钢具有诸如抗冲击、不透气性和耐蚀性之类的特性。 
双极板120可以由不锈钢形成,所述不锈钢由于根据本发明一个示例性实施例的用于提高不锈钢的表面性能的方法而具有低界面接触电阻和优异的耐蚀性。 
在下文中,将详细描述根据本发明的不锈钢的成分和组成。在以下描述中,除非另外指出,否则所有的百分数均是以重量计。 
在钢中,C和N反应形成Cr碳氮化物,因此,优选少量使用这两种元素,这是因为在Cr-消耗层中钢的耐蚀性劣化。对于本发明,将C的含量限制为0.02%或更少的C量,将N的含量限制为0.02%或更少的N量。 
Si是用于有效地使钢脱氧的元素,但是使钢的韧性和可成形性劣化,因此,在本发明中,将Si含量限制为0.4%以下。
Mn是增大钢脱氧的元素,但夹杂物MnS起到减小钢的耐蚀性的作用。对于本发明,将Mn含量限制为0.2%以下的量。 
P起到减小钢的韧性和耐蚀性的作用,因此,在本发明中,将P含量限制为0.04%或更少。 
S起到形成MnS的作用,该MnS成为腐蚀的起始点的作用,从而减小钢的耐蚀性。对于本发明,将S含量限制为0.02%或更少。 
Cr用于在燃料电池工作的酸环境下提高钢的耐蚀性,但减小了钢的韧性,因此,在本发明中,将Cr含量限制为25%至32%的范围。 
Mo用于在燃料电池工作的酸环境下提高钢的耐蚀性,但减小了钢的韧性,因此,在本发明中,将Mo含量限制为0.1%至5%的范围。 
Cu用于在燃料电池工作的酸环境下提高钢的耐蚀性,但当加入过量的Cu时,由于Cu的析出,所以会使燃料电池的性能劣化。对于本发明,将Cu含量限制为0.1%至2%的范围。 
Ti和Nb是使得钢中的C和N形成碳氮化物的有用元素,但是使钢的韧性劣化。对于本发明,将Ti和Nb的组成比限制为0.5%或更少的量。 
除了上述元素之外,这里可以加入V、W、La、Zr和B中的一种或两种或多种,下面描述它们的组成比。 
V用于在燃料电池工作的酸环境下提高钢的耐蚀性,但当加入过量的V时,由于V离子的析出,所以会使燃料电池的性能劣化。对于本发明,将V含量限制为1%或更少的量。 
W用于在燃料电池工作的酸环境下提高钢的耐蚀性,并减小钢的界面接触电阻,但当加入过量的W时,使钢的韧性劣化。对于本发明,将W含量限制为4%或更少的量。 
La用于诱使钢中的硫化物类夹杂物的微弥散,并诱使钝化层浓密地分布,但当加入过量的La时,会导致水口堵塞问题。对于本发明,将La含量限制为1%或更少的量。 
Zr用于在燃料电池工作的酸环境下提高钢的耐蚀性,并减小钢的界面接触电阻,但当加入过量的Zr元素时,会导致钢的表面缺陷。因此,将Zr含量限制为1%或更少的量。 
B用于在钢中形成氮化物,并提高钢的耐蚀性,但当加入过量的B元素 时,会导致钢的表面缺陷。因此,在本发明中,将B含量限制为0.1%或更少的量。 
在下文中,将详细地描述根据本发明一个示例性实施例的提高用于聚合物电解质膜燃料电池的双极板的不锈钢的表面性能的方法。 
首先,使用连铸工艺或钢锭工艺将铁素体不锈钢材料制造成铸坯,所述铁素体不锈钢材料包含以重量计:0.02%或更少的C、0.02%或更少的N、0.4%或更少的Si、0.2%或更少的Mn、0.04%或更少的P、0.02%或更少的S、25%至32%的Cr、0.1%至5%的Mo、0.1%至2%的Cu、0.5%或更少的Ti、0.5%或更少的Nb和余量的Fe以及其它不可避免的元素。使该铸坯经受诸如热轧工艺、退火工艺、酸洗工艺、冷轧工艺等工艺,从而制造厚度为0.05mm至2mm的冷轧退火板。 
不锈钢还可以包含从由以下元素组成的组中选择的一种或两种或多种元素:0%至1%的V、0%至4%的W、0%至1%的La、0%至1%的Zr和0%至0.1%的B。 
用于聚合物燃料电池的双极板使用压模成型和液压成型工艺由所得的冷轧退火板制成。 
然后,使用喷丸处理和金属丝刷将退火板的表面粗糙度调整到0.01μm至5μm的范围,然后使退火板经受除油工艺。 
随后,通过在50℃至75℃下将退火板在5%(重量)至20%(重量)的硫酸水溶液中浸渍20秒至5分钟,执行用于去除在双极板的表面中形成的钝化层的酸洗工艺,然后清洗浸渍过的板。 
并且,通过在40℃至60℃将清洗过的板在包含10%(重量)至20%(重量)的硝酸和1%(重量)至10%(重量)的氢氟酸的混合溶液中浸渍30秒至10分钟,执行钝化工艺,然后清洗钝化过的板。 
当完成了上述的表面性能的化学改进时,在200℃至500℃下使板经受等离子体渗氮工艺达1分钟至5小时。通过等离子体渗氮工艺在双极板的表面上形成CrN和Cr2N,这提高了钢中的耐蚀性,并减小了钢中的界面接触电阻。 
在下文中,将基于发明人获得的实验结果,更详细地描述本发明的示例性实施例。 
表1列出了在该实验中使用的不锈钢的成分及其组成比(%(重量))。 
Figure G200780048358XD00061
对于如在表1中列出的每个本发明的钢和对比钢,发明人以140N/cm2的接触压强,在表面改进之前测量了初始界面接触电阻,并在化学改进之后测量了界面接触电阻。后面将参照图4更加详细地描述界面接触电阻的测量。 
另外,发明人在与燃料电池中的阴极环境条件类似的条件下执行电化学极化测试。 
也就是说,在1M硫酸和2ppm氢氟酸的混合溶液中,在70℃时,将0.6V的饱和甘汞电极(SCE)作为参比电极施加到如在表1中列出的每种钢长达9小时。然后,测量钢的腐蚀电流密度和界面接触电阻,并在腐蚀溶液中使用ICP(电感耦合等离子体)质谱测量Fe、Cr和Ni的析出离子。 
表2列出了上述实验的结果。 
Figure G200780048358XD00081
图2是示意性地示出使用饱和甘汞电极作为参比电极在15%(重量)的硫酸溶液中在70℃下测量的本发明的钢1的电位的曲线图。 
通常,在不锈钢的表面中形成保护性氧化物膜。该氧化物膜由铁铬氧化物组成,因为由于高含量的铁而在本发明中使用该氧化物膜是不适当的,因此应当将其去除。 
如图2中所示,当在本发明的钢1中形成氧化物膜时,本发明的钢1的电位比表面不存在氧化物膜的本发明的钢1的电位高,因此,当从本发明的钢1去除氧化物膜时,本发明的钢1的电位降低。 
也就是说,当将不锈钢浸渍在硫酸水溶液中时,氧化物膜从不锈钢的表面去除,因此,本发明的钢1的电位逐渐降低。在预定的时间之后,当氧化物膜从浸渍的不锈钢的表面完全去除时,本发明的钢1的电位在没有进一步降低的情况下达到饱和。 
因此,如果将不锈钢以饱和电位浸渍在硫酸水溶液中,那么氧化物可以从不锈钢的表面去除。 
对于本发明的一个示例性实施例,在50℃至70℃下,将不锈钢浸渍在5%(重量)至20%(重量)的硫酸水溶液中,并执行处理达20秒至5分钟。 
当硫酸水溶液的温度和浓度过低时,氧化物膜不容易从不锈钢的表面去除。相反,当硫酸水溶液的温度和浓度过高时,会损害基体金属。因此,将温度限制在50℃至75℃的范围内,并将浓度限制在5%(重量)至20%(重量)的范围内。 
图3是示意性地示出使用饱和甘汞电极作为参比电极在包含15%(重量)的硝酸和5%(重量)的氢氟酸的混合溶液中测量的本发明的钢1的电位的曲线图。 
当将不锈钢浸渍在氧化性酸(例如,硝酸和氢氟酸的混合溶液)中时,在不锈钢的表面上形成钝化层。当在不锈钢的表面上形成钝化层时,不锈钢的电位升高。 
因此,当将不锈钢以饱和电位浸渍在硝酸和氢氟酸的混合溶液中时,钝化层完全地形成在不锈钢的表面上。 
如图3中所示,当用硫酸酸洗之后将不锈钢浸渍在硝酸和氢氟酸的混合溶液中时(A),比没有用硫酸酸洗的浸渍(B)相比,钝化层更快地形成在不锈钢的表面上。这样的结果意味着用硫酸酸洗不锈钢对于形成具有低接触电阻的钝化层来说是有效的。
本发明人发现,通过将不锈钢在混合溶液中浸渍30秒至10分钟,钝化层可以有效地形成在不锈钢的表面中。该处理时间根据钢的表面粗糙度而改变。因为混合溶液和不锈钢的表面之间的接触面积随表面粗糙度增大而增大,所以在表面粗糙度增大的情况下会缩短制造时间。 
当钝化处理的温度低时,将处理执行较长时间。相反,当钝化处理的温度高时,不锈钢的表面会受到损害,由此会导致接触电阻和耐蚀性劣化。因此,在本发明中,将钝化处理的温度限制在40℃至60℃的范围内。 
另外,当硝酸的浓度为10%(重量)或更少时,难以钝化不锈钢,而当硝酸的浓度过量时,难以减小接触电阻。因此,在本发明中,将硝酸的浓度限制在10%(重量)至20%(重量)的范围内。 
当氢氟酸的浓度为1%(重量)或更少时,钝化层会不稳定。相反,当氢氟酸的浓度过量时,不锈钢的表面会受到损害,从而会使接触电阻和耐蚀性劣化。因此,在本发明中,将氢氟酸的浓度限制在1%(重量)至10%(重量)的范围内。 
图4是示出用于测量不锈钢双极板的界面接触电阻的装置的剖视图。 
参照图4,这用于测量双极板120的界面接触电阻。这里,利用DC 4终端方法测量双极板120。更具体地讲,为了测量双极板120的界面接触电阻,将多个双极板120与碳纸(carbon paper)270一起安装在铜端板280上。并且,将电压端300结合到双极板120,并将电流施加端290结合到铜端板280,从而基于施加的压力来测量双极板120的界面接触电阻。 
对于本发明的一个示例性实施例,在表面性能的化学改进之前/之后,在140N/cm2的接触压强下测量双极板120的界面接触电阻。在下表2中列出了结果。 
如在表2中所列,示出的是,在钢具有少含量的Cr和Mo且还包含Cu和W的情况下,钢具有低的界面接触电阻。 
另外,根据本发明一个示例性实施例,经过表面性能的化学改进的钢在140N/cm2的接触压强时具有3mΩm2至6mΩm2的界面接触电阻。在上述的电化学极化测试之后,所测量的钢的界面接触电阻在4mΩm2至6mΩm2的范围内,这表明钢具有优异的特性。在电化学极化测试之后,电流密度也较低, 为0.5μA/cm2或更低。在电化学极化测试之后,当从腐蚀溶液测量析出的Fe、Cr和Ni离子时,在0.035mg/L的浓度中仅检测到析出的Fe离子,这表明燃料电池的性能没有被析出的离子劣化。 
根据本发明的一个示例性实施例,使用XPS(X-射线光电子光谱)和TEM分析来测量钝化层在表面性能的化学改进之前/之后的厚度。 
图5是示出如在表1中列出的本发明的钢1的表面性能的化学改进之前/之后的X-射线光电子光谱(XPS)分析结果的曲线图。 
如下相互比较钝化层在表面性能的化学改进之前的厚度(图5中的(a))和在表面性能的化学改进之后的厚度(图5中的(b))。 
钝化层在表面性能的化学改进之后的厚度为2nm至5nm,Cr氧化物层在表面性能的化学改进(用硫酸进行酸洗,并在混合溶液中钝化)之后的浓度分布比厚度为1nm的位于最外表面区域中的Fe氧化物层的浓度分布高。另外,Cr(OH)3和Cr(6+)氧化物存在于表面区域中,但Cr(OH)3作为主相存在于表面区域中。也就是说,显示出:在表面性能的化学改进之后,优异的钝化层形成在不锈钢的表面中。 
图6是示意性地示出如在表1中列出的本发明的钢和对比钢的表面性能的化学改进之后测量的不锈钢的界面接触电阻的曲线图。 
如图6中所示,根据本发明的一个示例性实施例,在表面性能的化学改进之后,测量每种钢的界面接触电阻。结果,显示出:所有的不锈钢在140N/cm2的接触压强下具有4mΩm2至6mΩm2的优异的界面接触电阻。 
图7是示意性地示出对如在表1中列出的本发明的钢1测量电化学极化测试之后的电流密度的曲线图。 
根据本发明的一个示例性实施例,在上述的表面性能的化学改进之后执行等离子体渗氮工艺。如下将详细描述等离子体渗氮工艺。 
在阳极和阴极(在本发明中,双极板120对应于阴极)之间施加高的DC电压,从而在氮或氮与氢的混合气体的气氛下产生辉光放电。在这种情况下,使氮气离子化,从而覆盖不锈钢的整个表面。 
覆盖不锈钢的表面的等离子体氮化物层是具有高能量的气体离子的电离层,气体离子由于放电作用而朝向阴极的表面移动。然后,气体离子在高速下加速,从而与不锈钢碰撞。氮离子以这种方式渗入不锈钢中与Cr结合,从而形成Cr2N和CrN的氮化物。 
当该Cr氮化物大量形成时,不锈钢的界面接触电阻会减小,但Cr-消耗层的形成会导致耐蚀性劣化。 
在本发明中,将等离子体渗氮工艺的温度限制在200℃至500℃的范围内,并执行等离子体渗氮工艺长达1分钟至5小时。 
图7示出本发明的钢1在表面性能的改进之前的电流密度(C)、表面粗糙度最初为0.4μm至1μm的本发明的钢1在化学改进和等离子体渗氮工艺之后的电流密度(D)和表面粗糙度最初为0.4μm或更低的本发明的钢1在化学改进和等离子体渗氮工艺之后的电流密度(E)。本发明的钢1的电流密度由电化学极化测试测量。 
如图7中所示,显示出:本发明的钢1在表面性能的改进之前具有最高的电流密度(C),当本发明的钢1具有相同的电位时,表面粗糙度最初为0.4μm或更低的本发明的钢1在化学改进和等离子体渗氮工艺之后具有最低的电流密度(E)。 
从图7可知,如果不锈钢经过表面性能的改进,则不锈钢具有优异的耐蚀性。 
图8是示意性地示出根据本发明一个示例性实施例的不锈钢的表面的XPS分析结果的曲线图,其中,所述不锈钢的表面性能通过化学改进和等离子体渗氮工艺而得以提高。 
如图8中的(a)和图8中的(b)中所示,对于距离氮化物层的表面100nm或更近的区域,已知的是,在距离表面1.5nm或更近的区域中主要观察到CrN氮化物。另外,已知的是,在距离表面5.8nm或更远的区域中,Cr2N氮化物与铬氧化物层和铁氧化物层混合。 
通过如上所述适当地分布氮化物,可以减小不锈钢的界面接触电阻,并可以显著地提高不锈钢的耐蚀性。 
虽然已经结合特定的示例性实施例描述了本发明,但应当理解的是,本发明不限于公开的实施例,而是相反,本发明旨在涵盖包括在本发明的权利要求书和等同物的精神和范围内的各种修改和等同布置。 

Claims (6)

1.一种提高用于聚合物电解质膜燃料电池的双极板的不锈钢的表面性能的方法,所述方法包括以下步骤:
用硫酸水溶液去除不锈钢的第一钝化层,所述不锈钢包含以重量计:0.02%或更少的C、0.02%或更少的N、0.4%或更少的Si、0.2%或更少的Mn、0.04%或更少的P、0.02%或更少的S、25%至32%的Cr、0.1%至5%的Mo、0.1%至2%的Cu、0.5%或更少的Ti、0.5%或更少的Nb和余量的Fe以及其它不可避免的元素;
用水清洗所述不锈钢;
将所述不锈钢浸渍在硝酸和氢氟酸的混合溶液中,以形成接触电阻比所述第一钝化层的接触电阻低的第二钝化层;
将浸渍过的不锈钢进行等离子体渗氮,以在所述不锈钢的表面上形成氮化物层。
2.根据权利要求1所述的方法,其中,所述不锈钢还包含从由以下元素组成的组中选择的一种或两种或多种元素:0%(重量)至1%(重量)的V、0%(重量)至4%(重量)的W、0%(重量)至1%(重量)的La、0%(重量)至1%(重量)的Zr和0%(重量)至0.1%(重量)的B。
3.根据权利要求1所述的方法,其中,所述硫酸水溶液中的硫酸的浓度为5%(重量)至20%(重量),用硫酸水溶液酸洗的步骤以50℃至75℃的温度执行20秒至5分钟。
4.根据权利要求1所述的方法,其中,所述混合溶液中的硝酸的浓度为10%(重量)至20%(重量),所述混合溶液中的氢氟酸的浓度为1%(重量)至10%(重量),浸渍在混合溶液中的步骤以40℃至60℃的温度执行长达30秒至10分钟。
5.根据权利要求1所述的方法,其中,所述氮化物层包括CrN和/或Cr2N,并具有0.01nm至100nm的厚度。
6.根据权利要求1所述的方法,其中,所述等离子体渗氮的步骤以200℃至500℃的温度执行1分钟至5小时。
CN200780048358XA 2006-12-28 2007-12-27 提高用于聚合物电解质膜燃料电池的双极板的不锈钢的表面性能的方法 Active CN101601158B (zh)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
KR10-2006-0137074 2006-12-28
KR1020060137074A KR100836480B1 (ko) 2006-12-28 2006-12-28 연료전지 분리판인 스테인리스 강재의 표면처리방법
KR1020060137074 2006-12-28
KR1020070134584 2007-12-20
KR20070134584 2007-12-20
KR1020070134585A KR100931457B1 (ko) 2007-12-20 2007-12-20 고분자 연료전지 분리판용 스테인리스강의 표면 개질방법
KR1020070134585 2007-12-20
KR10-2007-0134585 2007-12-20
KR10-2007-0134584 2007-12-20
PCT/KR2007/006908 WO2008082162A1 (en) 2006-12-28 2007-12-27 Method for improving surface properties of the stainless steels for bipolar plate of polymer electrolyte membrane fuel cell

Publications (2)

Publication Number Publication Date
CN101601158A CN101601158A (zh) 2009-12-09
CN101601158B true CN101601158B (zh) 2013-06-26

Family

ID=39770628

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200780048358XA Active CN101601158B (zh) 2006-12-28 2007-12-27 提高用于聚合物电解质膜燃料电池的双极板的不锈钢的表面性能的方法

Country Status (2)

Country Link
KR (1) KR100836480B1 (zh)
CN (1) CN101601158B (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7914948B2 (en) 2008-04-29 2011-03-29 Hyundai Motor Company Metallic bipolar plate for fuel cell and method for forming surface layer of the same
KR100981516B1 (ko) 2008-12-24 2010-09-10 주식회사 포스코 직접메탄올 연료전지용 금속 분리판의 제조 방법
KR101082244B1 (ko) 2010-06-24 2011-11-09 현대하이스코 주식회사 매니폴더 마스킹이 적용된 연료전지용 금속 분리판 및 그 제조 방법
US9653738B2 (en) * 2011-01-17 2017-05-16 Jfe Steel Corporation Method for producing stainless steel for fuel cell separator, stainless steel for fuel cell separator, fuel cell separator, and fuel cell
US8834734B2 (en) 2011-06-06 2014-09-16 GM Global Technology Operations LLC Surface alloying of stainless steel
JP5218612B2 (ja) * 2011-07-29 2013-06-26 Jfeスチール株式会社 燃料電池セパレータ用ステンレス鋼
CN102629690B (zh) * 2012-04-20 2014-09-24 大连交通大学 燃料电池用铬氮化物改性金属双极板及其制备方法
FI20145446A (fi) * 2014-05-16 2015-11-17 Outotec Finland Oy Menetelmä prosessilaitteen valmistamiseksi ja prosessilaite
CN105047975B (zh) * 2015-08-28 2018-02-23 航天新长征电动汽车技术有限公司 一种燃料电池用金属双极板及其制备方法
KR101798406B1 (ko) * 2015-09-22 2017-11-17 주식회사 포스코 연료전지 분리판용 스테인리스강 및 이의 제조 방법
CN109355591A (zh) * 2018-11-19 2019-02-19 深圳市致远动力科技有限公司 一种耐高温合金
CN112585292B (zh) * 2019-06-14 2022-12-06 Posco公司 导电性优异的奥氏体系不锈钢及其制造方法
CN111036047B (zh) * 2019-12-31 2023-10-27 深圳粤鹏环保技术股份有限公司 一种提高等离子电场处理效率的方法
KR102326257B1 (ko) 2021-05-31 2021-11-16 주식회사 포스코 친수성 및 도전성이 우수한 강판
KR102326258B1 (ko) 2021-05-31 2021-11-16 주식회사 포스코 친수성 및 도전성이 우수한 강판

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1271027A (zh) * 1999-04-19 2000-10-25 住友金属工业株式会社 固体高分子型燃料电池用不锈钢材
CN1608144A (zh) * 2001-12-25 2005-04-20 株式会社帕克 不锈钢除去氧化皮后的表面精加工方法
EP1726674A1 (en) * 2004-03-18 2006-11-29 JFE Steel Corporation Metal material for current-carrying member, separator for fuel cell utilizing the same and fuel cell including the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5087846B2 (ja) * 2005-02-22 2012-12-05 日産自動車株式会社 遷移金属窒化物、燃料電池用セパレータ、燃料電池スタック、燃料電池車両、遷移金属窒化物の製造方法及び燃料電池用セパレータの製造方法
JP4756905B2 (ja) * 2005-05-10 2011-08-24 日新製鋼株式会社 固体酸化物型燃料電池セパレータ材

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1271027A (zh) * 1999-04-19 2000-10-25 住友金属工业株式会社 固体高分子型燃料电池用不锈钢材
CN1608144A (zh) * 2001-12-25 2005-04-20 株式会社帕克 不锈钢除去氧化皮后的表面精加工方法
EP1726674A1 (en) * 2004-03-18 2006-11-29 JFE Steel Corporation Metal material for current-carrying member, separator for fuel cell utilizing the same and fuel cell including the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP特开2003-286592A 2003.10.10

Also Published As

Publication number Publication date
CN101601158A (zh) 2009-12-09
KR100836480B1 (ko) 2008-06-09

Similar Documents

Publication Publication Date Title
CN101601158B (zh) 提高用于聚合物电解质膜燃料电池的双极板的不锈钢的表面性能的方法
US9103041B2 (en) Method for improving surface properties of the stainless steels for bipolar plate of polymer electrolyte membrane fuel cell
CN102272343B (zh) 用于聚合物燃料电池隔板的不锈钢及其制造方法
CN103154292B (zh) 耐腐蚀性和导电性优异的铁素体系不锈钢及其制造方法、固体高分子型燃料电池隔板以及固体高分子型燃料电池
CN101646807B (zh) 用于燃料电池的不锈钢分离器及其制造方法
JP6726735B2 (ja) 燃料電池分離板用ステンレス鋼およびその製造方法
US11085120B2 (en) Stainless steel sheet for fuel cell separators and production method therefor
KR20090066866A (ko) 고분자 연료전지 분리판용 스테인리스강의 표면 개질방법
JP5133466B2 (ja) 燃料電池用セパレータおよびその製造方法
KR20130121930A (ko) 연료 전지 세퍼레이터용 스테인리스강의 제조 방법, 연료 전지 세퍼레이터용 스테인리스강, 연료 전지 세퍼레이터, 그리고 연료 전지
US7070877B2 (en) Stainless steel separator for low-temperature fuel cell
CN108368612A (zh) 具有改善的亲水特性和耐腐蚀性的用于聚合物电解质膜燃料电池的隔板的不锈钢及其制造方法
JP4889910B2 (ja) 低温型燃料電池用セパレータ及びその製造方法
KR100981516B1 (ko) 직접메탄올 연료전지용 금속 분리판의 제조 방법
KR101312861B1 (ko) 내식성 및 접촉저항이 우수한 고분자 연료전지 분리판용 스테인리스강 및 이를 이용한 분리판 제조방법
CN110199047B (zh) 具有优异的接触电阻的用于聚合物燃料电池隔板的不锈钢及其制造方法
CN101485021B (zh) 用于燃料电池元件的导电板
JP6648273B2 (ja) 親水性および接触抵抗が向上した高分子燃料電池の分離板用ステンレス鋼およびその製造方法
KR20120072824A (ko) 직접메탄올 연료전지 분리판용 스테인리스강 및 제조방법
KR102102608B1 (ko) 고분자 연료전지 분리판용 스테인리스강 제조 방법
JP2006164824A (ja) 固体高分子型燃料電池用ステンレス鋼製セパレータ及び固体高分子型燃料電池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP03 Change of name, title or address

Address after: Seoul, South Kerean

Patentee after: POSCO Holdings Co.,Ltd.

Address before: Gyeongbuk, South Korea

Patentee before: POSCO

CP03 Change of name, title or address
TR01 Transfer of patent right

Effective date of registration: 20230516

Address after: Gyeongbuk, South Korea

Patentee after: POSCO Co.,Ltd.

Address before: Seoul, South Kerean

Patentee before: POSCO Holdings Co.,Ltd.

TR01 Transfer of patent right