CN101558527A - 非水电解质二次电池 - Google Patents
非水电解质二次电池 Download PDFInfo
- Publication number
- CN101558527A CN101558527A CNA2007800459843A CN200780045984A CN101558527A CN 101558527 A CN101558527 A CN 101558527A CN A2007800459843 A CNA2007800459843 A CN A2007800459843A CN 200780045984 A CN200780045984 A CN 200780045984A CN 101558527 A CN101558527 A CN 101558527A
- Authority
- CN
- China
- Prior art keywords
- battery
- active material
- positive
- negative electrode
- electrode collector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/382—Arrangements for monitoring battery or accumulator variables, e.g. SoC
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4235—Safety or regulating additives or arrangements in electrodes, separators or electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/443—Particulate material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/572—Means for preventing undesired use or discharge
- H01M50/584—Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
- H01M50/59—Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Abstract
本发明涉及一种非水电解质二次电池,其具备正极(5)、负极(6)、多孔质绝缘层(7)和非水电解质,正极(5)具有正极集电体(51)和正极合剂层(52),负极(6)具有负极集电体(61)和负极活性物质层(62)。而且对非水电解质二次电池充电后,当使正极合剂层(52)的表面和负极活性物质层(62)的表面相互接触,且在正极集电体(51)和负极集电体(61)上分别设置端子而测量该端子间的电阻值时,其电阻值为1.6Ω·cm2以上。
Description
技术领域
本发明涉及锂离子二次电池等非水电解质二次电池,涉及非水电解质二次电池的安全性技术。
背景技术
近年来,从环境问题的观点要求清洁能源,而且要求将汽车搭载用电源和大型工具用电源等设计为直流电源。为满足这些要求,需要能够快速地进行充电、而且能够进行大电流放电的小型且轻量的二次电池。作为满足这样的要求的典型的二次电池,可以列举出非水电解质二次电池。一般地说,在非水电解质二次电池中,作为负极材料,特别使用锂金属或锂合金等活性物质,或者使用在作为作为宿主(host)物质(在此所谓“宿主物质”,是指能够嵌入和脱嵌锂离子的物质)的碳中嵌入有锂嵌入化合物(lithium intercalation compound)的材料。另外,作为电解液,使用溶解有LiClO4或LiPF6等锂盐的非质子性有机溶剂。
详细地说,该非水电解质二次电池具有负极板、正极板和隔膜。在负极板中,上述负极材料保持在负极集电体上,在正极板中,与锂离子可逆地进行电化学反应的正极活性物质(例如锂钴复合氧化物)保持在正极集电体上。隔膜在保持电解液的同时,介于负极板和正极板之间而防止在负极板和正极板之间产生短路。
作为制作这样的非水电解质二次电池的方法,首先,将正极板和负极板分别成形为薄膜片或箔状,将通过隔膜分隔的正极板和负极板进行层叠或卷绕成螺旋状以形成发电单元。其次,将该发电单元收纳在由不锈钢、实施了镀镍的铁、或铝等金属构成的电池容器内,并往电池容器内注入非水电解质。然后,将盖板固定在电池容器上以密封电池容器。由此,便组装出非水电解质二次电池。
但是,一般地说,当对锂离子二次电池进行过充电、或者在锂离子二次电池内发生内部短路时,则锂离子二次电池就会发热而达到高温。锂离子二次电池由于有可能在高温下而发生热失控,所以要求提高安全性。特别地,在大型且高输出的锂离子二次电池中,因为热失控的发生几率提高,所以必须在降低其发生几率等提高安全性的方面下功夫。
作为锂离子二次电池置于高温下时导致热失控的主要原因,可以列举出正极活性物质在充电状态且在高温下是不稳定的这一因素。也就是说,在充电状态且在高温下,氧从正极活性物质(一般为锂复合氧化物)上脱离,该脱离的活性氧与电解液等发生反应。由于通过该反应而产生反应热,所以正极活性物质达到更高高温。而且如果正极活性物质达到更高高温,则氧从正极活性物质上的脱离变得激烈,容易发生与电解液等的反应,从而容易产生反应热。由上可知,如果正极活性物质达到高温,则活性氧与电解液等发生反应,从而容易产生反应热,如果产生反应热,则正极活性物质达到更高高温。可以认为由于这样连锁的发热,以致锂离子二次电池发生热失控。
作为锂离子二次电池达到高温的理由,可以认为如下所示。如果由于过充电时或内部短路的发生等而使电池处于异常状态,则聚乙烯制隔膜就会熔化或收缩而使正极和负极短路。由于该短路而流过大电流,其结果是温度急剧地上升。一旦温度急剧地上升,则如上述那样,锂离子二次电池出现热失控。
作为用于提高锂离子二次电池的安全性的手段,可以考虑提高正极活性物质的热稳定性的方法。具体地说,通过以Al等元素置换作为正极活性物质的钴酸锂的Co的一部分,以谋求钴酸锂的热稳定性的提高(专利文献1)。
另外,作为提高锂离子二次电池的热稳定性的其它手段,可以考虑增大活性物质的电阻、由此抑制短路时电池的发热的方法。具体地说,作为正极活性物质,使用粉末填充密度为3.8g/cm3时的电阻系数是1mΩ·cm~40mΩ·cm的锂钴复合氧化物,由此抑制短路时电池的发热(专利文献2)。
另外,作为提高锂离子二次电池的热稳定性的其它手段,可以考虑在集电体的表面设置电阻比集电体更高的电阻体层的方法。具体地说,通过设置电阻值为0.1~100Ω·cm2的电阻体层,即使在发生了内部短路的情况下,也可以防止大电流的流过(专利文献3)。
但是,在专利文献1所提出的技术中,如果以Al等元素置换钴酸锂的Co的一部分,则有可能招致锂离子二次电池输出特性的降低。同样,当如专利文献3所提出的技术那样,在集电体的表面设置电阻体层时,则有可能引起集电率的下降,从而招致锂离子二次电池输出特性的降低。
另外,在专利文献2所提出的技术中,即便正极活性物质的电阻较高,但在使极板薄型化的情况下,或在合剂层中含有的导电剂的量较多的情况下,短路时流过的电流增大,从而难以抑制短路时的发热量。
专利文献1:特开平11-7958号公报
专利文献2:特开2001-297763号公报
专利文献3:特开平10-199574号公报
发明内容
于是,本发明的目的在于提供一种安全性优良的非水电解质二次电池,该非水电解质二次电池解决了上述的课题,不会伴随着电池输出特性的降低,而且即使在处于过充电状态、或内部短路等异常状态的情况下,也可以抑制电池的热失控。
本发明涉及一种非水电解质二次电池,其具备:正极,具有导电性的正极集电体、和设置在正极集电体的表面且含有能够以电化学的方式嵌入和脱嵌锂离子的正极活性物质的正极合剂层;负极,具有导电性的负极集电体、和设置在负极集电体的表面且含有能够以电化学的方式嵌入和脱嵌锂离子的负极活性物质的负极活性物质层;多孔质绝缘层,其配置在正极和负极之间;以及非水电解质,其保持在正极和负极之间;其中,在充电后,当取下多孔质绝缘层,使正极合剂层的表面和负极活性物质层的表面互相接触,且在正极集电体和负极集电体上分别设置端子而测量端子间的电阻值时,电阻值为1.6Ω·cm2以上。
在上述的构成中,即使电池处于异常状态的结果,使多孔质绝缘层消失,也由于正极和负极之间的电阻较大,因而可以抑制在正极和负极之间大电流的流过。
在本发明的非水电解质二次电池中,电阻值优选为5Ω·cm2~10Ω·cm2。
在后述优选的实施方式中,在正极集电体和正极合剂层的界面、以及负极集电体和负极活性物质层的界面之中的至少一方的界面上,散布着绝缘构件。另外,在后述优选的实施方式中,含有Co、Ni、以及除Co和Ni以外的元素M的锂复合氧化物作为正极活性物质,在正极合剂层中含有5wt%以上;元素M是Na、Mg、Sc、Y、Mn、Fe、Cu、Zn、Al、Cr、Pb、Sb以及B之中的至少1种。再者,在后述优选的实施方式中,绝缘构件优选的是粒径为0.1μm~10μm的粒子状构件、多个粒子状构件配置成链状而形成的链状构件以及纤维状构件之中的至少1种,而且优选为金属氧化物。
根据本发明,可以提供一种安全性和放电性能均优良的非水能电解质二次电池。
附图说明
图1是表示本发明的实施方式的锂离子二次电池的构成的纵向剖视图。
图2是表示本发明的实施方式的电极组的构成的剖视图。
图3是表示与本发明的实施方式相比较的方式的电极组的构成的剖视图。
图4是表示本发明的实施方式的电极组的构成的放大剖视图。
图5是表示与本发明的实施方式相比较的方式的电极组的构成的放大剖视图。
符号说明:
1电池壳体 2封口板
3垫圈 5正极
5a正极引线 6负极
6a负极引线 7多孔质绝缘层
8a上部绝缘板 8b下部绝缘板
9电极组 10绝缘构件
11正极活性物质 51正极集电体
52正极合剂层 61负极集电体
62负极活性物质层
具体实施方式
以下,根据附图详细地说明本发明的实施方式。此外,本发明并不局限于以下的实施方式。
在本发明的实施方式中,作为非水电解质二次电池,举出锂离子二次电池作为例子,就其构成进行说明。
图1是表示本实施方式的锂离子二次电池的构成的纵向剖视图。图2是表示本实施方式的锂离子二次电池所具有的电极组9的构成的放大图。
本实施方式的锂离子二次电池如图1所示,具备例如不锈钢制的电池壳体1和收纳在电池壳体1内的电极组9。
在电池壳体1的上表面形成有开口1a。在开口1a处经由垫圈3对封口板2进行敛缝,通过对封口板2进行敛缝,从而使开口1a得以密封。
电极组9具有正极5、负极6、例如聚乙烯制的多孔质绝缘层7,是通过多孔质绝缘层7分隔的正极5和负极6卷绕成螺旋状而形成的。此外,在正极5和负极6之间,保持着非水电解质(未图示)。在该电极组9的上方配置有上部绝缘板8a,在电极组9的下方配置有下部绝缘板8b。
铝制正极引线5a的一端安装在正极5上,该正极引线5a的另一端连接在兼作正极端子的封口板2上。镍制负极引线6a的一端安装在负极6上,该负极引线6a的另一端连接在兼作负极端子的电池壳体1上。
正极5如图2所示,具有正极集电体51和正极合剂层52。正极集电体51是导电性的板状构件。正极合剂层52设置在正极集电体51的两表面上,含有正极活性物质(例如锂复合氧化物,图2中没有标示),除正极活性物质以外,还优选含有粘结剂和导电剂等。负极6具有负极集电体61和负极活性物质层62。负极集电体61是导电性的板状构件。负极活性物质层62设置在负极集电体61的两表面上,含有负极活性物质(未图示),除负极活性物质以外,还优选含有粘结剂等。而且,正极5和负极6之间的电阻为1.6Ω·cm2以上。这样一来,如果电阻为1.6Ω·cm2以上,则即使因过充电时或内部短路的发生而使多孔质绝缘层7熔化或收缩而消失,也可以防止在正极5和负极6之间流过大量的电流,因而可以抑制锂离子二次电池内的发热。其结果是,可以谋求锂离子二次电池安全性的提高。
在本说明书,所谓正极5和负极6之间的电阻,是指根据以下所示的方法测量而得到的电阻。关于该电阻的测量方法,就是首先对锂离子二次电池进行充电,其次取下多孔质绝缘层7,使正极合剂层52的表面和负极活性物质层62的表面接触,之后在正极集电体51上安装正极端子、在负极集电体61上安装负极端子,然后测量正极端子和负极端子之间的直流电阻值。为使正极合剂层52的表面和负极活性物质层62的表面切实地接触,优选在正极5和负极6上施加压力(例如为9.8×104N/m2~9.8×105N/m2)。另外,作为测量正极端子和负极端子之间的直流电阻值的方法,例如可以列举出四端子法。
正极5和负极6之间的电阻包括正极集电体51和正极合剂层52的界面53的电阻、正极合剂层52的电阻、通过正极合剂层52和负极活性物质层62互相接触而产生的接触电阻、负极活性物质层62的电阻、以及负极集电体61和负极活性物质层62的界面63的电阻等。正极5和负极6之间的电阻为1.6Ω·cm2以上即可,具体数值并没有特别的限定。
如果正极5和负极6之间的电阻值过小,则由于在多孔质绝缘层7消失时,往往不能防止在正极5和负极6之间流过大量的电流,因而不是太优选的。相反地,如果其电阻值过大,则由于往往招致锂离子二次电池性能(充电性能、电池容量或能量密度等)的降低,因而不是太优选的。换句话说,为确保锂离子二次电池的性能,正极5和负极6之间的电阻值优选较小者,但是,当电池处于异常状态时,为防止在正极5和负极6之间流过大量的电流,则优选较大者。本发明人根据上述的情况研究了电阻值,结果发现:如果正极5和负极6之间的电阻值为1.6Ω·cm2以上,优选其电阻值为1.6Ω·cm2~30Ω·cm2,更优选其电阻值为5Ω·cm2~10Ω·cm2,则不会使锂离子二次电池的性能降低,可以谋求安全性的提高。
为使正极5和负极6之间的电阻值为1.6Ω·cm2以上,在本实施方式中,在正极集电体51和正极合剂层52的界面53以及负极集电体61和负极活性物质层62的界面63上散布着绝缘构件10,10,…。本发明人为使正极5和负极6之间的电阻值为1.6Ω·cm2以上,就使绝缘构件10,10,…混合存在于正极合剂层52内和负极活性物质层62内的情况进行了研究,然而,根据以下所示的理由,得出了如下的结论:优选的是不使绝缘构件10,10,…混合存在于正极合剂层52内和负极活性物质层62内,而是散布在上述界面53,63上。下面使用图2和图3来说明其理由。图3表示了本实施方式的比较方式的电极组19的构成。此外,图2省略了在界面63上散布的绝缘构件的图示,图3省略了负极活性物质层62中的绝缘构件的图示。
锂离子二次电池在充电时,锂离子在正极合剂层52中朝向正极集电体51移动。在图2所示的情况下,绝缘构件10,10,…由于只是散布在正极集电体51和正极合剂层52的界面53上,因而可以使正极5局部地高电阻化。为此,由于使用少量的绝缘构件10,10,…便可以实现正极5的高电阻化,所以不会减少正极活性物质的量而可以实现正极5的高电阻化。另一方面,在图3所示的情况下,绝缘构件10,10,…由于混合存在于正极合剂层52中,所以为降低正极活性物质间的导电性,必须在各自的正极活性物质间设置绝缘构件。因此,为使正极和负极之间的电阻值为1.6Ω·cm2以上,必须添加大量的绝缘构件10,10,…。由上可知,在图3所示的情况下,如果不添加比图2所示的情况更多的绝缘构件10,10,…,则不能使正极5和负极6之间的电阻值为1.6Ω·cm2以上,换句话说,在图2所示的情况和图3所示的情况下,当将绝缘构件10,10,…的添加量设定为大致相同时,即使图2所示的情况可以使正极和负极之间的电阻值为1.6Ω·cm2以上,图3所示的情况也往往不能使正极和负极之间的电阻值为1.6Ω·cm2以上。再者,即使添加大量的绝缘构件10,10,…,结果使其电阻值成为1.6Ω·cm2以上,也由于正极合剂层52中的正极活性物质的量减少,因而有可能招致电池容量的降低。
基于同样的考虑,与绝缘构件10,10,…混合存在于负极活性物质层62中的情况相比,绝缘构件10,10,…存在于负极集电体61和负极活性物质层62的界面63上的情况即使不添加大量的绝缘构件,也可以使正极和负极之间的电阻为1.6Ω·cm2以上。
由上可知,在绝缘构件10,10,…混合存在于正极合剂层52和负极活性物质层62中的情况下,如果正极5和负极6之间的电阻值为1.6Ω·cm2以上,则即便是正极5和负极6接触的情况,也可以抑制在正极5和负极6之间流过大电流,但使电池的容量降低。另一方面,在绝缘构件10,10,…散布于界面53和界面63上的情况下,如果正极5和负极6之间的电阻值为1.6Ω·cm2以上,则不会招致电池性能的降低,而能够抑制在正极5和负极6之间流过大电流。
本发明人分别制作图2所示的电极组9和图3所示的电极组19,分别观察了其电极组的断面。图4表示了观察图2所示的电极组9的断面时的情况,图5表示了观察图3所示的电极组19的断面时的情况。
如果观察本实施方式的电极组9的断面,则如图4所示,一部分的绝缘构件10,10,…存在于正极集电体51和正极活性物质11,11,…之间,一部分的绝缘构件10,10,…散布在正极活性物质11,11,…的表面,一部分的绝缘构件10,10,…互相紧邻地存在着。在本说明书中,所谓绝缘构件10,10,…散布在正极集电体51和正极合剂层52的界面53上、以及负极集电体61和负极活性物质层62的界面63上,不只是包括绝缘构件10,10,…散布在界面53和界面63上的情况,而且如图4所示,也包括一部分的绝缘构件10,10,…散布在正极活性物质11,11,…或负极活性物质(未图示)的表面的情况以及绝缘10,10构件之间互相紧邻的情况。
同样地,如果观察图3所示的电极组19的断面,则如图5所示,一部分的绝缘构件10,10,…存在于正极集电体51和正极活性物质11,11,…之间,而大量的绝缘构件10,10,…散布在相邻的正极活性物质11,11之间。
另外,作为在将绝缘构件10,10,…散布于上述界面53,63上时,正极5和负极6之间的电阻值增大的理由,本发明人认为其原因在于:通过使绝缘构件10,10,…散布于上述界面上,正极合剂层52与正极集电体51接触的面积、以及负极活性物质层62与负极集电体61接触的面积得以减少。作为绝缘构件10,10,…的量,因为依赖于集电体的厚度、合剂层中含有的导电剂的量和比表面积、以及作为活性物质使用的材料的电阻值等,所以不能一概而论,优选调整绝缘构件10,10,…的量,以便使正极5和负极6之间的电阻值成为1.6Ω·cm2以上。作为绝缘构件10,10,…的量的标准,在正极合剂层52的电阻值较小的情况下,优选相对于每1m2的正极集电体51和负极集电体61的表面积为1cm3~2cm3,在正极合剂层52的电阻值较大的情况下,优选相对于每1m2的正极集电体51和负极集电体61的表面积为0.3cm3~2cm3。例如,在使用含有镍和钴的锂复合氧化物作为正极活性物质的情况下,往往由于正极合剂层52的电阻值减小,因而优选将绝缘构件10,10,…的量设定为相对于每1m2的正极集电体51和负极集电体61的表面积为1cm3~2cm3。如果绝缘构件10,10,…的量比上述的下限值小,则由于往往不能得到涂布绝缘构件10,10,…的效果(在正极5和负极6接触时,能够抑制在正极5和负极6之间流过大电流,其结果是,防止了在锂离子二次电池内的发热),因而不是优选的。另一方面,如果绝缘构件10,10,…的量超过上述的上限值,则能够得到涂布绝缘构件10,10,…的效果,但是,由于招致电池性能(放电性能、电池容量或能量密度等)的显著降低,因而不是优选的。
作为绝缘构件10,10,…的形状,可以考虑粒子状、链状、纤维状以及膜状等,但优选为粒子状、链状或纤维状。如果使用绝缘膜作为绝缘构件10,10,…,则由于有可能覆盖整个界面53,63,所以界面53,63的电阻有可能增大,其结果是,招致锂离子二次电池的性能降低,因而不是优选的。因此,即使在使用粒子状的绝缘材料、链状的绝缘材料或纤维状的绝缘材料作为绝缘构件10,10,…的情况下,也优选设置绝缘构件10,10,…,以便使其不覆盖整个界面53,63。
作为粒子状,如果是粒径为0.1μm~10μm的粒子状,则是进一步优选的,如果粒径为0.2μm~0.5μm,则是更加优选的。粒子的形状并不局限于完全的球形,可以是稍稍压扁的。另外,如果粒径为0.1μm~10μm,则粒径不同的粒子也可以散布在界面53和界面63上。
如果粒径不足0.1μm,则对正极5和负极6之间的电阻加以控制变得困难,因而不是优选的。其理由如下所示。绝缘构件10,10,…的粒径越小,即使绝缘构件10,10,…的涂布量为少量,也由于绝缘构件10,10,…覆盖正极集电体51和负极集电体61的表面的比率(覆盖率)提高,所以能够增大正极5和负极6之间的电阻。但是,如果绝缘构件10,10,…的涂布量过少,则在正极集电体51和负极集电体61的表面均匀地涂布绝缘构件10,10,…变得困难,涂布的绝缘构件10,10,…的粒子数产生较大的偏差。因此,绝缘构件10,10,…与正极集电体51和负极集电体61接触的面积产生较大的偏差,其结果是,对正极5和负极6之间的电阻加以控制变得困难。
另一方面,在粒径超过10μm的情况下,虽然取决于活性物质的粒子直径,但正极活性物质和负极活性物质就会进入相邻的绝缘构件10,10之间。为此,在正极集电体51的表面,存在着相邻的绝缘构件10,10以及在该相邻的绝缘构件10,10之间所存在的正极活性物质。同样地,在负极集电体61的表面,存在着相邻的绝缘构件10,10以及在该相邻的绝缘构件10,10之间所存在的负极活性物质。因此,正极合剂层52和负极活性物质层62中绝缘构件10,10,…所占的体积增大,其结果是,正极合剂层52中正极活性物质的量以及负极活性物质层62中负极活性物质的量减少。这样,导致电池能量密度的降低。
作为链状,如果是粒径为0.1μm~10μm的粒子配置成链状,则是更优选的,既可以是紧邻的粒子经由粘结剂等而连接,也可以是多个粒子例如刺穿在线状的物质上。作为纤维状,除了完全意义上的纤维状的物质以外,也可以是绝缘性的短尺寸的纤维互相缠绕而成的纤维。
绝缘构件10,10,…因过充电时或者内部短路而使多孔质绝缘层7消失,局部地达到高温,从而点燃电解液等,其结果是,即使在电池内部的温度达到高温的情况下,作为电阻体,也优选能够维持绝缘性,优选由电阻值为106Ω·cm以上的材质构成,具体地说,是由金属氧化物、金属氮化物、金属硫化物或熔点在200℃以上的耐热性有机材料等构成。其中,金属氧化物由于抑制了与发热反应相伴的分解反应的发生,所以能够防止进一步的发热,另外,由于即便在高温下,也能够以固体的形式存在,所以能够抑制火的传播,因此,优选使用金属氧化物作为绝缘构件10,10,…。作为金属氧化物,可以使用矾土(氧化铝)、二氧化钛(氧化钛)、锆石(氧化锆)、苦土(氧化镁)、氧化锌或硅石(氧化硅)等。
作为使这样的绝缘构件10,10,…散布在正极集电体51的表面和负极集电体61的表面上的方法,例如可以列举出的方法有:首先,混合绝缘构件10,10,…、粘结剂和溶剂以制作浆料,其次,将该浆料涂布于正极集电体51的表面和负极集电体61的表面上之后进行干燥。
在本实施方式中,作为正极集电体51、负极集电体61、正极合剂层52、负极活性物质层62和多孔质绝缘层7等,并没有特别的限定,可以使用公知的材质,但是,作为正极合剂层52中的正极活性物质,优选使用含有Co、Ni和M(M是Na、Mg、Sc、Y、Mn、Fe、Cu、Zn、Al、Cr、Pb、Sb以及B之中的至少一种)的锂复合氧化物。这样的正极活性物质在高温下发生分解的可能性较高,在其分解反应时产生大量的热和氧。因此,如果使用这样的锂复合氧化物作为正极活性物质,则以高的几率发生内部短路。但是,即使在使用这样的锂复合氧化物作为正极活性物质的情况下,也可以通过在正极集电体51和正极合剂层52的界面上散布绝缘构件10,10,…,将正极5和负极6之间的电阻值设定为1.6Ω·cm2以上,优选设定为5Ω·cm2~10Ω·cm2。因此,即使在多孔质绝缘层7消失的情况下,也可以防止在正极5和负极6之间流过大电流,从而可以防止在锂离子二次电池内的发热。
作为正极活性物质,例如可以列举出LiCoO2、LiNiO2、LiMnO2、LiCoNiO2、LiCoMOz、LiNiMOz、LiMn2O4、LiMnMO4、LiMPO4、Li2MPO4F(M=Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb以及B之中的至少1种),再者,也可以是这些含锂化合物的一部分元素用异种元素置换而得到的物质。另外,正极活性物质也可以使用以金属氧化物、锂氧化物和导电剂等进行表面处理而得到的物质,作为表面处理,例如可以列举出疏水化处理。
作为负极活性物质,例如可以使用金属、金属纤维、碳素材料、氧化物、氮化物、锡化合物、硅化合物或各种合金材料等。作为碳素材料,例如可以使用各种天然石墨、焦炭、可石墨化碳、碳纤维、球状碳、各种人造石墨或非晶质碳等碳素材料。另外,硅(Si)或锡(Sn)等单质、硅化合物或锡化合物由于容量密度较大,所以作为负极活性物质,优选使用硅(Si)或锡(Sn)等单质、硅化合物或锡化合物。例如,作为硅化合物,可以使用SiOx(0.05<x<1.95)以及用选自B、Mg、Ni、Ti、Mo、Co、Ca、Cr、Cu、Fe、Mn、Nb、Ta、V、W、Zn、C、N和Sn之中的至少1种以上的元素置换Si的一部分而得到的硅合金、硅化合物或硅固溶体等。作为锡化合物,可以适用Ni2Sn4、Mg2Sn、SnOx(0<x<2)、SnO2或SnSiO3等。再者,负极活性物质既可以单独使用1种,也可以组合使用2种以上。
正极合剂层52除了上述的锂复合氧化物以外,还优选含有粘结剂和导电剂。另外,负极活性物质层62除了上述的负极活性物质以外,还优选含有粘结剂。
粘结剂例如可以使用PVDF(poly(vinylidene fluoride):聚偏氟乙烯)、聚四氟乙烯、聚乙烯、聚丙烯、芳族聚酰胺树脂、聚酰胺、聚酰亚胺、聚酰胺-酰亚胺、聚丙烯腈、聚丙烯酸、聚丙烯酸甲酯、聚丙烯酸乙酯、聚丙烯酸己酯、聚甲基丙烯酸、聚甲基丙烯酸甲酯、聚甲基丙烯酸乙酯、聚甲基丙烯酸己酯、聚醋酸乙烯酯、聚乙烯吡咯烷酮、聚醚、聚醚砜、六氟聚丙烯、丁苯橡胶或羧甲基纤维素等。另外,粘结剂既可以使用由选自四氟乙烯、六氟乙烯、六氟丙烯、全氟烷基乙烯基醚、偏氟乙烯、三氟氯乙烯、乙烯、丙烯、五氟丙烯、氟甲基乙烯基醚、丙烯酸以及己二烯之中的2种以上的材料制成的共聚物,也可以混合所选择的2种以上来使用。
导电剂例如可以使用石墨类,如天然石墨或人造石墨等;碳黑类,如乙炔黑(AB:acetylene black)、科琴碳黑、槽法碳黑、炉法碳黑、灯黑、或热裂碳黑等;导电性纤维类,如碳纤维或金属纤维等;金属粉末类,如氟化碳、铝等;导电性晶须类,如氧化锌和钛酸钾等;导电性金属氧化物,如氧化钛等;以及有机导电性材料,如亚苯基衍生物等。
正极合剂层52中的活性物质、导电剂和粘结剂的配比并没有特别的限定,可以采用公知的合剂层中的配比。同样地,负极活性物质层62中的活性物质和粘结剂的配比并没有特别的限定,可以采用公知的合剂层中的配比。
作为正极集电体51和负极集电体61,可以使用长尺寸的多孔性构造的导电性基板或者无孔的导电性基板。作为导电性基板所使用的材料,对正极集电体51而言,例如可以使用不锈钢、铝或钛等。另外,对负极集电体61而言,例如可以使用不锈钢、镍或铜等。正极集电体51和负极集电体61的厚度均没有特别的限定,但优选为1μm~500μm,更优选为5μm~20μm。如果使正极集电体51和负极集电体61的厚度为上述范围,则能够保持正极5和负极6的强度,且使正极5和负极6轻量化。
正极5例如可以采用如下的方法来制作:首先,在液态成分中将由任意的成分构成的正极合剂(在正极合剂中含有粘结剂和导电剂)和正极活性物质进行混合,从而调配出正极合剂浆料,其次,将得到的正极合剂浆料涂布在正极集电体51的表面并进行干燥。负极6同样地例如可以采用如下的方法来制作:首先,在液态成分中将由任意的成分构成的负极合剂(在负极合剂中含有粘结剂)和负极活性物质进行混合,从而调配出负极合剂浆料,其次,将得到的负极合剂浆料涂布在负极集电体61的表面并进行干燥。
作为浆料中的粘结剂,例如可以使用PVDF、聚四氟乙烯、聚乙烯、聚丙烯、芳族聚酰胺树脂、聚酰胺、聚酰亚胺、聚酰胺-酰亚胺、聚丙烯腈、聚丙烯酸、聚丙烯酸甲酯、聚丙烯酸乙酯、聚丙烯酸己酯、聚甲基丙烯酸、聚甲基丙烯酸甲酯、聚甲基丙烯酸乙酯、聚甲基丙烯酸己酯、聚醋酸乙烯酯、聚乙烯吡咯烷酮、聚醚、聚醚砜、六氟聚丙烯、丁苯橡胶、或羧甲基纤维素等。另外,作为粘结剂,既可以使用由选自四氟乙烯、六氟乙烯、六氟丙烯、全氟烷基乙烯基醚、偏氟乙烯、三氟氯乙烯、乙烯、丙烯、五氟丙烯、氟甲基乙烯基醚、丙烯酸和己二烯之中的2种以上的材料制成的共聚物,也可以混合选自这些之中的2种以上来使用。
另外,在浆料中也可以含有导电剂。作为浆料中的导电剂,例如可以使用石墨类,如天然石墨或人造石墨;碳黑类,如乙炔黑、科琴碳黑、槽法碳黑、炉法碳黑、灯黑、以及热裂碳黑等;导电性纤维类,如碳纤维或金属纤维等;金属粉末类,如氟化碳、铝等;导电性晶须类,如氧化锌或钛酸钾等;导电性金属氧化物,如氧化钛等;以及有机导电性材料,如亚苯基衍生物等。
作为介于正极5和负极6之间的多孔质绝缘层7,可以使用具有大的离子透过率、兼备规定的机械强度和绝缘性的微多孔薄膜、纺布或无纺布等。作为多孔质绝缘层7的材质,例如如果使用聚丙烯或聚乙烯等聚烯烃,则由于聚烯烃耐久性优良且具有关闭(shutdown)功能,能够提高锂离子二次电池的安全性,因而是优选的。多孔质绝缘层7的厚度一般为10μm~300μm,但优选为10μm~40μm。另外,多孔质绝缘层7的厚度更优选为15μm~30μm,进一步优选为10μm~25μm。另外,在使用微多孔薄膜作为多孔质绝缘层7的情况下,微多孔薄膜既可以是由1种材料构成的单层膜,也可以是由1种或2种以上的材料构成的复合膜或多层膜。另外,多孔质绝缘层7的孔隙率优选为30%~70%,进一步优选为35%~60%。在此,所谓孔隙率,表示孔部的体积相对于多孔质绝缘层体积的比率。
作为非水电解质,可以使用液态非水电解质、凝胶状非水电解质或固体电解质(高分子固体电解质)。
液态非水电解质是通过在非水溶剂中溶解电解质(例如锂盐)而得到的。另外,凝胶状非水电解质是含有非水电解质和保持该非水电解质的高分子材料的电解质。作为该高分子材料,例如可以优选地使用聚偏氟乙烯、聚丙烯腈、聚环氧乙烷、聚氯乙烯、聚丙烯酸酯或聚偏氟乙烯-六氟丙烯等。
作为溶解有电解质的非水溶剂,可以使用公知的非水溶剂。该非水溶剂的种类并没有特别的限定,例如可以使用环状碳酸酯、链状碳酸酯或环状羧酸酯等。作为环状碳酸酯,可以列举出碳酸亚丙酯(PC:propylene carbonate)或碳酸亚乙酯(EC:ethylene carbonate)等。作为链状碳酸酯,可以列举出碳酸二乙酯(DEC:diethyl carbonate)、碳酸甲乙酯(EMC:ethylmethyl carbonate)、或碳酸二甲酯(DMC:dimethyl carbonate)等。作为环状羧酸酯,可以列举出γ-丁内酯(GBL:gamma-butyrolactone)、或γ-戊内酯(GVL:gamma-valerolactone)等。非水溶剂既可以单独使用1种,也可以组合使用2种以上。
作为溶解于非水溶剂中的电解质,例如可以使用LiClO4、LiBF4、LiPF6、LiAlCl4、LiSbF6、LiSCN、LiCF3SO3、LiCF3CO2、LiAsF6、LiB10Cl10、低级脂肪族羧酸锂、LiCl、LiBr、LiI、氯硼烷基锂、硼酸盐类和亚胺盐类等。作为硼酸盐类,可以列举出二(1,2-苯二酚(2-)-O,O’)硼酸酯锂、二(2,3-萘二酚(2-)-O,O’)硼酸酯锂、二(2,2’-联苯二酚(2-)-O,O’)硼酸酯锂、以及二(5-氟-2-羟基-1-苯磺酸-O,O’)硼酸酯锂等。作为亚胺盐类,可以列举出双(三氟甲磺酰)亚胺锂((CF3SO2)2NLi)、三氟甲磺酰基九氟丁磺酰亚胺锂(LiN(CF3SO2)(C4F9SO2))、以及双(五氟乙磺酰)亚胺锂((C2F5SO2)2NLi)等。电解质既可以单独使用1种,也可以组合使用2种以上。
在非水电解质中,也可以含有能够在负极6上分解、且形成锂离子传导性较高的覆盖膜、从而提高充放电效率的材料作为添加剂。作为具有这样的功能的添加剂,例如可以列举出碳酸亚乙烯酯(VC:vinylene carbonate)、4-甲基亚乙烯基碳酸酯、4,5-二甲基亚乙烯基碳酸酯、4-乙基亚乙烯基碳酸酯、4,5-二乙基亚乙烯基碳酸酯、4-丙基亚乙烯基碳酸酯、4,5-二丙基亚乙烯基碳酸酯、4-苯基亚乙烯基碳酸酯、4,5-二苯基亚乙烯基碳酸酯、乙烯基亚乙基碳酸酯(VEC:vinyl ethylenecarbonate)以及二乙烯基亚乙基碳酸酯等。作为添加剂,它们既可以单独使用,也可以组合使用2种以上。在上述的添加剂中,优选的是选自碳酸亚乙烯酯、乙烯基亚乙基碳酸酯以及二乙烯基亚乙基碳酸酯之中的至少1种。此外,上述化合物的氢原子的一部分也可以用氟原子置换。电解质相对于非水溶剂的溶解量优选为0.5mol/m3~2mol/m3。
再者,在非水电解质中,也可以含有过充电时分解、在电极上形成覆盖膜从而使电池钝化的公知的苯衍生物。作为上述的苯衍生物,优选具有苯基和与所述苯基相邻的环状化合物基的物质。作为上述的环状化合物基,优选的是苯基、环状醚基、环状酯基、环烷基和苯氧基等。作为苯衍生物的具体例子,可以列举出环己苯、联二苯和二苯醚等。苯衍生物既可以单独使用,也可以组合使用2种以上。但是,苯衍生物的含量优选为整个非水溶剂的10体积%以下。
此外,本实施方式的锂离子二次电池也可以是以下所示的构成。
锂离子二次电池的构成并不局限于图1所示的形状。具体地说,锂离子二次电池既可以是方筒型,也可以是不通过接头(tab)而可以集电的构成。另外,虽然通过多孔质绝缘层的分隔的正极和负极被卷绕成螺旋状,但也可以介入多孔质绝缘层而对正极和负极进行层叠。
绝缘构件虽然被设定为散布在正极集电体和正极合剂层的界面以及负极集电体和负极活性物质层的界面上,但也可以散布在任何一方的界面上。通过使绝缘构件散布在任何一方的界面或两界面上,正极和负极之间的电阻值可以设定为1.6Ω·cm2以上。
正极集电体、负极集电体、正极活性物质、负极活性物质、导电剂、粘结剂、非水电解质的溶剂、非水电解质的溶质和多孔质绝缘层的材质、正极集电体、负极集电体和多孔质绝缘层的厚度、进而正极合剂层和负极活性物质层的配比等,并不局限于上述的记载。在本实施方式中,只要正极和负极之间的电阻值为1.6Ω·cm2以上,则材质等就没有限定。
实施例
<实施例1>
在实施例1中,制作8种正极和负极之间的电阻值不同的锂离子二次电池(电池1~电池8),对该锂离子二次电池分别进行安全性评价试验。
1、电池1~电池8的制作方法
(电池1)
使用LiNi0.80Co0.15Al0.05O2作为正极活性物质,制作了正极和负极之间的电阻值为1.6Ω·cm2的电池1。以下,说明电池1的制作方法。
(正极的制作)
首先,在100重量份的平均粒径(或平均粒子直径)为0.3μm的多晶氧化铝粒子(绝缘构件)中,混合4重量份的聚丙烯酸衍生物(粘结剂)和适量的N-甲基2-吡硌烷酮(N-Methyl-2-Pyrrolidone,以下记为“NMP”)(分散介质),从而调配出不挥发份为30重量%的浆料。在此,利用MTECHNIQUE(株)生产的非介质分散机(medialessdistributor)“CLEAR MIX(商品名)”,对多晶氧化铝粒子、粘结剂和分散介质的混合物进行搅拌,直至让多晶氧化铝粒子和粘结剂在NMP中均匀分散为止。
其次,采用凹版印刷辊(gravure roll),在厚度为15μm的铝箔(正极集电体)的两面上涂布该浆料,在120℃下干燥,使氧化铝粒子散布在正极集电体的表面上。此外,在正极集电体的表面散布的氧化铝粒子的涂布量相对于每1m2的正极集电体的表面积为1cm3。
接着,混合在N-甲基吡硌烷酮(NMP)的溶剂中溶解有1.7重量份的聚偏氟乙烯(PVDF)(粘结剂)的溶液和1.25重量份的乙炔黑,以制作导电剂。然后,在100重量份的LiNi0.80Co0.15Al0.05O2(正极活性物质)中混合导电剂,便得到含有正极合剂的浆料。将该浆料涂布在厚度为15μm的铝箔的两面,干燥后进行压延,裁切成厚度0.125mm、宽度57mm、长度667mm的尺寸,从而得到正极。
(负极的制作)
首先,对100重量份的鳞片状人造石墨进行粉碎和分级,使其平均粒径成为大约20μm。
其次,在鳞片状人造石墨中,添加3重量份作为粘结剂的苯乙烯/丁二烯橡胶和100重量份含有1重量%羧甲基纤维素的水溶液并进行混合,从而得到含有负极合剂的浆料。之后,将该浆料涂布在厚度为8μm的铜箔(负极集电体)的两面,干燥后进行压延,裁切成厚度0.156mm、宽度58.5mm、长度750mm的尺寸,从而得到负极。
(非水电解质的调配)
在碳酸亚乙酯和碳酸二甲酯的体积比为1∶3的混合溶剂中,添加5wt%的碳酸亚乙烯酯,以1.4mol/m3的浓度溶解LiPF6,便得到非水电解质。
(圆筒型电池的制作)
首先,将铝制的正极引线安装在正极集电体上,将镍制的负极引线安装在负极集电体上。之后,使聚乙烯制多孔质绝缘层介于正极集电体和负极集电体之间而进行卷绕,便构成电极组。
其次,在电极组的上下分别配置绝缘板,将负极引线焊接在电池壳体上,同时将正极引线焊接在具有内压作动型的安全阀的封口板上,并将电极组收纳在电池壳体的内部。
然后,采用减压方式向电池壳体的内部注入非水电解质。最后,经由垫圈在封口板上对电池壳体的开口端进行敛缝,从而完成电池的制作。电池的电池容量为2.8Ah(此外,LiNi0.80Co0.15Al0.05O2的电容量为191mAh/g)。在此,电池容量是在25℃的环境下,以1.4A的恒电流进行充电直至4.2V,之后以4.2V的恒电压进行充电直至电流值到达50mA,继而以0.56A的恒电流值进行放电直至2.5V时的容量。
(电池2)
除使用LiCoO2作为正极活性物质以外,其余与电池1同样地制作电池2。电池2的电池容量为2.1Ah(此外,LiCoO2的电容量为151mAh/g)。
(电池3)
除使用LiNi0.33Mn0.33Co0.33O2作为正极活性物质以外,其余与电池1同样地制作电池3。电池3的电池容量为2.2Ah(此外,LiNi0.33Mn0.33Co0.33O2的电容量为151mAh/g)。
(电池4)
将散布在集电体表面的氧化铝粒子相对于每1m2的集电体表面的表面积的涂布量设定为1.5cm3,除此以外,与电池1同样地制作电池4。电池4的电池容量为2.78Ah。
(电池5)
将散布在集电体表面的氧化铝粒子相对于每1m2的集电体表面的表面积的涂布量设定为2.0cm3,除此以外,与电池1同样地制作电池5。电池5的电池容量为2.75Ah。
(电池6)
除不使氧化铝粒子散布在集电体和合剂层的界面上以外,其余与电池1同样地制作电池6。电池6的电池容量为2.82Ah。
(电池7)
除不使氧化铝粒子散布在集电体和合剂层的界面上以外,其余与电池2同样地制作电池6。电池7的电池容量为2.12Ah。
(电池8)
除不使氧化铝粒子散布在集电体和合剂层的界面上以外,其余与电池3同样地制作电池8。电池8的电池容量为2.22Ah。
2、评价方法
(正极集电体和负极集电体之间的电阻的评价)
对于如以上那样得到的电池1,测量了正极和负极之间的电阻。
首先,对电池1进行充电。具体地说,流过1.45A的电流而以恒电流进行充电直至电压达到4.2V,达到4.2V后,以恒电压进行充电直至电流为50mA。
其次,分解电池1并去除多孔质绝缘层等。具体地说,取出正极板和负极板,使用碳酸二甲酯去除EC和电解质后,在常温下进行真空干燥。
接着,测量了正极和负极之间的电阻值。具体地说,使2.5cm×2.5cm的正极合剂层的表面和负极合剂层的表面互相接触。之后,将湿度设定为20%以下,将环境温度设定为20℃,在9.8×105N/m2的加压状态下,采用四端子法测量在正极集电体和负极集电体之间流过电流时的电压,从而算出直流电阻。同样地,对电池2~电池8也测量了正极和负极之间的电阻。
(安全性评价)
对于如以上那样得到的电池1,采用钉刺法进行了安全性的评价。
首先,对电池1进行充电。具体地说,流过1.45A的电流而以恒电流进行充电直至电压达到4.25V,达到4.25V后,以恒电压进行充电直至电流为50mA。
之后,在30℃、45℃、60℃和75℃的环境下,确认了使φ2.7的钉子贯穿电池中心部时的外观变化。在30℃、45℃和60℃下,以5mm/s的速度刺入钉子。在75℃的环境下,以150m/s的速度刺入钉子。然后,就来自电池的冒烟的有无进行了评价。同样地,对于电池2~电池8也评价了安全性。
3、结果和考察
所得到的结果如表1所示。这里,在表1中,AB量为正极中的AB量,其单位为%。绝缘构件粒径的单位为μm,绝缘构件的涂布量的单位为cm3/m2,电阻值的单位为Ω·cm2。容量为电池容量,其单位为Ah。另外,在钉刺试验的结果中,分母是进行了试验的母体数(即进行试验的电池数),分子是冒烟的个数。
表1
如表1所示,关于正极和负极之间的电阻值,电池1~电池5为1.6Ω·cm2以上,而电池6~电池8为0.5Ω·cm2以下。这样,如果使绝缘构件散布于正极集电体的表面上,则可以增大正极和负极之间的电阻。另外,根据电池1、电池4和电池5,绝缘构件的涂布量越多,正极和负极之间的电阻越大。
另外,关于电池容量,在正极活性物质相同的情况下,没有设置绝缘构件者表现出稍大的数值。具体地说,当对电池1和电池6进行比较时,则电池6的电池容量稍大,当对电池2和电池7进行比较时,则电池7的电池容量稍大,当对电池3和电池8进行比较时,则电池8的电池容量稍大。另外,在电池1~电池3中,电池容量是不同的,但可以认为其原因在于:正极活性物质的利用率不同。再者,绝缘构件的涂布量在电池5中是最大的,但即便是电池5,也表现出能够实用这种程度的电池容量的值。
另外,关于钉刺试验,电池1~电池5与电池6~电池8相比,来自电池的冒烟受到抑制。在此,所谓冒烟,是指电池的防爆阀作动,从电池内部可以观察到烟雾。从这一结果可知,在电池6~电池8中,当多孔质绝缘层消失时,则在正极和负极之间流过大电流,但在电池1~电池5中,即使多孔质绝缘层消失,在正极和负极之间也不会流过大电流。
再者,电池4和电池5与电池1~电池3相比,可以降低冒烟的电池的个数。特别对于电池5,即使在75℃的气氛下,冒烟的电池的数量也为0个。从这一结果可知,绝缘构件的涂布量越多,则越可以防止在正极和负极之间流过大电流。
<实施例2>
实施例2对散布着氧化铝粒子的部位进行了最优化。
在本实施例中,除了使氧化铝粒子混合存在于正极合剂层中以外,其余与电池5同样地制作电池9。然后,根据上述实施例1的测量方法,对电池9测量了电池容量以及正极和负极之间的电阻值。其结果如表2所示。这里,在表2中,电阻值的单位是Ω·cm2。电池容量的单位是Ah。
表2
电阻 | 电池容量 | |
电池5 | 10 | 2.75 |
电池9 | 0.1 | 2.75 |
如表2所示,在电池5和电池9中,电池容量均为2.75Ah。但是,对于正极和负极之间的电阻值,电池5为10Ω·cm2,而电池9为0.1Ω·cm2。由上可知,在电池5和电池9中,锂离子二次电池的电池性能虽然相同,但在电池5中,即使多孔质绝缘层消失,也能够防止大电流在正极和负极之间流过,而在电池9中,当多孔质绝缘层消失时,则不能防止大电流在正极和负极之间流过,从而锂离子二次电池的安全性降低。
<实施例3>
实施例3对绝缘构件进行了最优化。
具体地说,在本实施例中,除绝缘构件以外,其余与电池4同样地准备电池10~电池20。在电池10~电池17中,使用氧化铝粒子作为绝缘构件。如表3所示,氧化铝粒子的粒径在电池10~电池17中依次为0.05μm、0.09μm、0.1μm、1μm、5μm、10μm、11μm、20μm。在电池18中,作为绝缘构件,使用的是在1200℃对干燥凝胶烧结3小时所得到的α-氧化铝的烧结体(陶瓷前驱体)、由α-氧化铝的单晶构成、且核的平均粒径约为0.2μm的氧化铝链。在电池19中,作为绝缘构件,使用的是纤维直径为2μm、纤维长度为40μm的氧化铝纤维。在电池20中,作为绝缘构件,使用的是由乙炔黑和聚乙烯制成、且电阻值为0.1Ω·cm2的电阻层。然后,根据上述实施例1的方法,测量了电阻值和电池容量,并进行了钉刺试验。其结果如表3所示。
这里,在表3中,电阻值的单位是Ω·cm2,电池容量的单位是Ah。另外,在钉刺试验的结果中,分母是进行了试验的母体数,分子是冒烟的个数。
表3
在电池10和电池11中,在较低温度下观察到了出现发热的电池。
在电池16、电池17和电池20中,正极和负极之间的电阻值较小,其结果是,确认了锂离子二次电池安全性的降低。
另一方面,在电池4、电池12~电池15、电池18和电池19中,电池容量、正极和负极之间的电阻值以及安全性评价都是优选的。
由上可知,作为绝缘构件,如果使用粒径为0.1μm~10μm的氧化铝粒子、由氧化铝粒子构成的氧化铝链或氧化铝纤维,则即使设置绝缘构件,也能够抑制二次电池的性能降低,即使在多孔质绝缘层消失的情况下,也可以防止在正极和负极之间流过大电流,进而可以批量生产锂离子二次电池。
<实施例4>
实施例4对氧化铝粒子的涂布量进行了最优化。
在本实施例中,除氧化铝粒子的涂布量以外,其余与电池1同样地准备电池21~电池25。电池21~电池25的氧化铝粒子的涂布量分别为表4所示的数值。然后,根据上述实施例1的测量方法,对电池21~电池25测量了电池容量以及正极和负极之间的电阻值,并进行了安全性评价。结果如表4所示。
这里,在表4中,涂布量是氧化铝的涂布量,其单位是cm3/m2。电阻值的单位是Ω·cm2,电池容量的单位是Ah。另外,在钉刺试验的结果中,分母是进行了试验的母体数,分子是冒烟的个数。
表4
如表4所示,在电池21和电池22中,可以抑制因设置氧化铝粒子引起的电池容量的降低,但是,正极和负极之间的电阻值较小,安全性评价结果并不良好。
另外,在电池24和电池25中,由于能够增大正极和负极之间的电阻值,所以安全性评价的结果良好,但是,不能抑制因设置氧化铝粒子引起的电池容量的降低。特别地,电池27的电池容量的降低是明显的。
另一方面,在电池1、电池4和电池23中,安全性评价的结果良好,而且能够抑制因设置氧化铝粒子引起的电池容量的降低。根据以上的结果,可以说在使用LiNi0.80Co0.15Al0.05O2作为正极活性物质的情况下,作为氧化铝粒子的涂布量,优选为1cm3/m2~2cm3/m2。
<实施例5>
在实施例5中,确认了因正极合剂层的正极活性物质材料的不同引起的效果。
具体地说,在本实施例中,除了正极合剂层的正极活性物质的种类和混合比以外,其余与电池1同样地准备电池26~电池31。
电池26~电池28使用LiNi0.80Co0.15Al0.055O2和LiMnO4作为正极活性物质,其混合比如表5所示。
另外,为了比较起见,除了不将氧化铝散布在正极集电体的表面上以外,其余与电池26~电池28同样,分别准备了电池29~电池31。电池29~电池31的正极活性物质的组成如表5所示。
然后,与上述实施例1同样,对电池26~电池31测量了电池容量以及正极和负极之间的电阻值,并进行了安全性评价。其结果如表5所示。
这里,在表5中,含量的单位均为wt%,电阻值的单位是Ω·cm2,电池容量的单位是Ah。另外,在钉刺试验的结果中,分母是进行了试验的母体数,分子是冒烟的个数。
表5
如表5所示,在如电池26和电池29那样LiMn2O4的含量在96%以上的电池中,由于LiMn2O4具有高电阻,所以即使不将氧化铝散布在正极集电体的表面上,正极和负极之间的电阻值也较高,从而锂离子二次电池的安全性优良。
另一方面,在如电池27、电池28、电池30和电池31那样,LiMn2O4的含量不足96%的电池中,如果不将氧化铝散布在正极集电体的表面上,则不能提高正极和负极之间的电阻值。为此,在LiMn2O4的含量不足96%的电池中,通过使绝缘构件散布在集电体和合剂层的界面上,可以得到较大的效果。
如以上所说明那样,本发明在例如汽车搭载用电源或大型工具用电源等方面是有用的。
Claims (6)
1、一种非水电解质二次电池,其具备:
正极,具有导电性的正极集电体、和设置在所述正极集电体的表面且含有能够以电化学的方式嵌入和脱嵌锂离子的正极活性物质的正极合剂层;
负极,具有导电性的负极集电体、和设置在所述负极集电体的表面且含有能够以电化学的方式嵌入和脱嵌锂离子的负极活性物质的负极活性物质层;
多孔质绝缘层,其配置在所述正极和所述负极之间;以及
非水电解质,其保持在所述正极和所述负极之间;其中,
在充电后,当取下所述多孔质绝缘层,使所述正极合剂层的表面和所述负极活性物质层的表面互相接触,且在所述正极集电体和所述负极集电体上分别设置端子而测量所述端子间的电阻值时,所述电阻值为1.6Ω·cm2以上。
2、根据权利要求1所述的非水电解质二次电池,其中,所述电阻值为5Ω·cm2~10Ω·cm2。
3、根据权利要求1所述的非水电解质二次电池,其中,绝缘构件散布在所述正极集电体和所述正极合剂层的界面、以及所述负极集电体和所述负极活性物质层的界面之中的至少一方的界面上。
4、根据权利要求3所述的非水电解质二次电池,其中,含有Co、Ni、以及除Co和Ni以外的元素M的锂复合氧化物作为所述正极活性物质,在所述正极合剂层中含有5wt%以上;
所述元素M是Na、Mg、Sc、Y、Mn、Fe、Cu、Zn、Al、Cr、Pb、Sb以及B之中的至少1种。
5、根据权利要求3所述的非水电解质二次电池,其中,所述绝缘构件是粒径为0.1μm~10μm的粒子状构件、多个所述粒子状构件配置成链状而形成的链状构件以及纤维状构件之中的至少1种。
6、根据权利要求3所述的非水电解质二次电池,其中,所述绝缘构件为金属氧化物。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP006648/2007 | 2007-01-16 | ||
JP2007006648 | 2007-01-16 | ||
PCT/JP2007/074034 WO2008087814A1 (ja) | 2007-01-16 | 2007-12-13 | 非水電解質二次電池 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101558527A true CN101558527A (zh) | 2009-10-14 |
CN101558527B CN101558527B (zh) | 2011-08-10 |
Family
ID=39635819
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2007800459843A Active CN101558527B (zh) | 2007-01-16 | 2007-12-13 | 非水电解质二次电池 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8673498B2 (zh) |
JP (1) | JP5331333B2 (zh) |
KR (1) | KR20090098817A (zh) |
CN (1) | CN101558527B (zh) |
WO (1) | WO2008087814A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103199262A (zh) * | 2013-03-29 | 2013-07-10 | 山东润峰集团新能源科技有限公司 | 一种高容量、高倍率、高安全锂离子电池的制造方法 |
CN111164817A (zh) * | 2017-10-13 | 2020-05-15 | 远景Aesc能源元器件有限公司 | 锂离子二次电池 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008269928A (ja) * | 2007-04-19 | 2008-11-06 | Matsushita Electric Ind Co Ltd | 非水電解質二次電池 |
KR101943647B1 (ko) * | 2009-02-23 | 2019-01-29 | 가부시키가이샤 무라타 세이사쿠쇼 | 비수 전해질 조성물, 비수 전해질 이차 전지 및 비수 전해질 이차 전지의 제조 방법 |
JP5381588B2 (ja) * | 2009-10-02 | 2014-01-08 | トヨタ自動車株式会社 | リチウムイオン二次電池、車両及び電池搭載機器 |
JP5257700B2 (ja) * | 2009-10-30 | 2013-08-07 | トヨタ自動車株式会社 | リチウム二次電池 |
EP2608296A1 (fr) * | 2011-12-21 | 2013-06-26 | The Swatch Group Research and Development Ltd. | Collecteur de courant en métal amorphe |
US9310444B2 (en) | 2014-01-15 | 2016-04-12 | Ford Global Technologies, Llc | Battery testing system and method |
US10326142B2 (en) * | 2015-09-15 | 2019-06-18 | GM Global Technology Operations LLC | Positive electrode including discrete aluminum oxide nanomaterials and method for forming aluminum oxide nanomaterials |
KR102533156B1 (ko) * | 2015-10-30 | 2023-05-17 | 삼성에스디아이 주식회사 | 리튬전지 |
US10199687B2 (en) * | 2016-08-30 | 2019-02-05 | Wildcat Discovery Technologies, Inc | Electrolyte formulations for electrochemical cells containing a silicon electrode |
CN109473729B (zh) * | 2018-11-05 | 2020-11-13 | 宁德新能源科技有限公司 | 电化学装置 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2844791B2 (ja) | 1990-01-26 | 1999-01-06 | トヨタ自動車株式会社 | 等速ジョイント |
JP3223523B2 (ja) | 1991-05-30 | 2001-10-29 | 松下電器産業株式会社 | 非水電解液二次電池 |
JPH09102301A (ja) * | 1995-10-05 | 1997-04-15 | Kanebo Ltd | 有機電解質電池 |
JPH1050294A (ja) | 1996-08-05 | 1998-02-20 | Sumitomo Bakelite Co Ltd | 熱敏感性抵抗体層付き蓄電素子 |
JP3765094B2 (ja) * | 1996-12-28 | 2006-04-12 | 株式会社ジーエス・ユアサコーポレーション | 非水電解液電池 |
JP3633223B2 (ja) | 1997-04-25 | 2005-03-30 | ソニー株式会社 | 正極活物質及びその製造方法並びに非水電解質二次電池 |
JP2000164206A (ja) * | 1998-11-25 | 2000-06-16 | At Battery:Kk | 組電池用非水電解液二次電池 |
JP4152056B2 (ja) | 2000-03-28 | 2008-09-17 | 三洋電機株式会社 | 非水電解質電池 |
JP2001297763A (ja) | 2000-04-12 | 2001-10-26 | Japan Storage Battery Co Ltd | 非水電解質二次電池 |
JP4061586B2 (ja) * | 2003-04-11 | 2008-03-19 | ソニー株式会社 | 非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池 |
JP2005078963A (ja) * | 2003-09-01 | 2005-03-24 | Sony Corp | 非水電解質二次電池およびその製造方法 |
JP2006079932A (ja) * | 2004-09-09 | 2006-03-23 | Toyota Motor Corp | リチウムイオン二次電池 |
KR100614376B1 (ko) * | 2005-04-25 | 2006-08-22 | 삼성에스디아이 주식회사 | 캔형 리튬 이차전지 |
JP2006351386A (ja) * | 2005-06-16 | 2006-12-28 | Mitsubishi Electric Corp | 電池及びその製造方法 |
KR20070065803A (ko) * | 2005-12-20 | 2007-06-25 | 소니 가부시끼 가이샤 | 정극 활물질과 리튬 이온 2차 전지 |
-
2007
- 2007-12-13 WO PCT/JP2007/074034 patent/WO2008087814A1/ja active Application Filing
- 2007-12-13 CN CN2007800459843A patent/CN101558527B/zh active Active
- 2007-12-13 US US12/518,803 patent/US8673498B2/en active Active
- 2007-12-13 KR KR1020097012121A patent/KR20090098817A/ko not_active Application Discontinuation
- 2007-12-13 JP JP2007322018A patent/JP5331333B2/ja active Active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103199262A (zh) * | 2013-03-29 | 2013-07-10 | 山东润峰集团新能源科技有限公司 | 一种高容量、高倍率、高安全锂离子电池的制造方法 |
CN111164817A (zh) * | 2017-10-13 | 2020-05-15 | 远景Aesc能源元器件有限公司 | 锂离子二次电池 |
CN111164817B (zh) * | 2017-10-13 | 2023-09-01 | 株式会社Aesc 日本 | 锂离子二次电池 |
Also Published As
Publication number | Publication date |
---|---|
US8673498B2 (en) | 2014-03-18 |
JP5331333B2 (ja) | 2013-10-30 |
CN101558527B (zh) | 2011-08-10 |
US20100136429A1 (en) | 2010-06-03 |
JP2008198591A (ja) | 2008-08-28 |
KR20090098817A (ko) | 2009-09-17 |
WO2008087814A1 (ja) | 2008-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7232356B2 (ja) | 再充電可能なバッテリーセル | |
CN101320822B (zh) | 非水电解质二次电池及非水电解质二次电池用正极的制造方法 | |
CN209045679U (zh) | 电化学装置及包含其的电子装置 | |
CN101542820B (zh) | 非水电解质二次电池 | |
CN101515640B (zh) | 一种负极和包括该负极的锂离子二次电池 | |
CN101558527A (zh) | 非水电解质二次电池 | |
JP5209964B2 (ja) | リチウム二次電池 | |
CN101276940B (zh) | 非水电解质二次电池以及非水电解质二次电池的制造方法 | |
CN101627492B (zh) | 非水电解质二次电池及非水电解质二次电池用电极的制造方法 | |
CN109980164A (zh) | 隔离膜和电化学装置 | |
CN109244475A (zh) | 电化学装置及包含其的电子装置 | |
CN101286576A (zh) | 非水电解质二次电池 | |
JP6666223B2 (ja) | 負極、非水電解質電池、電池パック、及び車両 | |
KR100870603B1 (ko) | 리튬 이차전지 | |
CN103262326A (zh) | 非水二次电池 | |
CN107210425B (zh) | 非水电解质二次电池及电池包 | |
KR20160016920A (ko) | 비수전해질 이차 전지 | |
EP4238151B1 (en) | Blended cathode materials for secondary batteries | |
WO2020143413A1 (zh) | 用于提高电池性能的包括具有支架结构的复合层和保护层的电极以及电池 | |
US20090011337A1 (en) | Separator, battery using the same, and method for manufacturing separator | |
EP2860792B1 (en) | Non-aqueous electrolyte secondary battery and battery pack | |
JP4016497B2 (ja) | 非水電解液およびそれを用いたリチウム二次電池 | |
JP5209875B2 (ja) | リチウム二次電池 | |
JP2009123473A (ja) | 非水電解質電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |