CN101508566B - 多组元碱金属铌酸盐基无铅压电陶瓷粉体的制备方法 - Google Patents

多组元碱金属铌酸盐基无铅压电陶瓷粉体的制备方法 Download PDF

Info

Publication number
CN101508566B
CN101508566B CN200910058701XA CN200910058701A CN101508566B CN 101508566 B CN101508566 B CN 101508566B CN 200910058701X A CN200910058701X A CN 200910058701XA CN 200910058701 A CN200910058701 A CN 200910058701A CN 101508566 B CN101508566 B CN 101508566B
Authority
CN
China
Prior art keywords
metal niobate
leadless piezoelectric
base metal
piezoelectric ceramic
activated carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200910058701XA
Other languages
English (en)
Other versions
CN101508566A (zh
Inventor
肖定全
孙勇
朱建国
余萍
陆雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN200910058701XA priority Critical patent/CN101508566B/zh
Publication of CN101508566A publication Critical patent/CN101508566A/zh
Application granted granted Critical
Publication of CN101508566B publication Critical patent/CN101508566B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种多组元碱金属铌酸盐基无铅压电陶瓷粉体的制备方法,属于环境协调性压电陶瓷领域。传统固相反应合成多组元碱金属铌酸盐基无铅压电陶瓷粉体,其合成温度通常要在约850-900℃才能完成。本发明通过在陶瓷初始原料中添加活性碳作为预烧增强剂,添加量用a wt%表示,其中a为添加活性碳的量占原料总重量的百分比,为5%≤a≤10%;原料球磨混和后在450℃合成具有良好压电活性的多组元碱金属铌酸盐基无铅压电陶瓷粉体;该粉体制备的多组元碱金属铌酸盐基无铅压电陶瓷具有相组成单一,微结构致密,及良好介电,压电和铁电性能。本发明的方法对于压电陶瓷粉体生产领域的节能降耗具有重要而现实的意义。

Description

多组元碱金属铌酸盐基无铅压电陶瓷粉体的制备方法
一、技术领域
本发明涉及一种无铅压电陶瓷粉体的制备技术,特别涉及一种用于获得多组元碱金属铌酸盐基无铅压电陶瓷的陶瓷粉体的制备方法,属于功能陶瓷材料及环境协调性压电陶瓷领域。
二、背景技术
当前,碱金属铌酸盐基无铅压电陶瓷以其相对优越的压电性能和较高居里温度倍受关注。随着掺杂、取代改性工作的不断深入,以及制备工艺的逐步成熟,采用传统陶瓷制备工艺在实验室条件下得到了各项性能指标较以往优异的碱金属铌酸盐基无铅压电陶瓷,如陶瓷样的压电常数(d33)已达到314-362pC/N,平面机电耦合系数(kp)为0.48左右。值得一提的是,要实现碱金属铌酸盐基无铅压电陶瓷从实验室研究到企业实际生产,单就制备技术这一层面来讲,还有许多问题需要解决,如:(1)以相对于无水乙醇更具环境协调性的纯水作溶剂来制备碱金属铌酸盐基无铅压电陶瓷粉料;(2)如何在不影响所制备的陶瓷性能的前提下,通过一些可产业化的改进有效降低合成、烧结温度,从而到达节能降耗的目的;(3)开发成本相对较低、性能稳定和实用性好的新型碱金属铌酸盐基无铅压电陶瓷配方;(4)如何把实验室的研究成果转化为规模生产中可靠重现的技术。因此,探索低能耗、低成本、可实用化的碱金属铌酸盐基无铅压电陶瓷粉体的制备技术是目前国际上研究的一个热点和难点。
目前,传统的固相合成碱金属铌酸盐基无铅压电陶瓷粉体其反应温度通常需要在约850-900℃才能完成,若能开发一种可在较低温度下就能合成碱金属铌酸盐基无铅压电陶瓷粉体的方法,从而达到既节能降耗的目的,又能使制备的碱金属铌酸盐基无铅压电陶瓷各项指标具有良好的性能,无疑具有重要意义。
三、发明内容
本发明方法正是为了弥补现有的碱金属铌酸盐基无铅压电陶瓷粉体制备工艺不足提出的。本发明克服了现有的碱金属铌酸盐基无铅压电陶瓷粉体制备上的需高温合成的缺点,提出一种在不影响制备碱金属铌酸盐基无铅压电陶瓷性能的前提下,有效降低碱金属铌酸盐基无铅压电陶瓷粉料的合成温度来达到节能降耗的目的。
本发明方法采用的技术方案是为:在初始原料中添加活性碳作为预烧增强剂,然后在较低温度条件下合成具备有良好压电活性的多组元碱金属铌酸盐基无铅压电陶瓷粉体。本发明的制备方法其烧结温度适中,这不仅可节能降耗;而且获得的陶瓷粉体制备的铌酸盐基无铅压电陶瓷具有相组成单一,微结构致密;其介电、压电和铁电性能良好。
为实现本发明的目的,本发明采用以下措施构成的技术方案来实现的。
本发明多组元碱金属铌酸盐基无铅压电陶瓷粉体的制备方法,包括以下工艺步骤:
(1)按照一类多组元碱金属铌酸盐基无铅压电陶瓷的配方称量原料,在陶瓷初始原料中添加活性碳作为预烧增强剂,添加活性碳的量用a wt%来表示,其中a为活性碳的量占初始原料总重量的百分比,所添加活性碳的用量为5%≤a≤10%;
(2)将上述添加了活性碳的原料经充分球磨混和后,装入刚玉坩埚内,在450℃温度下煅烧,再保温5-6个小时,即合成为添加了活性碳的具备良好压电活性的多组元碱金属铌酸盐基无铅压电陶瓷粉体;
(3)将预烧后合成的陶瓷粉末采用常规制备陶瓷方法,即再经过二次球磨,添加粘结剂,成型,排塑,最后在1050-1150℃温度下烧结2-3小时,将烧结好的陶瓷片被银电极后在100-120℃的硅油中,施加4-5kV/mm的直流电场,极化20-30分钟,静置24小时后,即获得相组成单一、微结构致密的多组元碱金属铌酸盐基无铅压电陶瓷;
(4)最后采用IEEE标准测量所制备的陶瓷样品的各种电学性能。
上述技术方案中,所述压电陶瓷初始原料主要为Na2CO3,或K2CO3,或Li2CO3,或Nb2O5,或Sb2O3
本发明具有如下的特点和有益的技术效果:
本发明方法在陶瓷初始原料中添加预烧增强剂活性碳,在较低温度条件下合成了具备有良好压电活性的多组元碱金属铌酸盐基无铅压电陶瓷粉体。
本发明方法提供的陶瓷粉体进而制备的多组元碱金属铌酸盐基无铅压电陶瓷,其相组成单一,微结构致密。
本发明方法合成的陶瓷粉体的合成温度适中,要低于传统固相合成反应温度400-450℃,因此可达到节能降耗的目的。
本发明与采用传统制备工艺得到的陶瓷粉体来制作的具有同一组分的压电陶瓷相比较,利用本发明方法得到的陶瓷粉体来制作的压电陶瓷,其介电、压电和铁电性能均具有很好的可比性,有的陶瓷的压电铁电性能甚至还有较大幅度的改善或提高。
四、附图说明
以下的附图中,传统固相制备的陶瓷粉体KNN-1,其使用温度为850℃,保温时间5小时;添加活性碳预烧增强剂制备的陶瓷粉体KNN-2,其使用温度为450℃,保温时间5小时。
图1本发明添加活性碳预烧增强剂制备的KNN陶瓷粉体及相应陶瓷的XRD图谱;
图2本发明添加活性碳预烧增强剂制备的KNN陶瓷粉体的扫描电镜照片;
图3本发明实施例1添加活性碳预烧增强剂制备的与传统工艺制备的不同陶瓷粉体进而制备KNN陶瓷的XRD图谱;
图4本发明实施例1不同陶瓷粉体和不同制备工艺制得的KNN陶瓷表面的SEM照片;
图5本发明实施例1不同陶瓷粉体和不同制备工艺制得的KNN陶瓷的电滞回线;
图6本发明实施例2不同陶瓷粉体和不同制备工艺制得的0.95(K0.48Na0.52)NbO3-0.05LiSbO3(KNNLS)陶瓷的XRD图谱;
图7本发明实施例2不同陶瓷粉体和不同制备工艺制得的0.95(K0.48Na0.52)NbO3-0.05LiSbO3(KNNLS)陶瓷表面的SEM照片;
图8本发明实施例2不同陶瓷粉体和不同制备工艺制得的0.95(K0.48Na0.52)NbO3-0.05LiSbO3(KNNLS)陶瓷的电滞回线;
图9本发明实施例3不同陶瓷粉体和不同制备工艺制得的K0.475Na0.525Nb0.95Sb0.05O3(KNNS)陶瓷的XRD图谱;
图10本发明实施例3不同陶瓷粉体和不同制备工艺制得的K0.475Na0.525Nb0.95Sb0.05O3(KNNS)陶瓷表面的SEM照片;
图11本发明实施例3不同陶瓷粉体和不同制备工艺制得的K0.475Na0.525Nb0.95Sb0.05O3(KNNS)陶瓷的电滞回线;
图12本发明实施例4不同陶瓷粉体和不同制备工艺制得的KNN陶瓷的XRD图谱;
图13本发明实施例4不同陶瓷粉体和不同制备工艺制得的KNN陶瓷表面的SEM照片;
图14本发明实施例4不同粉体和不同制备工艺制得的KNN陶瓷的电滞回线。
五、具体实施方式
下面通过具体实施例及获得的结果图片或照片对本发明作进一步的祥细说明,但并不意味着对本发明内容的任何限制。
本发明碱金属铌酸盐基无铅压电陶瓷粉体的制备,其陶瓷初始原料可以采用Na2CO3、K2CO3、Li2CO3、Nb2O5、Sb2O3等为主要基料,然后按照基料与添加活性碳的百分比重量添加活性碳,经充分球磨混和后在改进工艺温度450℃条件下预烧,获得陶瓷粉体,再采用常规陶瓷制备方法制得具有良好的介电、压电和铁电性能的多组元碱金属铌酸盐基无铅压电陶瓷。
下面是本发明针对几种碱金属铌酸盐基无铅压电陶瓷的配方的实例,对未添加活性碳作为预烧增强剂和添加了活性碳作为预烧增强剂所制备的陶瓷粉体进而制备的碱金属铌酸盐基无铅压电陶瓷的介电、压电和铁电性能参数的对比。
实施例1
按以下比例称量原料:Na2CO3(13.62wt%)、K2CO3(17.90wt%)、Nb2O5(68.48wt%)、5wt%的活性碳,经充分球磨混和后,装入刚玉坩埚内,在450℃温度下预烧,保温时长为5个小时;预烧后合成的陶瓷粉末再经过二次球磨,添加粘结剂,成型,排塑,最后在1100℃下烧结2小时。将烧结好的陶瓷片在被银电极后在100℃的硅油中,施加4kV/mm的直流电场,极化20分钟,再静置24小时后;采用IEEE标准测量K0.5Na0.5NbO3陶瓷样品的各种电学性能如下表所示:
                                   d33(pC/N) kP    εr  Qm     tanδ  Pr(μC/cm2)  Ec(kV/mm)
传统粉体工艺(850℃,5h)制备        94        0.34  426  102.6  0.036  22.40        0.773
添加活性碳的粉体工艺(450℃,5h)制  116       0.37  336  242.6  0.034  23.10        0.677
实施例2
按以下比例称量原料:Na2CO3(13.50wt%)、K2CO3(16.38wt%)、Nb2O5(65.31wt%)、Li2CO3(0.98wt%)、Sb2O5(3.83wt%)、5wt%的活性碳,经充分球磨混和后,装入刚玉坩埚内,在450℃温度下预烧,保温时长为5个小时;预烧后合成的粉末再经过二次球磨,添加粘结剂,成型,排塑,最后在1055℃下烧结2小时。将烧结好的陶瓷片在被银电极后在100℃的硅油中,施加4kV/mm的直流电场,极化20-分钟,再静置24小时后;采用IEEE标准测量0.95(K0.48Na0.52)NbO3-0.05LiSbO3陶瓷样品的各种电学性能如下表所示:
                                     d33(pC/N)  kP    εr   Qm    tanδ  Pr(μC/cm2)  Ec(kV/mm)
传统粉体工艺(850℃,5h)制备          215        0.43  1218  50.1  0.028  23.30        0.764
添加活性碳的粉体工艺(450℃,5h)制备  254        0.39  1183  49.6  0.026  22.30        0.952
实施例3
按以下比例称量原料:Na2CO3(14.27wt%)、K2CO3(16.97wt%)、Nb2O5(64.95wt%)、Sb2O5(3.81wt%)、10wt%的活性碳,经充分球磨混和后,装入刚玉坩埚内,在450℃温度下预烧,保温时长为6个小时;预烧后合成的粉末再经过二次球磨,添加粘结剂,成型,排塑,最后在1150℃下烧结3小时。将烧结好的陶瓷片在被银电极后在120℃的硅油中,施加5kV/mm的直流电场,极化30分钟,再静置24小时后;采用IEEE标准测量K0.475Na0.525Nb0.95Sb0.05O3陶瓷样品的各种电学性能如下表所示:
                                     d33(pC/N) kP    εr  Qm   tanδ  Pr(μC/cm2)  Ec(kV/mm)
传统粉体工艺(850℃,5h)制备          152       0.40  751  150  0.031  20.10        0.764
添加活性碳的粉体工艺(450℃,5h)制备  170       0.38  732  141  0.029  17.31        0.770
实施例4
按以下比例称量原料:Na2CO3(13.62wt%)、K2CO3(17.90wt%)、Nb2O5(68.48wt%)、10wt%的活性碳,经充分球磨混和后,装入刚玉坩埚内,在450℃温度下预烧,保温时长为6个小时;预烧后合成的粉末再经过二次球磨,添加粘结剂,成型,排塑,最后在1100℃下烧结3小时。将烧结好的陶瓷片在被银电极后在120℃的硅油中,施加5kV/mm的直流电场,极化30分钟,再静置24小时后;采用IEEE标准测量K0.5Na0.5NbO3陶瓷样品的各种电学性能如下表所示:
                                   d33(pC/N)  kP    εr   Qm     tanδ   Pr(μC/cm2)  Ec(kV/mm)
传统粉体工艺(850℃,5h)制备        94         0.34  426  102.6  0.036   22.40        0.773
添加活性碳的粉体工艺(450℃,5h)制备100        0.32  585  85.6   0.041   23.30        0.731
本发明通过上述四个实施例的结果测量发现,采用在陶瓷初始原料中添加活性碳作为预烧增强剂制备的多组元碱金属铌酸盐基无铅压电陶瓷粉体进而制作的该无铅压电陶瓷,与采用传统制备工艺制得的陶瓷粉体来制作的具有同一组分的无铅压电陶瓷相比较,本发明陶瓷的相组成单一,微结构致密;其次,本发明的介电、压电和铁电性能与传统制备工艺所得陶瓷的相应参数性能均具有很好的可比性;本发明有的陶瓷的压电铁电性能甚至还有较大幅度的改善或提高。

Claims (2)

1.一种多组元碱金属铌酸盐基无铅压电陶瓷粉体的制备方法,其特征在于包括以下工艺步骤:
(1)按照多组元碱金属铌酸盐基无铅压电陶瓷的配方,称量原料,在陶瓷初始原料中添加活性碳作为预烧增强剂,添加活性碳的量为陶瓷初始原料总重量的5~10wt%;
(2)将上述添加了活性碳的原料经充分球磨混和后,装入刚玉坩埚内,在450℃温度下预烧,再保温5-6个小时,即合成为添加了活性碳的具备良好压电活性的多组元碱金属铌酸盐基无铅压电陶瓷粉体;
(3)将预烧后合成的陶瓷粉末采用常规制备陶瓷方法,即再经过二次球磨,添加粘结剂,成型,排塑,最后在1050-1150℃温度下烧结2-3小时,将烧结好的陶瓷片被银电极后在100-120℃的硅油中,施加4-5kV/mm的直流电场,极化20-30分钟,静置24小时后,即获得相组成单一、微结构致密的多组元碱金属铌酸盐基无铅压电陶瓷;
(4)最后采用IEEE标准测量所制备的陶瓷样品的各种电学性能。
2.根据权利要求1所述的多组元碱金属铌酸盐基无铅压电陶瓷粉体的制备方法,其特征在于所述压电陶瓷初始原料为Na2CO313.62wt%、K2CO317.90wt%和Nb2O568.48wt%;或Na2CO3 13.50wt%、K2CO3 16.38wt%、Nb2O5 65.31wt%、Li2CO3 0.98wt%和Sb2O53.83wt%;或Na2CO3 14.27wt%、K2CO3 16.97wt%、Nb2O5 64.95wt%和Sb2O5 3.81wt%。
CN200910058701XA 2009-03-26 2009-03-26 多组元碱金属铌酸盐基无铅压电陶瓷粉体的制备方法 Expired - Fee Related CN101508566B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200910058701XA CN101508566B (zh) 2009-03-26 2009-03-26 多组元碱金属铌酸盐基无铅压电陶瓷粉体的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200910058701XA CN101508566B (zh) 2009-03-26 2009-03-26 多组元碱金属铌酸盐基无铅压电陶瓷粉体的制备方法

Publications (2)

Publication Number Publication Date
CN101508566A CN101508566A (zh) 2009-08-19
CN101508566B true CN101508566B (zh) 2012-04-25

Family

ID=41001123

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910058701XA Expired - Fee Related CN101508566B (zh) 2009-03-26 2009-03-26 多组元碱金属铌酸盐基无铅压电陶瓷粉体的制备方法

Country Status (1)

Country Link
CN (1) CN101508566B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103467085B (zh) * 2013-08-28 2015-04-08 伊犁师范学院 高压电系数钛铪酸钡系无铅压电陶瓷及其制备方法
CN107512908A (zh) * 2017-08-21 2017-12-26 昆明理工大学 一种铌酸钾钠基压电陶瓷的制备方法
CN111548155B (zh) * 2020-03-31 2022-06-24 成都迪迈斯科技有限公司 一种高压电高居里点铌酸钾钠-锑酸钾钠系无铅压电陶瓷及其制备方法
CN116606140A (zh) * 2022-02-08 2023-08-18 成都理想境界科技有限公司 一种压电陶瓷及其制备方法和应用

Also Published As

Publication number Publication date
CN101508566A (zh) 2009-08-19

Similar Documents

Publication Publication Date Title
CN103708832B (zh) 一种纳米陶瓷刀具及其制备方法
CN102311266B (zh) 一种铌酸钾钠无铅压电陶瓷材料的制备方法
CN101244933B (zh) 一种片状钛酸铋钠模板晶粒制备方法
CN101648807A (zh) 锆钛酸钡钙基压电陶瓷及其制备方法
CN101508566B (zh) 多组元碱金属铌酸盐基无铅压电陶瓷粉体的制备方法
CN105645958A (zh) 一种铌酸钠无铅反铁电压电陶瓷的制备方法
CN102531638A (zh) 一种添加物及其降低压电陶瓷烧结温度的用途
CN101747051A (zh) CaCu3Ti4O12陶瓷材料的低温烧结方法
CN107032790B (zh) 一种应用于能量收集器件的高机电转换复相压电陶瓷材料及制备方法
CN111925208A (zh) 一种铌酸锂钠基无铅压电陶瓷及其制备方法
CN102299254B (zh) 一种流延法制备大尺寸厚膜压电复合材料的方法
CN100584796C (zh) 一种Y2O3-TiO2系微波介质陶瓷及其制备方法
CN105272218B (zh) 一种中温烧结高介电常数陶瓷电容器用介质材料
CN101891475A (zh) 铌酸钠钾-钛酸铋钾纳米陶瓷的制备方法
CN103864420B (zh) 一种微波介质陶瓷材料的制备方法
CN105016723A (zh) 一种制备纯相Na1/2Bi1/2TiO3陶瓷粉体的方法
CN101891465A (zh) 高压电常数锡钛酸锶钡系无铅压电陶瓷
CN105218100A (zh) 一种低温制备Ti2AlC陶瓷材料的方法
CN1232476C (zh) 一种制备钛硅碳陶瓷粉的方法
CN104926299B (zh) 一种陶瓷插芯的制备方法
CN102838351B (zh) 一种多铁材料及制备方法
CN101767993A (zh) 高压电常数锆钛酸镁钡系无铅压电陶瓷
CN102838350B (zh) 一种低温烧结压电陶瓷材料及其制备方法
CN112723877A (zh) 一种具有微米内晶型结构的陶瓷-金属无铅压电复合材料及制备方法
CN102503418B (zh) 一种低温液相烧结La2Zr2O7陶瓷及烧结方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120425

Termination date: 20140326