CN101465357A - 介质隔离集成电路硅片及其制备方法 - Google Patents

介质隔离集成电路硅片及其制备方法 Download PDF

Info

Publication number
CN101465357A
CN101465357A CNA2008102320367A CN200810232036A CN101465357A CN 101465357 A CN101465357 A CN 101465357A CN A2008102320367 A CNA2008102320367 A CN A2008102320367A CN 200810232036 A CN200810232036 A CN 200810232036A CN 101465357 A CN101465357 A CN 101465357A
Authority
CN
China
Prior art keywords
type
silicon
silicon chip
buried layer
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2008102320367A
Other languages
English (en)
Inventor
周鸣新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TIANSHUI HUATIAN MICROELECTRONIC CO Ltd
Original Assignee
TIANSHUI HUATIAN MICROELECTRONIC CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TIANSHUI HUATIAN MICROELECTRONIC CO Ltd filed Critical TIANSHUI HUATIAN MICROELECTRONIC CO Ltd
Priority to CNA2008102320367A priority Critical patent/CN101465357A/zh
Publication of CN101465357A publication Critical patent/CN101465357A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Element Separation (AREA)

Abstract

本发明主要涉及介质隔离硅片的制备方法。一种N型/P型介质隔离集成电路硅片,其主要特点在于有N型/P型衬底硅片(1),其上设有夹心氧化层(2),还有N型/P型硅单晶层(6),在硅单晶层(6)内设有隐埋层(3);其硅单晶层(6)由二氧化硅(5)、多晶硅(4)和夹心氧化层(2)分隔为互相绝缘的隔离方块。本发明还公开了N型/P型介质隔离集成电路硅片的制备方法,包括有隐埋层制备,贴片,研磨、抛光和刻槽,二氧化硅、多晶硅生长,抛光。由于在制备中大大缩短了高温时间,晶体结构更完整,工艺控制更准确,可制作高性能及特殊要求的电路。适当提高单晶片电阻率,可以做出高(电源)电压电路,并有一定功率输出。

Description

介质隔离集成电路硅片及其制备方法
技术领域:
本发明主要涉及介质隔离硅片及其制备方法,属集成电路技术领域。
背景技术:
在双极性模拟集成电路制造中,一般采用单片式PN结隔离外延片方法来制造。在可靠性要求更高,工作环境条件更为恶劣的场合,使用PN结隔离外延方法制造的电路受到一定限制,而用介质隔离硅片制造模拟集成电路性能要明显优于前者。随着人类向深空探测发展,对电子产品抗辐射和耐高低温的要求越来越高。
SOI技术是国际上公认的“21世纪的硅基集成电路技术”,绝缘层上的硅(SOI)材料是微电子领域一种非常有用的重要硅材料。可以实现集成电路中元器件的介质绝缘隔离。而在双极性模拟集成电路中,一般采用单片式PN结隔离外延片方法来制造。这种工艺存在隔离性能随温度升高而变差,PNP管只能做成横向PNP管,性能没有纵向PNP管好,存在寄生效应和抗辐射能力差的不足,影响了在一些特殊要求场合的应用。
发明内容:
本发明的目的在于避免现有技术的不足之处而提供一种N型/P型介质隔离集成电路硅片。本发明提出了利用贴片技术和氧化、光刻、离子注入、反应离子刻蚀等技术制作介质隔离硅片。本发明的介质隔离模拟集成电路外延片,实现集成电路中元器件的介质绝缘隔离,以克服上述不足,提高集成电路的高温性能和抗辐射能力,并且可克服PN结隔离集成电路中的寄生效应。为提升集成电路可靠性,制造更高性能的集成电路创造了条件。
本发明的另一目的提供一种N型介质隔离集成电路硅片的制备方法。
本发明还有一目的提供一种P型介质隔离集成电路硅片的制备方法。
本发明的目的可以通过采用以下技术方案来实现:一种N型/P型介质隔离集成电路硅片,其主要特点在于有N型/P型衬底硅片(1),其上设有夹心氧化层(2),还有N型/P型硅单晶层(6),在硅单晶层(6)内设有隐埋层(3);其硅单晶层(6)由二氧化硅(5)、多晶硅(4)和夹心氧化层(2)分隔为互相绝缘的隔离方块。
所述的N型/P型介质隔离集成电路硅片,所述的N型/P型硅单晶层(6)的厚度为5—16μm;所述的方块的电阻N型为6—15Ω/□,P型为8—20Ω/□。□表示单位面积下掺杂结深的体电阻。
所述的N型介质隔离集成电路硅片的制备方法,其主要特点在于制备的步骤为:
(1)N+隐埋层制备:在N型0.5—6.0Ωcm单晶硅片抛光面进行砷(N型)高浓度8 x 1019—1020/cm3离子注入,经高温退火,温度为25—1250℃,N+隐埋层方块电阻控制在6—15Ω/□,结深控制在2.0—3.0μm,形成N+隐埋层,注入工艺衬底温度为400—700℃,注入能量为100—150kev,剂量为1015—1016cm2
(2)贴片:将另一片没有做隐埋层的P型6—10Ωcm已氧化硅片的抛光面和已经做了N+隐埋层的N型硅片隐埋层抛光面对应贴在一起进行氧化,温度为1180—1280℃,使两个硅片粘接成为一体;
(3)研磨、抛光和刻槽:将步骤(2)中做了N+隐埋层一侧的硅片研磨、抛光到需要的厚度10—20μm,再用氧化、光刻和反应离子刻蚀,刻出垂直槽到贴片间氧化层,槽宽为2—5μm;
(4)二氧化硅、多晶硅生长:利用化学气相沉积工艺在硅片的表面和槽内先后生长二氧化硅、多晶硅,温度为550—750℃;
(5)抛光:将硅片表面生长的二氧化硅、多晶硅抛掉,余下单晶层厚度在5—16μm,完成N型介质隔离硅片制作。
所述的N型介质隔离集成电路外延片的制备方法,其制备的步骤(1)还包括有:形成N+隐埋层后,再进行局部硼高浓度2—8×1019/cm3离子注入,经高温退火,温度为25—1250℃,方块电阻控制在8—20Ω/□,结深控制在2.0—3.0μm;形成P+隐埋层,注入工艺衬底温度为400—700℃,注入能量为100—150kev,剂量为1015—1016/cm2
所述的P型介质隔离集成电路硅片的制备方法,其主要特点在于制备的步骤为:(1)P+隐埋层制备:在P型0.5—8.0Ωcm单晶硅片抛光面进行硼P型高浓度2—8×1019/cm3离子注入,P+隐埋层方块电阻控制在8—20Ω/□,结深控制在2.0—3.0μm,形成P+隐埋层,注入工艺衬底温度为400—700℃,注入能量为100—150kev,剂量为1015—1016cm2
(2)贴片:将另一片没有做隐埋层的N型6—10Ωcm已氧化的硅片抛光面和已经做了P+隐埋层的P型硅片隐埋层抛光面对应贴在一起进行氧化,温度为1180—1280℃,使两个硅片粘接成为一体;
(3)研磨、抛光和刻槽:将步骤(2)中做了隐埋层一侧的硅片研磨、抛光到需要的厚度10—20μm,再用氧化、光刻和反应离子刻蚀刻出垂直槽到贴片间氧化层,槽宽为2—5μm;
(4)二氧化硅、多晶硅生长:利用化学气相沉积工艺在硅片的表面和槽内先后生长二氧化硅、多晶硅,温度为550—750℃;
(5)抛光:将硅片表面生长的二氧化硅、多晶硅抛掉,余下单晶层厚度在5—16μm,完成介质隔离P型硅片制作。
所述的N型介质隔离集成电路硅片的制备方法,制备的步骤还包括有在最后的抛光步骤后是集成电路的器件制作。
所述的P型介质隔离集成电路硅片的制备方法,制备的步骤还包括有在最后的抛光步骤后是集成电路的器件制作。
本方法是在原有介质隔离方法的基础上发展起来的。其设计思路是:利用贴片、氧化、光刻、离子注入、反应离子刻蚀等技术制作介质隔离硅单晶片。其中,这种硅片可以用大圆片来制造。采用这种方法制造的硅片由于高温处理时间短,在过去介质隔离中无法采用的技术,如隐埋层制作,这里完全可以实现,由于采用介质隔离,隔离性能明显优于PN结隔离,有效克服了PN结隔离集成电路中的寄生效应,为制造高性能介质隔离集成电路创造了条件。可满足我国航空航天等尖端技术对高性能集成电路的要求。除了可以做双极型模拟和数字集成电路外,也为硅压力传感器制作奠定了坚实的基础。
本发明的有益效果是:灵活应用这几种技术,可以制作不同要求的集成电路。由于大大缩短了高温时间,晶体结构更完整,工艺控制更准确,可制作高性能及特殊要求的电路。例如,用本发明两片式工艺,适当提高单晶片电阻率和外延层电阻率,可以做出高(电源)电压电路,并有一定功率输出。这是用常规PN结隔离工艺难以实现的。可应用于一些特殊场合。是一种很有前途的工艺技术。再如,用本发明两片式工艺,可将单片式PN结隔离电路中的横向PNP管做成纵向PNP管,大大提高电路性能等。而且,用这种介质隔离集成电路硅单晶片制造集成电路,器件是做在原始单晶层上,其质量要比外延层单晶质量好。所以整体电路的参数性能、耐高温性能和抗辐射性能都明显好于PN结隔离集成电路,扩大了应用范围。
附图说明:
图1、为本发明的N型介质隔离硅片剖视示意图;
图中:1、P型单晶硅;2、夹心二氧化硅层;3、N+隐埋层;4、多晶硅;5、二氧化硅;6、n型单晶硅。
图2、为本发明的N型介质隔离硅片的制作流程图:
图3、为本发明的P型介质隔离硅片剖视示意图;
图中:1、n型单晶硅;2、二氧化硅夹心氧化层;3、P+隐埋层;4、多晶硅;5、二氧化硅;6、p型单晶硅。
图4、为本发明的P型介质隔离硅片的制作流程图。
具体实施方式:
以下结合附图所示之最佳实施例作进一步详述:
实施例1,见图1,一种N型介质隔离集成电路硅片,有P型衬底硅单晶片1,其上设有夹心氧化层2,还有N型硅单晶层6,在硅单晶层6内设有隐埋层3;其硅单晶层6由二氧化硅5、多晶硅4和夹心氧化层2分隔为互相绝缘的隔离方块。所述的N型硅单晶层6的厚度为5—16μm;所述的方块电阻N型为6—15Ω/□。
应用例1:单片式集成电路,压力传感器或带集成电路的传感器的硅片。用本发明N型介质隔离集成电路硅单晶片,可单独实现集成电路的器件制作。只是PNP管只能做成横向管,之后的工艺与常规PN结隔离外延后的集成电路制造工艺相同。这种电路的隔离性能要比PN结隔离电路好。
实施例2,见图2,所述的N型介质隔离集成电路硅片的制备方法,其制备的步骤为:
(1)N+隐埋层制备:在N型0.5—6.0Ωcm单晶硅片抛光面进行砷(N型)高浓度8 x 1019—1020/cm3离子注入,经高温退火,温度为25—1250℃,N+隐埋层方块电阻控制在6—15Ω/□,结深控制在2.0—3.0μm,形成N+隐埋层,注入工艺衬底温度为400—700℃,注入能量为100—150kev,剂量为1015—1016cm2
(2)贴片:将另一片没有做隐埋层的P型6—10Ωcm已氧化硅片的抛光面和已经做了N+隐埋层的N型硅片隐埋层抛光面对应贴在一起进行氧化,温度为1180—1280℃,使两个硅片粘接成为一体;
(3)研磨、抛光和刻槽:将步骤(2)中做了N+隐埋层一侧的硅片研磨、抛光到需要的厚度10—20μm,再用氧化、光刻和反应离子刻蚀,刻出垂直槽到贴片间氧化层,槽宽为2—5μm;
(4)二氧化硅、多晶硅生长:利用化学气相沉积工艺在硅片的表面和槽内先后生长二氧化硅、多晶硅,温度为550—750℃;
(5)抛光:将硅片表面生长的二氧化硅、多晶硅抛掉,余下单晶层厚度在5—16μm,完成N型介质隔离硅片制作。
(6)抛光步骤后是集成电路的器件制作。
实施例3,见图2,所述的N型介质隔离集成电路硅片的制备方法,其制备的步骤为:
所述的N型介质隔离集成电路外延片的制备方法,其制备的步骤(1)还包括有:形成N+隐埋层后,再进行局部硼高浓度2—8×1019/cm3离子注入,经高温退火,温度为25—1250℃,方块电阻控制在8—20Ω/□,结深控制在2.0—3.0μm;形成P+隐埋层,注入工艺衬底温度为400—700℃,注入能量为100—150kev,剂量为1015—1016/cm2
其余步骤与实施例2相同。
实施例4,见图3,4一种P型贴片式介质隔离集成电路硅单晶片,有N型衬底硅片1,其上设有夹心氧化层2,还有P型硅单晶层6,在硅单晶层6内设有隐埋层3;其硅单晶层6由二氧化硅5、多晶硅4、二氧化硅2分隔为互相绝缘的隔离方块。所述的P型硅单晶层6的厚度为5—16μm。
应用例2:双片式集成电路,把集成电路中的纵向NPN晶体管全部做在本发明N型介质隔离集成电路单晶硅片上,如图1。把单片式PN结隔离集成电路中的横向PNP晶体管全部做在本发明P型介质隔离集成电路单晶硅片上,如图3。并全部做成纵向PNP晶体管。芯片做完后把两种芯片同时粘到管基上,两个芯片间内压点用硅铝丝压焊连接,两芯片要与外压点相连的内压点用硅铝丝与外压点压焊连接。这种方法的好处是PNP管全部可以做成纵向PNP管,纵向PNP管电性能要比横向电路性能PNP管电性能要好许多,又克服了寄生效应,加上隔离性能好,所以整体电路的电性能、耐高温性能、抗辐射性能更好。适当提高本发明的N型单晶硅片和P型单晶硅片的电阻率,可以制造出有一定电流输出的高压集成电路,用于一些特殊应用场合,扩大了应用范围。是一种很有前途的技术。
实施例5,见图4,所述的P型介质隔离集成电路硅片的制备方法,其主要特点在于制备的步骤为:
(3)P+隐埋层制备:在P型0.5—8.0Ωcm单晶硅片抛光面进行硼P型高浓度2—8×1019/cm3离子注入,P+隐埋层方块电阻控制在8—20Ω/□,结深控制在2.0—3.0μm,形成P+隐埋层,注入工艺衬底温度为400—700℃,注入能量为100—150kev,剂量为1015—1016cm2
(4)贴片:将另一片没有做隐埋层的N型6—10Ωcm已氧化的硅片抛光面和已经做了P+隐埋层的P型硅片隐埋层抛光面对应贴在一起进行氧化,温度为1180—1280℃,使两个硅片粘接成为一体;
(3)研磨、抛光和刻槽:将步骤(2)中做了隐埋层一侧的硅片研磨、抛光到需要的厚度10—20μm,再用氧化、光刻和反应离子刻蚀刻出垂直槽到贴片间氧化层,槽宽为2—5μm;
(4)二氧化硅、多晶硅生长:利用化学气相沉积工艺在硅片的表面和槽内先后生长二氧化硅、多晶硅,温度为550—750℃;
(5)抛光:将硅片表面生长的二氧化硅、多晶硅抛掉,余下单晶层厚度在5—16μm,完成介质隔离P型硅片制作。
(6)抛光步骤后是集成电路的器件制作。

Claims (7)

1.一种N型/P型介质隔离集成电路硅片,其特征在于有N型/P型衬底硅片(1),其上设有夹心氧化层(2),还有N型/P型硅单晶层(6),在硅单晶层(6)内设有隐埋层(3);其硅单晶层(6)由二氧化硅(5)、多晶硅(4)和夹心氧化层(2)分隔为互相绝缘的隔离方块。
2.如权利要求1所述的N型/P型介质隔离集成电路硅片,其特征在于所述的N型/P型硅单晶层(6)的厚度为5—16μm;所述的方块的电阻N型为6—15Ω/□,P型为8—20Ω/□。
3.如权利要求1或2所述的N型介质隔离集成电路硅片的制备方法,其特征在于制备的步骤为:
(1)N+隐埋层制备:在N型0.5—6.0Ωcm单晶硅片抛光面进行砷(N型)高浓度8 x 1019—1020/cm3离子注入,经高温退火,温度为25—1250℃,N+隐埋层方块电阻控制在6—15Ω/□,结深控制在2.0—3.0μm,形成N+隐埋层,注入工艺衬底温度为400—700℃,注入能量为100—150kev,剂量为1015—1016cm2
(2)贴片:将另一片没有做隐埋层的P型6—10Ωcm已氧化硅片的抛光面和已经做了N+隐埋层的N型硅片隐埋层抛光面对应贴在一起进行氧化,温度为1180—1280℃,使两个硅片粘接成为一体;
(3)研磨、抛光和刻槽:将步骤(2)中做了N+隐埋层一侧的硅片研磨、抛光到需要的厚度10—20μm,再用氧化、光刻和反应离子刻蚀,刻出垂直槽到贴片间氧化层,槽宽为2—5μm;
(4)二氧化硅、多晶硅生长:利用化学气相沉积工艺在硅片的表面和槽内先后生长二氧化硅、多晶硅,温度为550—750℃;
(5)抛光:将硅片表面生长的二氧化硅、多晶硅抛掉,余下单晶层厚度在5—16μm,完成N型介质隔离硅片制作。
4、如权利要求3所述的N型介质隔离集成电路外延片的制备方法,其特征在于制备的步骤(1)还包括有:形成N+隐埋层后,再进行局部硼高浓度2—8×1019/cm3离子注入,经高温退火,温度为25—1250℃,方块电阻控制在8—20Ω/□,结深控制在2.0—3.0μm;形成P+隐埋层,注入工艺衬底温度为400—700℃,注入能量为100—150kev,剂量为1015—1016/cm2
5.如权利要求1或2所述的P型介质隔离集成电路硅片的制备方法,其特征在于制备的步骤为:
(1)P+隐埋层制备:在P型0.5—8.0Ωcm单晶硅片抛光面进行硼P型高浓度2—8×1019/cm3离子注入,P+隐埋层方块电阻控制在8—20Ω/□,结深控制在2.0—3.0μm,形成P+隐埋层,注入工艺衬底温度为400—700℃,注入能量为100—150kev,剂量为1015—1016cm2
(2)贴片:将另一片没有做隐埋层的N型6—10Ωcm已氧化的硅片抛光面和已经做了P+隐埋层的P型硅片隐埋层抛光面对应贴在一起进行氧化,温度为1180—1280℃,使两个硅片粘接成为一体;
(3)研磨、抛光和刻槽:将步骤(2)中做了隐埋层一侧的硅片研磨、抛光到需要的厚度10—20μm,再用氧化、光刻和反应离子刻蚀刻出垂直槽到贴片间氧化层,槽宽为2—5μm;
(4)二氧化硅、多晶硅生长:利用化学气相沉积工艺在硅片的表面和槽内先后生长二氧化硅、多晶硅,温度为550—750℃;
(5)抛光:将硅片表面生长的二氧化硅、多晶硅抛掉,余下单晶层厚度在5—16μm,完成介质隔离P型硅片制作。
6.如权利要求3或4所述的N型介质隔离集成电路硅片的制备方法,其特征在于制备的步骤还包括有在最后的抛光步骤后是集成电路的器件制作。
7.如权利要求5所述的P型介质隔离集成电路硅片的制备方法,其特征在于制备的步骤还包括有在最后的抛光步骤后是集成电路的器件制作。
CNA2008102320367A 2008-10-13 2008-10-13 介质隔离集成电路硅片及其制备方法 Pending CN101465357A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNA2008102320367A CN101465357A (zh) 2008-10-13 2008-10-13 介质隔离集成电路硅片及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA2008102320367A CN101465357A (zh) 2008-10-13 2008-10-13 介质隔离集成电路硅片及其制备方法

Publications (1)

Publication Number Publication Date
CN101465357A true CN101465357A (zh) 2009-06-24

Family

ID=40805825

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2008102320367A Pending CN101465357A (zh) 2008-10-13 2008-10-13 介质隔离集成电路硅片及其制备方法

Country Status (1)

Country Link
CN (1) CN101465357A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107176585A (zh) * 2017-05-24 2017-09-19 广东合微集成电路技术有限公司 一种适合表面贴装工艺的压阻式压力传感器及其制造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107176585A (zh) * 2017-05-24 2017-09-19 广东合微集成电路技术有限公司 一种适合表面贴装工艺的压阻式压力传感器及其制造方法
CN107176585B (zh) * 2017-05-24 2019-06-21 广东合微集成电路技术有限公司 一种适合表面贴装工艺的压阻式压力传感器及其制造方法

Similar Documents

Publication Publication Date Title
CN101409292B (zh) Soi三维cmos集成器件及其制作方法
CN100561688C (zh) 单晶外部基极和发射极异质结构双极晶体管及相关方法
CN100578790C (zh) Bcd半导体器件及其制造方法
CN103430298A (zh) 在处理晶片中具有高电阻率区域的绝缘体上硅结构及制造此类结构的方法
CN103022006B (zh) 一种基于外延技术的三维集成功率半导体及其制作方法
CN102709251B (zh) 具有本征半导体层的晶片
CN101286442B (zh) Soi基板的制造方法
KR20080069448A (ko) 측면결정화 공정을 이용한 고효율 광기전력 변환소자 모듈및 그의 제조방법
CN104103514A (zh) 一种垂直沟道恒流二极管制造方法
CN101465357A (zh) 介质隔离集成电路硅片及其制备方法
CN102386121B (zh) 半导体器件和半导体埋层的制造方法
CN105428301A (zh) 利用微波退火技术低温制备goi的方法
CN111739939A (zh) 一种高频硅锗异质结双极晶体管及其制造方法
CN101409294B (zh) 三维量子阱cmos集成器件及其制作方法
WO1984001053A1 (en) Semiconductor device
CN101692434B (zh) 绝缘体上硅的深槽隔离结构的填充方法
CN101425522A (zh) 介质隔离集成电路外延片及其制备方法
CN107845672A (zh) 具有抗辐照结构的igbt器件及其制备方法
CN104319316B (zh) 高效薄膜晶硅太阳电池及其自主能源芯片集成技术
CN103779416B (zh) 一种低vf的功率mosfet器件及其制造方法
CN114496786A (zh) 一种提高igbt静态与动态雪崩能力的制备方法
CN102738178B (zh) 一种基于自对准工艺的双多晶SOI SiGe HBT集成器件及制备方法
CN102723361B (zh) 一种基于自对准工艺的三多晶SOI SiGe HBT集成器件及制备方法
CN202167494U (zh) 台面工艺可控硅芯片结构
CN201985100U (zh) 硅pnp型高频小功率晶体管

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20090624