CN101935876A - 一种In掺杂的ZnO单分散纳米颗粒及其合成方法 - Google Patents

一种In掺杂的ZnO单分散纳米颗粒及其合成方法 Download PDF

Info

Publication number
CN101935876A
CN101935876A CN 201010281651 CN201010281651A CN101935876A CN 101935876 A CN101935876 A CN 101935876A CN 201010281651 CN201010281651 CN 201010281651 CN 201010281651 A CN201010281651 A CN 201010281651A CN 101935876 A CN101935876 A CN 101935876A
Authority
CN
China
Prior art keywords
zinc
indium
nano particle
acid indium
synthetic method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 201010281651
Other languages
English (en)
Inventor
金一政
陈栋栋
叶志镇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN 201010281651 priority Critical patent/CN101935876A/zh
Publication of CN101935876A publication Critical patent/CN101935876A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明公开了一种In掺杂的ZnO单分散纳米颗粒及其合成方法。纳米颗粒具有六方纤锌矿结构,颗粒的直径为1~100纳米。其合成步骤如下:将脂肪酸锌、脂肪酸铟和高沸点有机溶剂混合置于反应烧瓶中,磁力搅拌下加热至50~200℃,抽真空除去反应体系中的水蒸汽和氧气,在惰性保护气氛下加热到200~350℃,再将温度为100~250℃的十八醇快速注入到反应烧瓶中,保温1~1000分钟,离心分离,得铟掺杂的ZnO纳米颗粒。本发明制备工艺简单、成本较低、重复性好、易于工业化生产,得到的纳米晶具有优越的光电性能,有望在柔性显示、透明电极、紫外探测等诸多领域得到应用。

Description

一种In掺杂的ZnO单分散纳米颗粒及其合成方法
技术领域
本发明涉及纳米材料技术领域,尤其涉及一种In掺杂的ZnO单分散纳米颗粒及其合成方法。
背景技术
ZnO是一种II-VI族化合物半导体材料,室温下禁带宽度为3.37eV,激子束缚能为60meV,是制备室温和更高温度下的半导体激光器、紫外探测器、蓝紫光发光二极管等的理想材料。ZnO零维纳米材料由于量子限域效应、表面效应、压电效应等所具有的优于体材料的光学和电学性能等已经成为当前光电信息研究领域的热点。对ZnO纳米颗粒中进行In的掺杂,让In替代Zn的位置,能对其能带进行调节和电学性能的改良,提高纳米晶中的自由电子浓度,在制备场效应晶体管器件和纳米光电子器件等领域具有很好的应用价值和研究意义。
目前合成掺In的ZnO纳米颗粒的方法较多,主要分为物理方法和化学方法两大类,前者主要包括脉冲激光沉积、热蒸发法等,后者主要包括金属有机化学气相沉积、溶胶凝胶法、水热法等。这些制备方法的主要不足是设备昂贵或工艺复杂、分散性差、形貌不规则、掺杂不均匀等,并且所获得的In掺杂ZnO纳米颗粒的直径一般在几百纳米至几十纳米,材料溶解性和光电性能达不到器件应用的要求,大大地限制了其在纳米光电器件领域的应用。
发明内容
本发明的目的是提供一种成本低廉、可控性好、高结晶质量的In掺杂ZnO单分散纳米颗粒及其合成方法。
本发明的In掺杂ZnO单分散纳米颗粒,具有六方纤锌矿结构,纳米颗粒直径为1~100纳米。
In掺杂的ZnO纳米晶的合成方法包括以下步骤:
1)将脂肪酸锌、脂肪酸铟和沸点为200~350℃的有机溶剂混合置于反应器中磁力搅拌均匀,升温至50~200℃后抽真空除去反应体系中的水蒸汽和氧气,然后在惰性保护气氛下加热到200~350℃,脂肪酸锌和脂肪酸铟的摩尔比1∶1~100∶1;
2)将温度为100~250℃的十八醇注入到反应器中,保温1~1000分钟,冷却至室温;
3)将反应混合物离心分离,得到In掺杂的ZnO纳米颗粒。
所述的脂肪酸锌是醋酸锌、丙酸锌、十一烯酸锌、葡萄糖酸锌、庚酸锌、柠檬酸锌、肉豆蔻酸锌、月桂酸锌、棕榈酸锌、油酸锌、亚油酸锌或硬脂酸锌。所述的脂肪酸铟是醋酸铟、己酸铟、辛酸铟、葡萄糖酸铟、肉豆蔻酸铟、月桂酸铟、棕榈酸铟、柠檬酸铟或硬脂酸铟。所述的沸点为200~350℃的有机溶剂是正辛醚、二苯醚、十四烷、十六烷、十八烷、二十烷或十八烯。所述的惰性保护气体是纯度为99%以上的氩气或氮气。
本发明通过调节反应溶液的加热温度和反应时间可以控制In掺杂的ZnO纳米颗粒的尺寸,通过调节脂肪酸锌和脂肪酸铟的摩尔比可以改变ZnO纳米颗粒中In的实际掺杂含量,进而调节能带结构和载流子浓度。本发明制备工艺简单、成本较低、重复性好、易于工业化生产。获得的In掺杂ZnO纳米颗粒的直径为1~100纳米,与室温下ZnO体单晶的激子玻尔半径接近,具有较强的量子限域效应,同时铟的引入引起电学性能的改变,有望在柔性显示、透明电极、紫外探测等诸多领域得到应用。
附图说明
图1是In掺杂的ZnO纳米颗粒的XRD图;
图2是In掺杂的ZnO纳米颗粒的TEM照片;
图3是In掺杂的ZnO纳米颗粒的EDS图;
图4是In掺杂的ZnO纳米颗粒的紫外可见吸收光谱图。
具体实施方式
以下为采用本发明方法合成In掺杂的ZnO纳米颗粒的实例,但本发明并不限于这些实施例。
实施例1
1)称取1mmol硬脂酸锌、0.05mmol醋酸铟(摩尔比为20∶1)和20g 1-十八烯置于100ml反应烧瓶中,在磁力搅拌下升温至150℃,然后对反应烧瓶抽真空30分钟,以除去反应体系中的水蒸汽和氧气。在纯度为99%氩气的保护气氛下将反应溶液迅速升温至250℃。
2)把温度为200℃的十八醇迅速注入到反应烧瓶中,并保温100分钟,用水浴冷却反应溶液至室温,将反应混合物离心分离,获得In掺杂的ZnO纳米颗粒。
将得到的白色产物干燥后,进行XRD测试,测试结果见图1。图1中的峰都是纤锌矿ZnO相的主要峰位,证明得到的产物是纤锌矿结构;产物的TEM电镜照片见图2,从图中可以看出,纳米颗粒的直径为3~6纳米。对纳米颗粒进行EDS测试,测试结果见图3,从图中可知纳米颗粒的主要成分为Zn、In、O三种元素,证明In元素确实掺杂进入ZnO颗粒,其掺入量约为4%。对产物进行紫外可见吸收测试,测试结果见图4,从图4可知,掺In的ZnO纳米颗粒峰位有明显蓝移,到达340纳米,这是由于In的有效掺入和强量子限域效应共同作用的结果。
实施例2
1)称取1mmol肉豆蔻酸锌、0.01mmol硬脂酸铟(摩尔比为100∶1)和20g十八烷置于100ml反应烧瓶中,在磁力搅拌下升温至125℃,然后对反应烧瓶抽真空10分钟,以除去反应体系中的水蒸汽和氧气。在纯度为99%氩气的保护气氛下将反应溶液迅速升温至300℃。
2)把温度为180℃的十八醇迅速注入到反应烧瓶中,并保温15分钟,用水浴冷却反应溶液至室温,将反应混合物离心分离,获得直径为5~7纳米的In掺杂的ZnO单分散纳米颗粒。
实施例3
1)称取1mmol醋酸锌、0.2mmol醋酸铟(摩尔比为5∶1)和20g正辛醚置于100ml反应烧瓶中,在磁力搅拌下升温至100℃,然后对反应烧瓶抽真空60分钟,以除去反应体系中的水蒸汽和氧气。在纯度为99%氮气的保护气氛下将反应溶液迅速升温至260℃。
2)把温度为230℃的十八醇迅速注入到反应烧瓶中,并保温200分钟,用水浴冷却反应溶液至室温,将反应混合物离心分离,获得直径为30~50纳米的In掺杂的ZnO单分散纳米颗粒。
实施例4
1)称取1mmol月桂酸锌、0.1mmol己酸铟(摩尔比为10∶1)和20g二苯醚置于100ml反应烧瓶中,在磁力搅拌下升温至110℃,然后对反应烧瓶抽真空15分钟,以除去反应体系中的水蒸汽和氧气。在纯度为99%氩气的保护气氛下将反应溶液迅速升温至220℃。
2)把温度为190℃的十八醇迅速注入到反应烧瓶中,并保温70分钟,用水浴冷却反应溶液至室温,将反应混合物离心分离,获得直径为8~16纳米的In掺杂的ZnO单分散纳米颗粒。
实施例5
1)称取1mmol油酸锌、0.15mmol辛酸铟(摩尔比为100∶15)和20g二十烷置于100ml反应烧瓶中,在磁力搅拌下升温至130℃,然后对反应烧瓶抽真空20分钟,以除去反应体系中的水蒸汽和氧气。在纯度为99%氩气的保护气氛下将反应溶液迅速升温至270℃。
2)把温度为230℃的十八醇迅速注入到反应烧瓶中,并保温120分钟,用水浴冷却反应溶液至室温,将反应混合物离心分离,获得直径为12~18纳米的In掺杂的ZnO单分散纳米颗粒。

Claims (6)

1.一种In掺杂的ZnO单分散纳米颗粒,其特征在于:该纳米颗粒具有六方纤锌矿结构,颗粒的直径为1~100纳米。
2.一种如权利要求1所述的In掺杂的ZnO纳米晶的合成方法,其特征在于包括以下步骤:
1)将脂肪酸锌、脂肪酸铟和沸点为200~350℃的有机溶剂混合置于反应器中磁力搅拌均匀,升温至50~200℃后抽真空除去反应体系中的水蒸汽和氧气,然后在惰性保护气氛下加热到200~350℃,脂肪酸锌和脂肪酸铟的摩尔比1∶1~100∶1;
2)将温度为100~250℃的十八醇注入到反应器中,保温1~1000分钟,冷却至室温;
3)将反应混合物离心分离,得到In掺杂的ZnO纳米颗粒。
3.根据权利要求2所述的一种In掺杂的ZnO纳米颗粒的合成方法,其特征在于:所述的脂肪酸锌是醋酸锌、丙酸锌、十一烯酸锌、葡萄糖酸锌、庚酸锌、柠檬酸锌、肉豆蔻酸锌、月桂酸锌、棕榈酸锌、油酸锌、亚油酸锌或硬脂酸锌。
4.根据权利要求2所述的一种In掺杂的ZnO纳米颗粒的合成方法,其特征在于所述的脂肪酸铟是醋酸铟、己酸铟、辛酸铟、葡萄糖酸铟、肉豆蔻酸铟、月桂酸铟、棕榈酸铟、柠檬酸铟或硬脂酸铟。
5.根据权利要求2所述的一种In掺杂的ZnO纳米颗粒的合成方法,其特征在于所述的沸点为200~350℃的有机溶剂是正新醚、二苯醚、十四烷、十六烷、十八烷、二十烷或十八烯。
6.根据权利要求2所述的一种In掺杂的ZnO纳米颗粒的合成方法,其特征在于所述的惰性保护气体是纯度为99%以上的氩气或氮气。
CN 201010281651 2010-09-14 2010-09-14 一种In掺杂的ZnO单分散纳米颗粒及其合成方法 Pending CN101935876A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010281651 CN101935876A (zh) 2010-09-14 2010-09-14 一种In掺杂的ZnO单分散纳米颗粒及其合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010281651 CN101935876A (zh) 2010-09-14 2010-09-14 一种In掺杂的ZnO单分散纳米颗粒及其合成方法

Publications (1)

Publication Number Publication Date
CN101935876A true CN101935876A (zh) 2011-01-05

Family

ID=43389434

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010281651 Pending CN101935876A (zh) 2010-09-14 2010-09-14 一种In掺杂的ZnO单分散纳米颗粒及其合成方法

Country Status (1)

Country Link
CN (1) CN101935876A (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102162128A (zh) * 2011-02-24 2011-08-24 西北工业大学 锡掺杂ZnO纳米晶的制备方法
CN103559938A (zh) * 2013-09-22 2014-02-05 江苏瑞德新能源科技有限公司 一种掺杂型太阳能电池正银浆料
CN103787404A (zh) * 2013-12-31 2014-05-14 浙江大学 一种尺寸可控的单分散氧化铟锡纳米晶的制备方法、产品及应用
CN103803635A (zh) * 2014-02-27 2014-05-21 盐城工学院 掺杂Li离子ZnO超细纳米棒的制备方法
CN105420808A (zh) * 2015-11-06 2016-03-23 昆山龙腾光电有限公司 In、Ga共掺杂的ZnO纳米晶的合成方法
US9806125B2 (en) 2015-07-28 2017-10-31 Carrier Corporation Compositionally graded photodetectors
US9865766B2 (en) 2015-07-28 2018-01-09 Carrier Corporation Ultraviolet photodetectors and methods of making ultraviolet photodetectors
US9928727B2 (en) 2015-07-28 2018-03-27 Carrier Corporation Flame detectors
US10126165B2 (en) 2015-07-28 2018-11-13 Carrier Corporation Radiation sensors
JP2021075440A (ja) * 2019-11-13 2021-05-20 スタンレー電気株式会社 亜鉛含有ナノ粒子、及び、その合成方法
CN115924958A (zh) * 2022-11-15 2023-04-07 华北水利水电大学 一种润滑油脂用可分散氧化锌或硫化锌纳米微粒及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《中国优秀硕士学位论文全文数据库 工程科技I辑》 20100815 王庆玲 单分散In掺杂ZnO纳米晶的合成与表征 , 第8期 2 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102162128A (zh) * 2011-02-24 2011-08-24 西北工业大学 锡掺杂ZnO纳米晶的制备方法
CN103559938A (zh) * 2013-09-22 2014-02-05 江苏瑞德新能源科技有限公司 一种掺杂型太阳能电池正银浆料
CN103559938B (zh) * 2013-09-22 2016-01-20 江苏瑞德新能源科技有限公司 一种掺杂型太阳能电池正银浆料
CN103787404A (zh) * 2013-12-31 2014-05-14 浙江大学 一种尺寸可控的单分散氧化铟锡纳米晶的制备方法、产品及应用
CN103787404B (zh) * 2013-12-31 2015-05-20 浙江大学 一种尺寸可控的单分散氧化铟锡纳米晶的制备方法、产品及应用
CN103803635A (zh) * 2014-02-27 2014-05-21 盐城工学院 掺杂Li离子ZnO超细纳米棒的制备方法
US9865766B2 (en) 2015-07-28 2018-01-09 Carrier Corporation Ultraviolet photodetectors and methods of making ultraviolet photodetectors
US9806125B2 (en) 2015-07-28 2017-10-31 Carrier Corporation Compositionally graded photodetectors
US9928727B2 (en) 2015-07-28 2018-03-27 Carrier Corporation Flame detectors
US10126165B2 (en) 2015-07-28 2018-11-13 Carrier Corporation Radiation sensors
US10718662B2 (en) 2015-07-28 2020-07-21 Carrier Corporation Radiation sensors
US11029202B2 (en) 2015-07-28 2021-06-08 Carrier Corporation Radiation sensors
CN105420808A (zh) * 2015-11-06 2016-03-23 昆山龙腾光电有限公司 In、Ga共掺杂的ZnO纳米晶的合成方法
JP2021075440A (ja) * 2019-11-13 2021-05-20 スタンレー電気株式会社 亜鉛含有ナノ粒子、及び、その合成方法
JP7475839B2 (ja) 2019-11-13 2024-04-30 スタンレー電気株式会社 亜鉛含有ナノ粒子の合成方法
CN115924958A (zh) * 2022-11-15 2023-04-07 华北水利水电大学 一种润滑油脂用可分散氧化锌或硫化锌纳米微粒及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN101935876A (zh) 一种In掺杂的ZnO单分散纳米颗粒及其合成方法
Goswami et al. Structural and optical properties of unannealed and annealed ZnO nanoparticles prepared by a chemical precipitation technique
Dutta et al. Effect of sol concentration on the properties of ZnO thin films prepared by sol–gel technique
Siddiqui et al. One-step, template-free hydrothermal synthesis of CuO tetrapods
Raoufi Synthesis and microstructural properties of ZnO nanoparticles prepared by precipitation method
Young et al. Hydrothermal synthesis and improved CH₃OH-sensing performance of ZnO nanorods with adsorbed Au NPs
Murugadoss ZnO/CdS nanocomposites: synthesis, structure and morphology
Mahdi et al. Growth and characterization of ZnxCd1− xS nanoflowers by microwave-assisted chemical bath deposition
CN106905960A (zh) 一种调控全无机钙钛矿量子点发光波长的方法
CN101935875B (zh) 一种Sn掺杂的ZnO超细纳米线及其合成方法
Kumar et al. Fabrication and characterization of n-type aluminum-boron co-doped ZnO on p-type silicon (n-AZB/p-Si) heterojunction diodes
Basri et al. Tailoring electronics structure, electrical and magnetic properties of synthesized transition metal (Ni)-doped ZnO thin film
Manoharan et al. Physical properties of spray pyrolysized nano flower ZnO thin films
Meitei et al. Microstructural and optical properties of Ag assisted β-Ga2O3 nanowires on silicon substrate
Qiao et al. Tunable formation of ZnSe to ZnO due to a controlled phase transition driven by hydrazine and sodium hydroxide
Duan et al. Influence of Cd doping on structural and optical properties of (Cd, Al)-codoped ZnO powders synthesized via sol–gel method
Lee et al. Enhanced photodetector performance in gold nanoparticle decorated ZnO microrods
CN101445961B (zh) 一种Mg掺杂的ZnO超细纳米线及其合成方法
Shkir et al. Influence of incorporation of samarium (Sm3+) on the structural and optoelectronic properties of In2S3 thin film for photodetector applications
Santhaveesuk et al. Ethanol sensing characteristics of Sn-doped ZnO tetrapods sensor
Chen et al. Structure and photoluminescence of ZnS/CdS1-xSex nanocomposite prepared by a two-step process
Shi et al. Photoluminescence property of Cr-doped β-Ga 2 O 3 nanorods synthesized by a hydrothermal method
Ayaz et al. Tunable ultraviolet sensing performance of Al-modified ZnO nanoparticles
Karthik Kannan et al. Facile Synthesis of Indium Doped Tin Oxide (ITO) Nanoparticles and Development of ap-Si/n-ITO Photodiode for Optoelectronic Applications
Wang et al. Growth of ZnO nanoparticles from nanowhisker precursor with a simple solvothermal route

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20110105