CN101601098A - 监视老化试验装置和监视老化试验方法 - Google Patents

监视老化试验装置和监视老化试验方法 Download PDF

Info

Publication number
CN101601098A
CN101601098A CNA2008800039714A CN200880003971A CN101601098A CN 101601098 A CN101601098 A CN 101601098A CN A2008800039714 A CNA2008800039714 A CN A2008800039714A CN 200880003971 A CN200880003971 A CN 200880003971A CN 101601098 A CN101601098 A CN 101601098A
Authority
CN
China
Prior art keywords
temperature
temperature sensor
group
measurement unit
row
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2008800039714A
Other languages
English (en)
Inventor
前崎义博
勅使河原宽
小平幸彦
关口尚枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2007023319A external-priority patent/JP5151170B2/ja
Priority claimed from JP2007026584A external-priority patent/JP5003188B2/ja
Priority claimed from JP2007073432A external-priority patent/JP2008234766A/ja
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of CN101601098A publication Critical patent/CN101601098A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/06Acceleration testing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/2872Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation
    • G01R31/2874Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation related to temperature
    • G01R31/2875Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation related to temperature related to heating
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/406Management or control of the refreshing or charge-regeneration cycles
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/56External testing equipment for static stores, e.g. automatic test equipment [ATE]; Interfaces therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/56External testing equipment for static stores, e.g. automatic test equipment [ATE]; Interfaces therefor
    • G11C29/56016Apparatus features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/286External aspects, e.g. related to chambers, contacting devices or handlers
    • G01R31/2868Complete testing stations; systems; procedures; software aspects
    • G01R31/287Procedures; Software aspects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/319Tester hardware, i.e. output processing circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • For Increasing The Reliability Of Semiconductor Memories (AREA)

Abstract

本发明提供监视老化试验装置和监视老化试验方法。在监视老化试验装置(11)中,向需要刷新处理的多个元件(16)内一并写入数据。在写入后的元件(16)中实施刷新处理。保持了数据。在实施读出处理时,在读出处理对象的元件(16)中中止刷新处理。从中止后的元件(16)中读出数据。这样仅在读出处理对象的元件(16)中中止刷新处理,因而在读出处理对象以外的元件(16)中继续刷新处理。可靠地保持了数据。数据写入处理一次完成。可有效地实施监视老化试验。

Description

监视老化试验装置和监视老化试验方法
技术领域
本发明涉及例如在监视老化试验中使用的监视老化试验装置。
背景技术
例如在SRAM之类的半导体器件的产品发货之前实施所谓的监视老化试验。在实施时将试验对象的多个半导体器件安装在老化板上。半导体器件例如由加热器加热。半导体器件例如被维持在摄氏100度的高温。此时,驱动半导体器件。对半导体器件施加比通常高的值的电压。这样检查半导体器件的动作。
在监视老化试验中实施动作检查时,首先,(1)实施写入读出工序。在该工序中实施数据的写入处理和读出处理。此时,将所写入的数据和所读出的数据进行比较。然后,(2)实施老化工序。在该工序中长时间继续数据的写入处理。接下来,(3)实施读出工序。在该工序中实施写入处理和读出处理。与写入读出工序一样将数据进行比较。
例如SDRAM和DRAM之类的存储器需要刷新处理。在这样的存储器是试验对象的情况下,当从数据写入到数据读出的时间超过所谓的刷新周期时,所写入的数据消失。因此,按各存储器连续实施写入处理和读出处理。结果,当针对所有存储器实施了写入处理和读出处理时,需要非常长的时间。结果,需要刷新处理的存储器的监视老化试验非常费工夫。
并且,监视老化试验是对同一种多个半导体器件一齐来实施。所有半导体器件必须被维持均等温度。在温度控制时,在各个半导体器件上安装温度传感器。温度传感器与温度测定单元单独连接。温度测定单元确定温度传感器的测定温度。控制电路根据所确定的温度控制加热器的温度。在这样的温度试验装置中,需要与温度传感器相同数量的温度测定单元。温度试验装置的制造成本增多。
而且,在对试验对象进行加热时使用加热器。例如如专利文献5记载,加热器例如具有圆筒状的金属管。在金属管内插入发热体。使金属管的底面按压试验对象。这样对试验对象进行加热。然而,金属管的底面被设定为规定面积。因此,例如当挡住金属管的底面的试验对象的大小增大时,加热器的底面不能以充分面积接触试验对象。这样的加热器缺乏通用性。
专利文献1:日本特开平5-36793号公报
专利文献2:日本特开2005-156172号公报
专利文献3:日本特开2005-252225号公报
专利文献4:日本特开平10-320974号公报
专利文献5:日本特许第3425825号公报
专利文献6:日本特开2001-167600号公报
专利文献7:日本特开平4-17349号公报
专利文献8:日本特开2001-184896号公报
发明内容
本发明是鉴于上述实际情况而作成的,本发明的目的是提供一种可针对需要刷新处理的元件有效地实施监视老化试验的监视老化试验装置和监视老化试验方法。本发明还提供一种可低成本且有效地实施温度试验的温度试验装置及其温度调整方法。而且,本发明的又一目的是提供一种可根据加热对象的大小以不同面积接触加热对象的加热夹具。
为了达到上述目的,根据第1发明,提供了一种监视老化试验方法,其特征在于,该监视老化试验方法具有执行如下处理的工序:实施写入处理,以向需要刷新处理的作为试验对象的多个元件一并写入数据;在所述写入处理后的所述元件中实施刷新处理;以及在从所述元件选择的至少1个以上的所述元件中中止刷新处理,实施从该元件读出数据的读出处理。
在这样的监视老化试验装置中,向需要刷新处理的多个元件一并写入数据。在写入后的元件中实施刷新处理。保持了数据。在实施读出处理时,在读出处理对象的元件中中止刷新处理。从所中止的元件读出数据。这样仅在读出处理对象的元件中中止刷新处理,因而在读出处理对象以外的元件中继续刷新处理。可靠地保持了数据。数据写入处理一次完成。可有效地实施监视老化试验。
监视老化试验方法还具有执行如下处理的工序:在所述读出处理后的所述元件中再开始刷新处理;对所有所述元件实施老化处理;以及在所述老化处理后,在从所述元件选择的至少1个以上的所述元件中中止刷新处理,实施从该元件读出数据的读出处理。
这样在读出处理后的元件中再开始刷新处理。之后,再次实施读出处理。根据刷新处理在元件中保持数据,因而无需重新实施数据的写入处理。有效地实施监视老化试验。并且,监视老化试验方法还具有执行如下处理的工序:将写入在所述元件内的数据与从所述元件读出的数据进行比较。这样实施元件的检查。
在实现以上的监视老化试验方法时,提供了一种监视老化试验装置。监视老化试验装置具有:老化板;作为试验对象的多个元件,其安装在老化板上,且需要刷新处理;以及控制电路,其在一并的数据写入处理后的所述元件中实施刷新处理,同时从所述元件中选择至少1个以上的元件,在所选择的元件中中止刷新处理,从该元件读出数据。
根据第2发明,提供了一种温度试验装置,其特征在于,该温度试验装置具有:加热器,其与按多行多列排列的作为试验对象的元件单独接触;温度传感器,其与元件单独接触;第1温度测定单元,其与按照每个行从行整体的温度传感器选择的第1组温度传感器单独连接,单独检测元件的温度;第2温度测定单元,其与第1组以外的第2组温度传感器按每个列单独连接,单独检测元件的温度;以及控制电路,其当在第1温度测定单元和第2温度测定单元中检测出超出规定范围的温度时,调整与表示该温度的元件接触的加热器的温度。
在这样的温度试验装置中,第1温度测定单元与按每个行从行整体的温度传感器选择的第1组温度传感器按单独连接。第2温度测定单元与按每个列从列整体的温度传感器选择的第2组温度传感器单独连接。因此,当第1温度测定单元按行数配置,第2温度测定单元按列数配置时,可检测所有元件的温度。和温度测定单元与所有温度传感器单独连接的情况相比,温度测定单元的数量大幅减少。显著抑制了温度试验装置的制造成本。
在这样的温度试验装置中,第1组温度传感器的个数按各行共同设定。此时,第1组温度传感器的个数可以按各列共同设定。另一方面,可以在各行以相同数量配置第1组温度传感器和第2组温度传感器。此时,可以在各列以相同数量配置第1组温度传感器和第2组温度传感器。
以上的温度试验装置可以具有:基板,其支撑温度传感器以及第1温度测定单元和第2温度测定单元;第1配线图形,其形成在基板上,使第1组温度传感器与第1温度测定单元并联连接;以及第2配线图形,其形成在基板上,使第2组温度传感器与第2温度测定单元并联连接。
根据第2发明,提供了一种温度试验装置的温度调整方法,其特征在于,该温度调整方法具有执行如下处理的工序:调整与按多行多列排列的作为试验对象的元件单独接触的加热器的温度,并将元件加热到规定温度;在与第1组温度传感器单独连接的第1温度测定单元中单独检测元件的温度,该第1组温度传感器是在与元件单独接触的温度传感器中,按每个行从行整体的温度传感器选择的;在与按每个列从列整体的温度传感器选择的第1组以外的第2组温度传感器单独连接的第2温度测定单元中单独检测元件的温度;以及当在第1温度测定单元和第2温度测定单元中检测出超出规定范围的温度时,调整与表示该温度的元件接触的加热器的温度。
在这样的温度调整方法中,第1温度测定单元与按每个行从行整体的温度传感器选择的第1组温度传感器单独连接。第2温度测定单元与按每个列从列整体的温度传感器选择的第2组温度传感器单独连接。因此,当第1温度测定单元按行数配置,第2温度测定单元按列数配置时,可检测所有元件的温度。和温度测定单元与所有温度传感器单独连接的情况相比,温度测定单元的数量大幅减少。显著抑制了温度试验装置的制造成本。
附图说明
图1是概略地示出本发明的一实施方式涉及的监视老化试验装置的结构的立体图。
图2是概略地示出老化板和温度试验装置的结构的局部放大剖面图。
图3是概略地示出本发明的一具体例涉及的温度试验装置的结构的局部放大平面图。
图4是沿着图3的4-4线的剖面图。
图5是概略地示出本发明的一具体例涉及的温度试验装置的结构的局部放大平面图。
图6是概略地示出加热器的结构的放大剖面图。
图7是概略地示出监视老化试验装置的控制系统的结构的框图。
图8是示出写入指令的图。
图9是示出读出指令的图。
图10是示出刷新指令的图。
图11是示出刷新解除指令的图。
图12是概略地示出监视老化试验的工序的图。
图13是概略地示出监视老化试验的流程的流程图。
图14是示出针对所有元件实施写入处理的状况的图。
图15是示出针对所有元件实施刷新处理的状况的图。
图16是示出在元件组1中实施读出处理的同时在元件组2~10中实施刷新处理的状况的图。
图17是示出在元件组2中实施读出处理的同时在元件组1和元件组3~10中实施刷新处理的状况的图。
图18是示出在1个元件组中实施读出处理的同时在其他元件组中实施刷新处理的状况的图。
图19是概略地示出本发明的一具体例涉及的温度试验装置的控制系统的框图。
图20是概略地示出本发明的另一具体例涉及的温度试验装置的控制系统的框图。
图21是概略地示出加热夹具的结构的局部放大剖面图。
图22是概略地示出加热夹具的结构的立体图。
图23是概略地示出加热夹具的结构的立体图。
图24是概略地示出加热夹具的结构的立体图。
图25是概略地示出加热夹具在第1接触面与元件接触的状况的侧面图。
图26是概略地示出加热夹具在第2接触面与元件接触的状况的侧面图。
图27是概略地示出加热夹具在第3接触面与元件接触的状况的侧面图。
具体实施方式
以下,参照附图来说明本发明的一实施方式。
图1概略地示出本发明的一实施方式涉及的监视老化试验装置11。该监视老化试验装置11具有老化板12。老化板12具有例如树脂制的板主体13。在板主体13上固定有印刷基板14。印刷基板14在板主体13的轮廓的内侧规定轮廓。在印刷基板14的表面安装有多个插座15。插座15例如以4行4列排列。
在各插座15上安装有试验对象的元件16。元件16全部由同一种半导体器件构成。元件16包含有例如SDRAM芯片之类的需要刷新处理的存储芯片。在印刷基板14的外侧,在板主体13上安装有连接器17。元件16和连接器17根据形成在印刷基板14上的配线图形(未图示)连接。连接器17与后述的监视老化试验用的控制电路连接。
在老化板12上配置有温度试验装置21。温度试验装置21具有例如树脂制的基板22。基板22具有与老化板12的板主体13相同的轮廓。在基板22和板主体13之间配置有4根支柱23。支柱23配置在板主体13的四角。借助支柱23的作用,基板22的背面和板主体13的表面以规定间隔隔开。支柱23使基板22和板主体13连接。
在基板22上支撑有例如4行4列的加热器25。加热器25形成为例如圆柱状。在支撑时在基板22上固定有相互并列延伸的4块固定板26。加热器25在基板22的表面和背面从基板22直立。加热器25与所述的插座15一对一对应。在基板22上规定的加热器25的位置与在板主体13上规定的插座15的位置相对应。这样,加热器25的下端在插座15内的元件16上被挡住。加热器25的结构详情在后面描述。
各加热器25与电源用配线27和接地用配线28连接。配线27、28与基板22上的导电焊盘29单独连接。导电焊盘29形成在固定板26的外侧的基板22上。在基板22上安装有连接器31。连接器31与电源电缆(未图示)连接。电源电缆与电源连接。导电焊盘29和连接器31利用导电图形来连接。这样向加热器25提供电力。
如图2所示,支柱23由空心管构成。根据空心管的长度调整来调整基板22和板主体13的间隔。在支柱23内收容有螺栓32的螺旋轴。螺栓32贯通基板22和板主体13。螺栓32的螺旋头在基板22的表面被挡住。在螺栓32的螺旋轴上,在板主体13的背面安装有螺母33。这样使基板22和板主体13连接。固定板26使用螺丝34来固定在基板22上。
如图3所示,在固定板26的表面,一对安装板35与固定板26连接。安装板35、35在内端之间夹入加热器25。安装板35在由其内端划分的凹部36与加热器25的外壁面相接。凹部36的缘沿着规定曲率的圆弧延伸。缘的曲率与加热器25的直径一致。这样,安装板35、35可支撑加热器25。加热器25被收容在形成于固定板26上的通孔37内。在加热器25的外壁面与通孔37的内壁面之间形成有规定间隙。
各安装板35使用螺丝38来与固定板26连接。螺丝38的螺旋轴被收容在形成于安装板35上的长孔39内。长孔39沿着使导电焊盘29、29之间连接的虚拟直线延伸。螺丝38被拧入到固定板26内。一并参照图4,螺丝38的螺旋头在安装板35的表面被挡住。在基板22上形成有例如矩形的开口41。开口41是按照每个加热器25来形成。开口41由固定板26堵住。开口41收容加热器25和螺丝38的螺旋轴。
安装板35可沿着所述的虚拟直线且沿着固定板26的表面滑动。安装板35的滑动由螺丝38和长孔39引导。这样,例如如图5所示,安装板35可定位在远离加热器25的待避位置。固定板26的通孔37被设定成大于加热器25的直径。因此,当安装板35定位在待避位置时,在加热器25的轴心方向容许加热器25的垂直移动。
如图6所示,加热器25具有圆筒状的壳体42。壳体42可以由例如铝之类的金属材料形成。在壳体42内收容有发热体43。发热体43可以由例如电热线形成。发热体43与所述的配线27、28连接。当根据配线27、28向发热体43提供了电力时,发热体43发热。发热体43的温度是根据提供给发热体43的电力量来设定的。
在加热器25的壳体42内装入有温度传感器44。温度传感器44沿着例如壳体42的底板来配置。温度传感器44与配线45连接。配线45与基板22连接。如上所述,加热器25的壳体42的下端即底板与元件16接触。结果,温度传感器44可检测元件16的温度。检测出的温度从基板22被输出到外部。
如图7所示,例如在老化板12上安装有5行10列50个元件16。各元件16被安装在老化板12上的插座15上。元件16由SDRAM构成。这里,对元件16附上“元件1”~“元件50”的标识符。在老化板12上,各列的每5个元件16构成1个元件组。由于在老化板12上配置有50个元件16,因而在老化板12上建立分别包含5个元件16的10个元件组即第1元件组~第10元件组。另外,例如各行的每10个元件16可以构成1个元件组。
老化板12的连接器17与控制电路即控制器46连接。控制器46根据存储在例如闪存(未图示)内的软件程序进行动作。控制器46连接有CLK信号产生部47、CKE信号产生部48、地址数据产生部49、RAS信号产生部51、CAS信号产生部52、WE信号产生部53以及试验数据产生部54。控制器46可对由各产生部47~54生成的信号和数据的输出进行管理。
CLK(时钟)信号产生部47产生CLK信号。CLK信号表示动作基准时钟。CKE(时钟启动)信号产生部48产生CKE信号。CKE信号确定后述的刷新处理的可否。地址数据产生部49产生地址数据。地址数据确定各元件16内的单元的地址。RAS(行地址选通)信号产生部51产生RAS信号。CAS(列地址选通)信号产生部52产生CAS信号。RAS信号和CAS信号确定地址数据的取入定时。WE(光启动)信号产生部53产生WE信号。WE信号确定后述的写入处理和读出处理的可否。试验数据产生部54产生试验数据。
在老化板12上,各行的元件16与公共的1个公共配线图形连接。公共配线图形与连接器17的1个端子连接。该公共配线图形与形成在各元件16上的CLK端子、地址端子、RAS端子、CAS端子、WE端子以及输入输出端子连接。这样例如向第1行“元件1”~“元件10”输入公共的CLK信号、地址数据、RAS信号、CAS信号、WE信号以及试验数据。向第2行“元件11”~“元件20”和第3行“元件21”~“元件30”也同样输入公共的信号和数据。
另一方面,老化板12上的各元件16与单独配线图形单独连接。单独配线图形与连接器17的1个端子连接。该单独配线图形与形成在各元件16上的CKE端子连接。这样向各元件16单独输入CKE信号。换句话说,可向各“元件1”~“元件50”分别输入不同的CKE信号。这样的CKE信号的控制由控制器46实施。另外,由于连接器17的管脚数根据标准来限制,因而针对所述的CLK信号、地址数据、RAS信号、CAS信号、WE信号以及试验数据不会形成单独的配线图形。
根据控制器46的控制从各信号产生部47~53输出的各信号构成各种指令。如图8所示,当在CLK信号的上升时WE信号被设定为“0”时,建立写入指令。如图9所示,当在CLK信号的上升时WE信号被设定为“1”时,建立读出指令。如图10所示,当CKE信号被设定为“0”时,建立刷新指令。当CKE信号维持“0”时,在所选择的“元件1”~“元件50”中继续自刷新处理。另一方面,如图11所示,当CKE信号被设定为“1”时,建立刷新解除指令。
下面,说明所谓的监视老化试验。在老化板12的插座15上安装有“元件1”~“元件50”。如图12所示,首先,实施写入读出工序(W/R工序)。在该W/R工序中,根据加热器25的发热,各“元件1”~“元件50”被加热。各“元件1”~“元件50”的温度被维持在摄氏70度左右。控制器46在图13的步骤S 1中,针对所有第1元件组~第10元件组的“元件1”~“元件50”建立公共的写入指令。写入指令根据公共配线图形和单独配线图形以广播方式被输入到所有“元件1”~“元件50”。结果,如图14所示,从试验数据产生部54输出的试验数据被一并写入到所有“元件1”~“元件50”内。在各“元件1”~“元件50”中,在由RAS信号或CAS信号确定的定时取入地址数据。这样在步骤S2中,在规定的单元内写入试验数据。
控制器46在步骤S3中,针对所有“元件1”~“元件50”建立公共的刷新指令。刷新指令根据公共配线图形和单独配线图形被输入到所有“元件1”~“元件50”。结果,如图15所示,在步骤S4中,在所有“元件1”~“元件50”中开始自刷新处理。根据自刷新处理,在“元件1”~“元件50”中保持所写入的试验数据。在步骤S5中,控制器46建立所述的自刷新解除指令。如上所述,由于CKE信号可被单独输入到各“元件1”~“元件50”,因而输入到第1元件组的“元件1”、“元件11”、“元件21”、“元件31”、“元件41”的CKE信号被设定为“1”。结果,在步骤S6中,在第1元件组中中止自刷新处理。
控制器46在步骤S7中,针对所有“元件1”~“元件50”建立公共的读出指令。读出指令根据公共配线图形和单独配线图形以广播方式被输入到所有“元件1”~“元件50”。结果,在步骤S8中,从第1元件组的“元件1”、“元件11”、“元件21”、“元件31”、“元件41”一齐读出试验数据。如图16所示,在第1元件组以外的第2元件组~第10元件组中继续自刷新处理,因而不向第2元件组~第10元件组输入读出指令。在步骤S9中,从第1元件组的“元件1”、“元件11”、“元件21”、“元件31”、“元件41”输出试验数据。控制器46在步骤S10中,将所写入的试验数据与所读出的试验数据进行比较。控制器46根据试验数据的一致和不一致来判定合格和不合格。之后,控制器46在步骤S11中,与上述一样,根据CKE信号的控制针对第1元件组建立刷新指令。在步骤S12中,在第1元件组中再开始自刷新处理。
控制器46在步骤S13中,判定是否还存在元件组。这里,由于第2元件组~第10元件组是未处理,因而处理进到步骤S14。在步骤S14中,针对下一第2元件组重复所述的步骤S5~S12的处理。如图17所示,在自刷新处理中止后,从第2元件组的“元件2”、“元件12”、“元件22”、“元件32”、“元件42”读出试验数据。在试验数据比较后,再开始第2元件组的自刷新处理。这样,如图18所示,在第3元件组~第10元件组中重复所述的步骤S5~S12的处理。当在所有元件组中W/R工序结束时,监视老化试验进入老化工序。
在老化工序中,如图12所示,根据加热器25,各“元件1”~“元件50”的温度被维持在摄氏100度左右。控制器46在步骤S 15中,针对第1元件组~第10元件组的所有“元件1”~“元件50”再次建立公共的刷新指令。刷新指令被输入到所有“元件1”~“元件50”。结果,在步骤S16中,在所有“元件1”~“元件50”中继续自刷新处理。在所有“元件1”~“元件50”中保持试验数据。自刷新处理例如24小时继续。这样实施所谓的动态老化处理。当老化工序结束时,监视老化试验进入读出工序(R工序)。
在R工序中,如图12所示,根据加热器25,各“元件1”~“元件50”的温度被维持在摄氏70度左右。控制器46在步骤S17中,针对第1元件组~第10元件组的所有“元件1”~“元件50”再次建立公共的刷新指令。刷新指令被输入到所有“元件1”~“元件50”。结果,在步骤S18中,在“元件1”~“元件50”中继续自刷新处理。在所有“元件1”~“元件50”中保持试验数据。控制器46在步骤S19中建立刷新解除指令。与上述一样,根据CKE信号,刷新解除指令仅被输入到第1元件组。结果,在步骤S20中,在第1元件组1中自刷新处理中止。
与所述的W/R工序一样,控制器46在步骤S21中,针对所有“元件1”~“元件50”建立公共的读出指令。读出指令被写入到所有“元件1”~“元件50”。在步骤S22中,从“元件1”、“元件11”、“元件21”、“元件31”、“元件41”读出数据。由于在第1元件组以外的第2元件组~第10元件组中继续自刷新处理,因而不向第2元件组~第10元件组输入读出指令。在步骤S23中输出试验数据。控制器46在步骤S23中,将所写入的试验数据与所读出的试验数据进行比较。控制器46根据试验数据的一致和不一致来判定合格和不合格。之后,控制器46在步骤S24中,针对第1元件组建立刷新指令。在步骤S25中,在第1元件组中再开始自刷新处理。
控制器46在步骤S27中,判定是否还存在元件组。这里,由于第2元件组~第10元件组是未处理,因而处理进到步骤S28。在步骤S28中,针对下一第2元件组重复所述的步骤S19~S26的处理。如上述一样,在刷新处理中止后,从第2元件组的“元件2”、“元件12”、“元件22”、“元件32”、“元件42”读出试验数据。在试验数据比较后,再开始第2元件组的自刷新处理。这样,在第3元件组~第10元件组中重复所述的步骤S19~S26的处理。结果,当在所有元件组中R工序结束时,监视老化试验结束。
在以上的监视老化试验装置11中,在向所有“元件1”~“元件50”一齐写入试验数据之后,在所有“元件1”~“元件50”中实施自刷新处理。在读出处理实施时,仅在读出对象的元件组中暂时中止自刷新处理。在读出处理结束后,在该元件组中再开始自刷新处理。在读出处理对象外的元件组中继续自刷新处理。结果,在所有“元件1”~“元件50”中可靠地保持试验数据。在保持试验数据之后,针对“元件1”~“元件50”,试验数据写入处理可以一次即可。这样在1台监视老化试验装置11中,可连续地实施W/R工序、老化工序以及R工序。可有效地实施监视老化试验。
而且,在试验数据写入处理实施和试验数据读出处理实施、自刷新处理开始、自刷新处理中止时,建立写入指令和读出指令、刷新指令、刷新解除指令。这样的指令是根据公知的CLK信号和CKE信号、RAS信号、CAS信号、WE信号来生成的。因此,各“元件1”~“元件50”无需特殊追加的端子。避免了对“元件1”~“元件50”的存取速度的下降。可针对现有的“元件1”~“元件50”实施监视老化试验。而且,在建立指令时,监视老化试验装置11无需特殊的电路。可简化监视老化试验装置11的结构。监视老化试验装置11的通用性提高。
图19是示出温度试验装置21的控制系统的框图。如图19所示,温度传感器44a~44p可分组为:第1组温度传感器44b、44d、44e、44g、44j、441、44m、44o,以及第1组以外的第2组温度传感器44a、44c、44f、44h、44i、44k、44n、44p。第1组温度传感器44是按每个行从行整体的温度传感器44选择的。同样,第2组温度传感器44是按每个列从列整体的温度传感器44选择的。第1组温度传感器44的个数是按各行和各列公同设定的。在各行以相同数量配置有第1组温度传感器44和第2组温度传感器44。在各列以相同数量配置有第1组温度传感器44和第2组温度传感器44。
在各行从第1行依次配置有第1温度测定单元71a~71d。配置在第1行的第1温度测定单元71a根据配线图形72与第1组温度传感器44b、44d并联连接。配线图形72形成在基板22上。在配线图形72内按每个温度传感器44b、44d插入有开关73。根据开关73的切换,第1温度测定单元71a与温度传感器44b、44d中的任一方单独连接。根据所连接的温度传感器44,第1温度测定单元71a检测半导体器件的温度。
同样,配置在第2行的第1温度测定单元71b与第1组温度传感器44e、44g并联连接。配置在第3行的第1温度测定单元71c与第1组温度传感器44j、44l并联连接。配置在第4行的第1温度测定单元71d与第1组温度传感器44m、44o并联连接。与所述的第1温度测定单元71a一样,在配线图形72内按各温度传感器44插入有开关73。根据开关73切换温度传感器44。
另一方面,在各列从第1行依次配置有第2温度测定单元74a~74d。配置在第1列的第2温度测定单元74a根据配线图形75与第1组以外的第2组温度传感器44a、44i并联连接。在配线图形75内按每个温度传感器44a、44i插入有开关76。根据开关76的切换,第2温度测定单元74a与温度传感器44a、44i中的任一方单独连接。根据所连接的温度传感器44,第2温度测定单元74a确定半导体器件的温度。
同样,配置在第2列的第2温度测定单元74b与第2组温度传感器44f、44n并联连接。配置在第3列的第2温度测定单元74c与第2组温度传感器44c、44k并联连接。配置在第4列的第2温度测定单元74d与第2组温度传感器44h、44p并联连接。与所述的第2温度测定单元74a一样,在配线图形75内按每个温度传感器44插入有开关76。根据开关76切换温度传感器44。
第1温度测定单元71a~71d和第2温度测定单元74a~74d与控制电路即控制器77连接。该控制器77根据规定的软件程序控制第1温度测定单元71a~71d、第2温度测定单元74a~74d、各加热器25的动作。软件程序可以存储在例如存储器78内。根据这样的软件程序实施后述的温度试验。在实施时需要的数据同样可以存储在存储器78内。
控制器77向第1温度测定单元71a~71d指示应建立连接的开关73。同样,控制器77向第2温度测定单元74a~74d指示应建立连接的开关76。第1温度测定单元71a~71d和第2温度测定单元74a~74d检测所连接的温度传感器44的温度。根据检测出的温度,控制器77按各加热器25确定电力量。在确定时,可以参照存储在存储器78内的电力量和温度的关系。
下面说明温度试验装置21的动作。控制器77执行规定的软件程序。根据控制器77的指示向各加热器25提供规定电力量的电力。加热器25发热。元件16的温度上升。而且,控制器77向第1温度测定单元71a~71d和第2温度测定单元74a~74d指示应连接的开关73。在各行连接2个开关73中的任一方的开关73。在各列连接2个开关76中的任一方的开关76。第1温度测定单元71a~71d和第2温度测定单元74a~74d与一个温度传感器44连接。
根据加热器25的发热,元件16的温度被设定为规定范围内的温度。范围例如被设定为大于摄氏98度且小于摄氏102度。此时,建立连接的温度传感器44检测元件16的温度。实施第1次测定处理。检测出的温度被输出到控制器77。控制器77判断检测出的温度是否超出规定范围。在温度例如是摄氏102度以上的情况下,抑制表示该温度的加热器25的电力量。在温度例如是摄氏98度以下的情况下,增大表示该温度的加热器25的电力量。
接下来,在各行和各列切换开关73、76。连接其他的开关73、76。第1温度测定单元71a~71d或第2温度测定单元74a~74d与另一个温度传感器44连接。与上述一样,建立连接的温度传感器44检测元件16的温度。实施第2次测定处理。检测出的温度被输出到控制器77。控制器77判断检测出的温度是否超出规定范围。根据温度调整相应的加热器25的电力量。这样所有元件16的温度在规定范围内被维持均等温度。
此时,根据老化板12从电源向元件16提供电力。向元件16施加比通常高的值的电压。驱动元件16。此时,检查元件16的动作。这样检查有无不合格品。从老化板12上取下温度试验装置21。老化试验结束。
根据以上的温度试验装置21,第1温度测定单元71a~71d按每个行与温度传感器44单独连接。同样,第2温度测定单元74a~74d按每个列与温度传感器44单独连接。因此,当第1温度测定单元71a~71d按行数配置,第2温度测定单元74a~74d按列数配置时,可检测所有元件16的温度。和温度测定单元与所有温度传感器44单独连接的情况相比,温度测定单元的数量大幅减少。显著抑制了温度试验装置21的制造成本。
此外,如图20所示,温度传感器44可以例如按10行5列排列。此时,在老化板12上同样按10行5列排列元件16。可以在各行配置行的增加量的第1温度测定单元71e~71j。可以在第5列配置列的增加量的第2温度测定单元74e。在配线图形72、75内,与上述一样可以按每个温度传感器44插入有开关73、76。这样可根据开关73、76的切换在4次测定处理中检测所有元件16的温度。与上述一样,温度测定单元的数量减少。抑制了温度试验装置21的制造成本。
如图21所示,可以在加热器25的下端安装加热夹具81。加热夹具81在规定的接触面由元件16的表面挡住。该加热夹具81由块体形成。块体由铜、铝之类的具有高的热传导性的金属材料形成。如后所述,加热夹具81可在各种面积的接触面与元件16接触。这样加热夹具81将加热器25的热传递到元件16。
如图22所示,加热夹具81具有楞柱状的第1块82和第2块83。第1块82在侧面与第2块83的侧面一体化。第1块82沿着与虚拟平面正交的第1轴X1直立。第2块83沿着与虚拟平面平行的第2轴X2直立。第1块82的半体和第2块83的半体规定与第1轴X1和第2轴X2正交的第3轴X3。第1轴X1、第2轴X2以及第3轴X3被规定成分别平行于三维正交坐标系的y轴、z轴以及x轴。
在第1块82的一个端面,沿着第1轴X1形成有第1插入孔84。第1插入孔84由有底孔构成。在第1块82的另一个端面形成有突起85。突起85形成为例如楞柱状。另一方面,在第2块83的一个端面,沿着第2轴X2形成有第2插入孔86。第2插入孔86由有底孔构成。一并参照图23,在第1块82的侧面,沿着第3轴X3形成有第3插入孔87。第3插入孔87由有底孔构成。第3插入孔87与第1插入孔84和第2插入孔86连接。第1插入孔84~第3插入孔87的直径容许收容加热器25。
在突起85的顶上面规定了第1接触面88。第1接触面88与第1轴X1正交。同样,在规定第2插入孔86的第2块83的另一个端面规定了第2接触面89。第2接触面89与第2轴X2正交。一并参照图24,在规定第3插入孔87的第2块83的侧面规定了第3接触面91。第3接触面91与第3轴X3正交。第1接触面88、第2接触面89以及第3接触面91的面积相互不同。这里,随着从第1接触面88朝向第2接触面89、第3接触面91,面积可以增大。
在利用这样的加热夹具81时,选择与元件16的表面面积对应的接触面88、89、91。如图25所示,例如在元件16的表面面积小于加热器25的下端面面积的情况下,选择第1接触面88。此时,加热器25被插入到第1插入孔84内。加热器25的下端由第1插入孔84的底板即第1块82的底壁92挡住。在实现有效的热传递时,第1块82的底壁92的板厚根据强度的考虑而适当薄。加热夹具81被压紧元件16。这样加热器25的热从突起85的第1接触面88被传递到元件16。
例如在元件16的表面面积大于加热器25的下端面面积的情况下,如图26所示,选择第2接触面89。此时,加热器25被插入到第2插入孔86内。第2块83的底壁93的板厚与上述一样形成得薄。这样加热器25的热从第2接触面89被传递到元件16。同样,在元件16的表面面积进一步大于加热器25的下端面面积的情况下,如图27所示,选择第3接触面91。加热器25被插入到第3插入孔87内。第2块83的侧壁94与上述一样被形成得薄。这样加热器25的热从第3接触面91被传递到元件。
在这样的加热夹具81中,由于接触面88、89、91的面积分别不同,因而可以根据元件16的大小将加热器25插入到插入孔84、86、87内。接触面88、89、91可与元件16的表面有效地接触。这样与加热器25的下端面的面积无关,加热器25的热有效地被传递到元件16。加热器25可对各种大小的元件16有效地进行加热。温度试验装置21即监视老化试验装置11可用于各种大小的元件16的监视老化试验。监视老化试验装置11的通用性提高。
另外,可以在加热器25的外周面和插入孔84、86、87的内周面之间夹入例如传热性油脂或化合物之类的传热体。可借助这样的传热体的作用在加热器25和加热夹具81之间减少热阻。结果,加热器25的热可更有效地被传递到加热夹具81即元件16。

Claims (11)

1.一种监视老化试验方法,其特征在于,该监视老化试验方法具有执行如下处理的工序:实施写入处理,以向需要刷新处理的作为试验对象的多个元件一并写入数据;在所述写入处理后的所述元件中实施刷新处理;以及在从所述元件选择的至少1个以上的所述元件中中止刷新处理,实施从该元件读出数据的读出处理。
2.根据权利要求1所述的监视老化试验方法,其特征在于,该监视老化试验方法还具有执行如下处理的工序:在所述读出处理后的所述元件中再开始刷新处理;对所有所述元件实施老化处理;以及在所述老化处理后,在从所述元件选择的至少1个以上的所述元件中中止刷新处理,实施从该元件读出数据的读出处理。
3.根据权利要求1所述的监视老化试验方法,其特征在于,该监视老化试验方法还具有执行如下处理的工序:将写入在所述元件内的数据与从所述元件读出的数据进行比较。
4.一种监视老化试验装置,其特征在于,该监视老化试验装置具有:老化板;作为试验对象的多个元件,其安装在老化板上,且需要刷新处理;以及控制电路,其在一并的数据写入处理后的所述元件中实施刷新处理,同时从所述元件中选择至少1个以上的元件,在所选择的元件中中止刷新处理,从该元件读出数据。
5.一种温度试验装置,其特征在于,该温度试验装置具有:加热器,其与按多行多列排列的作为试验对象的元件单独接触;温度传感器,其与元件单独接触;第1温度测定单元,其与按每个行从行整体的温度传感器选择的第1组温度传感器单独连接,单独检测元件的温度;第2温度测定单元,其与第1组以外的第2组温度传感器按每个列单独连接,单独检测元件的温度;以及控制电路,当在第1温度测定单元和第2温度测定单元中检测出超出规定范围的温度时,该控制电路调整与表示该温度的元件接触的加热器的温度。
6.根据权利要求5所述的温度试验装置,其特征在于,第1组温度传感器的个数是按各行公同设定的。
7.根据权利要求6所述的温度试验装置,其特征在于,第1组温度传感器的个数是按各列公同设定的。
8.根据权利要求5所述的温度试验装置,其特征在于,在各行以相同数量配置有第1组温度传感器和第2组温度传感器。
9.根据权利要求8所述的温度试验装置,其特征在于,在各列以相同数量配置有第1组温度传感器和第2组温度传感器。
10.根据权利要求5所述的温度试验装置,其特征在于,该温度试验装置具有:基板,其支撑所述温度传感器以及所述第1温度测定单元和第2温度测定单元;第1配线图形,其形成在基板上,使所述第1组温度传感器与所述第1温度测定单元并联连接;以及第2配线图形,其形成在基板上,使所述第2组温度传感器与所述第2温度测定单元并联连接。
11.一种温度试验装置的温度调整方法,其特征在于,该温度调整方法具有执行如下处理的工序:调整与按多行多列排列的作为试验对象的元件单独接触的加热器的温度,并将元件加热到规定温度;在与第1组温度传感器单独连接的第1温度测定单元中单独检测元件的温度,该第1组温度传感器是在与元件单独接触的温度传感器中,按每个行从行整体的温度传感器选择的;在与第1组以外的第2组温度传感器单独连接的第2温度测定单元中单独检测元件的温度,该第2组温度传感器是按每个列从列整体的温度传感器选择的;以及当在第1温度测定单元和第2温度测定单元中检测出超出规定范围的温度时,调整与表示该温度的元件接触的加热器的温度。
CNA2008800039714A 2007-02-01 2008-01-31 监视老化试验装置和监视老化试验方法 Pending CN101601098A (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP023319/2007 2007-02-01
JP2007023319A JP5151170B2 (ja) 2007-02-01 2007-02-01 温度試験装置およびその温度調整方法
JP026584/2007 2007-02-06
JP2007026584A JP5003188B2 (ja) 2007-02-06 2007-02-06 加熱治具
JP073432/2007 2007-03-20
JP2007073432A JP2008234766A (ja) 2007-03-20 2007-03-20 モニターバーンイン試験方法およびモニターバーンイン試験装置
PCT/JP2008/051581 WO2008093807A1 (ja) 2007-02-01 2008-01-31 モニターバーンイン試験装置およびモニターバーンイン試験方法

Publications (1)

Publication Number Publication Date
CN101601098A true CN101601098A (zh) 2009-12-09

Family

ID=39674112

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2008800039714A Pending CN101601098A (zh) 2007-02-01 2008-01-31 监视老化试验装置和监视老化试验方法

Country Status (5)

Country Link
US (1) US20090287362A1 (zh)
KR (1) KR20090106407A (zh)
CN (1) CN101601098A (zh)
TW (1) TW200846683A (zh)
WO (1) WO2008093807A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105807157A (zh) * 2016-03-10 2016-07-27 深圳市硅格半导体股份有限公司 高温老化测试系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101858956B (zh) * 2010-05-27 2012-10-03 北京新润泰思特测控技术有限公司 老化测试系统
JP2019102473A (ja) * 2017-11-28 2019-06-24 ルネサスエレクトロニクス株式会社 半導体装置、及び半導体装置における電流調整方法
TWI705250B (zh) * 2019-07-17 2020-09-21 美商第一檢測有限公司 晶片測試裝置
JP2022165234A (ja) * 2021-04-19 2022-10-31 株式会社アドバンテスト バーンインボード、及び、バーンイン装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0821607B2 (ja) * 1990-05-11 1996-03-04 株式会社東芝 ダイナミック記憶装置およびそのバーンイン方法
CA2073899A1 (en) * 1991-07-19 1993-01-20 Tatsuya Hashinaga Burn-in apparatus and method
CA2073916A1 (en) * 1991-07-19 1993-01-20 Tatsuya Hashinaga Burn-in apparatus and method
CA2073886A1 (en) * 1991-07-19 1993-01-20 Tatsuya Hashinaga Burn-in apparatus and method
JPH07114799A (ja) * 1993-10-18 1995-05-02 Hitachi Ltd 半導体記憶装置
KR100259336B1 (ko) * 1997-04-15 2000-06-15 김영환 반도체 소자의 오토 리프레쉬 제어회로
JP3797810B2 (ja) * 1998-11-30 2006-07-19 松下電器産業株式会社 半導体装置
US6141272A (en) * 1999-09-02 2000-10-31 Micron Technology, Inc. Method and apparatus for programmable control signal generation for a semiconductor device
JP2001167600A (ja) * 1999-12-07 2001-06-22 Nec Corp 半導体集積回路、半導体集積回路の製造方法および半導体集積回路の試験方法
JP2001208798A (ja) * 2000-01-26 2001-08-03 Mitsubishi Electric Corp 半導体回路のテスト方法および装置
JP4656747B2 (ja) * 2001-03-30 2011-03-23 ルネサスエレクトロニクス株式会社 半導体装置
US7265570B2 (en) * 2001-09-28 2007-09-04 Inapac Technology, Inc. Integrated circuit testing module
US6781908B1 (en) * 2003-02-19 2004-08-24 Freescale Semiconductor, Inc. Memory having variable refresh control and method therefor
US7295480B2 (en) * 2003-12-18 2007-11-13 Agere Systems Inc Semiconductor memory repair methodology using quasi-non-volatile memory
US7187002B2 (en) * 2004-02-02 2007-03-06 Matsushita Electric Industrial Co., Ltd. Wafer collective reliability evaluation device and wafer collective reliability evaluation method
KR100653688B1 (ko) * 2004-04-29 2006-12-04 삼성전자주식회사 반도체 메모리 장치 및 이 장치의 리프레쉬 방법, 및 이장치를 위한 메모리 시스템

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105807157A (zh) * 2016-03-10 2016-07-27 深圳市硅格半导体股份有限公司 高温老化测试系统

Also Published As

Publication number Publication date
TW200846683A (en) 2008-12-01
KR20090106407A (ko) 2009-10-08
US20090287362A1 (en) 2009-11-19
WO2008093807A1 (ja) 2008-08-07

Similar Documents

Publication Publication Date Title
CN101601098A (zh) 监视老化试验装置和监视老化试验方法
US20180075927A1 (en) Memory apparatus including a command controller
US6603694B1 (en) Dynamic memory refresh circuitry
US7383144B2 (en) Method and apparatus for calibration of an on-chip temperature sensor within a memory device
CN103544988A (zh) 控制刷新周期的半导体存储器件、存储系统及其操作方法
WO2006060151A3 (en) Temperature based dram refresh
WO2002045094A3 (en) Method and apparatus for built-in self-repair of memory storage arrays
JP2007311389A (ja) プローバ及びプローブ接触方法
CN1700356A (zh) 半导体存储器
KR20190051240A (ko) 테스트 장치
US20110109337A1 (en) Probe wafer, probe device, and testing system
US7519877B2 (en) Memory with test mode output
WO2000028547A1 (fr) Dispositif de stockage a semi-conducteur et systeme de test
CN101106174B (zh) 用于减小相变存储器件重置电流的方法
US6798706B2 (en) Integrated circuit with temperature sensor and method for heating the circuit
KR0166430B1 (ko) 박막트랜지스터의 검사장치
TW353177B (en) Semiconductor memory device
US7539911B2 (en) Test mode for programming rate and precharge time for DRAM activate-precharge cycle
US20030173950A1 (en) Method and magazine device for testing semiconductor devices
KR100330527B1 (ko) 데이터-저장 어레이 내에 배치되는 샘플 워드라인을사용하여 워드라인 활성화 지연을 감시하는 회로
CN114674221B (zh) 一种漆包线用快速偏心检测装置
US7092303B2 (en) Dynamic memory and method for testing a dynamic memory
JP6157270B2 (ja) プローブ装置及びプローブ方法
US20210172979A1 (en) Test board and test apparatus for testing electronic apparatuses having semiconductor devices
KR100645652B1 (ko) 번-인 테스트 장치

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20091209