CN101548185A - 调节生物样品和/或化学样品温度的装置及其使用方法 - Google Patents

调节生物样品和/或化学样品温度的装置及其使用方法 Download PDF

Info

Publication number
CN101548185A
CN101548185A CNA2007800056861A CN200780005686A CN101548185A CN 101548185 A CN101548185 A CN 101548185A CN A2007800056861 A CNA2007800056861 A CN A2007800056861A CN 200780005686 A CN200780005686 A CN 200780005686A CN 101548185 A CN101548185 A CN 101548185A
Authority
CN
China
Prior art keywords
sample
temperature
temperature control
control modules
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2007800056861A
Other languages
English (en)
Inventor
帕维尔·诺伊茨尔
谢铮鸣
于尔根·皮珀尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agency for Science Technology and Research Singapore
Original Assignee
Agency for Science Technology and Research Singapore
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency for Science Technology and Research Singapore filed Critical Agency for Science Technology and Research Singapore
Publication of CN101548185A publication Critical patent/CN101548185A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5088Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above confining liquids at a location by surface tension, e.g. virtual wells on plates, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5085Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
    • B01L3/50851Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates specially adapted for heating or cooling samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/0332Cuvette constructions with temperature control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00495Means for heating or cooling the reaction vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/143Quality control, feedback systems
    • B01L2200/147Employing temperature sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0819Microarrays; Biochips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1805Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
    • B01L2300/1822Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks using Peltier elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1805Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
    • B01L2300/1827Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks using resistive heater
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/18Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Clinical Laboratory Science (AREA)
  • Analytical Chemistry (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

本发明提供一种用于调节化学样品和/或生物样品温度的装置及使用该装置的方法。所述装置包括至少一个温度控制模块。所述温度控制模块包括加热器、热导体和温度传感器。所述温度控制模块的加热器用于通过热导体与其上放置所述化学样品和/或生物样品的可移动基底进行热交换。所述温度控制模块的温度传感器用于通过热导体检测和控制所述基底的温度。所述装置被设计成:使所述基底位于所述温度控制模块之上以完全覆盖所述温度控制模块。

Description

调节生物样品和/或化学样品温度的装置及其使用方法
技术领域
[0001]本发明涉及一种用于调节生物样品和/或化学样品的温度的装置,特别是调节处于液滴中的样品的温度的装置。
背景技术
[0002]很多诊断、分析和制备过程包括受温度变化影响的步骤。为获得可再现且准确的结果,需要持续控制反应混合物(例如样品)的温度,并保持各反应混合物内温度均一。另外,许多诊断、分析和制备过程均依赖酶,所述酶在特定温度下能显示出最佳性能。为获得精确的温度控制,通常需要提供反应混合物与加热或冷却元件之间的紧密接触。同时需要避免不同反应混合物(例如样品)之间的交叉污染。
[0003]控制加热以及保持温度均一在过程中尤为重要,该过程的一个例子是利用聚合酶链反应(PCR)进行的核酸体外扩增。通常PCR过程是热循环过程,其中基本循环可分为三步:(a)在约90~94℃下分离DNA双链;(b)冷却到约50~70℃,使特定引物结合到单链DNA而复性(退火);以及(c)升温到约70~80℃,使用热稳定的DNA聚合酶使引物延伸(延伸)。
[0004]PCR反应中的温度控制通常通过反馈电路系统来实现,而温度均一则通过导热高、块材(例如铜)来获得。除控制温度和保持样品内温度均一外,提供至少为5K/s(-5K/s)的加热(冷却)速率的样品也是很重要的。利用受最大耗散功率和热容限制的比例-积分-微分(PID)控制系统来实现高加热速率。很难获得高冷却速率,并且大体积系统需要通过热电元件(TEC,通常称作Peltier元件)或其它方式(例如水)来强制冷却。这些设备复杂且能耗大。
[0005]因为系统体积大,所以它们的热时间常数以分钟计而不是以秒计。这导致PCR反应的转变时间变长,并且产生了不必要的副产物。高能耗还使制造电池控制式和便携式PCR系统变得不可能。此外,反应管很大并且PCR混合液的所需量使得整个过程成本很高。而且,还必须离线(即,使用另一设备)检测PCR产物,由此产生额外成本。
[0006]虽然目前用于进行PCR反应的系统允许同时运行多个样品,但是它们不允许单独控制不同样品的温度。因此当需要将样品放置在各种温度循环条件下时,必须并行使用几个系统。因此需要提供一种在PCR期间能同时单独处理样品的装置。
[0007]化学、制药学和生物技术领域的设备小型化导致了微流体设备和微阵列的发展。因此,微PCR法(μPCR)得到发展,并有望成为芯片实验室或微全分析系统(μTAS)的核心部分。可确定两种基本方法,一种是使温度循环的固定式系统,另一种是具有三个不同温度区的流动式系统。
[0008]为了改变PCR溶液的温度,固定式系统使反应室的温度进行循环。它们不需要运送PCR样品的泵压系统或其它方式。流动式系统通常具有三个恒温区,样品在此三个区之间移动并因此改变温度。虽然流动式系统比固定式系统快,但是流动式系统需要具有在不同温度区之间执行运送的机械装置。在每种情况下,都是加热器与PCR系统整合,在仅仅完成一次测试后便丢弃设备以避免交叉污染是不经济的。
[0009]固定式微PCR法近期的例子使用了平板芯片设备和虚拟反应室(VRC)的构成。VRC是通过用油包水基样品制成的(Guttenberg,Z.等人,Lab Chip,2005,5,308-317)。由于不需要实体的盖或微通道,因此设备制造只包括将薄膜加热器和温度传感器沉积和印制在适当的基底上。然而各个装置对于一次性系统来说仍过于昂贵。
[0010]小型化所产生的另一个挑战是样品之间交叉污染的风险。避免这种交叉污染的最安全方法是使用一次性系统。至少与样品接触的设备部件应该是一次性的。迄今为止,已经提出了很多不同的系统。但这些系统通常不能满足上面列出的所有要求,并且它们相对比较昂贵。美国专利6,509,186中已公开具有由塑料片材制成的一次性部件的方法。通过热压可形成一套孔板,并将整套孔板放置在加热器上。该系统使用了相对复杂的微制作工艺,并且需要定制一次性板。因此,仍需要制造具有下述特点的μPCR,该μPCR简单、易于操作、并且价格便宜足以实现一次性。非常需要能任意整合为完整的μTAS系统的能力。
[0011]因此,本发明的一个目的是提供一种用于调节化学样品和/或生物样品温度的装置和方法,所述装置和方法能避免上述这些缺点。
发明内容
[0012]本发明的一个方面是提供一种用于调节化学样品和/或生物样品温度的装置。所述装置包括至少一个温度控制模块。所述温度控制模块包括加热器、热导体和温度传感器。所述温度控制模块的加热器用于通过热导体与其上放置所述化学样品和/或生物样品的可移动基底进行热交换。所述温度控制模块的温度传感器用于通过热导体检测和控制所述基底的温度。所述装置被设计成:使所述基底位于所述温度控制模块之上以完全覆盖所述温度控制模块。
[0013]本发明的另一方面是提供一种调节化学样品和/或生物样品温度的方法。所述方法包括提供一种用于调节化学样品和/或生物样品温度的装置。所述装置包括至少一个温度控制模块。所述温度控制模块包括加热器、热导体和温度传感器。所述温度控制模块的加热器用于通过热导体与其上放置所述化学样品和/或生物样品的可移动基底进行热交换。所述温度控制模块的温度传感器用于通过热导体检测和控制所述基底的温度。所述装置被设计成:使所述基底位于所述温度控制模块之上以完全覆盖所述温度控制模块。所述方法还包括设定用于加热化学样品和/或生物样品的温度值。所述方法还包括通过温度传感器测量热导体的温度。所述方法还包括只要所测温度低于所设定的温度值,就向所述热导体供热,由此加热所述基底及所述化学样品和/或生物样品。
附图说明
[0014]考虑不受本发明限制的实施例及附图,并参照说明书中的详细描述,可以更好地理解本发明,其中:
[0015]图1示出了本发明装置的实施方式的照片。温度控制模块焊接于印刷电路板(PCB)。在温度控制模块上有作为基底的正方形载玻片。样品以液滴的形式放置在基底上。
[0016]图2是图1所示的本发明装置的另一张照片。温度控制模块(8)焊接于印刷电路板(PCB)。可以将可移动基底放置在该装置上。基底(还可参照图1)完全覆盖温度控制模块。
[0017]图3A示出了本发明装置的温度控制模块实施方式的剖面示意图,所述温度控制模块由可移动基底(1)覆盖,样品(2)位于可移动基底(1)上。基底(1)与热导体(3)接触,热导体(3)依次与多个加热器(4)以及传感器(5)接触。
[0018]图3B示出了温度控制模块的另一实施方式的剖面示意图。样品为液滴,所述液滴包括内相(6)和外相(7)。基底(1)与同心热导体(3)接触,所述同心热导体(3)依次与同心加热器(4)和同心传感器(5)接触。
[0019]图4示出了本发明装置的温度控制模块的另一实施方式的示意图,详见下文。加热器(4)和传感器(5)彼此同心,加热器(4)包围传感器(5)。热导体(3)包括通过连接件(10)连接的两个同心部分和一定长度的杆状部分(9)。
[0020]图5示出了温度控制模块的排列,其中成对的温度控制模块在与其上放置所述样品的基底平面基本平行的平面内彼此相对放置。成对的温度控制模块全部(图5A、图5C)或部分(图5B、图5D、图5E)可以如反像一样彼此相对。图5F示出了成对的温度控制模块以不同于180°的角度彼此相对的实施方式。
[0021]图6A示出了使用ANSYS软件进行有限元分析(FEA)的结果,该结果表明上述四个温度控制模块温度分别达到55℃(右)、72℃(上)、72℃(左)和94℃(下)的温度均一性。
[0022]图6B示出了图6A所示的本发明装置的实施方式的红外图像,所述装置包括焊接于PCB的四个加热元件实施方式。
[0023]图6C示出了沿着图6B中a...a′线的温度轮廓线。温度控制模块之上的温度偏差在±0.5℃内。
[0024]图7示出了本发明装置的单通道温度控制模块的电路示意图。加热器(4)和传感器(5)是温度控制模块的一部分,而将其它设备位于外部的印刷电路板。
[0025]图8示出了使用本发明的装置和方法,PCR期间的温度/时间轮廓线。当受PID系统控制时,加热显著更快,温度从94℃降低到54℃仅需2秒。
[0026]图9示出了在示例性的PCR循环期间,由本发明装置检测的相对于时间的荧光信号。通过用72℃时的荧光信号(第一个箭头)减去94℃时的荧光信号(第二个箭头),可绘出图10所示的实时数据点。
[0027]图10示出了在50个PCR循环期间由本发明装置检测的相对于时间的荧光信号。实时数据点通过用72℃时的荧光信号(图9中的第一个箭头)减去94℃时的荧光信号(图9中的第二个箭头)来获得。本实施例中的循环阈值约为25。
[0028]图11示出了使用本发明的装置和方法获得的微PCR斜率(■,粗线)与使用MJ Research,Inc.的商购系统获得的结果(●,细线)的对比图。
[0029]图12示出了拷贝数为10000的归一化的荧光信号(■)与循环次数的曲线图,用sigmoid函数进行拟合(线)。
[0030]图13示出了由熔解曲线分析得到的荧光信号以及由sigmoid函数得到的近似值(参照下述实施例),该sigmoid函数为:
y = ( A 0 - x ) ( A 1 - A 2 ) 1 + exp ( x - x 0 k ) + A 2 + A 3 x
测量数据(在下曲线,粗线)和sigmoid函数(在下曲线,细线)不易区分,表明所得PCR产物的纯度。在上曲线示出了其导数的负值。
[0031]图14示出了毛细管电泳的流出曲线。该结果证实了PCR产物的纯度。
具体实施方式
[0032]本发明提供一种用于调节生物样品和/或化学样品温度的方法。所述方法用于任何样品,特别是例如液滴等液体形式的样品(参照下文)。
[0033]样品可以是任何来源。它可以来源于例如人、非人类动物、植物、细菌、病毒、孢子、真菌或原生动物、或来源于合成原料或生物原料的有机或无机材料,但不限于此。因此,选自下列任何样品,所述样品选自土壤样品、空气样品、环境样品、细胞培养物样品、骨髓样品、降雨样品、沉降物样品、污水样品、地下水样品、磨蚀样品(abrasionsample)、考古学样品、食物样品、血液样品、血清样品、血浆样品、尿样品、粪便样品、精液样品、淋巴液样品、脑脊髓液样品、鼻咽清洗样品、痰液样品、口腔抹片样品、咽喉抹片样品、鼻抹片样品、支气管肺泡灌洗样品、支气管分泌物样品、乳样品、羊水样品、活组织检查样品、癌样品、肿瘤样品、组织样品、细胞样品、细胞培养物样品、细胞裂解液样品、病毒培养物样品、指甲样品、毛发样品、皮肤样品、法医样品、感染样品、医院感染样品、产品样品、药物制剂样品、生物分子制备样品、蛋白制剂样品、脂质制剂样品、碳水化合物制剂样品、太空样品、地球外样品或其任意组合,但不限于此。若有需要,可将各样品预处理到任意程度。一个示例是,在用于本发明的设备之前,组织样品可以被消化、匀浆或离心。所述样品还可以制备成流体形式例如溶液。这些例子包括如下物质的溶液或浆液:核苷酸、多聚核苷酸、核酸、肽、多肽、氨基酸、蛋白质、合成聚合物、生化组合物、有机化学组合物、无机化学组合物、金属、脂质、碳水化合物、组合化学产物、候选药物分子、药物分子、药物代谢物或其任意组合,但不限于此。进一步的例子包括金属悬浮液、合金悬浮液及金属离子溶液或其任意组合,以及细胞悬浮液、病毒悬浮液、微生物悬浮液、病原体悬浮液、放射性化合物的悬浮液或其任意组合,但不限于此。可以理解的是,样品还可包括前述例子的任意组合。
[0034]通常但非必需,所述样品包括或希望包括目标物或其前体物。例如目标物可以是添加或包含在样品中的细胞或分子,优选将目标物进行加热。另一个例子是,目标物可以是已知的化合物或是理论上通过化学方法由前体化合物可获得的化合物,所述化学方法在升高温度时发生。在这种情况下,所述样品可包括例如所述前体化合物的溶液。
[0035]因此,目标物或其前体物可具有任何性质。所述物质的例子包括核苷酸、寡核苷酸、多聚核苷酸、核酸、肽、多肽、氨基酸、蛋白质、合成聚合物、生化组合物、有机化学组合物、无机化学组合物、脂质、碳水化合物、组合化学产物、候选药物分子、药物分子、药物代谢物、细胞、病毒、微生物或其任意组合,但不限于此。在目标物例如是蛋白质、多肽、肽、核酸、多聚核苷酸或寡核苷酸的实施方式中,所述目标物可含有亲和标签。亲和标签的例子包括生物素、二硝基酚或毛地黄毒苷,但不限于此。对于目标物是蛋白质、多肽或肽的情况,亲和标签进一步的例子包括寡聚组氨酸、多聚组氨酸、免疫球蛋白结构域、麦芽糖结合蛋白、谷胱甘肽S转移酶(GST)、钙调蛋白结合肽(CBP)、FLAG′-肽、T7抗原决定簇(Ala-Ser-Met-Thr-Gly-Gly-Gln-Gln-Met-Gly)、麦芽糖结合蛋白(MBP)、单纯疱疹病毒糖蛋白D的序列Gln-Pro-Glu-Leu-Ala-Pro-Glu-Asp-Pro-Glu-Asp的HSV抗原决定簇、序列Tyr-Pro-Tyr-Asp-Val-Pro-Asp-Tyr-Ala的红血球凝集素(HA)抗原决定簇和序列Glu-Gln-Lys-Leu-Ile-Ser-Glu-Glu-Asp-Leu的转录因子c-myc的“myc”抗原决定簇,但不限于此。对于目标物是核酸、多聚核苷酸或寡核苷酸的情况,亲和标签还可以是寡核苷酸标签。所述寡核苷酸标签例如可以用互补序列与固定化的寡核苷酸杂交。各亲和标签可位于目标物内或连接于目标物的任何部位。一个示例是,可操作地将亲和标签融合到前述任意示例性蛋白质的氨基端或羧基端。
[0036]本发明的装置包括至少一个温度控制模块。有些实施方式中,该装置包括至少两个温度控制模块。另外一些实施方式中,该装置包括多个温度控制模块。当该装置包括一个以上的温度控制模块时,它们通常彼此绝热。这种绝热通过用导热性差的材料(例如塑料、木材、玻璃、石英、水、空气或陶瓷等)将温度控制模块隔开来实现。有些实施方式中,通过空气绝热很有利,因为设备中可不引入另外的材料。若需要,该装置还可包括另一种温度控制方式,例如冷却模块。作为附加方式或替代方式,温度控制模块可包括冷却器,该冷却器例如能用于与热导体进行热交换。在许多实施方式中,当需要在约等于或高于室温的温度下处理样品时,没有冷却器也可方便地使样品从较高温度冷却到较低温度,例如从94℃降到55℃。可以很容易地将本发明的装置设计成可从热导体和样品散热以提供快速的冷却速率(例如参照图8)。
[0037]温度控制模块、或多个温度控制模块中的至少一个、以及有些实施方式中这些温度控制模块的每一个均基于包括加热器和温度传感器的直接加热系统。所述加热系统还包括热导体。加热器用于与热导体进行热交换,因此能加热该热导体。作为一个示例,加热器可与热导体接触。在温度传感器的控制下,加热器能将热导体加热到所需温度并/或将热导体保持在所需温度值。另外,如下所述,使加热器欲加热的热导体的温度值降低,通常能有效地达到降低热导体温度的目的,可将其定义为“冷却”。通常将温度传感器设置成例如通过直接接触能与热导体进行热交换。热导体可由能够导热的任何材料制成。热导体例如可包括金属、半导体、金刚石、碳纳米管或富勒烯化合物。适宜的金属的例子包括银、铜、铝、锌、金、钛、铁、铅、镍、铱和镉,但不限于此。适宜的半导体的两个示例是硅和锗。热导体的两个典型例子是热导率分别为410Wm-1K-1和157Wm-1K-1的银和硅。
[0038]加热器、传感器和热导体可以为任何形状并且可以相对于彼此以任意取向进行设置。有些实施方式中,将加热器和热导体设置在热导体的同一表面上(还可参照下文)。这些实施方式的有些方案中,将加热器和传感器设置为彼此直接相邻。
[0039]本发明的装置还能容纳可移动基底。当将基底放置在本发明的装置上时,该装置会由此用作例如培养箱。如下所述,该装置还可用作反应器。能适合本发明装置容纳的基底可由任意所需材料制成。通常,所述材料至少在某种程度上能够导热。这类例子包括硅、玻璃和塑料,但不限于此。还可优选选择由不与样品发生不希望的反应的材料形成的基底。同样可优选选择由这样的材料形成的基底,所述材料由不影响、延迟或阻止在样品内发生所需反应或不影响、延迟或阻止与样品发生所需反应。一个示例是,已知硅(但不是氧化硅或氧氮化硅)抑制PCR反应。只要本发明的装置能容纳基底,该基底可以具有任何形状和几何结构。所述形状例如可以是凹圆形或凸圆形。一个实施方式中,所述至少一个表面基本上是平的。若需要,基底可包括孔。该孔例如可通过蚀刻或激光钻孔获得。有些实施方式中,所述基底可容纳于装置的腔内。
[0040]为了进行所需过程或阻止不希望的反应发生,可优选选择基底的材料和/或形状。有些实施方式中,可优选选择例如有助于使样品铺展以提供与表面具有最大接触并有助于快速加热的材料。而其它实施方式中,为了阻止液体蒸发,可优选向样品提供例如低的浸润性。有些实施方式中,可以提供基底材料组成不同于基底其余部分材组成的表面。有些实施方式中,可以对基底表面进行修饰。例如,当样品是亲水性液体或包含在亲水性液体(例如水溶液)中时,若需要获得最小的铺展和蒸发,则基底可以是疏水性的或亲油性的。有些实施方式中,各疏水性基底可选自聚硅氧烷、塑料、表面修饰的玻璃、表面修饰的石英、表面修饰的金属及其复合材料。
[0041]通常通过处理来改变固体表面性质从而获得表面修饰。所述处理可包括各种方式,例如机械方式、热方式、电学方式或化学方式等。一个例子是,塑料材料表面通过用稀盐酸或稀硝酸处理可变成亲水性的。另一个例子是,通过氧或空气等离子体的氧化可使聚二甲基硅氧烷(PDMS)表面变成亲水性的。如Kim等(2003ECI Conference on HeatExchanger Fouling and Cleaning:Fundamentals and Applications[2003],Vol.RP1,107~114)所记载,在反应气体存在下,通过离子辐射也可使疏水性聚合物(例如聚甲基丙烯酸甲酯、聚四氟乙烯、聚对苯二甲酸乙二醇酯和聚碳酸酯)的表面变成亲水性的。通过将硅浸入H2O/H2O2/NH4OH中,可使其变成亲水性的。此外,通过涂敷亲水性聚合物或通过使用表面活性剂处理,任何疏水性表面的表面性质均可变成亲水性的。化学表面处理的例子包括与下列物质接触,这些物质包括六甲基二硅氮烷、三甲基氯硅烷、二甲基二氯硅烷、丙基三氯硅烷、四乙氧基硅烷、环氧丙氧基丙基三甲氧基硅烷、3-氨基丙基三乙氧基硅烷、2-(3,4-环氧基环己基)乙基三甲氧基硅烷、3-(2,3-环氧基丙氧基)丙基三甲氧基硅烷、聚二甲基硅氧烷(PDMS)、γ-(3,4-环氧基环己基)乙基三甲氧基硅烷、聚(甲基丙烯酸甲酯)或聚甲基丙烯酸酯共聚物、氨基甲酸乙酯、聚氨基甲酸乙酯、氟代聚丙烯酸酯、聚(甲氧基聚乙二醇甲基丙烯酸酯)、聚(二甲基丙烯酰胺)、聚[N-(2-羟丙基)甲基丙烯酰胺](PHPMA)、α-磷酸胆碱-邻-(N,N-二乙基二硫代氨基甲酰基)十一烷基寡(N,N-二甲基丙烯酰胺)-寡-ST嵌段共寡聚物(oligoDMAAm-oligo-STblock co-oligomer)(参照例如Matsuda,T等,Biomaterials,(2003),24,4517-4527)、聚(3,4-环氧基-1-丁烯)、3,4-环氧基-环己基甲基丙烯酸甲酯、2,2-双[4-(2,3-环氧基丙氧基)苯基]丙烷、3,4-环氧基-甲基丙烯酸环己酯、(3′,4′-环氧基环己基甲基)-3,4-环氧基环己基甲酸酯、己二酸二-(3,4-环氧基环己基甲基)酯、双酚A(2,2-双-(对-(2,3-环氧基丙氧基)苯基)丙烷)或2,3-环氧基-1-丙醇。
[0042]将化学样品和/或生物样品放置在基底上。当所选的基底材料是导热性相对较差的材料时(包括具有相当绝缘性能的材料),基底可具有较薄的厚度。两个示例是,可使用玻璃片或硅橡胶薄垫。图3A和3B示出了薄的可移动基底的两个示例。当将可移动基底放置在本发明装置上时,它能与热导体进行热交换。加热器用于通过热导体与基底进行热交换。同样,温度传感器用于通过热导体来检测和控制基底的温度。因此,在温度传感器的控制下,加热器能将基底加热到所需温度并/或将基底保持在所需温度值。在图3A和3B所示的那些实施方式中,例如尽管玻璃或橡胶基底是导热性差的导体,但它们也适合将热从热导体传到样品。有些实施方式中,除了绝热外,选择低导热性的基底也是有利的,因为这可以提供使一个温度控制元件与另一个温度控制元件的隔绝热的另一方式。
[0043]将本发明的装置设计为将可移动基底位于所述温度控制模块之上的方式。本文所用的术语“之上”和“之下”,是指将本发明的装置以下述方式保持在一个位置,即:将基底放置在所述装置上,并且一旦放置在该装置上,单靠重力就能够确保该基底的稳定。在此位置,通常可将装置放置在平的表面上。有些实施方式中,在此位置,加热器位于热导体之下。有些实施方式中,加热器和传感器均位于热导体之下。
[0044]有些实施方式中,加热器包括表面,所述表面设置成与可移动基底平面基本平行,在该可移动基底平面上放置样品。有些实施方式中,加热器包括表面,所述表面设置成与基底平面基本平行,在该基底平面上放置样品。有些实施方式中,加热器和传感器均包括表面,所述表面设置成与基底平面基本平行,在该基底平面上放置样品。这些实施方式的有些方案中,加热器和传感器均包括设置在共同平面内的表面。该共同平面与基底平面基本平行,在该基底平面上放置样品。这些实施方式的任意一个中,加热器、传感器或两者可位于热导体之下。
[0045]这些实施方式的任意一个中,特别是对于加热器和传感器均包括设置在共同平面内的表面的实施方式,加热器或传感器可以是同心的。有些实施方式中,加热器和传感器均为同心的。加热器和传感器中的一个或两个或其一部分,例如可以是空心圆环、空心矩形、空心三角形、空心正方形或任意空心的或任意寡面体(oligoedron)的形状(例如参照图5的例子)。例如Guttenberg等已公开了包含正方形元件的温度控制模块(参照下文)。这些实施方式的一个中,加热器和传感器均为同心,并且加热器包围传感器。另一实施方式中,加热器和传感器均为同心,并且传感器包围加热器。一个实施方式中,如图3B中的剖面图所示,加热器和传感器均为同心,并且设置在同心的热导体之下。应该注意的是,所述实施方式中,加热器、传感器和热导体包括中空区,从而使它们均各自成对出现。
[0046]有些实施方式中,热导体或其一部分具有用于与传感器和/或加热器形状相配的形状。当传感器和加热器例如是具有空心的同心正方形或同心圆形时,热导体可以为相应的具有空心的同心正方形或同心圆形的形状。当热导体的一部分用于与传感器和/或加热器的形状相配时,它可包括具有任意所需形状的其它附加部分。一个示例是,它可包括杆状部分。例如当用于与传感器和/或加热器形状相配的热导体的一部分具有圆形轮廓时,热导体可以是圆环形状。图4示出了示例性实施方式,其中热导体包括由连接件连接的两个同心部分。这些同心部分的内部与同心传感器和同心加热器直接接触,加热器包围传感器。热导体还包括杆状部分。因此它为双圆环形。导热性取决于热导体的材料、杆状部分的长度和同心部分的截面。热容取决于双圆环体积(参照图4)和样品体积。
[0047]在所述装置包括一个以上温度控制模块的实施方式中,每个温度控制模块均可包括设置在共同平面内的表面。该共同平面可与基底平面基本平行,在该基底平面上放置样品。这些实施方式的有些方案中,尤其是当加热元件具有相同尺寸时,还可将温度控制模块作为整体设置为位于共同平面内。这些实施方式中的任意一个中(例如当至少两个温度控制模块均包括设置在共同平面内的表面时),温度控制模块可以在各平面(例如与基底平面基本平行的平面)内彼此相对。如图5所示,装置例如可包括两对、三对、四对、五对或更多对温度控制模块。每对中的两个温度控制模块可在与基底平面(即放置样品的平面)基本平行的平面内彼此相对。例如图2示出了(还可参照图5)各排列的一个例子。图1示出了用盖玻片作为基底并将样品放置在其上的相应设置。图1所示样品是每个体积为1μl的水基液滴,并直接放置在温度控制模块之上的基底上,所述温度控制模块位于基底的另一面上。所示出的实施方式中的水滴用5μl矿物油覆盖。例如如图5E和图5F所示,可以成行设置温度控制元件,类似于例如多孔板上孔的排列。将这样的几行组合起来可提供具有例如32个、48个或96个可单独控制的温度控制元件的装置。因此,本发明的装置可用于在多孔的格局中进行各自的生物和/或化学反应(还可参照下文),由此显著推进了本领域的现状,目前本领域的现状只允许对多元检测的所有样品施加共同的温度轮廓线。
[0048]还可按照可移动基底完全覆盖温度控制模块的方式设计本发明的装置。在该装置包括一个以上温度控制模块的实施方式中,可移动基底可以完全覆盖该装置所有的温度控制模块。
[0049]本发明还提供一种调节化学样品和/或生物样品温度的方法,所述样品例如是包含在液滴中的样品。所述方法包括提供如上所述的装置。所述方法还包括提供用于加热所述化学样品和/或生物样品的预设温度值。例如可以将该温度值储存在与加热器相连接的外部设备内。所述方法还包括通过温度传感器测量热导体的温度。例如可将所测温度值传到外部设备,在该外部设备中,将所测温度与预设温度值进行比较。此外,所述方法还包括只要所测温度低于所设定的温度值,则通过加热器向热导体供热。由此加热基底及化学样品和/或生物样品。
[0050]此外,可选择一个以上的预设温度值,而且可以使时间段与各个温度值相关联。因此,可提前设定预定的具有任意所需长度的加热与不加热的时间间隔的时间表,随后使用本发明的方法来实施。一个示例是,使用本发明的方法可实施如上所述的PCR循环过程(还可参照以下实施例)(还可参照图8)。应该理解的是,还可选择时间间隔,在该时间间隔期间,温度逐渐升高或降低。可通过例如随时间逐渐增大或降低预设温度值(并因此增大或降低进行的供热)来实现时间间隔的选择。
[0051]如上所示,有些实施方式中,本发明的装置包括一个以上温度控制模块。因此,各装置均可用于本发明的方法中。这些实施方式的有些方案中,该装置的温度控制模块彼此绝热(参照上文)。这些实施方式中,可在装置的每个温度控制模块处设定用于加热化学样品和/或生物样品的各自的温度值。因此,这些实施方式中,本发明的方法可包括为每个温度控制模块设定各自的温度值。如上所述,通常设定用于加热化学样品和/或生物样品的温度值,可将所述样品放置在各温度控制模块之上的基底上。因此,可选择多个样品,使用同一装置单独、同时、或在重叠时间范围内对其进行加热。因此,对任何所需数量的这些样品(例如对各个样品和每个样品),可提供各自的加热和/或不加热的时间间隔。
[0052]使用包括至少两个彼此绝热的温度控制模块的装置的实施方式中,还可单独测量每个温度控制模块的热导体的温度。该测量通常通过各温度控制模块的温度传感器进行。这些实施方式中,本发明的方法还可包括只要所测温度低于所设定的温度值,则向每个温度控制模块的热导体单独供热。由此对每个基底单独进行加热,结果也对放置在其上的化学样品和/或生物样品单独进行加热。
[0053]因而,对于每个温度控制模块,可以独立选择一个以上的不同于任何其它温度控制模块的预设温度值,并且各个时间段可与每个温度控制模块的各个温度值相关联。因此,使用本发明的方法,可以在每个温度控制模块处单独执行预定的具有任意所需长度的加热与不加热的时间间隔的时间表。一个示例是,在同一装置的多个温度控制模块上可进行独立的PCR循环过程。
[0054]提供所述装置的本发明方法的有些实施方式中,包括提供基底。将可容纳于装置的基底(如前所述)放置在温度控制模块之上,以使该基底完全覆盖所述温度控制模块。提供装置还可包括提供化学样品和/或生物样品,并将所述样品放置在基底上。可以任何方式提供样品。一个示例是,当样品是液滴时,通过移液管或自动分配器可将样品分配到基底上。
[0055]如上所示,样品可以是液滴或将样品包含在液滴中。有些实施方式中,本发明的方法包括提供各液滴。只要液滴能放置在基底上,那么该液滴可以具有任意所需的体积。因此,加热模块可选择具有相应的尺寸。设计用于加热液滴的温度控制模块例如可为几毫米或为微米级或纳米级的尺寸。若需要,即便在包括许多温度控制模块的实施方式中,本发明的装置也可以是便携式的装置。
[0056]液滴可包括其它物质,例如磁吸性物质等。一个示例是,有些实施方式中,磁吸性粒子可包含在液滴中。这些粒子能够吸引目标物。有些实施方式中,可将磁吸性粒子功能化为对目标物具有特异亲和力从而捕获目标物,因此将其作为一种结合方式。
[0057]有些实施方式中,液滴包括内相和外相,其中外相例如作为膜包围内相。这些实施方式中,外相的液体通常与内相的液体不混溶。各相可使用任何液体。当液滴包含不混溶的两相时,一相通常由极性液体(例如水、乙醇、丙酮、N,N-二甲基-甲酰胺或硝基甲烷)形成,而另一相由非极性液体(例如苯、己烷、二噁烷、四氢呋喃或乙醚等)形成。
[0058]样品可以与其它物质混合,所述的其它物质例如溶解于样品中或悬浮于样品中,或例如在同一液体中与样品一起被提供。一个示例是,含水样品可包括一种或多种缓冲化合物。本领域使用了很多缓冲化合物,也可以用它们进行本文所述的各种处理。缓冲剂的例子包括下列盐溶液,即磷酸盐、碳酸盐、琥珀酸盐、柠檬酸盐、乙酸盐、甲酸盐、巴比妥酸盐、草酸盐、乳酸盐、邻苯二甲酸盐、马来酸盐、卡可酸盐、硼酸盐、N-(2-乙酰氨基)-2-氨基-乙烷磺酸酯(也称为ACES)、N-(2-羟乙基)-吡嗪-N′-2-乙烷磺酸(也称为HEPES)、4-(2-羟乙基)-1-吡嗪-丙烷磺酸(也称为HEPPS)、吡嗪-1,4-双(2-乙烷磺酸)(也称为PIPES)、2-[三(羟甲基)-甲基氨基]-1-乙烷磺酸(也称为TES)、2-环己基氨基-乙烷磺酸(也称为CHES)及N-(2-乙酰氨基)-亚氨基二乙酸盐(也称为ADA),但不限于此。任何反离子均可以用于这些盐;示例可以是铵、钠及钾。缓冲剂的其它例子包括三乙醇胺、二乙醇胺、乙基胺、三乙基胺、氨基乙酸、甘氨酰甘氨酸、组氨酸、三(羟甲基)氨基甲烷(也称为TRIS)、双(2-羟乙基)-亚氨基-三(羟甲基)甲烷(也称为双TRIS)及N-[三(羟甲基)-甲基]-氨基乙酸(也称为TRICINE),仅举几个为例,并不限于此。缓冲剂可以是这些缓冲化合物的水溶液或适宜的极性有机溶剂的溶液。
[0059]流体滴的相中所包含物质的其它例子包括进行化学或生物处理所用的试剂、催化剂和反应物,但不限于此。一个示例是,为保持细胞或蛋白质处于完整状态,可以加入盐、底物或洗涤剂。另一个示例是,可需要螯合化合物例如来防止有机体接触痕量的其它有毒盐或提高化学反应收率。可以作为样品添加剂的另一个例子包括磁吸性粒子(如上所述)。从上述可以理解的是,该添加的物质可包括在液滴中。当液滴包括一个以上的相时,该物质例如可包括在与样品同样的相中或包括在不同的相中。
[0060]有些实施方式中,加热生物样品可以引发、恢复或中止过程的加速。因此,有些实施方式中,加热各样品的方法包括进行生物和/或化学处理。各处理的一个示例是化学反应。化学反应的例子包括化学合成、化学降解、酶催化合成、酶催化降解、化学修饰、酶催化修饰、与结合分子的相互作用以及其任意组合,但不限于此。酶催化合成的例子包括蛋白合成、核酸合成、肽合成、药物化合物合成以及其任意组合,但不限于此。可使用附加的设备协助或监测该处理。各种光学检测系统的使用(例如光电二极管(PD)、光电倍增器(PMT)、光子计数探测器(PCM)、分光光度计以及电荷耦合器件(CCD)),使得并行、实时监测这些生物化学反应得以进行。
[0061]一个示例是,样品可包括核酸分子,并且加热化学样品和/或生物样品可以是聚合酶链反应(“PCR”,还可参照上文)。实时检测可给出荧光信号对以循环次数表示的反应时间的扩增图(参见图12)。荧光增加到基线以上表明检测到积聚的扩增产物。当固定的荧光阈值设定于基线以上时,荧光信号会在某个时间点跨过该阈值。因为时间以循环次数表示,得到所谓的循环阈值(Ct)次数(或值)。该次数越小,扩增图中的各荧光曲线越向左,其对应于起始模板的更高浓度。更高的Ct次数对应于起始模板的更低浓度。
[0062]本文所用的术语“核酸分子”是指任何可能构型的任意核酸,例如单链的核酸、双链的核酸或其组合。核酸包括例如DNA分子(例如cDNA或染色体DNA)、RNA分子(例如mRNA)、用核苷酸类似物或用核酸化学产生的DNA类似物或RNA类似物、以及PNA(肽核酸)。DNA或RNA可以来源于染色体或是被合成的,而且可以是单链或双链的。在本发明的方法中通常使用RNA分子或DNA分子,但这不是必需的。该核酸可以是例如mRNA、cRNA、合成RNA、染色体DNA、cDNA合成的DNA、DNA与RNA的共聚物、寡聚核苷酸等。各核酸还可包括非天然的核苷酸类似物和/或可被连接到亲和标签或标记物上(参照上文)。
[0063]许多核苷酸类似物是已知的,并且可用于本发明方法所用的核酸和寡聚核苷酸。核苷酸类似物是包含例如在碱基、糖或磷酸根部分修饰的核苷酸。一个示例是,已知用2′F、2′O-Me或2′H残基取代siRNA的2′-OH残基能改善各RNA的体内稳定性。碱基部分的修饰包括下述碱基的天然修饰和合成修饰:A、C、G和T/U、不同的嘌呤碱基或嘧啶碱基(例如尿嘧啶-5-基、次黄嘌呤-9-基和2-氨基腺嘌呤-9-基)、以及非嘌呤或非嘧啶的核苷酸碱基。其它核苷酸类似物作为通用碱基。所述通用碱基包括3-硝基吡咯和5-硝基吲哚。所述通用碱基能与其它任意碱基形成碱基对。例如为了获得独特的性能(例如增加的双螺旋稳定性),碱基修饰经常可与例如糖修饰(例如2′-O-甲氧基乙基)结合。
[0064]有些实施方式中,可以使用本发明的装置和方法测定目标物的热稳定性或目标物与其它物质之间的结合复合物的热稳定性。
[0065]本发明的方法可以与下列分析和制备方法组合使用,例如等电聚焦法、色谱法、电色谱法、电动色谱法和电泳法等。电泳法的例子例如自由流电泳法(FFE)、聚丙烯酰胺凝胶电泳(PAGE)、毛细管区带或毛细管凝胶电泳。组合使用这些方法可包括共同的基底。一个例子是,可以使用等电聚焦法在小的表面上,例如微芯片上进行蛋白质分离。然后可以使用本发明装置和方法加热各表面例如进行化学和/或生物反应。
[0066]为了易于理解本发明并付诸实践,通过以下不受限制的实施例来说明具体实施方式。
实施例
有限元分析
[0067]通过ANSYS版本9.0的有限元分析(FEA)软件来模拟单圆环结构和双圆环结构,所述单圆环结构由四个加热器组成,其中每个加热器均通过梁连接于基底,所述双圆环结构具有位于内圆环的加热器和传感器(图4)。使用对硅的实常数为450μm以及对玻璃的实常数为170μm的SHELL-57壳单元。将模型的一般边界条件设为芯片周边温度为25℃并且使足够幅度的热通量在四个圆环形状结构内散发,从而将它们的温度设定为94℃、72℃和55℃。
[0068]对于单圆环结构,发现沿着梁轴具有最大的热量梯度分布。沿圆环结构也有热量梯度分布,该热量梯度分布使得在所关注的区域内具有1℃的相对高的温度不均一性。
[0069]通过导热性至少为内圆环一半的两个梁来连接具有双圆环结构的两个圆环。这使得内圆环内温度均一。图6示出了双圆环结构的模拟结果,说明温度达到了均一。热量几乎完全通过悬臂散发,支持了预想的区与区之间的串扰将最小化。该设计允许彼此独立地控制所有四个区域的温度,因此可以同时运行四个不同的PCR方案。将为获得所述装置而使用的芯片设计成具有与标准LCC-68插座相同的焊盘结构,以使芯片能被插入常规测试插座中来测定装置热学参数。因为相比于厚度约3mm的标准LCC芯片,该设备的厚度只有0.45mm,所以为了得到较好的电连接,在芯片上加上塑料框架来弥补其较小的厚度。
制作
[0070]制作设备所用的基本的基底是常规的4"硅晶片。通过等离子体增强化学气相沉积(PECVD)沉积1μm的氧化硅层。用SiO2膜作为硅与随后的金属膜之间的电绝缘体。通过电子束蒸镀来沉积具有薄的铬粘接层的250nm的金层,总方块电阻为0.11Ω/□。使用2μm厚的AZ 7220正性光刻胶对所述的Au/Cr层制作光刻图形以形成加热器、传感器、电外引线和触板。
[0071]使用常规蚀刻溶液来蚀刻两种金属:使用KI/I2来蚀刻金、使用基于(NH4)2Ce(NO3)6的溶液来蚀刻铬。在蚀刻上述金属夹层后,使用丙酮剥离光刻胶,并使用10μm厚的AZ4620光刻胶进行第二步光刻。选择厚的光刻胶作为用于硅蚀刻的掩模,所述硅蚀刻通过深度反应离子蚀刻(DRIE)穿透硅晶片的整个厚度。所述光刻胶除了防止硅被DRIE蚀刻外,还保护金线。首先用7:1氧化物蚀刻缓冲液(BOE)蚀刻氧化硅以使硅裸露,然后进行DRIE(Bosch Process,例如参照美国专利5498312)。随着芯片切割线的形成,DRIE工艺产生了一些独立的芯片,不需切成相对容易损坏的MEMS结构。最后的工艺步骤是使用Piranha溶液(H2SO4/H2O2)清洁上述独立的芯片,使用去离子(DI)水冲洗上述独立的芯片,以及通过氮气流来干燥上述独立的芯片。
装置表征
[0072]在不同温度下,在探针台(Cascade Microtech,Inc.)上探测设备来检测所制作的设备的电学参数。使用Agilent4156C半导体参数分析仪来测量电阻器的值。
[0073]电阻器的电阻值R与温差ΔT的关系可由简化方程式表示:
R=R0(1+αΔT)  (1)
其中,R0是标称温度下的电阻值,而α是材料的电阻温度系数(TCR)。这两个参数都来自于测量数据(参照表1)。一旦计算出R0和其它值,就将芯片焊接于PCB,从而测量芯片的热学参数。
[0074]通过微分热平衡方程来表示任意系统的热学行为:
H dΔT/dt+GΔT=ΔP  (2)
其中,H是系统的热容,而G是系统的热导,ΔT是温度变化,t是时间,以及ΔP是系统内耗散功率的变化。
[0075]在此之前,已发表了获得用于红外检测的测辐射热仪的热学参数的脉冲方法(Neuzil,P,Mei,T.,Applied Physics Letters,2002,80,1838-1840)。因为测辐射热仪表现的特性类似于PCR设备,所以使用相同的测试方法。评估中的传感器与三个外接电阻器一起形成惠斯通平衡电桥。它通过持续时间为1ms且电压幅值为5V的脉冲来供能,并且每秒重复1个脉冲。
[0076]将幅值在0V和1V之间的直流(DC)电压信号叠加到上述脉冲上。由温度对时间的导数计算出设备的热容H。施加DC电压引起的高于环境的温度增加是热导G的函数。通过直接测量系统的时间常数τ(等于H/G)可验证所得的H值和G值。表1列出了所有测得的和计算得到的电学参数和热学参数。
表1:PCR反应室的电学参数和热学参数,所有数值均在23℃的环境温度下测得。
 
传感器电阻 320Ω
加热器电阻 110Ω
传感器TCR 0.33%/K
传感器方块电阻 0.11Ω/□
单位热导 4.40mW/K
单位热容 6.60mJ/K
PCR热时间常数 1.74秒
温度分布
[0077]为了电连接和机械连接芯片,使用类似于倒装焊的技术将芯片焊接于印刷电路板(PCB)。所述焊接形成了PCR设备和PCB之间的电连接和机械连接(参照图2)。
[0078]如下文所述,将装置连接于温度控制电子器件(参照图7)。将各加热器的温度设定为约65℃、85℃和94℃,并且采集波长8~12μm的红外(IR)图像。照相机的温度分辨率为0.1K的噪声等效温差(参照图6)。如图6所示,整个加热器的温度偏差小于1℃,因此所述设备很适合用于进行例如PCR操作。
控制系统
[0079]通过调节加热功率来控制高于环境的温度。本文采用了脉宽调制(PWM)原理。该原理通过将功率脉冲的占空比(duty cycle)调制为显著短于系统时间常数来控制平均耗散功率。
[0080]PWM为数字式的,并且易于通过由个人电脑(PC)控制的Lab VIEW数据采集(DAQ)卡来实施。芯片温度传感器的值用于闭式反馈模式。实施比例-积分-微分(PID)方法来实现快速加热。Lab VIEW卡6014-E提供的最大电流只有8.5mA,该电流不足以将PCR芯片加热到所需温度。于是,通过集成电路IR 2121(International Rectifiers,Inc.)(一种高速的MOSFET/IGBT驱动器)将该卡与PCR芯片连接。其能够输出1A大的、脉冲频率达到10kHz的电流,该电流能够向PCR芯片供能。
[0081]温度传感器与两个固定电阻器和一个可调电阻器一起形成惠斯通电桥。将温度传感器输出连接于固定增益为10的INA143US(Burr-Brown,Inc.)差分放大器。使用与控制IR2121所用的卡相同的卡,将差分放大器的输出与Lab View软件连接。图7示出了放置在PCB面板上的一个通道的完整示意图。完整的PCB由连接到四个PCR的四条独立的并行通道组成。
[0082]对装置进行校正,使其温度精度高于0.5℃。在装有FluorinertTM 77的控温浴中进行所述的设备校正。用焊接于紧邻PCR设备的PCB上的、校正后在50~100℃范围内精度为0.1℃的温度传感器TSicTM(IST-AG,Watwill,瑞士)来测量设备温度。
[0083]所有四个通道的输出值均储存在Lab VIEW配置文件中,并用于反馈测量。将显微镜的盖玻片放置在PCR芯片上。将具有1μL样品和5μL油的虚拟反应室(VRC)分配到加热器上(参照图1)。上述过程精确地证实加热器温度,但没有证实PCR样品本身的温度,其可能不同于加热器温度。如下文所述,用熔解曲线分析(Rutledge,R.G.,NucleidAcids Research(Methods on-line),2004,32,e178)确定样品温度。发现样品温度比94℃的加热器温度低两度,并因此改正了配置文件。
热循环
[0084]为了获得快速加热响应,执行自校正程序以优化控制器的PID值,同时热时间常数和环境温度决定冷却速率。根据表1列出的热学参数,由于94℃至55℃的温度变化是94℃与室温25℃之间温差的约56%,因此预计设备的冷却时间应为一秒至两秒。这将使系统得到-20Ks-1~-40Ks-1的快速冷却速率,大大超过了所需的最小冷却速率-5Ks-1。所得PCR的热轮廓线如图8所示,其中变性(94℃)15秒、退火(55℃)15秒和延伸(72℃)30秒。
荧光检测
[0085]对应于早期使用的系统(Dasgupta,P.K.等人,Anal.Chim.Acta,2003,500,337-364;Cady,N.C.等人,Sensors and Actuators B:Chemical,2005,107,332-341),使用具有FITC激发/检测块的汞灯,通过将增益设定为约5×104的光电倍增管(PMT)(Hamamatsu H5784-20)来检测荧光响应。将PCR芯片放置在固定在光学台上的Zeiss AxiotechVario显微镜下。为了提高光学检出限,用黑布遮盖整个测量设备以阻止进入PMT的环境光的量。用示波镜进行测量并储存PMT信号幅度值。
装置测试
(a)表面制作
[0086]如Guttenberg等人所述(Lab Chip,2005,5,308-317),VRC系统所用的玻璃表面必须是疏水的和疏油的。
[0087]测试几种不同的氟化硅烷溶液和制备方法。随后选择的涂敷操作包括在3:1 H2SO4/H2O2混合物中清洁所述玻璃,然后用DI水洗涤。接着,将玻璃与含有Gelest,Inc.的1mL硅烷[(十七氟代-1,1,2,2-四氢癸基)三甲氧基硅烷]的烧杯一起放置在室温下的真空烘箱(Yield Engineering,Inc.生产的YES-15E)中。然后将烘箱抽真空,使余压达到1托以下,使烘箱温度升到150℃,同时继续抽吸。蒸发硅烷并与玻璃表面反应。2~5个小时后,停止抽吸,用氮气排空烘箱并从烘箱中取出载玻片。使用接触角系统(Dataphysics GmbH制造的Model OCA 30)通过接触角法检验表面处理的结果。水滴的接触角为110°,而矿物油(Sigma Inc.)滴的接触角为70°。
(b)样品制备
[0088]使用编码人甘油醛3-磷酸脱氢酶(GAPDH)基因的208个碱基对片段(Maxim Biotech,Inc.)的940个模板拷贝作为检测载体。5′-CTCATTTCCTGGTATGACAACGA-3′(SEQ ID NO:1)用作正向引物,而5′-GTCTACATGGCAACTGTGAGGAG-3′(SEQ ID NO:2;ResearchBiolabs,Inc.)用作反向引物。除两处例外之外,按照制造商(Qiagen,Inc.)建议的方法,将PCR混合物制备成50μl储备液。两处例外是:将SYBRGreen(Invitrogen,Inc.)稀释到最终浓度为1∶10000,加入牛血清白蛋白(Carl Roth,Inc.)使最终浓度为1%。
(c)实时PCR结果
[0089]将上述制备的PCR储备液分成两部分,其中1μl储备液用于PCR芯片,剩余储备液用于常规的热循环仪(MJ Research,Inc.)作为参比。对于两个实验,均用5μL矿物油(Sigma,Inc.)覆盖PCR混合物。热循环条件如下:94℃下5分钟(预变性),然后进行50个如下的循环,每个循环为94℃下1分钟(变性)、58℃下1分钟(退火)和72℃下1分钟(延伸),最后一步是72℃下10分钟。该PCR循环中,每个热步骤为1分钟,长于正常的热步骤。然而,这样能保证在每一步骤中,系统达到热平衡,且酶催化反应得以完全进行。此时,这要比优化每一步骤使PCR系统快速进行更为重要。
[0090]为进行熔解曲线分析(Rutledge,R.G.,如前所述),将样品冷却到65℃保持1分钟,然后以加热速率为0.01Ks-1持续升温到95℃。在此操作期间,同时记录荧光信号(参照图9、图10)以及温度传感器值。下一步是在72℃延伸阶段结束期间,计算荧光信号的平均值。为了从PCR循环中采集荧光输出信号,使用Fortrana制作一个短程序。程序输入参数是图9第一个箭头所示的第一个数据块的中值、数据间隔长度和间隔数。然后,程序对来自间隔的信号取平均并与所有50个循环的循环数关联。为了获得从72℃的PCR输出信号将要减去的背景信号,对94℃的荧光信号(如图9中的第二个箭头所示)重复相同的过程。用sigmoid函数来估计被减去的的数据集:
y = A 1 1 + exp ( x - x 0 k ) + A 2 , - - - ( 3 )
其中A1、A2是归一化常数,参数X0代表拐点的位置,以及k决定在拐点处的最大斜率。
[0091]使用从10个至百万个拷贝数变化的不同浓度的模板来运行PCR方案。绘制所计算的参数X0相对于模板数之间的关系,显示PCR标准曲线(参照图11、图12)。
[0092]如上所示,在PCR设备热循环后,为了测定PCR产物的纯度,进行熔解曲线分析(Fixman,M,Freire,J.J.,Biopolymers,1977,16,2693-2704;Wilkening,S.,Bader,A.,J.of Biomolecular techniques,2004,15,107-111;Lyon,E.等人,Clinical Chemistry,2001,47,844-850)(参照图13)。使用修正后的sigmoidal函数来估计荧光信号:
y = ( A 0 - x ) ( A 1 - A 2 ) 1 + exp ( x - x 0 k ) + A 2 + A 3 x - - - ( 4 )
其中,A0、A1、A2和A3以及X0和k与方程式(3)中的含义相同。
[0093]拟合误差显示测量数据与拟合曲线之间只有很小的差异,说明只有一个PCR产物,副产物的量有限。通过毛细管电泳结果验证了产物的纯度(参见图14)。
序列表
<110>Agency for Science,Technology and Research新加坡科技研究局
<120>APPARATUS FOR REGULATING THE TEMPERATURE OF A BIOLOGICAL
     AND/OR CHEMICAL SAMPLE AND METHOD OF USING THE SAME
     调节生物样品和/或化学样品温度的装置及其使用方法
<140>P102215
<150>US 11/356,511
<151>17-02-2006
<160>2
<170>Microsoft Word
<210>1
<211>23
<212>DNA
<213>Artificial Sequence人工序列
<220>
<223>primer引物
<220>
<221>misc_binding
<222>(1)..(23)
<400>1
Figure A200780005686D00291
<210>2
<211>23
<212>DNA
<213>Artificial Sequence人工序列
<220>
<223>primer引物
<220>
<221>misc_binding
<222>(1)..(23)
<400>2
Figure A200780005686D00292

Claims (21)

1.一种用于调节化学样品和/或生物样品温度的装置,所述装置包括至少一个温度控制模块,其中所述温度控制模块包括加热器、热导体和温度传感器,
其中所述加热器用于通过所述热导体与其上放置所述化学样品和/或生物样品的可移动基底进行热交换,
其中所述温度传感器用于通过所述热导体检测和控制所述基底的温度,以及
其中所述装置被设计成:使所述基底位于所述温度控制模块之上以完全覆盖所述温度控制模块。
2.根据权利要求1所述的装置,其中所述加热器包括被设置为与其上放置所述样品的所述基底平面基本平行的表面。
3.根据权利要求1或2所述的装置,其中所述传感器包括被设置为与其上放置所述样品的所述基底平面基本平行的表面。
4.根据权利要求1~3中任一项所述的装置,其中所述加热器和所述传感器均包括设置在共同平面内的表面,其中所述平面与其上放置所述样品的所述基底平面基本平行。
5.根据权利要求4所述的装置,其中所述的加热器和传感器是同心的。
6.根据权利要求5所述的装置,其中所述加热器包围所述传感器。
7.根据权利要求1~6中任一项所述的装置,其中所述热导体包括选自金属、半导体、金刚石、碳纳米管和富勒烯化合物的材料。
8.根据权利要求1~7中任一项所述的装置,所述装置包括至少两个温度控制模块,其中所述至少两个温度控制模块彼此绝热。
9.根据权利要求8所述的装置,其中所述至少两个温度控制模块均包括设置在共同平面内的表面,所述共同平面与其上放置所述样品的所述基底平面基本平行。
10.根据权利要求9所述的装置,其中所述两个温度控制模块在与其上放置所述样品的所述基底平面基本平行的所述平面内彼此相对。
11.根据权利要求10所述的装置,所述装置包括两对温度控制模块,其中每对中的两个温度控制模块在与其上放置所述样品的所述基底平面基本平行的所述平面内彼此相对。
12.根据权利要求8所述的装置,所述装置包括多个温度控制模块。
13.根据权利要求12所述的装置,其中每个温度控制模块与其它每个温度控制模块绝热。
14.一种调节化学样品和/或生物样品温度的方法,所述方法包括:
·提供一种用于调节化学样品和/或生物样品温度的装置,所述装置包括至少一个温度控制模块,其中所述温度控制模块包括加热器、热导体和温度传感器,
其中所述加热器用于通过所述热导体与其上放置所述化学样品和/或生物样品的可移动基底进行热交换,
其中所述温度传感器用于通过所述热导体检测和控制所述基底的温度,以及
其中所述装置被设计成:使所述基底位于所述温度控制模块之上以完全覆盖所述温度控制模块,
·设定用于加热所述化学样品和/或生物样品的温度值,
·通过所述温度传感器测量所述热导体的温度,
·只要所测温度低于所设定的温度值,就向所述热导体供热,由此加热所述基底及所述化学样品和/或生物样品。
15.根据权利要求14所述的方法,其中所述化学样品和/或生物样品包含在液滴中。
16.根据权利要求14或15所述的方法,其中所述用于调节化学样品和/或生物样品温度的装置包括至少两个温度控制模块,其中所述至少两个温度控制模块彼此绝热。
17.根据权利要求16所述的方法,其中在每个温度控制模块上设定用于加热所述化学样品和/或生物样品的单独的温度值,以及
其中通过每个温度控制模块的所述温度传感器单独测量每个温度控制模块的所述热导体的温度,以及
其中只要所测温度低于所设定的温度值,就向每个温度控制模块的所述热导体供热,由此对每个基底及所述化学样品和/或生物样品单独进行加热。
18.根据权利要求14~17中任一项所述的方法,其中提供一种用于调节化学样品和/或生物样品温度的装置,所述方法包括:
·提供基底,
·将所述基底放置在所述温度控制模块之上,以完全覆盖所述温度控制模块,
·提供化学样品和/或生物样品,以及
·将所述化学样品和/或生物样品放置在所述基底上。
19.根据权利要求14~18中任一项所述的方法,其中所述样品选自土壤样品、空气样品、环境样品、细胞培养物样品、骨髓样品、降雨样品、沉降物样品、太空样品、地球外样品、污水样品、地下水样品、磨蚀样品、考古学样品、食物样品、血液样品、血清样品、血浆样品、尿样品、粪便样品、精液样品、淋巴液样品、脑脊髓液样品、鼻咽清洗样品、痰液样品、口腔抹片样品、咽喉抹片样品、鼻抹片样品、支气管肺泡灌洗样品、支气管分泌物样品、乳样品、羊水样品、活组织检查样品、指甲样品、毛发样品、皮肤样品、癌样品、肿瘤样品、组织样品、细胞样品、细胞裂解液样品、病毒培养物样品、法医样品、感染样品、医院感染样品、产品样品、药物制剂样品、生物分子制备样品、蛋白制剂样品、脂质制剂样品、碳水化合物制剂样品、核苷酸溶液、多聚核苷酸溶液、核酸溶液、肽溶液、多肽溶液、氨基酸溶液、蛋白质溶液、合成聚合物溶液、生化组合物溶液、有机化学组合物溶液、无机化学组合物溶液、脂质溶液、碳水化合物溶液、组合化学产物溶液、候选药物分子溶液、药物分子溶液、药物代谢物溶液、细胞悬浮液、病毒悬浮液、微生物悬浮液、金属悬浮液、合金悬浮液、金属离子溶液及其任意组合。
20.根据权利要求14~19中任一项所述的方法,其中加热所述化学样品和/或生物样品包括进行化学处理和/或生物处理。
21.根据权利要求20所述的方法,其中所述样品包括核酸分子,所述化学处理和/或生物处理是聚合酶链反应。
CNA2007800056861A 2006-02-17 2007-02-14 调节生物样品和/或化学样品温度的装置及其使用方法 Pending CN101548185A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/356,511 2006-02-17
US11/356,511 US8124033B2 (en) 2006-02-17 2006-02-17 Apparatus for regulating the temperature of a biological and/or chemical sample and method of using the same

Publications (1)

Publication Number Publication Date
CN101548185A true CN101548185A (zh) 2009-09-30

Family

ID=38371827

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2007800056861A Pending CN101548185A (zh) 2006-02-17 2007-02-14 调节生物样品和/或化学样品温度的装置及其使用方法

Country Status (6)

Country Link
US (2) US8124033B2 (zh)
EP (1) EP1984731B1 (zh)
JP (1) JP2009526549A (zh)
CN (1) CN101548185A (zh)
BR (1) BRPI0707954A2 (zh)
WO (1) WO2007094744A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103443037A (zh) * 2011-02-02 2013-12-11 自由州大学 用于进行微生物处理的设备及方法
CN103956335A (zh) * 2014-03-17 2014-07-30 京东方科技集团股份有限公司 一种阵列基板的制备方法
CN109164157A (zh) * 2018-10-26 2019-01-08 浙江师范大学 用于生化检测的mosfet型微薄膜传感器、检测系统与检测方法
CN113750929A (zh) * 2021-08-25 2021-12-07 吉林大学 一种用于直流双极头电磁铁的样品载物装置

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6692700B2 (en) 2001-02-14 2004-02-17 Handylab, Inc. Heat-reduction methods and systems related to microfluidic devices
US8895311B1 (en) 2001-03-28 2014-11-25 Handylab, Inc. Methods and systems for control of general purpose microfluidic devices
US7010391B2 (en) 2001-03-28 2006-03-07 Handylab, Inc. Methods and systems for control of microfluidic devices
US7829025B2 (en) 2001-03-28 2010-11-09 Venture Lending & Leasing Iv, Inc. Systems and methods for thermal actuation of microfluidic devices
US7329545B2 (en) 2002-09-24 2008-02-12 Duke University Methods for sampling a liquid flow
US6911132B2 (en) 2002-09-24 2005-06-28 Duke University Apparatus for manipulating droplets by electrowetting-based techniques
EP2402089A1 (en) 2003-07-31 2012-01-04 Handylab, Inc. Processing particle-containing samples
US8852862B2 (en) 2004-05-03 2014-10-07 Handylab, Inc. Method for processing polynucleotide-containing samples
EP1859330B1 (en) * 2005-01-28 2012-07-04 Duke University Apparatuses and methods for manipulating droplets on a printed circuit board
US7998708B2 (en) * 2006-03-24 2011-08-16 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US11806718B2 (en) 2006-03-24 2023-11-07 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US10900066B2 (en) 2006-03-24 2021-01-26 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
EP2001990B1 (en) 2006-03-24 2016-06-29 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using same
US8883490B2 (en) 2006-03-24 2014-11-11 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US8088616B2 (en) * 2006-03-24 2012-01-03 Handylab, Inc. Heater unit for microfluidic diagnostic system
EP2091647A2 (en) 2006-11-14 2009-08-26 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
JP5205802B2 (ja) * 2007-05-11 2013-06-05 ソニー株式会社 リアルタイムpcr装置
US8287820B2 (en) 2007-07-13 2012-10-16 Handylab, Inc. Automated pipetting apparatus having a combined liquid pump and pipette head system
US8182763B2 (en) 2007-07-13 2012-05-22 Handylab, Inc. Rack for sample tubes and reagent holders
US8133671B2 (en) 2007-07-13 2012-03-13 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
EP3741869A1 (en) 2007-07-13 2020-11-25 Handylab, Inc. Polynucleotide capture materials and methods of using same
US9618139B2 (en) 2007-07-13 2017-04-11 Handylab, Inc. Integrated heater and magnetic separator
US9186677B2 (en) 2007-07-13 2015-11-17 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US8105783B2 (en) 2007-07-13 2012-01-31 Handylab, Inc. Microfluidic cartridge
US8268246B2 (en) 2007-08-09 2012-09-18 Advanced Liquid Logic Inc PCB droplet actuator fabrication
US8658099B2 (en) * 2007-12-06 2014-02-25 Agency For Science, Technology And Research Integrated apparatus for conducting and monitoring chemical reactions
KR101390250B1 (ko) * 2008-06-23 2014-05-02 (주)바이오니아 중합효소 연쇄반응 블록 및 이를 이용한 연속형 실시간 모니터링 장치
USD787087S1 (en) 2008-07-14 2017-05-16 Handylab, Inc. Housing
RU2385940C1 (ru) * 2008-10-23 2010-04-10 Общество с ограниченной ответственностью "ВИНТЕЛ" Способ определения нуклеиновых кислот методом полимеразно-цепной реакции в режиме реального времени и устройство для его осуществления
US10434514B2 (en) * 2008-12-05 2019-10-08 Biocartis S.A. Thermal cycling system comprising transport heater
JP5423006B2 (ja) * 2009-01-20 2014-02-19 ソニー株式会社 プライマー評価方法、プライマー評価プログラム及びリアルタイムpcr装置
FR2949561B1 (fr) * 2009-08-27 2011-12-16 Neosens Capteur microsysteme de mesure ou de detection d'encrassement
ES2610468T3 (es) 2010-07-23 2017-04-27 Beckman Coulter, Inc. Sistema o método para incluir unidades analíticas
EP2689005A4 (en) * 2011-03-23 2014-09-03 California Inst Of Techn SYSTEM FOR CARRYING OUT NUCLEIC ACID AMPLIFICATION FOR A POLYMERASE CHAIN REACTION
CA3082652A1 (en) 2011-04-15 2012-10-18 Becton, Dickinson And Company Scanning real-time microfluidic thermocycler and methods for synchronized thermocycling and scanning optical detection
EP2572788B1 (en) * 2011-09-23 2015-03-18 Imec Method and device for thermal insulation of micro-reactors
KR102121853B1 (ko) 2011-09-30 2020-06-12 벡톤 디킨슨 앤드 컴퍼니 일체화된 시약 스트립
USD692162S1 (en) 2011-09-30 2013-10-22 Becton, Dickinson And Company Single piece reagent holder
WO2013067202A1 (en) 2011-11-04 2013-05-10 Handylab, Inc. Polynucleotide sample preparation device
CN104040357B (zh) 2011-11-07 2016-11-23 贝克曼考尔特公司 等分器系统以及工作流
EP2776845B1 (en) 2011-11-07 2020-11-04 Beckman Coulter, Inc. Robotic arm
EP2776844B1 (en) 2011-11-07 2020-09-30 Beckman Coulter, Inc. Specimen container detection
ES2729283T3 (es) 2011-11-07 2019-10-31 Beckman Coulter Inc Sistema de centrífuga y flujo de trabajo
JP2014532881A (ja) 2011-11-07 2014-12-08 ベックマン コールター, インコーポレイテッド 標本輸送システムのための磁気制動
BR112014010955A2 (pt) 2011-11-07 2017-06-06 Beckman Coulter Inc sistema e método para processar amostras
EP2810080B1 (en) 2012-02-03 2024-03-27 Becton, Dickinson and Company External files for distribution of molecular diagnostic tests and determination of compatibility between tests
US9533308B2 (en) 2012-02-10 2017-01-03 California Institute Of Technology PC board-based polymerase chain reaction systems, methods and materials
DE102012219684B4 (de) 2012-10-26 2017-05-11 Leica Biosystems Nussloch Gmbh Tragbare Einrichtung zum Transportieren einer histologischen Probe
GB201319759D0 (en) * 2013-11-08 2013-12-25 Thomsen Lars Device and method for heating a fluid chamber
US20170145372A1 (en) * 2014-06-27 2017-05-25 Kivex Biotec A/S Embryo Incubator Incorporating Temperature Control
DE102014221734A1 (de) * 2014-10-24 2016-04-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Messvorrichtung und System zur Schmelzkurvenanalyse eines DNA Microarrays, sowie Verwendung eines Fluoreszenzdetektorarrays zur Analyse
US20160340632A1 (en) * 2015-04-22 2016-11-24 Berkeley Lights, Inc. Culturing station for microfluidic device
DE102015009088B4 (de) * 2015-07-17 2022-02-03 Drägerwerk AG & Co. KGaA Messeinrichtung zur Bestimmung einer Temperatur eines Menschen, deren Verwendung und Verfahren zu deren Betrieb, sowie Wärmetherapievorrichtung mit einer solchen Messeinrichtung
US10427162B2 (en) 2016-12-21 2019-10-01 Quandx Inc. Systems and methods for molecular diagnostics
US11077443B2 (en) 2017-02-02 2021-08-03 University Of Wyoming Apparatus for temperature modulation of samples
USD821605S1 (en) * 2017-05-15 2018-06-26 Charles River Laboratories, Inc. Scanning device adapter
USD829338S1 (en) * 2017-05-15 2018-09-25 Charles River Laboratories, Inc. Membrane holder
USD829340S1 (en) * 2017-05-15 2018-09-25 Charles River Laboratories, Inc. Depressor
US11383236B2 (en) 2017-11-10 2022-07-12 Christopher Walker Polymerase chain reaction using a microfluidic chip fabricated with printed circuit board techniques
CA3134431C (en) 2019-03-22 2023-06-13 Siemens Healthcare Diagnostics Inc. Biological sample analyzer with cold consumable detection
CN113104369B (zh) * 2021-03-25 2022-06-24 吉林省英华恒瑞生物科技有限公司 一种基于结直肠肿瘤ctDNA检测用试剂盒

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5601141A (en) * 1992-10-13 1997-02-11 Intelligent Automation Systems, Inc. High throughput thermal cycler
DE4317623C2 (de) 1993-05-27 2003-08-21 Bosch Gmbh Robert Verfahren und Vorrichtung zum anisotropen Plasmaätzen von Substraten und dessen Verwendung
US20020022261A1 (en) * 1995-06-29 2002-02-21 Anderson Rolfe C. Miniaturized genetic analysis systems and methods
JP4147596B2 (ja) * 1997-06-20 2008-09-10 東洋紡績株式会社 インキュベータおよびそれを備えた分析装置
FR2795426A1 (fr) * 1999-06-22 2000-12-29 Commissariat Energie Atomique Support d'analyse biologique a amplification
US6875619B2 (en) * 1999-11-12 2005-04-05 Motorola, Inc. Microfluidic devices comprising biochannels
US6361958B1 (en) * 1999-11-12 2002-03-26 Motorola, Inc. Biochannel assay for hybridization with biomaterial
AU782697B2 (en) 1999-12-16 2005-08-18 Monsanto Technology Llc DNA constructs for expression of heterologous polypeptides in plants
US6392206B1 (en) * 2000-04-07 2002-05-21 Waltow Polymer Technologies Modular heat exchanger
JP3993372B2 (ja) * 2000-09-13 2007-10-17 独立行政法人理化学研究所 リアクタの製造方法
US6692700B2 (en) * 2001-02-14 2004-02-17 Handylab, Inc. Heat-reduction methods and systems related to microfluidic devices
US6509186B1 (en) 2001-02-16 2003-01-21 Institute Of Microelectronics Miniaturized thermal cycler
KR100449069B1 (ko) * 2001-09-12 2004-09-18 한국전자통신연구원 미소전극, 미소전극 어레이 및 미소전극 제조 방법
US7049558B2 (en) 2003-01-27 2006-05-23 Arcturas Bioscience, Inc. Apparatus and method for heating microfluidic volumes and moving fluids
JP4695851B2 (ja) 2003-07-10 2011-06-08 シチズンホールディングス株式会社 マイクロ化学チップ温度調節装置
KR100535817B1 (ko) * 2003-12-26 2005-12-12 한국전자통신연구원 바이오 칩을 위한 플라스틱 구조체, 그를 이용한 미소가열기, 미소 반응기, 미소 반응기 어레이 및 마이크로어레이
KR100750586B1 (ko) * 2003-12-26 2007-08-20 한국전자통신연구원 미소유체 가열 시스템
US7223949B2 (en) 2004-04-21 2007-05-29 Beckman Coulter, Inc. Analysis apparatus having improved temperature control unit
WO2005105292A1 (en) 2004-04-30 2005-11-10 Gatlik Gmbh High throughput storage-retrieval and screening platform for research applications based on electro or acoustic sensors

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103443037A (zh) * 2011-02-02 2013-12-11 自由州大学 用于进行微生物处理的设备及方法
CN103443037B (zh) * 2011-02-02 2015-07-01 自由州大学 用于进行微生物处理的设备及方法
CN103956335A (zh) * 2014-03-17 2014-07-30 京东方科技集团股份有限公司 一种阵列基板的制备方法
CN103956335B (zh) * 2014-03-17 2016-08-31 京东方科技集团股份有限公司 一种阵列基板的制备方法
CN109164157A (zh) * 2018-10-26 2019-01-08 浙江师范大学 用于生化检测的mosfet型微薄膜传感器、检测系统与检测方法
CN109164157B (zh) * 2018-10-26 2020-12-25 浙江师范大学 用于生化检测的检测系统
CN113750929A (zh) * 2021-08-25 2021-12-07 吉林大学 一种用于直流双极头电磁铁的样品载物装置

Also Published As

Publication number Publication date
BRPI0707954A2 (pt) 2011-05-17
EP1984731A1 (en) 2008-10-29
JP2009526549A (ja) 2009-07-23
US8124033B2 (en) 2012-02-28
WO2007094744A1 (en) 2007-08-23
US20120244605A1 (en) 2012-09-27
EP1984731A4 (en) 2010-09-08
US20070196237A1 (en) 2007-08-23
EP1984731B1 (en) 2011-11-09

Similar Documents

Publication Publication Date Title
CN101548185A (zh) 调节生物样品和/或化学样品温度的装置及其使用方法
JP7346503B2 (ja) 自動インキュベーションのためのシステム、方法、および装置
JP4213161B2 (ja) 薄膜電子デバイスを有するマイクロ流体デバイス
JP5368321B2 (ja) 固相pH検出を用いたqPCR
JP2006504957A (ja) 核酸を分析するためのマイクロ流体システム
US20060246573A1 (en) Bio-chip
WO2010047619A1 (ru) Способ определения нуклеиновых кислот методом полимеразно-цепной реакции в режиме реального времени и устройство для его осуществления
Nie et al. Multichannel oscillatory-flow PCR micro-fluidic chip with controllable temperature gradient
Kulkarni et al. Mini-thermal platform integrated with microfluidic device with on-site detection for real-time DNA amplification
Costantini et al. Integrated sensor system for DNA amplification and separation based on thin film technology
Kim et al. PID temperature control system-based microfluidic PCR chip for genetic analysis
TW201122476A (en) Method of polymerase chain reaction, droplet device for polymerase chain reaction and array droplet device thereof
TWI386253B (zh) Heater-type tilting device
KR20020082022A (ko) 멀티채널 pcr과 전기영동을 이용한 소형 유전자 분석장치
WO2008139415A1 (en) Microfluidic device and method of operating a microfluidic device
Hsu et al. The portable fluorescence detection system matched with PDMS microfluidic biochip for DNA hybridization detection
Huang et al. A novel rapid-reaction nucleic-acid amplification device using micro-volume chips
TWI238195B (en) Temperature-control micro-biochip and method for producing the same
Qin et al. The thermal performance of PCR chip with copper target ion beam sputtering deposition on the ceramic peltier
KR20020090734A (ko) 핵산 돌연변이 분석 장치 및 그를 이용한 핵산 분석 방법
Teh et al. Microfluidic Flow-Through Reactor with Electrochemical Sensor Array for Real-Time Pcr

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20090930