CN101443915B - 基于量子点的光电子器件及其制造方法 - Google Patents

基于量子点的光电子器件及其制造方法 Download PDF

Info

Publication number
CN101443915B
CN101443915B CN200580050188XA CN200580050188A CN101443915B CN 101443915 B CN101443915 B CN 101443915B CN 200580050188X A CN200580050188X A CN 200580050188XA CN 200580050188 A CN200580050188 A CN 200580050188A CN 101443915 B CN101443915 B CN 101443915B
Authority
CN
China
Prior art keywords
optical activity
quantum dot
silicon substrate
silicon
activity district
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200580050188XA
Other languages
English (en)
Other versions
CN101443915A (zh
Inventor
谢亚宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of California
Original Assignee
University of California
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of California filed Critical University of California
Publication of CN101443915A publication Critical patent/CN101443915A/zh
Application granted granted Critical
Publication of CN101443915B publication Critical patent/CN101443915B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18341Intra-cavity contacts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/341Structures having reduced dimensionality, e.g. quantum wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0083Processes for devices with an active region comprising only II-VI compounds
    • H01L33/0087Processes for devices with an active region comprising only II-VI compounds with a substrate not being a II-VI compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0207Substrates having a special shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/021Silicon based substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • H01S5/18369Structure of the reflectors, e.g. hybrid mirrors based on dielectric materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3223IV compounds
    • H01S5/3224Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/341Structures having reduced dimensionality, e.g. quantum wires
    • H01S5/3412Structures having reduced dimensionality, e.g. quantum wires quantum box or quantum dash
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/778Nanostructure within specified host or matrix material, e.g. nanocomposite films
    • Y10S977/784Electrically conducting, semi-conducting, or semi-insulating host material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/949Radiation emitter using nanostructure
    • Y10S977/95Electromagnetic energy
    • Y10S977/951Laser

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种在硅衬底上形成光学活性区的方法包括以下步骤:在硅衬底上外延生长硅缓冲层;以及外延生长其中置有多个量子点阵列的SiGe覆层,其中,量子点由与硅缓冲层晶格失配的化合物半导体材料形成。可以将光学活性区结合到诸如发光二极管、激光二极管、和光探测器的器件中。

Description

基于量子点的光电子器件及其制造方法
技术领域
本发明的领域大体上涉及光电子器件及其制造方法。具体地,本发明的领域涉及诸如利用量子点形成的激光二极管、发光二极管、和光探测器的光电子器件。
背景技术
对于诸如电信行业的很多行业来说,光电子器件变得日益重要。典型的基于光电的器件包括激光二极管(LD)、发光二极管(LED)、和光探测器(PD)。这些器件是用由半导体材料(具有与其上放置有半导体材料的衬底不同的晶格常数)形成的光学活性区制成的。硅(Si)是一种已知的用于集成电路技术的衬底材料,并且相对于其在制造集成电路中的应用,硅已经发展成一项成熟的技术基础。然而,硅不能发射光,因此不能够用在用于发射或检测光辐射的光电器件的“活性”部分中。
过去,作出过很多努力来将光学活性的化合物半导体材料(例如,它们发出光辐射)与硅进行集成,但这些努力都没有成功。将化合物半导体材料集成到硅中的主要障碍在于,由于化合物半导体材料在硅衬底上的生长而带来的晶体缺陷。这些缺陷是由于相邻的化合物半导体材料和下面的硅衬底之间的较大晶格失配(即,不同的晶格常数)而产生的结果。例如,在InAs和Si之间存在约11%的晶格失配,以及在GaAs和Si之间存在约4%的晶格失配。InGaAs是两种化合物半导体材料(InAs和GaAs)的合金,这种合金发出波长范围从0.8μm到1.5μm以上的光——这种波长适合于满足当前电信需要的大多数光纤网络(例如,互联网和其它WAN)。
已知当Si<001>衬底上外延生长时,InGaAs具有约10埃的临界层厚度。因此,能够在Si衬底上外延生长的InGaAs的厚度小于10埃。比较起来,由InGaAs形成的典型量子阱激光器的厚度约为2000埃。因此,在InGaAs中发生位错是不可避免的。由外延薄膜弛豫(relaxation)引起的位错严重限制了包括(例如)半导体激光器的光电子器件的性能和使用寿命。
因此,需要一种在硅衬底上使用化合物半导体材料的器件和方法。优选地,可以通过在硅衬底上外延形成光电子器件的光学活性区来得到这种器件。优选地,可以利用少量或有限量的光学活性材料来形成这种器件。
发明内容
本发明侧重于一种在硅衬底上具有光学活性区的光电子器件的形成方法。在本发明的一个方面中,使用从化合物半导体材料外延生长的量子点阵列来在硅衬底上形成光学活性区。例如,化合物半导体材料可以具有与下面的Si衬底的晶格失配。
在本发明的另一个方面中,当光学活性材料以量子点的形式出现时,在提供优质性能的同时,使光学活性材料(例如,InGaAs)的数量或量最小化。例如,可以没有位错地形成InGaAs量子点,例如,光增益。这与基于薄膜的方法相反,在基于薄膜的方法中,需要更多的材料来达到光学活性的程度,因此,化合物半导体材料和硅之间的晶格失配导致厚度足以用于光电子应用的层中的较高位错密度。
在本发明的一个方面中,一种形成光学活性器件的方法包括以下步骤:提供具有第一表面和第二表面的硅衬底;在所述硅衬底的第一表面上外延生长SiGe蚀刻终止层;在所述SiGe蚀刻终止层上外延生长硅缓冲层;外延生长其中置有多个量子点阵列的SiGe覆层,所述量子点由与所述硅缓冲层晶格失配的极性化合物半导体材料形成;在其中置有多个量子点阵列的所述覆层中限定光学活性区;邻近所述光学活性区形成氧化隔离区;在所述光学活性区上外延生长硅顶部接触层;在所述顶部接触层上方形成第一四分之一波长叠层;形成第一金属接触,所述第一金属接触被配置为与所述光学活性区电接触;蚀刻所述硅衬底的第二表面,随后蚀刻所述SiGe蚀刻终止层,以使所述硅缓冲层的底面暴露出;在所述硅衬底的被蚀刻部中于所述光学活性区下方形成第二四分之一波长叠层;以及在所述硅衬底的第二表面上形成第二金属接触。可以将光学活性区结合到诸如发光二极管、激光二极管、及光探测器的器件中。
在本发明的另一个方面中,一种具有光学活性区的器件包括硅衬底和在硅衬底上外延生长的SiGe覆层,该SiGe覆层包括通过至少一个SiGe间隔层隔开的多个量子点阵列,所述量子点由选自由InGaAs、InGaP、InGaSb、CdTe、CdSe、和PbTe组成的组中的极性化合物半导体材料没有位错地形成。
本发明的目的在于提供一种制造具有由化合物半导体材料形成的光学活性区的硅基光电子器件的方法。基于这样异质结构(例如,晶格错配)的器件将具有商业持久性和良好的性能特性。根据本文所述的方法生产的示例性产品包括Si基光学收发器芯片(opticaltransceiver chip)、激光二极管、发光二极管、和光探测器。
参考以下附图和优选实施例的描述将显而易见其它特征和优点。
附图说明
图1A示出了边缘发射激光器的示意图。
图1B示出了表面发射激光器的示意图。
图2示出了制造硅基表面发射激光器的方法的工艺流程图。
具体实施方式
图1A示出了边缘发射激光器10的示意图。边缘发射激光器10包括p型硅衬底12。光学活性区14形成在p型硅衬底12的上表面上。光学活性区14包括硅(Si)或锗化硅(SiGe)覆层16,在该覆层中置有一层或多层由化合物半导体材料形成的量子点20的阵列18。量子点20是一群尺寸小于电子或“空穴”的量子力学波长的原子。在本发明的一个优选方面中,由具有直接能带隙的半导体材料形成量子点20。用于量子点20的示例性半导体材料包括InGaAs、InGaP、InGaSb、PbTe、CdTe、和CdSe。在一个方面中,由与下面的硅缓冲层晶格失配(例如,至少5%的晶格失配)的化合物半导体材料形成量子点20。如图1所示,光学活性区14的边缘可以包括蚀刻面15。
在本发明的一个方面中,通过在优先成核点阵列上生长具有直接能带隙的半导体材料的岛或点来形成各个量子点20的阵列18。例如,可以通过外延生长诸如SiGe的应变膜(strained film)及随后使其经由位错使其松弛引进一连串垂直定向位错线(未示出)来形成这些成核点。例如,第5,888,885号美国专利公开了一种制造三维量子点阵列的方法。该′885专利的全部内容结合于此作为参考。可将诸如由SiGe形成的层的间隔层22插入相邻量子点阵列18之间。
仍参考图1A,在边缘发射激光器10的情况下,在覆层16上置有n型硅层24。n型硅层24还可以重掺杂有n型杂质以利于欧姆接触。图1A中所公开的光学活性区14的优点包括:当材料呈量子点20的形式时,非常少量的材料(例如,InGaAs)就足以满足所需的光电子功能。光学活性区14中处于应变的少量材料减少或减轻了潜在的晶体缺陷。光学活性区14的第二个优点在于,位错网络允许形成更有秩序和均匀的量子点20。例如,利用来自浸没的位错网络的应变场的纳米尺寸图样化形成了尺寸更加均匀的量子点20的分布。这在通过共振腔选择单个波长的LD的情况下尤其有利。量子点20的更密尺寸分布使更多的量子点20参与到发射激光的动作中——从而减少了所需的光学活性化合物半导体的量。
图1B示出了表面发射激光器30的实施例。例如,表面发射激光器30可以是如图1B所示的硅基垂直腔表面发射激光器(VCSEL)。表面发射激光器30包括p型硅衬底32,该p型硅衬底具有经蚀刻形成了容纳四分之一波长叠层54(QWS)的腔34的底面。四分之一波长叠层54是通过以四分之一波长厚度沉积高-低折射率材料(例如,SiO2和TiO2)的交替层而形成的电介质涂层。四分之一波长叠层54能够有效反射由量子点(在下面描述)在发射激光操作期间生成的光辐射。p型硅衬底32的下面包括金属接触38。
仍参考图1B,在硅衬底32上形成掺杂的p型硅缓冲层40并将其插入四分之一波长叠层36之间。在p型硅缓冲层40的上表面上形成光学活性区42。光学活性区42包括硅或锗化硅(SiGe)覆层44,在该覆层中置有由化合物半导体形成的量子点48的一个或多个阵列46。在本发明的一个方面中,由与下面的硅缓冲层晶格失配的化合物半导体材料形成量子点20。可选地,可以通过图样化来形成量子点20,从而不需要晶格失配。例如,可以由InGaAs形成量子点48。可以将诸如由SiGe形成的层的间隔层50插入相邻的多个量子点阵列46之间。形成掺杂的n型硅层以得到顶部接触层52。例如,通过溅射或蒸发来使第二四分之一波长叠层54沉积在层52上。
邻近光学活性区42形成氧化隔离区56(SiO2)。表面发射激光器30包括通过(例如)蒸发在图样化后的光刻胶上的金属并随后通过湿溶剂提离处理(wet-solvent lift-off process)进行去除所形成的顶部金属接触层58。可以在四分之一波长叠层36上放置光学透明层60。
可以通过调整四分之一波长叠层36、54的各个反射率来控制从表面发射激光器30发射辐射的方向。
图2示出了用于制造图1B所示类型的表面发射激光器30的工艺流程图。步骤100涉及p型硅衬底32的清洁和/或清洗。例如,这可以包括湿化学清洁重掺杂的p型硅衬底32的表面。在步骤105中,外延生长p型SiGe蚀刻终止层(未示出)、硅缓冲层40、和光学活性区42。利用具有约3000埃厚度的重掺杂的p型硅缓冲层40来在p型SiGe蚀刻终止层上生长硅缓冲层40。相对于活性区42,形成具有多个InGaAs量子点阵列46(例如,三个)的未掺杂的SiGe(具有5%Ge)覆层44。如图1B所示,覆层44可以包括整个厚度为1000埃的SiGe间隔层50。可以利用具有约200埃厚度的未掺杂的硅保护层来得到完整的活性区42。
在步骤110中,利用光刻法形成或另外限定光学活性区42的激光区域。在步骤115中,在硅缓冲层40中形成氧化隔离区56。例如,可以利用诸如电化学蚀刻硅缓冲层40的传统技术来形成多孔硅。多孔硅的形成优选地终止在硅缓冲层40内。然后,硅衬底32和其上所形成的结构经过热氧化来形成氧化隔离区56。所得到的氧化隔离区可以具有约100埃的厚度。
在步骤120中,通过非选择性(non-selective)外延生长重掺杂的n型硅来形成厚度小于1000埃的顶部接触层52。在步骤125中,例如,通过溅射或蒸发沉积第一四分之一波长叠层36。然后,利用传统的光刻技术限定第一四分之一波长36的顶部反射镜,然后使第一四分之一波长叠层36经过蚀刻处理,蚀刻处理形成了QWS 36并终止在在n型硅的顶部接触层52中。
然后,在步骤130中,例如,通过蒸发或溅射在图样化后的光刻胶上的金属并随后通过湿溶剂提离处理进行部分去除来形成顶部金属接触层58。接下来,在步骤135中,在硅衬底32的底面上形成氧化硅层。氧化硅层形成用于随后蚀刻硅衬底32的氧化掩膜。
在步骤140中,例如,利用例如蜡状物(wax)或沉积的二氧化硅来保护硅衬底32的顶面(和相关组成部分)。然后,在步骤145中,在例如KOH溶液中蚀刻硅衬底32的下侧。优选地,在距离步骤105中所生长的SiGe蚀刻终止层几微米的地方终止蚀刻。
在步骤150中,蚀刻SiGe蚀刻终止层以露出硅层的顶部。例如,可以采用对Si和Ge有选择交替更换溶液来去除蚀刻终止层。在步骤155中,通过溅射或蒸发在硅衬底32的下侧形成第二四分之一波长叠层54。通过光刻,然后通过活性离子蚀刻(RIE)来限定第二四分之一波长叠层54。在步骤160中,去除步骤135中所形成的底部硅氧化掩膜并形成底部金属接触层38。可以通过首先溅射或蒸发在图样化的光刻胶上的金属并随后通过湿溶剂提离处理进行去除来形成底部金属接触层38。
尽管在表面发射激光器30的情况下示出了图1B和图2所述的处理,但是应了解,相同或类似的结构可以用于光探测器(PD)。在本发明的一个方面中,可以通过控制量子点的尺寸(20、48)来调整光发射器和/或PD的光谱响应。
本文所述的方法和器件可用于在多种器件中制造光学活性区。例如,可以将光学活性区置入与硅基驱动电路元件和光探测器相结合的LD和LED中,以形成用于高带宽光纤光通信的集成收发器。
尽管示出并描述了本发明的实施例,但是在不背离本发明的范围的情况下,可以进行各种修改。因此,除所附权利要求及其等同物之外,本发明不受限制。

Claims (8)

1.一种形成光学活性器件的方法,包括:
提供具有第一表面和第二表面的硅衬底;
在所述硅衬底的第一表面上外延生长SiGe蚀刻终止层;
在所述SiGe蚀刻终止层上外延生长硅缓冲层;
外延生长其中置有多个量子点阵列的SiGe覆层,所述量子点由与所述硅缓冲层晶格失配的极性化合物半导体材料形成;
在其中置有多个量子点阵列的所述覆层中限定光学活性区;
邻近所述光学活性区形成氧化隔离区;
在所述光学活性区上外延生长硅顶部接触层;
在所述顶部接触层上方形成第一四分之一波长叠层;
形成第一金属接触,所述第一金属接触被配置为与所述光学活性区电接触;
蚀刻所述硅衬底的第二表面,随后蚀刻所述SiGe蚀刻终止层,以使所述硅缓冲层的底面暴露出;
在所述硅衬底的被蚀刻部中于所述光学活性区下方形成第二四分之一波长叠层;以及
在所述硅衬底的第二表面上形成第二金属接触。
2.根据权利要求1所述的方法,其中,所述化合物半导体材料选自由InGaAs、InGaP、InGaSb、CdTe、CdSe、和PbTe构成的组。
3.根据权利要求1所述的方法,其中,至少一个间隔层隔开相邻的量子点阵列。
4.一种具有光学活性区的器件,包括:
硅衬底;
在所述硅衬底上外延生长的SiGe覆层,所述SiGe覆层包括通过至少一个SiGe间隔层隔开的多个量子点阵列,所述量子点由选自由InGaAs、InGaP、InGaSb、CdTe、CdSe、和PbTe组成的组中的极性化合物半导体材料没有位错地形成。
5.根据权利要求4所述的器件,其中,所述光学活性区形成在激光二极管中。
6.根据权利要求4所述的器件,其中,所述光学活性区形成在发光二极管中。
7.根据权利要求4所述的器件,其中,所述光学活性区形成在光探测器中。
8.根据权利要求4所述的器件,其中,所述光学活性区形成在垂直腔表面发射激光器中。
CN200580050188XA 2005-06-27 2005-06-28 基于量子点的光电子器件及其制造方法 Active CN101443915B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/169,196 2005-06-27
US11/169,196 US7732237B2 (en) 2005-06-27 2005-06-27 Quantum dot based optoelectronic device and method of making same
PCT/US2005/022661 WO2007001295A2 (en) 2005-06-27 2005-06-28 Quantum dot based optoelectronic device and method of making same

Publications (2)

Publication Number Publication Date
CN101443915A CN101443915A (zh) 2009-05-27
CN101443915B true CN101443915B (zh) 2012-11-28

Family

ID=37566274

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200580050188XA Active CN101443915B (zh) 2005-06-27 2005-06-28 基于量子点的光电子器件及其制造方法

Country Status (6)

Country Link
US (2) US7732237B2 (zh)
EP (1) EP1897144A4 (zh)
JP (1) JP5006876B2 (zh)
KR (1) KR101172107B1 (zh)
CN (1) CN101443915B (zh)
WO (1) WO2007001295A2 (zh)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100668328B1 (ko) * 2005-02-15 2007-01-12 삼성전자주식회사 양자점 수직공진형 표면방출 레이저 및 그 제조방법
US7732237B2 (en) 2005-06-27 2010-06-08 The Regents Of The University Of California Quantum dot based optoelectronic device and method of making same
US9951438B2 (en) 2006-03-07 2018-04-24 Samsung Electronics Co., Ltd. Compositions, optical component, system including an optical component, devices, and other products
WO2007143197A2 (en) 2006-06-02 2007-12-13 Qd Vision, Inc. Light-emitting devices and displays with improved performance
JP5773646B2 (ja) 2007-06-25 2015-09-02 キユーデイー・ビジヨン・インコーポレーテツド ナノ材料を被着させることを含む組成物および方法
WO2009014707A2 (en) * 2007-07-23 2009-01-29 Qd Vision, Inc. Quantum dot light enhancement substrate and lighting device including same
US8135052B2 (en) * 2007-12-04 2012-03-13 Research Foundation Of The City University Of New York Flexible microcavity structure made of organic materials using spin-coating technique and method of making
JP5205071B2 (ja) * 2008-02-01 2013-06-05 富士通株式会社 発光素子及び集積素子
KR101995369B1 (ko) 2008-04-03 2019-07-02 삼성 리서치 아메리카 인코포레이티드 양자점들을 포함하는 발광 소자
US9525148B2 (en) 2008-04-03 2016-12-20 Qd Vision, Inc. Device including quantum dots
US9207385B2 (en) 2008-05-06 2015-12-08 Qd Vision, Inc. Lighting systems and devices including same
EP2297762B1 (en) 2008-05-06 2017-03-15 Samsung Electronics Co., Ltd. Solid state lighting devices including quantum confined semiconductor nanoparticles
WO2009137053A1 (en) 2008-05-06 2009-11-12 Qd Vision, Inc. Optical components, systems including an optical component, and devices
US8222657B2 (en) * 2009-02-23 2012-07-17 The Penn State Research Foundation Light emitting apparatus
US7842595B2 (en) * 2009-03-04 2010-11-30 Alcatel-Lucent Usa Inc. Fabricating electronic-photonic devices having an active layer with spherical quantum dots
JP2013502047A (ja) 2009-08-14 2013-01-17 キユーデイー・ビジヨン・インコーポレーテツド 照明装置、照明装置用光学部品および方法
AU2011213198B2 (en) 2010-02-05 2014-04-24 Zoetis Llc Pyrrolo [ 2,3-d] pyrimidine urea compounds as JAK inhibitors
EP2495772A1 (en) * 2011-03-02 2012-09-05 Azzurro Semiconductors AG Semiconductor light emitter device
US9929325B2 (en) 2012-06-05 2018-03-27 Samsung Electronics Co., Ltd. Lighting device including quantum dots
CN102801108B (zh) * 2012-08-03 2015-06-24 西安立芯光电科技有限公司 多量子阱半导体激光器及其制备方法
US9360623B2 (en) * 2013-12-20 2016-06-07 The Regents Of The University Of California Bonding of heterogeneous material grown on silicon to a silicon photonic circuit
FR3028050B1 (fr) * 2014-10-29 2016-12-30 Commissariat Energie Atomique Substrat pre-structure pour la realisation de composants photoniques, circuit photonique et procede de fabrication associes
US10852492B1 (en) 2014-10-29 2020-12-01 Acacia Communications, Inc. Techniques to combine two integrated photonic substrates
CN104701431B (zh) * 2014-11-27 2017-03-29 厦门市三安光电科技有限公司 一种发光二极管的外延结构及其制作方法
US10109983B2 (en) 2016-04-28 2018-10-23 Hewlett Packard Enterprise Development Lp Devices with quantum dots
US10192976B2 (en) 2016-04-28 2019-01-29 The Trustees Of Princeton University Semiconductor quantum dot device and method for forming a scalable linear array of quantum dots
US10566765B2 (en) 2016-10-27 2020-02-18 Hewlett Packard Enterprise Development Lp Multi-wavelength semiconductor lasers
US10680407B2 (en) 2017-04-10 2020-06-09 Hewlett Packard Enterprise Development Lp Multi-wavelength semiconductor comb lasers
KR102150546B1 (ko) * 2017-05-31 2020-09-01 세종대학교산학협력단 식각 저지층을 이용한 후면 조사 이미지 센서의 제조 공정
US10396521B2 (en) 2017-09-29 2019-08-27 Hewlett Packard Enterprise Development Lp Laser
WO2019169318A1 (en) * 2018-03-02 2019-09-06 Cisco Technology, Inc. Quantum dot lasers integrated on silicon submount with mechanical features and through-silicon vias
CN110165555A (zh) * 2019-04-28 2019-08-23 西安理工大学 一种基于GexSi1-x可变晶格常数基体的红光半导体激光器
CN112420901B (zh) * 2020-11-06 2022-02-01 深圳市华星光电半导体显示技术有限公司 微型发光二极管及显示面板
CN113764969B (zh) * 2021-09-08 2023-10-31 深圳市中科光芯半导体科技有限公司 一种硅基双面垂直腔面发射激光器及其制备方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5251163A (en) * 1992-01-13 1993-10-05 Rouhani Sayd Z Keypointer for single-hand computer keyboard
US5351163A (en) * 1992-12-30 1994-09-27 Westinghouse Electric Corporation High Q monolithic MIM capacitor
US5413679A (en) * 1993-06-30 1995-05-09 The United States Of America As Represented By The Secretary Of The Navy Method of producing a silicon membrane using a silicon alloy etch stop layer
US5310451A (en) * 1993-08-19 1994-05-10 International Business Machines Corporation Method of forming an ultra-uniform silicon-on-insulator layer
US5395481A (en) * 1993-10-18 1995-03-07 Regents Of The University Of California Method for forming silicon on a glass substrate
JP3465349B2 (ja) * 1994-06-20 2003-11-10 松下電器産業株式会社 半導体多層基板および半導体多層膜の製造方法
US5557627A (en) * 1995-05-19 1996-09-17 Sandia Corporation Visible-wavelength semiconductor lasers and arrays
US5793913A (en) * 1996-07-10 1998-08-11 Northern Telecom Limited Method for the hybrid integration of discrete elements on a semiconductor substrate
FR2753577B1 (fr) * 1996-09-13 1999-01-08 Alsthom Cge Alcatel Procede de fabrication d'un composant optoelectronique a semiconducteur et composant et matrice de composants fabriques selon ce procede
JPH10256158A (ja) * 1997-03-13 1998-09-25 Hitachi Ltd 半導体装置及びその製造方法
US5888885A (en) * 1997-05-14 1999-03-30 Lucent Technologies Inc. Method for fabricating three-dimensional quantum dot arrays and resulting products
CA2327421A1 (en) * 1998-04-10 1999-10-21 Jeffrey T. Borenstein Silicon-germanium etch stop layer system
FR2789496B1 (fr) * 1999-02-10 2002-06-07 Commissariat Energie Atomique Dispositif emetteur et guide de lumiere, avec une region active de silicium contenant des centres radiatifs, et procede de fabrication d'un tel dispositif
FR2812763B1 (fr) * 2000-08-04 2002-11-01 St Microelectronics Sa Formation de boites quantiques
US6697413B2 (en) * 2001-10-31 2004-02-24 Applied Optoelectronics, Inc. Tunable vertical-cavity surface-emitting laser with tuning junction
US6965626B2 (en) * 2002-09-03 2005-11-15 Finisar Corporation Single mode VCSEL
US7074630B2 (en) * 2003-05-20 2006-07-11 United Microelectronics Corp. Method of forming light emitter layer
TWI237908B (en) * 2003-08-29 2005-08-11 Ind Tech Res Inst A method for manufacturing a strained Si having few threading dislocations
JP2007534146A (ja) * 2003-09-05 2007-11-22 ザ・ユニバーシティ・オブ・ノース・カロライナ・アット・シャーロット ナノスケールでエピタキシャル横方向成長させた量子ドット光電子デバイスおよびその製造方法
WO2006085361A1 (ja) * 2005-02-09 2006-08-17 Fujitsu Limited 発光デバイス及び半導体装置
US7732237B2 (en) 2005-06-27 2010-06-08 The Regents Of The University Of California Quantum dot based optoelectronic device and method of making same
JP5205729B2 (ja) * 2006-09-28 2013-06-05 富士通株式会社 半導体レーザ装置及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP特开平8-8488A 1996.01.12

Also Published As

Publication number Publication date
WO2007001295A2 (en) 2007-01-04
KR20080037624A (ko) 2008-04-30
US7935956B2 (en) 2011-05-03
JP5006876B2 (ja) 2012-08-22
EP1897144A4 (en) 2009-12-02
CN101443915A (zh) 2009-05-27
KR101172107B1 (ko) 2012-08-10
JP2008547218A (ja) 2008-12-25
WO2007001295A3 (en) 2009-04-30
US7732237B2 (en) 2010-06-08
US20080054249A1 (en) 2008-03-06
US20060289855A1 (en) 2006-12-28
EP1897144A2 (en) 2008-03-12

Similar Documents

Publication Publication Date Title
CN101443915B (zh) 基于量子点的光电子器件及其制造方法
TWI829761B (zh) 具有積體雷射的光學結構
JP6452651B2 (ja) 半導体光デバイスの製造方法および半導体光デバイス
US7294862B2 (en) Photonic crystal light emitting device
JP3805522B2 (ja) 長波長放出垂直空洞面放出レーザおよびその製造方法
JP5243256B2 (ja) モノリシックに集積化された半導体材料およびデバイス
CN110088921B (zh) 半导体发光元件及其制造方法
US7935554B2 (en) Semiconductor light emitting device and method of manufacturing the same
US8389305B2 (en) Techniques of forming ohmic contacts on GaN light emitting diodes
US7680162B2 (en) Long wavelength vertical cavity surface emitting laser device and method of fabricating the same
JPH05218499A (ja) 量子閉じ込め半導体発光素子
JP2007103613A (ja) 垂直共振器型発光ダイオード及びその製造方法
EP1719003B1 (en) Buried heterostructure device fabricated by single step mocvd
CN109411571B (zh) 发光二极管
KR102419420B1 (ko) 반도체 발광소자 및 그 제조방법
JP2017054859A (ja) 半導体発光デバイス
CN111463659A (zh) 量子点半导体光放大器及其制备方法
KR100564307B1 (ko) 수직공진 표면발광 레이저 다이오드 및 그 제조방법
EP1026799B1 (en) Semiconductor laser and fabricating method therefor
CN117977378A (zh) 一种单纵模硅基iii-v族亚微米线激光器及其制备方法
KR20060109112A (ko) 리지부를 구비하는 반도체 레이저 다이오드 및 그 제조방법
JP2000286446A (ja) 窒化物系半導体素子、窒化物系半導体素子の製造方法、GaN基板及びGaN基板の製造方法
JP2006108187A (ja) 発光ダイオード及びその製造方法
JP2005064255A (ja) 発光ダイオード及びその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant