CN101445961A - 一种Mg掺杂的ZnO超细纳米线及其合成方法 - Google Patents

一种Mg掺杂的ZnO超细纳米线及其合成方法 Download PDF

Info

Publication number
CN101445961A
CN101445961A CNA2008101633114A CN200810163311A CN101445961A CN 101445961 A CN101445961 A CN 101445961A CN A2008101633114 A CNA2008101633114 A CN A2008101633114A CN 200810163311 A CN200810163311 A CN 200810163311A CN 101445961 A CN101445961 A CN 101445961A
Authority
CN
China
Prior art keywords
zinc
fatty acid
magnesium
nano wire
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008101633114A
Other languages
English (en)
Other versions
CN101445961B (zh
Inventor
金一政
杨叶锋
叶志镇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN2008101633114A priority Critical patent/CN101445961B/zh
Publication of CN101445961A publication Critical patent/CN101445961A/zh
Application granted granted Critical
Publication of CN101445961B publication Critical patent/CN101445961B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明公开的Mg掺杂的ZnO超细纳米线具有六方纤锌矿结构,纳米线的直径为1~10纳米,长度为5~1000纳米。其合成步骤如下:将脂肪酸锌、脂肪酸镁和高沸点有机溶剂混合置于反应烧瓶中,磁力搅拌下加热至100~150℃,抽真空除去反应体系中的水蒸汽和氧气,在惰性保护气氛下加热到200~350℃,再将温度为100~200℃的十八醇快速注入到反应烧瓶中,保温1~100分钟,离心分离,得Mg掺杂的ZnO超细纳米线。本发明制备工艺简单、成本较低、重复性好、易于工业化生产,Mg掺杂的ZnO超细纳米线具有很强的量子限域效应,有望在蓝紫光发光二极管、紫外激光器等诸多领域得到应用。

Description

一种Mg掺杂的ZnO超细纳米线及其合成方法
技术领域
本发明涉及Mg掺杂的ZnO超细纳米线及其合成方法,属于纳米材料技术领域。
背景技术
ZnO是一种II-VI族化合物半导体材料,室温下禁带宽度为3.37eV,激子束缚能为60meV,是制备室温和更高温度下的半导体激光器、紫外探测器、蓝紫光发光二极管等的理想材料。ZnO一维纳米材料由于量子限域效应、表面效应、压电效应等所具有的优于体材料的光学、电学和压电性能等已经成为当前光电信息研究领域的热点。在ZnO纳米线中进行Mg的掺杂,让Mg替代Zn的位置,可以在保持纤锌矿结构的前提下,实现其能带在3.3~4.0eV之间的调节,在制备短波长纳米发光器件和纳米光电子器件等领域具有很好的应用价值和研究意义。
目前合成掺Mg的ZnO纳米线的方法较多,主要分为物理方法和化学方法两大类,前者主要包括脉冲激光沉积、热蒸发法等,后者主要包括金属有机化学气相沉积、溶胶凝胶法、水热法等。这些制备方法的主要不足是设备昂贵或工艺复杂、可控性差、掺杂不均等,并且所获得的Mg掺杂ZnO纳米线的直径一般在几百纳米至几十纳米,较难观察到明显的量子限域效应,大大地限制了ZnO纳米线在纳米光电器件领域的应用。
发明内容
本发明的目的是提供一种成本低廉、可控性好、高结晶质量的Mg掺杂ZnO超细纳米线及其合成方法。
本发明的Mg掺杂ZnO超细纳米线,具有六方纤锌矿结构,纳米线的直径为1~10纳米,长度为10~1000纳米。
Mg掺杂ZnO超细纳米线的合成方法,包括以下步骤:
1)将脂肪酸锌、脂肪酸镁和沸点为200~350℃的有机溶剂混合置于反应烧瓶中磁力搅拌均匀,升温至100~150℃后抽真空除去反应体系中的水蒸汽和氧气,然后在惰性保护气氛下加热到200~350℃,脂肪酸锌和脂肪酸镁的摩尔比1∶1~5∶1;
2)将温度为100~200℃的十八醇注入到反应烧瓶中,保温1~100分钟,冷却至室温;
3)将反应混合物离心分离,得到Mg掺杂的ZnO超细纳米线。
本发明中,所说的脂肪酸锌可以是醋酸锌或硬脂酸锌。脂肪酸镁可以是醋酸镁或硬脂酸镁。
本发明中,所说的沸点为200~350℃的有机溶剂可以是三辛胺、1-十八烯、油胺或十六胺。有机溶剂作为脂肪酸锌、脂肪酸镁溶解和反应进行的介质,其用量没有特殊的要求。
所说的惰性保护气体是纯度为99.99%以上的氩气或氮气。
本发明通过调节反应溶液的加热温度和反应时间可以控制Mg掺杂的ZnO超细纳米线的长度和直径,通过调节脂肪酸锌和脂肪酸镁的摩尔比可以改变ZnO纳米线中Mg的实际掺杂含量,实现ZnO纳米线的室温带隙在3.4~4.0eV之间调节。本发明制备工艺简单、成本较低、重复性好、易于工业化生产。获得的Mg掺杂ZnO超细纳米线的直径为1~10纳米,与室温下ZnO体单晶的激子玻尔半径1.8纳米接近,具有很强的量子限域效应,有望在蓝紫光发光二极管、紫外激光器等诸多领域得到应用。
附图说明
图1是Mg掺杂的ZnO超细纳米线的XRD图。
图2是Mg掺杂的ZnO超细纳米线的TEM照片。
图3是Mg掺杂的ZnO超细纳米线的EDS图。
图4是Mg掺杂的ZnO超细纳米线的紫外可见吸收光谱图。
图5是Mg掺杂的ZnO超细纳米线在300纳米波长激发下的室温荧光光谱图。
具体实施方式
以下为采用本发明方法合成Mg掺杂的ZnO超细纳米线的实例,但本发明并不限于这些实施例。
实施例1
1)称取0.3635g硬脂酸锌、0.107g醋酸镁(摩尔比为1:1)和20g1-十八烯置于100ml反应烧瓶中,在磁力搅拌下升温至120℃,然后对反应烧瓶抽真空20分钟,以除去反应体系中的水蒸汽和氧气。在纯度为99.99%氩气的保护气氛下将反应溶液迅速升温至280℃。
2)把温度为150℃的十八醇迅速注入到反应烧瓶中,并保温10分钟,用水浴冷却反应溶液至室温,将反应混合物离心分离,获得Mg掺杂的ZnO超细纳米线。
将得到的白色产物干燥后,进行XRD测试,测试结果见图1。图1中的峰都是纤锌矿ZnO相的主要峰位,证明得到的产物是纤锌矿结构;产物的TEM电镜照片见图2,从图中可以看出,纳米线的直径为1~2纳米,长度为50~100纳米。对纳米线进行EDS测试,测试结果见图3,从图中可知纳米线的主要成分为Zn、Mg、O三种元素,证明Mg元素确实掺杂进入ZnO纳米线。对纳米线进行原子吸收光谱测试,结果表明其中掺入的Mg的含量约为30%。对产物进行紫外可见吸收测试,测试结果见图4,从图4可知,掺Mg的ZnO纳米线具有明显的激子吸收峰特征,并且峰位明显蓝移到306纳米,这是由于Mg的有效掺入和强量子限域效应共同作用的结果。在室温下对产物用300纳米波长激发进行荧光光谱测试,测试结果见图5,荧光光谱表明其带边峰已经蓝移到330纳米。
实施例2
1)称取0.5816g硬脂酸锌、0.1185g硬脂酸镁(摩尔比为4:1)和20g三辛胺置于100ml反应烧瓶中,在磁力搅拌下升温至140℃,然后对反应烧瓶抽真空20分钟,以除去反应体系中的水蒸汽和氧气。在纯度为99.99%氩气的保护气氛下将反应溶液迅速升温至300℃。
2)把温度为180℃的十八醇迅速注入到反应烧瓶中,并保温15分钟,用水浴冷却反应溶液至室温,将反应混合物离心分离,获得直径为3~6纳米、长度为100~200纳米的Mg掺杂的ZnO超细纳米线。
实施例3
1)称取0.1373g醋酸锌、0.0355g醋酸镁(摩尔比为3:1)和20g油胺置于100ml反应烧瓶中,在磁力搅拌下升温至150℃,然后对反应烧瓶抽真空20分钟,以除去反应体系中的水蒸汽和氧气。在纯度为99.99%氮气的保护气氛下将反应溶液迅速升温至260℃。
2)把温度为200℃的十八醇迅速注入到反应烧瓶中,并保温20分钟,用水浴冷却反应溶液至室温,将反应混合物离心分离,获得直径为5~8纳米、长度为200~400纳米的Mg掺杂的ZnO超细纳米线。

Claims (6)

1.一种Mg掺杂的ZnO超细纳米线,其特征在于:该纳米线具有六方纤锌矿结构,纳米线的直径为1~10纳米,长度为5~1000纳米。
2.根据权利要求1所述的Mg掺杂的ZnO超细纳米线的合成方法,其特征在于包括以下步骤:
1)将脂肪酸锌、脂肪酸镁和沸点为200~350℃的有机溶剂混合置于反应烧瓶中磁力搅拌均匀,升温至100~150℃后抽真空除去反应体系中的水蒸汽和氧气,然后在惰性保护气氛下加热到200~350℃,脂肪酸锌和脂肪酸镁的摩尔比1:1~5:1;
2)将温度为100~200℃的十八醇注入到反应烧瓶中,保温1~100分钟,冷却至室温;
3)将反应混合物离心分离,得到Mg掺杂的ZnO超细纳米线。
3.根据权利要求2所述的Mg掺杂的ZnO超细纳米线的合成方法,其特征在于:所说的脂肪酸锌是醋酸锌、丙酸锌、十一烯酸锌、葡萄糖酸锌、庚酸锌、柠檬酸锌、肉豆蔻酸锌、月桂酸锌、棕榈酸锌或硬脂酸锌。
4.根据权利要求2所述的Mg掺杂的ZnO超细纳米线的合成方法,其特征在于所说的脂肪酸镁是醋酸镁、葡萄糖酸镁、肉豆蔻酸镁、月桂酸镁、棕榈酸镁、柠檬酸镁或硬脂酸镁。
5.根据权利要求2所述的Mg掺杂的ZnO超细纳米线的合成方法,其特征在于所说的沸点为200~350℃的有机溶剂是三辛胺、1-十八烯、二苯醚、油胺或十六胺。
6.根据权利要求2所述的Mg掺杂的ZnO超细纳米线的合成方法,其特征在于所说的惰性保护气体是纯度为99.99%以上的氩气或氮气。
CN2008101633114A 2008-12-15 2008-12-15 一种Mg掺杂的ZnO超细纳米线及其合成方法 Expired - Fee Related CN101445961B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008101633114A CN101445961B (zh) 2008-12-15 2008-12-15 一种Mg掺杂的ZnO超细纳米线及其合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008101633114A CN101445961B (zh) 2008-12-15 2008-12-15 一种Mg掺杂的ZnO超细纳米线及其合成方法

Publications (2)

Publication Number Publication Date
CN101445961A true CN101445961A (zh) 2009-06-03
CN101445961B CN101445961B (zh) 2011-06-15

Family

ID=40741831

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008101633114A Expired - Fee Related CN101445961B (zh) 2008-12-15 2008-12-15 一种Mg掺杂的ZnO超细纳米线及其合成方法

Country Status (1)

Country Link
CN (1) CN101445961B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102115912A (zh) * 2011-01-14 2011-07-06 北京理工大学 一种Mg掺杂的ZnO纳米线阵列的制备方法和装置
CN102228827A (zh) * 2011-04-21 2011-11-02 陕西师范大学 Mg2+掺杂ZnO纳米光催化剂的制备方法
CN103803635A (zh) * 2014-02-27 2014-05-21 盐城工学院 掺杂Li离子ZnO超细纳米棒的制备方法
CN105420808A (zh) * 2015-11-06 2016-03-23 昆山龙腾光电有限公司 In、Ga共掺杂的ZnO纳米晶的合成方法
CN105481263A (zh) * 2015-11-17 2016-04-13 湘潭大学 一种正六棱柱状的镁掺杂氧化锌薄膜的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100593264B1 (ko) * 2003-06-26 2006-06-26 학교법인 포항공과대학교 p-타입 반도체 박막과 n-타입 산화아연(ZnO)계나노막대의 이종접합 구조체, 이의 제법 및 이를 이용한소자
CN100341788C (zh) * 2005-06-13 2007-10-10 中国科学院理化技术研究所 溶胶凝胶制备掺杂的氧化锌双晶纳米带的方法
CN101252988A (zh) * 2005-08-31 2008-08-27 浦项工科大学 含有氧化锌纳米线的近场光催化剂
CN100372776C (zh) * 2005-12-30 2008-03-05 北京科技大学 一种超细氧化锌纳米线及其制备方法
CN1876570A (zh) * 2006-06-13 2006-12-13 贵州省纳米材料工程中心 一种纳米导电氧化锌的制备新工艺

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102115912A (zh) * 2011-01-14 2011-07-06 北京理工大学 一种Mg掺杂的ZnO纳米线阵列的制备方法和装置
CN102115912B (zh) * 2011-01-14 2012-12-05 北京理工大学 一种Mg掺杂的ZnO纳米线阵列的制备方法和装置
CN102228827A (zh) * 2011-04-21 2011-11-02 陕西师范大学 Mg2+掺杂ZnO纳米光催化剂的制备方法
CN103803635A (zh) * 2014-02-27 2014-05-21 盐城工学院 掺杂Li离子ZnO超细纳米棒的制备方法
CN105420808A (zh) * 2015-11-06 2016-03-23 昆山龙腾光电有限公司 In、Ga共掺杂的ZnO纳米晶的合成方法
CN105481263A (zh) * 2015-11-17 2016-04-13 湘潭大学 一种正六棱柱状的镁掺杂氧化锌薄膜的制备方法

Also Published As

Publication number Publication date
CN101445961B (zh) 2011-06-15

Similar Documents

Publication Publication Date Title
Agarwal et al. Morphology-dependent structural and optical properties of ZnO nanostructures
Leng et al. All‐inorganic bismuth‐based perovskite quantum dots with bright blue photoluminescence and excellent stability
Wang et al. Catalytic growth of semiconducting zinc oxide nanowires and their photoluminescence properties
Xiong et al. Shape‐Controlled Synthesis of 3D and 1D Structures of CdS in a Binary Solution with l‐Cysteine's Assistance
Wei et al. Annealing effect on the photoluminescence properties of ZnO nanorod array prepared by a PLD-assistant wet chemical method
Shen et al. Transition metal ion doping perovskite nanocrystals for high luminescence quantum yield
CN101935876A (zh) 一种In掺杂的ZnO单分散纳米颗粒及其合成方法
CN101445961B (zh) 一种Mg掺杂的ZnO超细纳米线及其合成方法
Molaei et al. Synthesis of CdS nanocrystals by a microwave activated method and investigation of the photoluminescence and electroluminescence properties
CN101935875B (zh) 一种Sn掺杂的ZnO超细纳米线及其合成方法
Li et al. Nonmetallic plasmon induced 500-fold enhancement in the upconversion emission of the UCNPs/WO 3− x hybrid
Murugadoss ZnO/CdS nanocomposites: synthesis, structure and morphology
Shen et al. Stability strategies of perovskite quantum dots and their extended applications in extreme environment: A review
Sharma et al. Defect emission photoluminescence peak tuning by encapsulation of Au-NPs on ZnO mesoporous nanosponges
Zheng et al. Synthesis and optical properties of ZnO nanorods on indium tin oxide substrate
Peng et al. Solution-grown millimeter-scale Mn-doped CsPbBr 3/Cs 4 PbBr 6 crystals with enhanced photoluminescence and stability for light-emitting applications
Jung et al. Growth of Eu-doped ZnO nanorods on silicon substrate by low temperature hydrothermal method
Mo et al. Synthetic and effect of annealing on the luminescent properties of ZnO nanowire
Zhong et al. Effect of ammonia/zinc nitrate molar ratio on structural and optical properties of Al and Sb codoped ZnO nanorod ordered array thin films
CN101717631B (zh) 一种纳米氧化锌与发光有机物的复合物及其制备方法
Shakti et al. Structural, optical and electrical properties of ZnO nanorod array prepared by hydrothermal process
Akcan Effect of type and concentration of cobalt precursor on structural, optical and defect properties of ZnCoO nanoparticles
Karak et al. Structural and optical properties of alumina templated undoped and Co-doped zinc oxide nanoparticles
Zhang et al. Thermo-plasmonic assisted structural optimization of micro/nanocrystals based on single-particle spectroscopy
Nyk et al. Yellow emission of GaN nanocrystals embedded in a silica xerogel matrix

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110615

Termination date: 20201215