CN101548086B - 运转火花点火式内燃发动机的方法 - Google Patents

运转火花点火式内燃发动机的方法 Download PDF

Info

Publication number
CN101548086B
CN101548086B CN2007800448158A CN200780044815A CN101548086B CN 101548086 B CN101548086 B CN 101548086B CN 2007800448158 A CN2007800448158 A CN 2007800448158A CN 200780044815 A CN200780044815 A CN 200780044815A CN 101548086 B CN101548086 B CN 101548086B
Authority
CN
China
Prior art keywords
compression ratio
engine
closing timing
intake valve
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2007800448158A
Other languages
English (en)
Other versions
CN101548086A (zh
Inventor
中坂幸博
泽田大作
秋久大辅
神山荣一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of CN101548086A publication Critical patent/CN101548086A/zh
Application granted granted Critical
Publication of CN101548086B publication Critical patent/CN101548086B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D15/00Varying compression ratio
    • F02D15/04Varying compression ratio by alteration of volume of compression space without changing piston stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0223Variable control of the intake valves only
    • F02D13/0234Variable control of the intake valves only changing the valve timing only
    • F02D13/0238Variable control of the intake valves only changing the valve timing only by shifting the phase, i.e. the opening periods of the valves are constant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0269Controlling the valves to perform a Miller-Atkinson cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D2013/0292Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation in the start-up phase, e.g. for warming-up cold engine or catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N19/00Starting aids for combustion engines, not otherwise provided for
    • F02N19/004Aiding engine start by using decompression means or variable valve actuation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

本发明涉及一种运转火花点火式内燃发动机的方法,所述火花点火式内燃发动机设置有能够控制进气门(7)的闭合正时的可变正时机构(B)和能够改变机械压缩比的可变压缩比机构(A)。在发动机起动时,将进气门(7)的闭合正时控制为使得起动所需的进气量被送入到燃烧室(5)内,并且将所述机械压缩比设在高压缩比侧。所述运转火花点火式内燃发动机的方法能够在发动机起动及进行提高期望的发动机转速的作用时完成可靠的点火。

Description

运转火花点火式内燃发动机的方法
技术领域
本发明涉及一种运转火花点火式内燃发动机的方法。 
背景技术
在内燃发动机中,进气门的闭合正时越延迟,换言之,进气门的闭合正时越接近压缩上止点,则在压缩行程时从燃烧室内部往回推压到进气口内部的进气量越大,因此燃烧室中密封的空气量——即送入燃烧室的进气量——越小。因此,通过控制进气门的闭合正时,可控制送入燃烧室的进气量。 
因此,本领域已知一种火花点火式内燃发动机,其设置有可变正时机构,该可变正时机构能够控制进气门的闭合正时并控制进气门在发动机起动时的闭合正时使得起动所需的进气量被送入燃烧室(例如,参见日本专利公报(A)No.2006-138299)。在这种内燃发动机中,当发动机起动并且发动机转速提高时,通过改变进气门的闭合正时从而控制被送入燃烧室内的进气量来防止在发动机起动时发动机转速提高过多而超过目标怠速,即,在发动机起动时尽可能防止发动机超速。 
然而,即使以这种方式改变进气门的闭合正时从而控制被送入燃烧室内的进气量,也不可能在发动机起动时防止发动机超速。 
即,在上述内燃发动机中,在发动机起动时,必须将送入燃烧室的进气量降至较小的量以防止发动机超速。为此,在发动机起动时,必须适度延迟进气门的闭合正时。然而,如果延迟进气门的闭合正时,则实际开始压缩作用的正时变成延迟,因此实际压缩比停止下降并且不可能停止点火。 
因此,在上述内燃发动机中,为了提高用于点火的实际压缩比,必须提前进气门的闭合正时而超过用于防止超速的最佳闭合正时。其结果 是,在发动机起动时发动机不可避免地超速。因此,如上所述,即使改变进气门的闭合正时来控制被送入燃烧室内的进气量,也不可能在发动机起动时防止发动机超速。 
发明内容
本发明的一个目的是提供一种运转火花点火式内燃发动机的方法,其能够在发动机起动及进行提高期望的发动机转速的作用时完成可靠的点火。 
根据本发明,提供一种运转火花点火式内燃发动机的方法,所述火花点火式内燃发动机设置有能够控制进气门的闭合正时的可变正时机构和能够改变机械压缩比的可变压缩比机构,其特征在于,在发动机起动时,将进气门的闭合正时控制为使得起动所需的进气量被送入燃烧室内,并且将机械压缩比设在高压缩比侧。 
附图说明
图1是一种火花点火式内燃发动机的总图。 
图2是可变压缩比机构的分解立体图。 
图3是所示内燃发动机的侧视横截面图。 
图4是可变气门正时机构的视图。 
图5是示出进气门和排气门的升程量的视图。 
图6是用于说明发动机压缩比、实际压缩比以及膨胀比的视图。 
图7是示出理论热效率和膨胀比之间关系的视图。 
图8是用于说明一般循环和超高膨胀比循环的视图。 
图9是示出机构压缩比等根据发动机负荷变化的视图。 
图10是示出起动控制的时间图。 
图11是示出指示扭矩的视图。 
图12是用于执行起动控制的流程图。 
具体实施方式
图1示出火花点火式内燃发动机的侧视横截面图。 
参照图1,1表示曲轴箱,2表示气缸体,3表示气缸盖,4表示活塞,5表示燃烧室,6表示设置在燃烧室5顶部中心处的火花塞,7表示进气门,8表示进气口,9表示排气门,10表示排气口。进气口8通过进气支管11连接到稳压罐12,同时每个进气支管11设置有用于向相应的进气口8喷射燃料的燃料喷射器13。应当注意,每个燃料喷射器13可以设置在每个燃烧室5处而不附接到每个进气支管11。 
稳压罐12经由进气管14连接到空气滤清器15,同时进气管14的内部设置有通过致动器16驱动的节气门17和使用例如热丝等的进气量检测器18。另一方面,排气口10通过排气歧管19连接到例如容纳三元催化剂的催化转化器20,同时排气歧管19内部设置有空燃比传感器21。应当注意,诸如气压传感器、水温传感器、油温传感器、用来检测稳压罐12内压力的真空传感器等各类传感器(未在图1中示出)附接到发动机。 
另一方面,在图1中所示的实施方式中,曲轴箱1和气缸体2的连接部分设置有可变压缩比机构A,所述可变压缩比机构A能够沿气缸轴向改变曲轴箱1和气缸体2的相对位置,从而改变当活塞4位于压缩上止点时燃烧室5的容积,并且还设置有实际压缩作用开始正时改变机构B,其能够改变实际压缩作用的开始正时。应当注意,在图1中所示的实施方式中,该实际压缩作用开始正时改变机构B包括能够控制进气门7的闭合正时的可变气门正时机构。 
电子控制单元30包括数字计算机,设置有通过双向总线31彼此连接的部件,例如ROM(只读存储器)32、RAM(随机存取存储器)33、CPU(微处理器)34、输入端口35以及输出端口36。进气量检测器18的输出信号和空燃比传感器21的输出信号通过相应的AD转换器37输入到输入端口35。另外,加速器踏板40连接到负荷传感器41,所述负荷传感器41产生与加速器踏板40的推压量L成正比的输出电压。负荷传感器41的输出电压通过相应的AD转换器37输入到输入端口35。另外,输入端口35连接到曲轴转角传感器42,所述曲 轴转角传感器42在曲轴每旋转例如30°时产生输出脉冲。另一方面,输出端口36通过驱动电路38连接到火花塞6、燃料喷射器13、节气门驱动致动器16、可变压缩比机构A以及可变气门正时机构B。 
图2是图1中所示可变压缩比机构A的分解立体图,而图3是所示内燃发动机的侧视横截面图。参照图2,在气缸体2的两个侧壁的底部处形成有多个以特定距离彼此分开的突起部50。每个突起部50都形成有横截面为圆形的凸轮插入孔51。另一方面,曲轴箱1的顶表面上形成有多个以特定距离彼此分开并且装配在相应的突起部50之间的突起部52。这些突起部52也形成有横截面为圆形的凸轮插入孔53。 
如图2中所示,设置有一对凸轮轴54、55。每个凸轮轴54、55都具有圆形凸轮56,所述圆形凸轮56固定在凸轮轴上并且每隔一个地以可旋转方式插入到凸轮插入孔51中。这些圆形凸轮56与凸轮轴54、55的旋转轴线同轴。另一方面,如图3中的阴影线所示,在圆形凸轮56之间延伸有相对于凸轮轴54、55的旋转轴线偏心设置的偏心轴57。每个偏心轴57都具有以可旋转方式偏心地附接到其上的其它的圆形凸轮58。如图2中所示,这些圆形凸轮58设置在圆形凸轮56之间。这些圆形凸轮58以可旋转方式插入到相应的凸轮插入孔53中。 
当紧固到凸轮轴54、55的圆形凸轮56从图3(A)中所示的状态如图3(A)中的实线箭头所示地沿相反的方向旋转时,偏心轴57朝向底部中心处移动,因此圆形凸轮58在凸轮插入孔53中如图3(A)中的虚线箭头所示地沿着与圆形凸轮56相反的方向旋转。如图3(B)中所示,当偏心轴57朝向底部中心处移动时,圆形凸轮58的中心移动至低于偏心轴57。 
比较图3(A)和图3(B)可以理解,曲轴箱1和气缸体2的相对位置由圆形凸轮56的中心和圆形凸轮58的中心之间的距离确定。圆形凸轮56的中心和圆形凸轮58的中心之间的距离越大,则气缸体2距离曲轴箱1越远。如果气缸体2远离曲轴箱1,则当活塞4位于压缩上止点时燃烧室5的容积增加,因此通过使凸轮轴54、55旋转,能够改变当活塞4位于压缩上止点时燃烧室5的容积。 
如图2中所示,为了使凸轮轴54、55沿相反的方向旋转,驱动马 达59的轴设置有一对具有相反的螺旋方向的蜗轮61、62。与这些蜗轮61、62啮合的齿轮63、64紧固到凸轮轴54、55的端部。在此实施方式中,可以驱动驱动马达59以在大范围内改变当活塞4位于压缩上止点时燃烧室5的容积。应当注意,图1至图3所示的可变压缩比机构A示出了一个示例。可以使用任意类型的可变压缩比机构。 
另一方面,图4示出图1中附接到凸轮轴70的端部上的用于驱动进气门7的可变气门正时机构B。参照图4,这种可变气门正时机构B设置有由发动机曲轴通过正时皮带沿箭头方向旋转的正时带轮71、与正时皮带71一起旋转的筒形壳体72、能够和进气门驱动凸轮轴70一起旋转并且相对于筒形外壳72旋转的轴73、从筒形外壳72的内周延伸到轴73的外周的多个隔离件74以及从轴73的外周在隔离件74之间延伸到筒形外壳72的内周的叶片75,叶片75的两侧形成有用于提前的液压室76和用于延迟的液压室77。 
工作油向液压室76、77的给送受到工作油给送控制阀78的控制。此工作油给送控制阀78设置有:连接到液压室76、77的液压端口79、80;用于从液压泵81排放的工作油的给送端口82;一对排出端口83、84;以及用于控制端口79、80、82、83、84的连接和断开的滑阀84。 
为了提前进气门驱动凸轮轴70的凸轮的相位,在图4中,使滑阀85向右移动,从给送端口82给送的工作油通过液压端口79给送到用于提前的液压室76,并且用于延迟的液压室77中的工作油从排出端口84排出。此时,轴73相对于筒形壳体72沿箭头方向旋转。 
与此相反,为了使进气门驱动凸轮轴70的凸轮的相位延迟,在图4中,使滑阀85向左移动,从给送端口82给送的工作油通过液压端口80给送到用于延迟的液压室77,用于提前的液压室76中的工作油从排出端口83排出。此时,轴73相对于筒形壳体72沿与箭头相反的方向旋转。 
当轴73相对于筒形壳体72旋转时,如果滑阀85返回到图4中所示的中间位置,则用于使轴73相对旋转的操作结束,并且轴73保持在当时的相对旋转位置处。因此,可以利用可变气门正时机构B来使进气门驱动凸轮轴70的凸轮相位精确地提前或延迟所需量。 
在图5中,实线示出当使用可变气门正时机构B最大程度地使进 气门驱动凸轮轴70的凸轮相位提前时的情形,而虚线示出当使用可变气门正时机构B以最大程度地使进气门驱动凸轮轴70的凸轮相位延迟时的情形。因此,能够在由图5中实线所示范围和虚线所示范围之间自由地设定进气门7的打开正时,因此进气门7的闭合正时能够设定为由图5中箭头C所示范围中的任意曲轴转角。 
图1和图4中所示的可变气门正时机构B是一个示例。例如,可以使用能够仅改变进气门的闭合正时同时维持进气门的打开正时恒定的可变气门正时机构或其它各种类型的可变气门正时机构。 
接下来将参照图6解释本申请中所使用的术语的含意。应当注意,图6(A)、(B)和(C)以说明为目的示出具有燃烧室容积为50毫升并且活塞的行程容积为500毫升的发动机。在这些图6(A)、(B)和(C)中,燃烧室容积示出当活塞处于压缩上止点时燃烧室的容积。 
图6(A)解释机械压缩比。机械压缩比是由压缩行程时燃烧室容积与活塞的行程容积机械地确定的值。此机械压缩比由(燃烧室容积+行程容积)/燃烧室容积表示。在图6(A)中所示的示例中,此机械压缩比为(50毫升+500毫升)/50毫升=11。 
图6(B)解释实际压缩比。此实际压缩比是由燃烧室容积与从压缩作用实际开始时到活塞达到上止点时活塞的实际行程容积确定的值。此实际压缩比由(燃烧室容积+实际行程容积)/燃烧室容积表示。即,如图6(B)中所示,即使在压缩行程中活塞开始上升,在进气门打开时也没有执行压缩作用。实际压缩作用在进气门闭合之后开始。因此,实际压缩比使用实际行程容积表示如下。在图6(B)中所示的示例中,实际压缩比为(50毫升+450毫升)/50毫升=10。 
图6(C)解释膨胀比。膨胀比是由燃烧室容积与在膨胀行程时活塞的行程容积确定的值。此膨胀比由(燃烧室容积+行程容积)/燃烧室容积表示。在图6(C)中所示的示例中,此膨胀比为(50毫升+500毫升)/50毫升=11。 
接下来将参照图7和图8解释在本发明中使用的超高膨胀比循环。应当注意,图7示出理论热效率和膨胀比之间的关系,而图8示出在本发明中根据负荷选择性地使用的一般循环和超高膨胀比循环之间的对比。 
图8(A)示出当接近下止点时进气门闭合并且活塞的压缩作用大致从压缩下止点附近开始时的一般循环。在此图8(A)中所示的示例中,以与图6(A)、(B)和(C)中所示示例相同的方式,使燃烧室容积为50毫升,使活塞的行程容积为500毫升。从图8(A)中可以理解,在一般循环中,机械压缩比是(50毫升+500毫升)/50毫升=11,实际压缩比也大约是11,并且膨胀比也为(50毫升+500毫升)/50毫升=11。即,在一般的内燃发动机中,机械压缩比和实际压缩比以及膨胀比基本相等。 
图7中的实线示出在实际压缩比和膨胀比基本相等的情况下--即在一般循环的情况下--理论热效率的变化。在这种情况下,可以知道,膨胀比越大,即实际压缩比越大,则理论热效率越高。因此,在一般循环中,要提高理论热效率,则应该使实际压缩比变大。但是,由于在发动机高负荷运转时发生爆燃的限制,所以即使在最大值时实际压缩比也只能达到约12,因而,在一般循环中,不能使理论热效率足够高。 
另一方面,在这种情形下,发明人严格区分了机械压缩比和实际压缩比,并且研究了理论热效率,结果发现在理论热效率中,膨胀比是主导的,并且理论热效率基本上不太受实际压缩比的影响。即,如果提高实际压缩比,则爆发力增大,但是压缩需要的能量多,因而即使提高实际压缩比,理论热效率也根本不会提高太多。 
与此相反,如果提高膨胀比,则在膨胀行程时向下推压活塞的力作用时间段越长,则活塞向曲轴施加旋转力的时间越长。因此,膨胀比越大,则理论热效率变得越高。图7中的虚线示出在将实际压缩比固定在10并且在这种状态下提高膨胀比的情况下的理论热效率。以这种方式,可以知道,当在实际压缩比维持在低值的状态下提高膨胀比时的理论热效率的提高量与如图7中的实线所示的在实际压缩比和膨胀比一起提高的情况下理论热效率的提高量的差别不大。 
如果实际压缩比以这种方式维持在低值,则不会发生爆燃,因此如果在实际压缩比维持在低值的情况下提高膨胀比,则能够防止爆燃的发生并且能够大大提高理论热效率。图8(B)示出当使用可变压缩比机构A和可变气门正时机构B来将实际压缩比维持在低值并且提高膨胀比的情形的示例。 
参照图8(B),在此示例中,使用可变压缩比机构A来将燃烧室容积从50毫升降低到20毫升。另一方面,使用可变气门正时机构B使进气门的闭合正时延迟,直到活塞的实际行程容积从500毫升改变到200毫升。结果,在此示例中,实际压缩比为(20毫升+200毫升)/20毫升=11并且膨胀比为(20毫升+500毫升)/20毫升=26。在图8(A)中所示的一般循环中,如上所述,实际压缩比为约11,膨胀比为11。与这种情况相比,在图8(B)中所示的情况下,可以知道,仅膨胀比提高到26。这就是将其称为“超高膨胀比循环”的原因。 
如上所述,一般而言,在内燃发动机中,发动机的负荷越低,则热效率越差,因此要提高车辆运转时的热效率,即要改善燃料消耗,就必须提高发动机低负荷运行时的热效率。另一方面,在图8(B)中所示的超高膨胀比循环中,在压缩行程时的活塞的实际行程容积较小,因此能够吸入到燃烧室5中的进气量较小,所以此超高膨胀比循环仅在发动机负荷较低时采用。因此,在本发明中,在发动机低负荷运转时,设定如图8(B)中所示的超高膨胀比循环,而在发动机高负荷运转时,设定如图8(A)中的一般循环。 
接下来参照图9粗略地说明根据本发明的整体运转控制。 
图9示出机械压缩比、膨胀比、进气门7的闭合正时、实际压缩比、进气量、节气门17的开度以及泵气损失随发动机负荷的改变。应当注意,在根据本发明的实施方式中,燃烧室5中的平均空燃比一般基于空燃比传感器21的输出信号反馈控制为化学计量空燃比,使得催化转化器20中的三元催化剂能够同时地减少排气中的未燃烧HC、CO以及NOX。 
现在,如上所述,在发动机高负荷运转时,执行图8(A)中所示的一般循环。因此,如图9中所示,此时由于机械压缩比变低,即,机械压缩比在低压缩比侧,所以膨胀比变低,从而如图9中的低处的实线所示,进气门7的闭合正时如图5中的实线所示提前。另外,此时,进气量大。此时,节气门17的开度维持完全打开或者基本上完全打开,因此泵气损失为零。 
另一方面,如图9中所示,随着发动机负荷降低,机械压缩比增大,因此膨胀比也增大。另外,此时,进气门7的闭合正时如图9中 的实线所示随着发动机负荷变低而延迟,从而实际压缩比保持基本恒定。应当注意,此时节气门7也保持在完全打开或基本上完全打开的状态。因此被送入燃烧室5的进气量不受节气门17的控制,而是受进气门7的闭合正时的变化控制。此时泵气损失也为零。 
这样,当发动机负荷从发动机高负荷运转状态变低时,机械压缩比随着进气量在基本恒定的实际压缩比下的减小而增大。即,当活塞4到达压缩上止点时燃烧室5的容积与进气量的减小成正比地减小。因此当活塞4到达压缩上止点时燃烧室5的容积与进气量成正比地变化。应当注意,此时,燃烧室5中的空燃比变为化学计量空燃比,因此当活塞4到达压缩上止点时燃烧室5的容积与燃料量成正比地变化。 
如果发动机负荷进一步变低,则机械压缩比进一步增大并且在高压缩比侧。当机械压缩比达到形成燃烧室5的结构极限的极限机械压缩比时,在低于当机械压缩比达到极限机械压缩比时的发动机负荷L1的负荷区域中,机械压缩比保持在极限发动机压缩比。因此在发动机低负荷运转时,机械压缩比为最大值,并且膨胀比也为最大值。换句话说,在本发明中,为了在发动机低负荷运转时获得最大膨胀比,机械压缩比应为最大值。另外,此时,实际压缩比维持在与在发动机中负荷和高负荷运转时的实际压缩比大致相同的实际压缩比。 
另一方面,如图9中的实线所示,随着发动机负荷变低进气门7的闭合正时延迟到能够控制送入燃烧室5的进气量的极限闭合正时。在低于当进气门7的闭合正时达到极限闭合正时时的发动机负荷L2的负荷区域中,进气门7的闭合正时保持在极限闭合正时。如果进气门7的闭合正时保持在极限闭合正时,则进气量将不能再由进气门7的闭合正时的改变控制。因此,必须用其它方法控制进气量。 
在图9中所示的实施方式中,此时,即在低于当进气门7的闭合正时达到极限闭合正时时的发动机负荷L2的负荷区域中,使用节气门17控制送入燃烧室5的进气量。但是,如果使用节气门17控制进气量,则如图9中所示,泵气损失增加。 
应当注意,为了防止这些泵气损失,在低于当进气门7的闭合正时达到极限闭合正时时的发动机负荷L2的负荷区域中,节气门17保持完全打开或者基本完全打开。在这种状态下,发动机负荷越低,则 使得空燃比越大。此时,燃烧喷射器13优选地设置在燃烧室5中以执行分层燃烧。 
如图9中所示,在发动机低速运转时,不论发动机负荷如何,实际压缩比都保持基本恒定。但是,如果发动机转速升高,则燃烧室5中的混合气受到扰动,因此爆燃难以发生,从而在根据本发明的实施方式中,发动机转速越高,则实际压缩比越大。另一方面,如上所述,在如图8(B)中所示的超高膨胀比循环中,膨胀比为26。此膨胀比越高越好,但是如果为20或更高,就能够获得相当高的理论热效率。因此,在本发明中,可变压缩比机构A被形成为使得膨胀比为20或更高。 
另外,在图9中所示的示例中,机械压缩比根据发动机负荷连续地改变。然而,机械压缩比也能够根据发动机负荷分级地改变。 
另一方面,如图9中的虚线所示,当发动机负荷变低时,在不依赖节气门17的情况下,通过使进气门7的闭合正时提前,就可以控制进气量。因此,在图9中,如果综合地表示由实线所示的情形和由虚线所示的情形,在根据本发明的实施方式中,随着发动机负荷的变低,进气门7的闭合正时沿着离开压缩下止点BDC的方向变化,即,使得进气门7的闭合正时远离BDC,直到能够控制送入燃烧室内的进气量的极限闭合正时L2。 
接下来将说明根据本发明的发动机的起动控制。 
在本发明中,在发动机起动时,通过控制进气门7的闭合正时将送入燃烧室5的进气量控制为必需的进气量。应当注意,在发动机起动时,不论节气门17是否打开或闭合,当进气门7闭合时燃烧室5内的压力都变成大气压力或基本变成大气压力。因此,此时,不论节气门17是否打开或闭合,送入燃烧室5内的进气量都受进气门7的闭合正时的控制。因此,在发动机起动时,节气门17可打开或闭合。 
图10是根据本发明的发动机起动控制的示例的时间图。此图10示出点火正时、进气门7的闭合正时的变化、机械压缩比的变化以及发动机转速的变化。应当注意,图10示出使得进气门7在进气下止点之后闭合的情况。因此,在图10中所示的示例中,进气门7的闭合正时越延迟,则送入燃烧室5的进气量越小。另外,在图10中,NX示出发动机起动时的目标怠速。在发动机起动完成后该目标怠速随着发 动机预热而逐渐下降。 
参照图10,在发动机起动时,在首次燃烧前,使得进气门7的闭合正时最大程度地延迟。即,进气门7的闭合正时保持在距离进气下止点最远的极限闭合正时处。另一方面,在曲轴开始转动前机械压缩比如实线所示保持在低压缩比侧。应当注意,在图10中的实线所示的示例中,在曲轴开始转动前,机械压缩比保持在最低压缩比的基准机械压缩比。 
接下来,即使曲轴开始转动,机械压缩比也如图10中的实线所示暂时保持在低压缩比侧。在图10中所示的示例中,其保持在最低机械压缩比的基准机械压缩比。当曲轴以这种方式转动时,如果机械压缩比保持在低压缩比侧,则实际压缩比变低,因此可减小活塞4的驱动力,从而可减小起动机马达的尺寸并可减小动力消耗。 
接下来,在首次燃烧发生前机械压缩比如图10中的实线所示从低压缩比侧提高到高压缩比侧。应当注意,此时,在图10中所示的示例中,将机械压缩比提高到极限机械压缩比,即,最大压缩比。因此,当首次燃烧发生时,机械压缩比变为在高压缩比侧。应当注意,如图10中的虚线所示,在发动机起动前,机械压缩比可保持在高压缩比侧,例如极限机械压缩比,即,最大压缩比。 
现在,在本发明中,如图10中所示,当首次燃烧发生时,发动机转速提高到发动机起动时的目标怠速NX而不会超过发动机起动时的目标怠速NX。接下来将参照图11说明这一点。 
图11示出作为发动机冷却水温T的函数的、将发动机转速保持在目标怠速所需的显示扭矩。在内燃发动机中,发动机冷却水温T越低,则摩擦扭矩越大,因此如图11所示,显示扭矩越高,则发动机冷却水温越低。 
现在,在根据本发明的实施方式中,首次燃烧在进气门7的闭合正时最大程度地延迟并且使得机械压缩比为最大压缩比的状态下发生。此时,使得机械压缩比为最大压缩比,因此实际压缩比高。因此,执行了良好的点火和燃烧。然而,送入燃烧室5内的进气量极小,因此此时的显示扭矩比图11中所示的显示扭矩低。这种情况下,为了将发动机转速提高到发动机起动时的目标怠速NX,指示扭矩必须大于图 11中所示的指示扭矩。 
因此,当首次燃烧发生时,进气门7的闭合正时如图10中所示提前以增加送入燃烧室5内的进气量,从而产生大于图11中所示的指示扭矩的指示扭矩。即,使得进气门7的闭合正时接近进气下止点。另一方面,如果进气门7的闭合正时提前,则降低了机械压缩比使得实际压缩比不会变得极高。 
此时的机械压缩比以及进气门7的闭合正时成为机械压缩比以及进气门7的闭合正时,从而发动机转速提高到目标怠速NX而不会超速。通过实验预先找到发动机转速借以提高到目标怠速NX而不会超速的机械压缩比以及进气门7的闭合正时,并预先将所述机械压缩比以及进气门7的闭合正时存储在ROM 32中。 
另一方面,当以这种方式提前进气门7的闭合正时并降低机械压缩比时,如果降低机械压缩比的作用迟于提前进气门7的闭合正时的作用,则实际压缩比将停止异常的升高。因此,在根据本发明的实施方式中,此时,执行降低机械压缩比的作用优先于延迟进气门7的闭合正时的作用。 
当发动机转速达到发动机起动时的目标怠速NX时,如果随即控制进气门7的闭合正时以获得实现图11中所示的指示扭矩的进气量,则发动机转速保持在目标怠速。因此,如图10所示,当发动机转速提高到发动机起动时的目标怠速NX时,进气门7的闭合正时延迟以将发动机转速维持在目标怠速NX。此时,稍迟于延迟进气门7的闭合正时的作用执行增加机械压缩比的作用。 
图12示出起动控制程序。 
参照图12,首先,在步骤100,判断是否发出起动发动机的指令。例如,当起动机开关接通并且曲轴开始转动时,判定已发出发动机起动指令。接下来,在步骤101,根据发动机的运转状态设定提高发动机转速的方法,即,是否快速提高发动机转速或缓慢提高发动机转速。 
接下来,在步骤102,读取发动机冷却水温、稳压罐12中的压力、发动机转速和其它发动机运转状态。接下来,在步骤103,基于提高发动机转速的设定方法计算首次燃烧时、第二次燃烧时、第三次燃烧时等的目标进气量。接下来,在步骤104,基于目标进气量和发动机 运转状态计算首次燃烧时、第二次燃烧时等的目标机械压缩比、点火正时以及进气门7的目标闭合正时。 
接下来,在步骤105,执行处理以将机械压缩比改变为目标压缩比。接下来,在步骤106,判断将机械压缩比改变为目标压缩比的作用是否已完成。当完成时,程序前进至步骤107,在步骤107中执行处理以将进气门7的闭合正时改变为目标闭合正时。接下来,在步骤108,判断起动控制是否已结束。当起动控制已结束时,程序转换到完成起动后的怠速运转控制。 

Claims (7)

1.一种运转火花点火式内燃发动机的方法,所述火花点火式内燃发动机设置有能够控制进气门(7)的闭合正时的可变正时机构(B)和能够改变机械压缩比的可变压缩比机构(A),其特征在于,在发动机起动时,将所述进气门(7)的闭合正时控制为使得起动所需的进气量被送入到燃烧室(5)内,并且将所述机械压缩比设在高压缩比侧。
2.如权利要求1所述的运转火花点火式内燃发动机的方法,其中,在发动机起动时,将所述进气门(7)的闭合正时保持在距离进气下止点最远的极限闭合正时直到首次燃烧发生。
3.如权利要求1所述的运转火花点火式内燃发动机的方法,其中,首次燃烧后在发动机转速提高到目标怠速的同时使得所述进气门(7)的闭合正时接近进气下止点。
4.如权利要求1所述的运转火花点火式内燃发动机的方法,其中,在发动机起动时,当曲轴开始转动时将所述机械压缩比设在低压缩比侧并且在首次燃烧发生前将发动机压缩比从所述低压缩比侧提高到所述高压缩比侧。
5.如权利要求1所述的运转火花点火式内燃发动机的方法,其中,在发动机起动前将所述机械压缩比保持在所述高压缩比侧。
6.如权利要求1所述的运转火花点火式内燃发动机的方法,其中,在发动机起动时,将所述机械压缩比设为最大压缩比。
7.如权利要求1所述的运转火花点火式内燃发动机的方法,其中,当首次燃烧发生时,所述机械压缩比随即降低。
CN2007800448158A 2006-12-04 2007-10-26 运转火花点火式内燃发动机的方法 Expired - Fee Related CN101548086B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP327343/2006 2006-12-04
JP2006327343A JP4470937B2 (ja) 2006-12-04 2006-12-04 火花点火式内燃機関
PCT/JP2007/071362 WO2008068985A1 (en) 2006-12-04 2007-10-26 Spark ignition type internal combustion engine

Publications (2)

Publication Number Publication Date
CN101548086A CN101548086A (zh) 2009-09-30
CN101548086B true CN101548086B (zh) 2011-12-21

Family

ID=38923005

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800448158A Expired - Fee Related CN101548086B (zh) 2006-12-04 2007-10-26 运转火花点火式内燃发动机的方法

Country Status (7)

Country Link
US (1) US8234054B2 (zh)
EP (1) EP2089620B1 (zh)
JP (1) JP4470937B2 (zh)
CN (1) CN101548086B (zh)
AT (1) ATE465335T1 (zh)
DE (1) DE602007006047D1 (zh)
WO (1) WO2008068985A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4259569B2 (ja) * 2006-11-10 2009-04-30 トヨタ自動車株式会社 火花点火式内燃機関
DE112008004250B4 (de) * 2008-12-25 2021-09-30 Toyota Jidosha Kabushiki Kaisha Steuerungsgerät einer brennkraftmaschine
DE112009002699B4 (de) * 2009-01-07 2014-04-24 Toyota Jidosha Kabushiki Kaisha Motorsteuersystem
JP2010168939A (ja) * 2009-01-21 2010-08-05 Toyota Motor Corp 高膨張比内燃機関
JP5428928B2 (ja) * 2010-02-18 2014-02-26 トヨタ自動車株式会社 火花点火式内燃機関
JP2011231712A (ja) * 2010-04-28 2011-11-17 Toyota Motor Corp 内燃機関の可変圧縮装置
DE102010032488A1 (de) * 2010-07-28 2012-02-02 Daimler Ag Verfahren zum Betreiben einer Hubkolbenmaschine
JP5668458B2 (ja) * 2010-12-21 2015-02-12 日産自動車株式会社 内燃機関の制御装置
JP5700134B2 (ja) * 2011-10-24 2015-04-15 日産自動車株式会社 内燃機関の回転速度制御装置及び回転速度制御方法
JP2013151911A (ja) * 2012-01-25 2013-08-08 Toyota Motor Corp 内燃機関
US9222429B2 (en) 2013-02-14 2015-12-29 Caterpillar Inc. Engine control system having a cam phaser
US9909520B2 (en) * 2013-02-22 2018-03-06 Nissan Motor Co., Ltd. Device and method for controlling internal combustion engine
JP6252770B2 (ja) * 2014-03-26 2017-12-27 株式会社豊田自動織機 油圧作動装置を備えた車両
DE102014205772B4 (de) * 2014-03-27 2024-07-11 Schaeffler Technologies AG & Co. KG Verfahren zur Verstellung von Steuerzeiten einer Brennkraftmaschine
JP6252345B2 (ja) * 2014-05-09 2017-12-27 トヨタ自動車株式会社 内燃機関の制御装置
JP6528604B2 (ja) * 2015-08-26 2019-06-12 日産自動車株式会社 可変圧縮比機構を備えた内燃機関の制御方法及び制御装置
WO2018216151A1 (ja) * 2017-05-24 2018-11-29 日産自動車株式会社 内燃機関の制御方法及び制御装置
JP7096852B2 (ja) * 2020-02-25 2022-07-06 本田技研工業株式会社 エンジン制御装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1348853A1 (en) * 2002-03-25 2003-10-01 Ford Global Technologies, Inc. A System and Method for Controlling an Engine
EP1363002A1 (en) * 2002-05-16 2003-11-19 Nissan Motor Company, Limited Control system and method for an internal combustion engine with variable compression ratio
EP1526265A2 (en) * 2003-10-23 2005-04-27 Toyota Jidosha Kabushiki Kaisha Internal combustion engine controller

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3786792A (en) * 1971-05-28 1974-01-22 Mack Trucks Variable valve timing system
US6561145B1 (en) * 2000-11-21 2003-05-13 Ford Global Technologies, Llc Torque control method and system in an engine with a fully variable intake valve
JP4581273B2 (ja) 2001-03-19 2010-11-17 日産自動車株式会社 内燃機関の起動制御装置
JP2004183570A (ja) 2002-12-04 2004-07-02 Nissan Motor Co Ltd エンジンの始動装置
JP2005030253A (ja) 2003-07-09 2005-02-03 Nissan Motor Co Ltd 可変圧縮比機構付き内燃機関の制御装置
JP2005127169A (ja) 2003-10-22 2005-05-19 Hitachi Ltd 内燃機関の制御方法
JP2005127239A (ja) 2003-10-24 2005-05-19 Honda Motor Co Ltd 内燃機関の制御装置
JP4396339B2 (ja) 2004-03-18 2010-01-13 日産自動車株式会社 内燃機関の吸気弁駆動制御装置
JP2006077605A (ja) 2004-09-07 2006-03-23 Yamaha Motor Co Ltd 車両、ならびに車両のエンジンのための制御装置およびエンジン制御方法
JP4458256B2 (ja) 2004-11-15 2010-04-28 株式会社デンソー 内燃機関の始動制御装置
DE102005054212B4 (de) * 2004-11-15 2021-09-23 Denso Corporation Startsteuervorrichtung für eine Brennkraftmaschine
JP2006118517A (ja) 2006-01-23 2006-05-11 Toyota Motor Corp 内燃機関の制御装置
JP4367439B2 (ja) 2006-05-30 2009-11-18 トヨタ自動車株式会社 火花点火式内燃機関

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1348853A1 (en) * 2002-03-25 2003-10-01 Ford Global Technologies, Inc. A System and Method for Controlling an Engine
EP1363002A1 (en) * 2002-05-16 2003-11-19 Nissan Motor Company, Limited Control system and method for an internal combustion engine with variable compression ratio
EP1526265A2 (en) * 2003-10-23 2005-04-27 Toyota Jidosha Kabushiki Kaisha Internal combustion engine controller

Also Published As

Publication number Publication date
US8234054B2 (en) 2012-07-31
US20100131170A1 (en) 2010-05-27
JP4470937B2 (ja) 2010-06-02
WO2008068985A1 (en) 2008-06-12
CN101548086A (zh) 2009-09-30
EP2089620B1 (en) 2010-04-21
DE602007006047D1 (de) 2010-06-02
ATE465335T1 (de) 2010-05-15
JP2008138631A (ja) 2008-06-19
EP2089620A1 (en) 2009-08-19

Similar Documents

Publication Publication Date Title
CN101548086B (zh) 运转火花点火式内燃发动机的方法
CN101443538B (zh) 控制实际压缩动作的开始正时以及机械压缩比的方法
CN101466933B (zh) 火花点火式内燃发动机
CN101443539B (zh) 控制机械压缩比和实际压缩作用的开始正时的方法
CN101796281B (zh) 火花点火式内燃机
CN101384809B (zh) 火花点火式内燃发动机
CN102597464B (zh) 火花点火式内燃机
CN101688481B (zh) 火花点火式内燃发动机及其控制方法
US20090178632A1 (en) Spark Ignition Type Internal Combustion Engine
CN101688480A (zh) 火花点火式内燃发动机及其控制方法
CA2695694C (en) Spark ignition type internal combustion engine
US8229649B2 (en) Spark ignition type internal combustion engine
US8356582B2 (en) Spark ignition type internal combustion engine
JP5082938B2 (ja) 火花点火式内燃機関
CN102933816B (zh) 火花点火式内燃机
US9151231B2 (en) Variable compression ratio type engine with fuel containing alcohol

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20111221

Termination date: 20201026