CN101579316A - 超顺磁性环糊精复合微粒的制备方法 - Google Patents

超顺磁性环糊精复合微粒的制备方法 Download PDF

Info

Publication number
CN101579316A
CN101579316A CNA2008100181957A CN200810018195A CN101579316A CN 101579316 A CN101579316 A CN 101579316A CN A2008100181957 A CNA2008100181957 A CN A2008100181957A CN 200810018195 A CN200810018195 A CN 200810018195A CN 101579316 A CN101579316 A CN 101579316A
Authority
CN
China
Prior art keywords
cyclodextrin
composite particles
superparamagnetic
preparation
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008100181957A
Other languages
English (en)
Other versions
CN101579316B (zh
Inventor
彭明丽
崔亚丽
陈超
刘艳红
张华�
张彩权
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Lifegen Co Ltd
Xi'an Goldmag Nanobiotech Co Ltd
Original Assignee
SHAANXI BEIMEI GENE CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHAANXI BEIMEI GENE CO Ltd filed Critical SHAANXI BEIMEI GENE CO Ltd
Priority to CN2008100181957A priority Critical patent/CN101579316B/zh
Priority to PCT/CN2008/002149 priority patent/WO2009137964A1/zh
Publication of CN101579316A publication Critical patent/CN101579316A/zh
Application granted granted Critical
Publication of CN101579316B publication Critical patent/CN101579316B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0002Galenical forms characterised by the drug release technique; Application systems commanded by energy
    • A61K9/0009Galenical forms characterised by the drug release technique; Application systems commanded by energy involving or responsive to electricity, magnetism or acoustic waves; Galenical aspects of sonophoresis, iontophoresis, electroporation or electroosmosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6923Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being an inorganic particle, e.g. ceramic particles, silica particles, ferrite or synsorb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6949Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit inclusion complexes, e.g. clathrates, cavitates or fullerenes
    • A61K47/6951Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit inclusion complexes, e.g. clathrates, cavitates or fullerenes using cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5094Microcapsules containing magnetic carrier material, e.g. ferrite for drug targeting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0018Diamagnetic or paramagnetic materials, i.e. materials with low susceptibility and no hysteresis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/42Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of organic or organo-metallic materials, e.g. graphene

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Soft Magnetic Materials (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明涉及一种超顺磁性环糊精复合微粒的制备方法,先制备磁性纳米颗粒混合体系,然后加入环糊精粉末,在得到含有少量水的磁性纳米颗粒混合体系中,加入环糊精粉末,通过碱溶液调整体系的pH大于10,再超声分散5~30分钟使环糊精溶解;通过复合得到超顺磁性环糊精复合微粒,升高反应体系温度至40~80℃,充分搅拌,在反应3~20小时后,结束反应,通过磁性分离、离心或透析使体系到达中性,得到磁性环糊精复合微粒。本发明旨在利用环糊精和磁性纳米颗粒本身所具有的活性基团,不需加入偶联试剂而直接合成具有高生物相容性,高饱和磁化强度,对多种药物可进行缓释的磁性复合微粒。

Description

超顺磁性环糊精复合微粒的制备方法
技术领域
本发明属于材料合成领域,特别涉及一种利用超顺磁性纳米颗粒和环糊精本身的活性基团,不需偶联试剂合成超顺磁性环糊精复合微粒的制备方法。
背景技术
随着磁性纳米材料技术的发展,磁性复合微粒在生物方面的应用也越来越多。相对于其他线性的生物相容性高分子,如葡聚糖,淀粉而言,环糊精具有明显不同的性质。它是由6,7,8或更多D-吡喃葡萄糖单元通过α-1,4糖苷键连接而成的,具有直径在0.5-0.8纳米的锥形圆筒空腔结构,所有的6-位伯羟基在圆筒空腔的小口端,即第一面,所有的2,3-位仲羟基在圆筒空腔的大口端,即第二面。空腔内部由3,5位氢原子和糖苷氧原子组成,具有疏水性,而腔外由于羟基的存在,使整个分子具有亲水性。环糊精的这种内部疏水和外部亲水的特性使其在超分子化学中有着广泛的应用。将环糊精引入磁性纳米材料,制备磁性环糊精复合微粒的研究正在兴起。如德国的柏林心脏有限公司利用共沉淀法得到的磁性纳米颗粒,再利用pH=1-2的酸性条件下加入修饰后的环糊精得到含有环糊精的磁性纳米分散体系,再利用1-乙基-3-(二甲基氨基丙基)碳二亚胺(EDC)等将有生物活性的物质如青霉素、胰岛素等连接在复合颗粒上(中国专利公开号:CN1607963A,欧洲专利:EP1439860)。但由于磁性纳米颗粒是在强碱条件下由金属盐离子沉淀得到的,该物质在酸性条件下不能够稳定性存在,因此在酸性条件下对其进行修饰存在着对磁性纳米颗粒稳定性的破坏。美国罗切斯特大学的Yang,H.利用α-环糊精的内空腔亲脂性和外空腔亲水性,将油酸稳定的氧化铁纳米颗粒溶解在α-环糊精的水溶液中,在室温中搅拌20小时后得到了水分散稳定体系(Nano lett.,2003,3,1555)。该方法得到的磁性复合颗粒中环糊精的内空腔被油酸占据,很难进一步利用环糊精的性质。巴西的Mohallem,N.D.S.将β-环糊精溶解于氨水中,在40℃下将共沉淀得到的固体磁性纳米Fe3O4缓慢加入,保持温度在40-50℃至反应体系的pH为中性,得到了β-环糊精-Fe3O4的包结复合物(J.Mag.Mag.Mater.2004(272-276)2395-2397;J.Braz.Chem.Soc.,2003(14)6,936-941)。作者通过红外光谱的分析认为该反应条件下固体磁性纳米Fe3O4颗粒被装入β-环糊精内疏水空腔,形成β-环糊精-Fe3O4的包结复合物。但β-环糊精的内部空腔大小仅为
Figure A20081001819500031
,而纳米Fe3O4颗粒的大小在2-10纳米,两者有着数量级的差别。因此纳米Fe3O4颗粒不可能形成文中所述结构。该方法虽然没有形成作者认为的β-环糊精-Fe3O4的包结复合物,且反应时间长等缺点,但该反应在碱性条件下进行有一定的借鉴意义。湘潭大学的刘峥等以乳化剂修饰的Fe3O4为核,环氧氯丙烷为交联剂,采用分散聚合法,合成了平均粒径在3.2微米磁性交联β-环糊精聚合物微球(化工新型材料,2006,34(1),20;桂林工学院学报2005,8,5(4),543)。但该方法得到的β-环糊精聚合物微球粒径较大,粒度分布较宽,分散体系的稳定性差。2007年新加坡国立大学的Xia,H.-B.报道了在非离子型表面活性剂高分子和β-环糊精存在下,利用共沉淀法合成了水溶性的环糊精复合纳米颗粒(Chem.Mater.2007,19,4087)。但该方法引入了非离子型表面活性剂高分子NP-5(聚乙二醇(5)壬基苯基醚),使其很难用于生物体系中。台湾的Chen,D.-H.报道了利用碳二亚胺将柠檬酸修饰后的β-环糊精键合在阿拉伯糖胶磁性纳米颗粒上,得到含有环糊精的复合纳米颗粒(Chem.Mater.2007,19,6345)。但该方法比较复杂,步骤繁琐,合成难度较大。
以上综述可以看出目前已有的合成磁性环糊精复合微粒的方法均存在一定的缺陷。
发明内容
本发明的超顺磁性环糊精复合微粒的制备方法,是在碱性条件下,借助超声分散,利用超顺磁性纳米颗粒和环糊精本身的活性基团-羟基,得到由磁性纳米核心和环糊精壳层组成的超顺磁性环糊精复合微粒。
本发明的技术解决方案是:
一种超顺磁性环糊精复合微粒的制备方法,其特殊之处在于:该方法包括以下步骤
1)制备磁性纳米颗粒混合体系
将磁性纳米颗粒分散置于在水中或与水互溶的体系中,再通过磁性分离或/和离心,得到含有少量水的磁性纳米颗粒混合体系;
2)加入环糊精粉末
在得到含有少量水的磁性纳米颗粒混合体系中,加入环糊精粉末,通过碱溶液调整体系的pH大于10,再超声分散5~30分钟使环糊精溶解;
3)复合得到超顺磁性环糊精复合微粒
升高步骤2)的反应体系温度至40~80℃,充分搅拌,在反应3~20小时后,结束反应,通过磁性分离、离心或透析使体系达到中性,得到磁性环糊精复合微粒。
上述含有少量水的磁性纳米颗粒混合体系是指的将水分离后弃去后的泥浆状混合物。
上述碱溶液是指NaOH或KOH或水合肼或氨水。
上述磁性纳米颗粒和环糊精的质量比例在0.5~5的范围内为宜。
上述磁性纳米颗粒是指粒径范围应在5~30纳米的纳米颗粒。
上述碱溶液NaOH或KOH或水合肼或氨水的质量百分比为20~30%为佳。
上述超声分散的时间为5~30分钟为宜。
上述环糊精是指由6,7,8或更多D-吡喃葡萄糖单元通过α-1,4糖苷键连接而成的环状寡糖,
其化学组成为(C6H7O5)n((3H)n-(R1)DS)。上述磁性纳米颗粒至少具有以下化学组成(Fe2O3)r(Fe3O4)1-r其中r为0~1或MFe2O4其中M为Zn,Mn或Co。
本发明涉及磁性纳米颗粒是指具有以下化学组成:(Fe2O3)r(Fe3O4)1-r r=0-1,MFe2O4M=Zn,Mn或Co,可通过化学共沉淀或微乳液法等常用方法合成表面含有羟基,能够分散在水中或与水互溶体系中,粒径范围在5-30纳米范围纳米颗粒。
本发明涉及环糊精是指由6,7,8或更多D-吡喃葡萄糖单元通过α-1,4糖苷键连接而成的环状寡糖,其化学组成为(C6H7O5)n((3H)n-(R1)DS)。
其中n为D-吡喃葡萄糖单元的个数,n=6,7,8,......12。
R1为D-吡喃葡萄糖单元羟基上取代氢原子的基团,R1为CH2CH(OH)CH3,CH3,(CH2)4SO3Na,(CH2)4SO3H。
DS为取代氢原子的基团取代度,DS=0-3。
本发明涉及升高反应体系温度是指使反应体系温度从室温升高至30-80℃之间的任何温度。
本发明利用超顺磁性纳米颗粒和环糊精本身的活性基团-羟基,不需偶联试剂即可在碱性条件下得到超顺磁性环糊精复合微粒,该方法简单方便,不需要外加的偶联试剂,后处理简单,产量较高。
附图说明
图1.取代度DS=1的β-环糊精的结构图。
图2.磁性环糊精复合微粒的结构示意图。
图3.本发明实施例1中得到的磁性环糊精复合微粒的TEM照片。
图4.本发明实施例2中得到的磁性环糊精复合微粒的FTIR图谱。
图5.本发明实施例2中得到的磁性环糊精复合微粒磁化曲线。
具体实施方式
下面以具体实施例来对本发明进行详细说明,但并不是对本发明的具体限制。
实施例1.
向盛有共沉淀法得到磁性四氧化三铁固体粉末0.2104克的50毫升圆底烧瓶中加入3毫升蒸馏水,得到含有少量水的磁性纳米颗粒混合体系。在该混合体系中加入α-环糊精0.7009克,氨水溶液1.6毫升后,用100瓦超声分散5分钟后,得到pH=12均匀的分散体系,升高反应体系温度至40℃,并在该温度下保持3小时。反应结束后,利用磁性分离,离心或透析等方法反复洗涤至溶液呈中性,即得到超顺磁性α-环糊精复合微粒。
实施例2.
移取磁性四氧化三铁水溶液300毫克,磁分离后弃去上清,加入2.7毫升水和581.2毫克的羟丙基-β-环糊精和1.2毫升的氨水溶液,用100瓦超声分散20分钟后,得到pH=13的均匀分散体系,升高反应体系温度至50℃,并在该温度下保持6小时。反应结束后,利用磁性分离,离心或透析等方法反复洗涤至溶液呈中性,即得到超顺磁性羟丙基-β-环糊精复合微粒。
实施例3.
移取共沉淀法得到磁性四氧化三铁流体5.53毫升(固体物含量36.2毫克/毫升)于50毫升圆底烧瓶中,置于磁铁上分离至上层澄清,并弃去上层水溶液。再加入γ-环糊精1.9393毫克,水2.0毫升。利用1M NaOH,调节体系pH=10,用100瓦超声分散5分钟后,升高反应体系温度至70℃,并在该温度下保持5小时。反应结束后,利用磁性分离,离心或透析等已知方法得到超顺磁性γ-环糊精复合微粒。
实施例4.
向盛有磁性纳米γ-Fe2O3固体粉末0.4200克的50毫升圆底烧瓶中加入3毫升蒸馏水,得到含有少量水的磁性纳米颗粒混合体系。在该混合体系中加入羟丙基-β-环糊精0.7004克,氨水溶液1.6毫升后,用100瓦超声分散15分钟,得到pH=14均匀的分散体系。升高反应体系温度至80℃,并在该温度下保持20小时。反应结束后,利用磁性分离,离心或透析等已知方法得到分散在水中超顺磁性环糊精复合微粒。

Claims (9)

1.一种超顺磁性环糊精复合微粒的制备方法,其特征在于:该方法包括以下步骤:
1)制备磁性纳米颗粒混合体系
将分散在水中或与水互溶的体系中磁性纳米颗粒,通过磁性分离或/和离心,得到含有少量水的磁性纳米颗粒混合体系;
2)加入环糊精粉末
在得到含有少量水的磁性纳米颗粒混合体系中,加入环糊精粉末,通过碱溶液调整体系的pH大于10,再超声分散5~30分钟使环糊精溶解;
3)复合得到超顺磁性环糊精复合微粒
升高步骤2)的反应体系温度至40~80℃,充分搅拌,在反应3~20小时后,结束反应,通过磁性分离、离心或透析使体系到达中性,得到磁性环糊精复合微粒。
2.根据权利要求1所述的超顺磁性环糊精复合微粒的制备方法,其特征在于:所述含有少量水的磁性纳米颗粒混合体系是指的将水分离后弃去后的泥浆状混合物。
3.根据权利要求1所述的超顺磁性环糊精复合微粒的制备方法,其特征在于:所述碱溶液是指NaOH或KOH或水合肼或氨水。
4.根据权利要求1所述的超顺磁性环糊精复合微粒的制备方法,其特征在于:所述磁性纳米颗粒和环糊精的质量比例在0.25~10的范围内。
5.根据权利要求1~4任一所述的超顺磁性环糊精复合微粒的制备方法,其特征在于:所述磁性纳米颗粒是指粒径范围在5~30纳米的纳米颗粒。
6.根据权利要求5所述的超顺磁性环糊精复合微粒的制备方法,其特征在于:所述碱溶液NaOH或KOH或水合肼或氨水的质量百分比为10~30%。
7.根据权利要求6所述的超顺磁性环糊精复合微粒的制备方法,其特征在于:所述利用超声分散的时间为5~30分钟。
8.根据权利要求7所述的超顺磁性环糊精复合微粒的制备方法,其特征在于:所述环糊精是指由6,7,8或更多D-吡喃葡萄糖单元通过α-1,4糖苷键连接而成的环状寡糖,其化学组成为(C6H7O5)n((3H)n-(R1)DS)。
9.根据权利要求8所述的超顺磁性环糊精复合微粒的制备方法,其特征在于:所述磁性纳米颗粒至少具有以下化学组成(Fe2O3)r(Fe3O4)1-r其中r为0~1或MFe2O4其中M为Zn,Mn或Co。
CN2008100181957A 2008-05-14 2008-05-14 超顺磁性环糊精复合微粒的制备方法 Active CN101579316B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2008100181957A CN101579316B (zh) 2008-05-14 2008-05-14 超顺磁性环糊精复合微粒的制备方法
PCT/CN2008/002149 WO2009137964A1 (zh) 2008-05-14 2008-12-31 超顺磁性环糊精复合微粒的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008100181957A CN101579316B (zh) 2008-05-14 2008-05-14 超顺磁性环糊精复合微粒的制备方法

Publications (2)

Publication Number Publication Date
CN101579316A true CN101579316A (zh) 2009-11-18
CN101579316B CN101579316B (zh) 2012-02-29

Family

ID=41318332

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008100181957A Active CN101579316B (zh) 2008-05-14 2008-05-14 超顺磁性环糊精复合微粒的制备方法

Country Status (2)

Country Link
CN (1) CN101579316B (zh)
WO (1) WO2009137964A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102258791A (zh) * 2011-07-07 2011-11-30 山西大学 环糊精/Fe3O4磁性纳米复合体及其药物包合物
CN102258790A (zh) * 2011-07-07 2011-11-30 山西大学 环糊精/Fe3O4磁性纳米复合体与布洛芬的包合物
CN102716730A (zh) * 2012-07-11 2012-10-10 济南大学 纳米磁性环糊精/石墨烯生物吸附材料的制备方法
CN104475749A (zh) * 2014-09-04 2015-04-01 河南城建学院 β-环糊精稳定化包埋纳米零价铁的制备方法
CN106645382A (zh) * 2017-01-19 2017-05-10 安徽科技学院 一种应用等温剩磁检测石英砂中铁含量的方法
CN107998102A (zh) * 2017-12-13 2018-05-08 金陵科技学院 一种具有pH和磁双重响应的纳米粒子药物载体及其制备方法
CN109091678A (zh) * 2018-08-21 2018-12-28 南开大学 一种抑制肿瘤侵袭和扩散的双重调控的超分子组装体的制备方法及其应用
CN109568654A (zh) * 2018-12-10 2019-04-05 济宁医学院 负载维甲酸的钆参杂四氧化三铁复合纳米粒子的制备方法
CN110327985A (zh) * 2019-07-15 2019-10-15 湖南工学院 超支化环糊精-纳米四氧化三铁非均相催化剂及其制备方法和应用
CN115584507A (zh) * 2022-12-08 2023-01-10 南通科星化工股份有限公司 一种防锈金属清洗剂及其制备方法和使用方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103406080B (zh) * 2013-07-26 2015-11-18 大连工业大学 复凝聚法制备细菌胞外多糖为壁材的共轭亚油酸微胶囊

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4452773A (en) * 1982-04-05 1984-06-05 Canadian Patents And Development Limited Magnetic iron-dextran microspheres
DE19624426A1 (de) * 1996-06-19 1998-01-02 Christian Bergemann Magnetische Flüssigkeiten für den Transport von diagnostisch oder therapeutisch wirksamen Substanzen
DE10154016B4 (de) * 2001-10-26 2004-02-12 Berlin Heart Ag Magnetflüssigkeit und Verfahren zur ihrer Herstellung
BR0105499F1 (pt) * 2001-11-05 2018-01-09 Univ Minas Gerais processo de obtenção de nanocompósitos ferrita/ciclodextrina e uso como dispositivos de descontaminação magneticamente dirigível
CN1245625C (zh) * 2003-04-30 2006-03-15 陕西西大北美基因股份有限公司 一种核/壳型超顺磁性复合微粒及其制备方法与应用
CN101164621B (zh) * 2006-10-19 2010-05-12 陕西西大北美基因股份有限公司 超顺磁性复合微粒载药体及其制备方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102258791A (zh) * 2011-07-07 2011-11-30 山西大学 环糊精/Fe3O4磁性纳米复合体及其药物包合物
CN102258790A (zh) * 2011-07-07 2011-11-30 山西大学 环糊精/Fe3O4磁性纳米复合体与布洛芬的包合物
CN102716730A (zh) * 2012-07-11 2012-10-10 济南大学 纳米磁性环糊精/石墨烯生物吸附材料的制备方法
CN104475749A (zh) * 2014-09-04 2015-04-01 河南城建学院 β-环糊精稳定化包埋纳米零价铁的制备方法
CN106645382A (zh) * 2017-01-19 2017-05-10 安徽科技学院 一种应用等温剩磁检测石英砂中铁含量的方法
CN107998102A (zh) * 2017-12-13 2018-05-08 金陵科技学院 一种具有pH和磁双重响应的纳米粒子药物载体及其制备方法
CN109091678A (zh) * 2018-08-21 2018-12-28 南开大学 一种抑制肿瘤侵袭和扩散的双重调控的超分子组装体的制备方法及其应用
CN109091678B (zh) * 2018-08-21 2022-01-28 南开大学 一种抑制肿瘤侵袭和扩散的双重调控的超分子组装体的制备方法及其应用
CN109568654A (zh) * 2018-12-10 2019-04-05 济宁医学院 负载维甲酸的钆参杂四氧化三铁复合纳米粒子的制备方法
CN110327985A (zh) * 2019-07-15 2019-10-15 湖南工学院 超支化环糊精-纳米四氧化三铁非均相催化剂及其制备方法和应用
CN115584507A (zh) * 2022-12-08 2023-01-10 南通科星化工股份有限公司 一种防锈金属清洗剂及其制备方法和使用方法

Also Published As

Publication number Publication date
WO2009137964A1 (zh) 2009-11-19
CN101579316B (zh) 2012-02-29

Similar Documents

Publication Publication Date Title
CN101579316B (zh) 超顺磁性环糊精复合微粒的制备方法
Liu et al. Preparation, surface functionalization and application of Fe3O4 magnetic nanoparticles
Borase et al. Stable aqueous dispersions of glycopeptide‐grafted selectably functionalized magnetic nanoparticles
EP2121040A1 (en) Compositions containing metal oxide particles and their uses
CN107961378B (zh) 一种磁性氧化石墨烯-壳聚糖/葡聚糖复合物的制备方法及应用
Hsu et al. A hybrid silica nanoreactor framework for encapsulation of hollow manganese oxide nanoparticles of superior T1 magnetic resonance relaxivity
JP2008201666A (ja) 球状フェライトナノ粒子及びその製造方法
Jaji et al. Safety assessments of subcutaneous doses of aragonite calcium carbonate nanocrystals in rats
Guo et al. Preparing amorphous hydrophobic drug nanoparticles by nanoporous membrane extrusion
Li et al. The renal clearable magnetic resonance imaging contrast agents: state of the art and recent advances
CN113634226B (zh) Fe3O4/GO复合纳米材料及其制备方法和应用
DE10154016B4 (de) Magnetflüssigkeit und Verfahren zur ihrer Herstellung
Yusuf et al. Synthesis Processing Condition Optimization of Citrate Stabilized Superparamagnetic Iron Oxide Nanoparticles using Direct Co-Precipitation Method.
Marasini et al. Polyaspartic acid-coated paramagnetic gadolinium oxide nanoparticles as a dual-modal t1 and t2 magnetic resonance imaging contrast agent
CN102580642B (zh) 一种制备高磁含量壳聚糖纳米球的方法
CN103239729B (zh) 含超支化聚合物与磷脂的纳米载体及其制备方法和应用
Chen et al. Ultrasmall MnSe Nanoparticles as T 1-MRI Contrast Agents for In Vivo Tumor Imaging
WO2016191816A1 (en) Glucose sensitive phenylborate acid capsules for insulin delivery
Wotschadlo et al. Magnetic nanoparticles coated with carboxymethylated polysaccharide shells—Interaction with human cells
Yue et al. New class of efficient T2 magnetic resonance imaging contrast agent: Carbon-coated paramagnetic dysprosium oxide nanoparticles
Shi et al. Preparation and evaluation of chitosan/β‐cyclodextrin magnetic nanoparticles as a photodegradable and hydrophobic drug delivery carrier
CN103056385B (zh) Ctab为表面活性剂的油水界面法制备油溶性纳米银的方法
CN104672462A (zh) 一种增强纳米粒子生物相容性和稳定性的多齿仿生配体及其制备方法
Montiel Schneider et al. Gd (OH) 3 as Modifier of Iron Oxide Nanoparticles—Insights on the Synthesis, Characterization and Stability
CN113817179B (zh) 一种纳米纤维磁流体的制备方法、纳米纤维磁流体及应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: XI AN GOLDMAG NANOBIOTECH CO., LTD.

Free format text: FORMER OWNER: SHAANXI BAIMEI GENE CO., LTD.

Effective date: 20130724

C41 Transfer of patent application or patent right or utility model
C56 Change in the name or address of the patentee

Owner name: SHAANXI BAIMEI GENE CO., LTD.

Free format text: FORMER NAME: SHAANXI LIFEGEN CO., LTD.

COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: 710069 XI AN, SHAANXI PROVINCE TO: 710077 XI AN, SHAANXI PROVINCE

CP01 Change in the name or title of a patent holder

Address after: 386 box 710069, Northwestern University, 229 Taibai Road, Shaanxi, Xi'an

Patentee after: SHAANXI LIFEGEN Co.,Ltd.

Address before: 386 box 710069, Northwestern University, 229 Taibai Road, Shaanxi, Xi'an

Patentee before: Shaanxi North American Gene Co.,Ltd.

TR01 Transfer of patent right

Effective date of registration: 20130724

Address after: 710077, Shaanxi, Xi'an hi tech Zone, No. 85, No. 4, No. 2, modern enterprise center, 3 east side, 10402A

Patentee after: XI'AN GOLDMAG NANOBIOTECH Co.,Ltd.

Address before: 386 box 710069, Northwestern University, 229 Taibai Road, Shaanxi, Xi'an

Patentee before: SHAANXI LIFEGEN Co.,Ltd.