CN101421406B - 用于产生改变的种子油组成的核酸构建体和方法 - Google Patents

用于产生改变的种子油组成的核酸构建体和方法 Download PDF

Info

Publication number
CN101421406B
CN101421406B CN200780013373.0A CN200780013373A CN101421406B CN 101421406 B CN101421406 B CN 101421406B CN 200780013373 A CN200780013373 A CN 200780013373A CN 101421406 B CN101421406 B CN 101421406B
Authority
CN
China
Prior art keywords
fatb
operability
seq
introne
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200780013373.0A
Other languages
English (en)
Other versions
CN101421406A (zh
Inventor
T·维尔克
J·J·菲拉蒂
N·A·布林格
T·乌尔马索夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Monsanto Technology LLC
Original Assignee
Monsanto Technology LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/376,328 external-priority patent/US7566813B2/en
Application filed by Monsanto Technology LLC filed Critical Monsanto Technology LLC
Publication of CN101421406A publication Critical patent/CN101421406A/zh
Application granted granted Critical
Publication of CN101421406B publication Critical patent/CN101421406B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8247Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified lipid metabolism, e.g. seed oil composition

Abstract

本发明涉及植物遗传学领域,并且提供了与脂肪酸合成途径中多种基因的协同操作相关的重组核酸分子、构建体和其它试剂。具体地,本发明的试剂与脂肪酸合成途径中某些基因的同时提高的表达和同一途径中某些其它基因的抑制的表达相关。也提供了掺入所述试剂的植物,特别是掺入所述构建体的植物,其中所述植物具有改变的种子油组成。

Description

用于产生改变的种子油组成的核酸构建体和方法
对相关申请的交叉参考
本申请在35U.S.C.§119(e)下要求2006年2月13日提交的、名称为“修饰的基因沉默”的美国临时申请号60/772,614、2006年3月10日提交的、名称为“大豆种子和油组成以及制备其的方法”的美国临时申请号60/781,519,和2006年3月16日提交的、名称为“用于生产改变的种子油组成的核酸构建体和方法”的美国申请号11/376,328的权益。
序列表的并入
在此通过引用并入序列表的纸件和磁盘上的序列表的计算机可读形式,磁盘含有的文件名称为“Omni2 AS FILED.txt”,大小为60,690字节(在MS-DOS中测量),并且在2003年9月25日记录,并且提交于美国申请号10/669,888。在此通过引用而并入序列表的纸件和磁盘上的序列表的计算机可读形式,磁盘含有的文件名称为“OmniChild.txt”,大小为61,434字节(在MS-DOS中测量),并且在2006年3月15日记录。
发明领域
本发明涉及与脂肪酸合成途径中对多个基因进行协同操作相关的重组核酸分子、构建体以及其它试剂。具体地,本发明的试剂与增强脂肪酸合成途径中某些基因的表达同时又抑制相同途径中某些其它基因的表达相关。本发明也涉及掺入这些试剂的植物,特别是掺入这些构建体的植物,这样的植物具有改变的种子油组成。
背景
植物油用途广泛。从生物合成或天然植物来源获得新的植物油组成以及获得这些油组成的改良方法是需要的。根据预期的油用途,需要各种不同的脂肪酸组成。植物,特别是其种子中合成大量油的物种,是食用油和工业油的重要来源。种子油几乎完全是由甘油三酯组成,其中的脂肪酸被酯化到甘油的三个羟基上。
大豆油通常含有约16-20%的饱和脂肪酸:13-16%的棕榈酸酯和3-4%的硬脂酸酯。一般参见Gunstone et al.,The Lipid Handbook,Chapman& Hall,London(1994)。为了建立用于特定市场的益处,大豆油已经经过不同的培育方法进行了改良。但是还没有一种大豆油能够广泛有益于主要的大豆油使用者,如色拉油、烹调油和煎炸油的消费者以及工业市场,如生物柴油和生物润滑油市场。以往的大豆油或者是太昂贵或者是缺乏某种关键的食物品质如氧化稳定性、良好的煎炸食物香味或不饱和脂肪酸含量,或者是缺乏某种重要的生物柴油品质如适宜的氮氧化物排放量或对寒冷的耐受性或者是低温时的流动性。
高等植物通过共同的代谢途径来合成脂肪酸-脂肪酸合成酶(FAS)途径,该途径位于质体中。在植物细胞的FAS中,β-酮脂酰-ACP合酶是重要的限速酶,其具有几种类型。β-酮脂酰-ACP合酶I催化链延长至棕榈酰-ACP(C16:0),而β-酮脂酰-ACP合酶II催化链延长至硬脂酰-ACP(C18:0)。β-酮脂酰-ACP合酶IV是β-酮脂酰-ACP合酶II的变异体,也能够催化链延长至18:0-ACP。在大豆中,FAS的主要产物是16:0-ACP和18:0-ACP。18:0-ACP去饱和形成18:1-ACP是由位于质体内的可溶性Δ-9去饱和酶(也称作“硬脂酰-ACP去饱和酶”)催化。见Voelker et al.,52 Annu.Rev.Plant Physiol.Plant Mol.Biol.335-61(2001)。
质体FAS和Δ-9去饱和酶的产物,即16:0-ACP,18:0-ACP和18:1-ACP,在特异的硫酯酶(FAT)作用下水解。植物硫酯酶基于序列的同源性和底物优先性可以分为两个基因家族。第一家族,即FATA,包括长链的酰基-ACP硫酯酶,其主要对18:1-ACP有活性。第二家族,即FATB的酶,通常利用16:0-ACP(棕榈酰-ACP),18:0-ACP(硬脂酰-ACP)和18:1-ACP(油酰基-ACP)。这样的硫酯酶在植物的从头脂肪酸生物合成过程中对决定链长度起重要作用,因此这些酶对于脂肪酰组成的各种修饰的提供,特别是在种子贮备油中存在的各种脂肪酰基的相对比例方面是有用的。
FATA和FATB反应的产物,即游离脂肪酸,离开质体,转化成其各自的酰基-CoA酯。酰基-CoA是脂质生物合成途径(Kennedy途径)的底物,该途径位于内质网(ER)中。该途径负责膜脂质的形成以及构成种子油的甘油三酯的生物合成。在ER中还有其它膜结合的去饱和酶,该酶能够进一步将18:1去饱和为多不饱和脂肪酸。Δ-12去饱和酶(FAD2)催化双键插入18:1中形成亚油酸(18:2)。Δ-15去饱和酶(FAD3)催化双键插入18:2,形成亚麻酸(18:3)。
许多复杂的生化途径已进行了遗传学操作,通常是通过抑制单个基因或使单个基因超量表达。对植物遗传操作潜能的进一步开发将要求对某一途径中的多个基因进行协同操作。许多方法已经被采用以在一个植物中组合转基因-包括有性杂交、再转化、共转化以及使用连接的转基因。含有连接的部分基因序列的嵌合转基因能够用来协同抑制多个植物内源基因。病毒多蛋白上模拟的构建体能够用于将多个编码基因同时导入植物细胞中。综述参见Halpin et al.,Plant Mol.Biol.47:295-310(2001)。
因此,理想的植物表型可能需要一或多种基因的表达以及同时另一种或另一些基因的表达的减少。因而,仍然需要利用单一的转基因构建体,同时使植物中的一种或多种基因超量表达,而使另一种或另一些基因的表达抑制或下调。
发明概述
本发明提供重组核酸分子,所述分子导入细胞或生物时能够抑制、至少是部分减少、减少、显著减少或有效消除至少一种或多种内源FAD2、FAD3或FATB RNA的表达,同时共表达、同时表达或协同产生一种或多种RNA或蛋白,所述RNA或蛋白由编码β-酮脂酰-ACP合酶I、β-酮脂酰-ACP合酶IV、Δ-9去饱和酶或CP4EPSPS的基因转录。本发明也提供了用相同核酸分子转化的植物细胞和植物,以及来自转化的植物的种子、油和其它产品。
本发明也提供重组的核酸分子,所述分子包含第一组DNA序列和第二组DNA序列,第一组DNA序列在宿主细胞中表达时能够抑制至少一种、优选两种基因的内源表达,所述基因选自FAD2、FAD3和FATB基因;第二组DNA序列在宿主细胞中表达时能够增加至少一种基因的内源表达,所述基因选自β-酮脂酰-ACP合酶I基因,β-酮脂酰-ACP合酶IV基因、Δ-9去饱和酶基因和CP4EPSPS。
本发明进一步提供重组核酸分子,所述分子包含第一组DNA序列和第二组DNA序列,第一组DNA序列在宿主细胞中表达时能够形成dsRNA构建体并抑制至少一种,优选两种基因的内源表达,所述基因选自FAD2、FAD3和FATB基因,其中第一组DNA序列包括第一非编码序列,其表达与FAD2基因的非编码区具有至少90%同一性的第一RNA序列、第一反义序列,其表达能够与第一RNA序列形成双链RNA分子的第一反义RNA序列、第二非编码序列,其表达与FATB基因的非编码区具有至少90%同一性的第二RNA序列、和第二反义序列,其表达能够与第二RNA序列形成双链RNA分子的第二反义RNA序列;第二组DNA序列在宿主细胞中表达时能够增加至少一种基因的内源表达,所述基因选自β-酮脂酰-ACP合酶I基因、β-酮脂酰-ACP合酶IV基因、Δ-9去饱和酶和CP4EPSPS。
本发明提供用这些重组核酸分子转化植物的方法。该方法包括产生转化植物的方法,该转化植物的种子中油酸含量提高、饱和脂肪酸含量降低、并且多不饱和脂肪酸含量降低,此方法包括:(A)用重组核酸分子转化植物细胞,所述核酸分子包含第一组DNA序列和第二组DNA序列,第一组DNA序列在宿主细胞中表达时能够抑制至少一种、优选两种基因的内源表达,所述基因选自FAD2、FAD3和FATB基因;第二组DNA序列在宿主细胞中表达时能够增加至少一种基因的内源表达,所述基因选自β-酮脂酰-ACP合酶I基因,β-酮脂酰-ACP合酶IV基因、Δ-9去饱和酶基因和CP4EPSPS;以及(B)使该转化的植物生长,其中相对于有相似的遗传背景但缺乏重组核酸分子的植物种子,该转化的植物产生的种子中油酸含量提高、饱和脂肪酸含量降低、并且多不饱和脂肪酸含量降低。
本发明进一步提供用重组核酸分子转化植物细胞的方法。该方法包括改变植物细胞的油组成的方法,其包括:(A)用重组核酸分子转化植物细胞,所述核酸分子包含第一组DNA序列和第二组DNA序列,第一组DNA序列在宿主细胞中表达时能够抑制至少一种、优选两种基因的内源表达,所述基因选自FAD2、FAD3和FATB基因;第二组DNA序列在宿主细胞中表达时能够增加至少一种基因的内源表达,所述基因选自β-酮脂酰-ACP合酶I基因,β-酮脂酰-ACP合酶IV基因、Δ-9去饱和酶基因和CP4EPSPS;和(B)使所述植物细胞在使第一组DNA序列和第二组DNA序列的转录起始的条件下生长,其中相对于有相似遗传背景但缺乏重组核酸分子的植物细胞,油组成改变。
本发明还提供了转化的植物,该植物含有重组核酸分子,所述核酸分子包含第一组DNA序列和第二组DNA序列,第一组DNA序列在宿主细胞中表达时能够抑制至少一种、优选两种基因的内源表达,所述基因选自FAD2、FAD3和FATB基因;第二组DNA序列在宿主细胞中表达时能够增加至少一种基因的内源表达,所述基因选自β-酮脂酰-ACP合酶I基因,β-酮脂酰-ACP合酶IV基因、Δ-9去饱和酶基因和CP4EPSPS。本发明进一步提供具有种子的转化的大豆植物,其中种子的油组成包含55-80重量%的油酸、10-40重量%的亚油酸,6重量%或更少的亚麻酸和2-8重量%的饱和脂肪酸,以及来源于所述植物的饲料、植物部分和种子。在另一实施方案中,本发明提供具有种子的转化的大豆植物,其中种子的油组成包含约65-80%的油酸、约3-8%的饱和脂肪酸,以及约12-32%的多不饱和脂肪酸。也包括来源于所述植物的饲料、植物部分和种子。在另一实施方案中,本发明提供具有种子的转化的大豆植物,其中种子的油组成包含约65-80%的油酸、约2-3.5%的饱和脂肪酸,以及约16.5-33%的多不饱和脂肪酸。也包括来源于所述植物的饲料、植物部分和种子。
本发明还提供大豆种子,种子的油组成包含55-80重量%的油酸、10-40重量%的亚油酸,6重量%或更少的亚麻酸和2-8重量%的饱和脂肪酸。还提供了一种大豆种子,其油组成包含65-80重量%的油酸、10-30重量%的亚油酸,6重量%或更少的亚麻酸和2-8重量%的饱和脂肪酸。在另一实施方案中,本发明提供大豆种子,种子的油组成包含约65-80重量%的油酸、约3-8%的饱和脂肪酸,以及约12-32%的多不饱和脂肪酸。在另一实施方案中,本发明提供大豆种子,种子的油组成包含约65-80%的油酸、约2-3.5%的饱和脂肪酸,以及约16.5-33%的多不饱和脂肪酸。
本发明还提供了包括大豆食品,其包含的油组成包含了69-73重量%的油酸、21-24重量%的亚油酸,0.5-3重量%的亚麻酸和2-3重量%的饱和脂肪酸。
本发明提供的粗大豆油的油组成包含55-80重量%的油酸、10-40重量%的亚油酸,6重量%或更少的亚麻酸和2-8重量%的饱和脂肪酸。本发明提供的另一种粗大豆油的油组成包含65-80重量%的油酸、10-30重量%的亚油酸,6重量%或更少的亚麻酸和2-8重量%的饱和脂肪酸。在另一实施方案中,本发明提供的粗大豆油的油组成包含约65-80重量%的油酸、约3-8%的饱和脂肪酸,以及约12-32%的多不饱和脂肪酸。在另一实施方案中,本发明提供的粗大豆油的油组成包含约65-80%的油酸、约2-3.5%的饱和脂肪酸,以及约16.5-33%的多不饱和脂肪酸。
本发明也提供了大豆种子,其油组成包含约42重量%-约85重量%的油酸和约8重量%-约1.5重量%的饱和脂肪酸。在另一实施方案中,本发明的大豆种子的油组成包含约42重量%-约85重量%的油酸、约8重量%-约1.5重量%的饱和脂肪酸、少于35重量%的亚油酸,其中油酸和亚油酸的组合量是总油组成的约65重量%-约90重量%;并且该种子在宿主细胞中具有重组核酸分子,其DNA序列具有长度为约50-约400个连续核苷酸的FAD2-1内含子片段、FATB3’UTR和FATB5’UTR、异源β-酮脂酰-ACP合酶IV和异源Δ-9去饱和酶。
本发明的大豆种子可以的油组成包含约50重量%-约80重量%的油酸、约8重量%-约1.5重量%的饱和脂肪酸、约2重量%-约45重量%的亚油酸、约4重量%-约14重量%的亚麻酸,其中油酸和亚油酸的组合量是总油组成的约65重量%-约90重量%;并且该种子包含重组核酸分子,其包含DNA序列,所述DNA序列包含长度为约50-约400个连续核苷酸的FAD2-1内含子片段、FATB CTP编码区,和FATB5’UTR的42个连续核苷酸。在另一实施方案中,大豆种子可以包含重组核酸分子,其包含DNA序列,所述DNA序列抑制FAD2和FATB的内源表达,其中所述种子的油组成包含46重量%-75重量%的油酸、1.5重量%-8.5重量%的饱和脂肪酸、2.5重量%-38重量%的亚油酸,和4.5重量%-17.5重量%的亚麻酸。
本发明也包括相对于通过表达具有由完整FAD2内含子或完整FAD2UTR组成的重组FAD2序列的dsRNAi构建体而获得的FAD2基因抑制量,减少FAD2基因抑制量的方法,该方法是通过:i)在植物细胞中表达重组FAD2序列,其中所述重组FAD2序列来源于植物细胞中的内源FAD2基因,并且所述重组FAD2序列由FAD2内含子片段或FAD2UTR片段组成;和
ii)用所述重组FAD2序列抑制内源FAD2基因,其中FAD2基因抑制量少于通过表达具有由全长FAD2内含子或全长FAD2UTR组成的重组FAD2序列的dsRNAi构建体而获得的基因表达量。
本发明也提供了改变植物细胞的油组成的方法,该方法是通过:用来源于内源FAD2基因的部分的重组FAD2序列转化植物细胞。所述重组FAD2序列由FAD2内含子片段或FAD2 UTR片段组成;并且使植物细胞在重组FAD2序列的转录开始的条件下生长,从而相对于具有相似遗传背景但缺乏重组FAD2序列的植物细胞,油组成改变。在另一实施方案中,提供了提高植物种子中的油酸含量并且降低植物种子中的饱和脂肪酸含量的方法,该方法是通过:i)缩短第一重组FAD2序列的长度,直到用第一重组FAD2序列转化的植物的FAD2基因抑制量相对于包含相似遗传背景和第二重组FAD2序列的植物细胞中的FAD2基因抑制量至少部分减少,其中所述第二重组FAD2序列相对于第一重组FAD2序列由更多内源FAD2序列组成;ii)表达重组FATB序列,该序列能使植物细胞中的FATB基因表达相对于具有相似遗传背景但不具有重组FATB序列的植物细胞中的FATB抑制,至少部分减少;iii)使具有包含第一重组FAD2序列和重组FATB序列的重组核酸分子的植物生长;和iv)栽培产生种子的植物,所述种子相对于来自具有相似遗传背景但缺乏第一重组FAD2序列和重组FATB序列的植物的种子,饱和脂肪酸含量降低。
在另一实施方案中,本发明包括生产转化的植物的方法,该植物具有饱和脂肪酸含量降低的种子,该方法是通过:用包含抑制FAD2和FATB的内源表达的重组DNA序列的重组核酸分子转化植物,其中所述重组DNA序列具有重组FAD2和重组FATB的核酸序列,其中FAD2序列由少于FAD2内含子的完整序列的序列组成;并且使转化的植物生长,其中所述转化的植物产生的种子相对于具有相似遗传背景但缺乏所述重组DNA序列的植物的种子,饱和脂肪酸含量降低。
在另一实施方案中,本发明涉及调节来自温带油籽作物种子的油的脂肪酸组成的方法,该方法是通过:分离长度为至少40个核苷酸,并且能够抑制脂肪酸生物合成途径中的内源基因表达的遗传元件;制备该遗传元件的一个以上缩短的片段;将所述一个以上缩短的片段的每一个导入温带油籽作物的植物细胞,以产生转基因植物;并且选择转包含确定长度的缩短的片段和实现种子油脂肪酸组成的理想改变的序列的转基因植物。
本发明也包括大豆种子,其油组成具有显著降低的饱和脂肪酸含量和中度提高的油酸含量,所述种子具有抑制植物细胞中FAD2的内源表达的DNA序列,其中该DNA序列具有由FAD2内含子片段组成的重组FAD2序列。本发明的另一实施方案是包含FAD2-1A内含子的序列的核酸分子,其中所述FAD2-1A内含子片段是约60-约320个连续核苷酸。在替代实施方案中,本发明也包括具有第一重组DNA序列和第二重组DNA序列的大豆种子,所述第一重组DNA序列抑制内源大豆FAD2-1的表达,其包含大豆FAD2-1内含子,所述第二重组DNA序列表达水平增加的、选自KASI、-9去饱和酶、KASIV及其组合的基因。
本发明也包括大豆种子的大豆植物细胞,所述种子的种子油脂肪酸组成包含总脂肪酸的约42重量%-约85重量%的油酸含量和总脂肪酸的8重量%以下的饱和脂肪酸含量。本发明也包括大豆种子的大豆植物细胞,所述种子的种子油脂肪酸组成包含总脂肪酸的约42重量%-约85重量%的油酸含量和总脂肪酸的约3重量%以下的亚麻酸含量。
本发明也包括具有FAD2-1A内含子的序列的核酸分子,其中FAD2-1A内含子是约60-约320个连续核苷酸。也包括重组DNA构建体,其包含长度为约20-约420个连续核苷酸的大豆FAD2-1A内含子片段和长度为约20-约420个连续核苷酸的大豆FAD2-1内含子片段,以及长度为约40-约450个连续核苷酸的大豆FATB基因片段。另一实施方案包括重组核酸分子,其具有第一DNA序列和第二重组DNA序列,所述第一DNA序列抑制大豆FAD2-1和FATB的内源表达,并且其中第一重组DNA序列包括长度为约20-约420个连续核苷酸的FAD2-1内含子片段、大豆FATB 3’UTR和大豆FATB 5’UTR或CTP编码区,所述第二重组DNA序列增加选自β-酮脂酰-ACP合酶IV和-9去饱和酶的至少一种基因的表达。
本发明也包括非掺混的大豆油,其脂肪酸组成包含总脂肪酸的约42重量%-约85重量%的油酸含量和总脂肪酸的约1.5重量%-约8重量%的饱和脂肪酸含量;非掺混的大豆油,其脂肪酸组成包含总脂肪酸的约42重量%-约85重量%的油酸含量和总脂肪酸的约8重量%或更低的饱和脂肪酸含量;非掺混的大豆油,其脂肪酸组成包含总脂肪酸的约42重量%-约85重量%的油酸含量和总脂肪酸的3重量%以下的亚麻酸含量;以及非掺混的大豆油,其脂肪酸组成包含总脂肪酸的约42重量%-约85重量%的油酸含量、总脂肪酸的约8重量%或更低的饱和脂肪酸含量,和总脂肪酸的约1.5重量%或更低的亚麻酸含量。
本发明也包括来源于大豆种子的大豆粗粉,所述大豆种子的脂肪酸组成包含总脂肪酸的约42重量%-约85重量%的油酸含量和总脂肪酸的8重量%以下的饱和脂肪酸含量。也包括来源于大豆种子的大豆粗粉,所述大豆种子的脂肪酸组成包含总脂肪酸的约42重量%-约85重量%的油酸含量和总脂肪酸的约3重量%以下的亚麻酸含量。
本发明也包括相对于通过表达包含由完整FAD2内含子或完整FAD2 UTR组成的异源FAD2序列的dsRNAi构建体而获得的FAD2基因抑制量,减少FAD2基因抑制量的方法,该方法是通过:i)在植物细胞中表达异源FAD2序列,其中所述异源FAD2序列来源于植物细胞中的内源FAD2基因,并且由FAD2内含子片段或FAD2UTR片段组成;和ii)用所述异源FAD2序列抑制内源FAD2基因,其中FAD2基因抑制量少于通过表达由全长FAD2内含子或全长FAD2 UTR组成的异源FAD2序列而获得的基因表达量。
本发明也包括改变植物细胞的油组成的方法,该方法是通过用来源于内源FAD2基因的部分的异源FAD2序列转化植物细胞,其中所述异源FAD2序列由FAD2内含子片段或FAD2UTR片段组成;并且使植物细胞在异源FAD2序列的转录开始的条件下生长,从而相对于具有相似遗传背景但缺乏异源FAD2序列的植物细胞,油组成改变。
本发明也包括提高植物种子中的油酸含量并且降低植物种子中的饱和脂肪酸含量的方法,该方法是通过:i)缩短第一异源FAD2序列的长度,直到用第一异源FAD2序列转化的植物的FAD2基因抑制量相对于包含相似遗传背景和第二异源FAD2序列的植物细胞中的FAD2基因抑制量至少部分减少,其中所述第二异源FAD2序列相对于第一异源FAD2序列由更多内源FAD2序列组成;ii)表达异源FATB序列,该序列能使植物细胞中的FATB基因表达相对于具有相似遗传背景但不具有异源FATB序列的植物细胞中的FATB抑制,至少部分减少;iii)使包含具有第一异源FAD2序列和异源FATB序列的基因组的植物生长;和iv)栽培产生种子的植物,所述种子相对于来自具有相似遗传背景但缺乏第一异源FAD2序列和异源FATB序列的植物的种子,饱和脂肪酸含量降低。
本发明也包括调节来自温带油籽作物种子的油的脂肪酸组成的方法,该方法包括:分离长度为至少40个核苷酸,并且能够抑制脂肪酸生物合成途径中的内源基因表达的遗传元件的片段;将所述遗传元件导入温带油籽作物的植物细胞;产生转基因植物;并且选择包含遗传元件的转基因植物种子,所述遗传元件调节来自种子的油的脂肪酸组成。
在另一实施方案中,本发明包括大豆种子的细胞,所述种子的种子油脂肪酸组成包含总脂肪酸的约42重量%-约85重量%的油酸含量和总脂肪酸的8重量%以下的饱和脂肪酸含量。
本发明也包括异源核酸分子,其包含长度为约20-约420个连续核苷酸的大豆FAD2-1A内含子片段和长度为约20-约420个连续核苷酸的大豆FAD2-1内含子片段,以及长度为约40-约450个连续核苷酸的大豆FATB基因片段。在另一实施方案中,本发明涉及异源核酸分子,其包含长度为约20-约420个连续核苷酸的FAD2-1内含子片段、长度为约40-约450个连续核苷酸的大豆FATB基因片段和增加选自β-酮脂酰-ACP合酶IV和-9去饱和酶的至少一种基因的表达的核酸序列。
本发明也涉及降低大豆种子的亚麻酸含量的方法,该方法是通过i)将包含来自FAD3基因家族的至少两个成员的核酸序列的异源核酸分子导入大豆细胞中;ii)表达能够至少部分降低植物细胞中的内源FAD3基因表达的、来自FAD3基因的核酸序列;iii)使植物细胞生长,所述植物细胞包含具有来自FAD3基因家族的至少两个成员的核酸序列的基因组;和iv)培养植物细胞,所述细胞相对于具有相似遗传背景但缺乏FAD3基因家族的所述至少两个成员的植物细胞,具有降低的亚麻酸含量。本发明也包括重组DNA构建体,其具有来自FAD3基因家族的至少两个成员的DNA片段。
本发明也包括非掺混的大豆油,其脂肪酸组成包含总脂肪酸的约42重量%-约85重量%的油酸含量、总脂肪酸的约8%或更低的饱和脂肪酸含量,和总脂肪酸的约1.5重量%或更低的亚麻酸含量。
附图简述
图1-4分别描述了列举的核酸分子构型;
图5(a)-(d)和6(a)-(c)分别描述了第一组DNA序列的说明性构型。
图7-15分别描述了本发明的核酸分子。
图21描述了构建体pMON68537。
图22描述了构建体pMON68539。
发明详述
核酸序列的描述
SEQ ID NO:1是FAD2-1A内含子1的核酸序列。
SEQ ID NO:2是FAD2-1B内含子1的核酸序列。
SEQ ID NO:3是FAD2-1B启动子的核酸序列。
SEQ ID NO:4是FAD2-1A基因组克隆的核酸序列。
SEQ ID NOs:5和6分别是FAD2-1A3’UTR和5’UTR的核酸序列。
SEQ ID NOs:7-13分别是FAD3-1A内含子1,2,3A,4,5,3B和3C的核酸序列。
SEQ ID NO:14是FAD3-1C内含子4的核酸序列。
SEQ ID NO:15是部分FAD3-1A基因组克隆的核酸序列。
SEQ ID NOs:16和17分别是FAD3-1A3′UTR和5′UTR的核酸序列。
SEQ ID NO:18是部分FAD3-1B基因组克隆的核酸序列。
SEQ ID NOs:19-25分别是FAD3-1B内含子1,2,3A,3B,3C,4和5的核酸序列。
SEQ ID NOs:26和27分别是FAD3-1B3′UTR和5’UTR的核酸序列。
SEQ ID NO:28是FATB-1基因组克隆的核酸序列。
SEQ ID NOs:29-35分别是FATB-1内含子I、II、III、IV、V、VI和VII的核酸序列。
SEQ ID NOs:36和37分别是FATB-13′UTR和5′UTR的核酸序列。
SEQ ID NO:38是Cuphea pulcherrima KAS I基因的核酸序列
SEQ ID NO:39是Cuphea pulcherrima KAS IV基因的核酸序列
SEQ ID NOs:40和41分别是蓖麻(Ricinus communis)和希蒙得木(Simmondsiachinensis)Δ-9去饱和酶基因的核酸序列。
SEQ ID NO:42是FATB-2 cDNA的核酸序列。
SEQ ID NO:43是FATB-2基因组克隆的核酸序列。
SEQ ID NOs:44-47分别是FATB-2内含子I、II、III和IV的核酸序列。
SEQ ID NOs:48-60是PCR引物的核酸序列。
SEQ ID NOs:61和62分别是大豆FAD3-1C3’UTR和5’UTR的核酸序列。
定义
“ACP”是指酰基载体蛋白部分。“改变的种子油组成”是本发明的转基因或转化植物的种子油组成,其相对于具有相似遗传背景但没有被转化的植物的种子油组成,改变或修饰了其脂肪酸水平。
“反义抑制”是指由于导入反义RNA分子而导致的基因特异性沉默。
“一种以上试剂例如mRNA或蛋白的共表达”是指在重叠时间框架内并且在同一细胞或组织中的一种试剂与另一种试剂同时表达。“一种以上试剂的协同表达”是指当利用共有或相同的启动子从试剂产生转录物和蛋白时,一种以上试剂的共表达。
核酸序列的“互补序列”是指其全长序列的互补序列。
“共抑制”是指由于一种同源有义构建体的表达而使特定内源基因或基因家族的表达水平,通常是RNA的水平下降,该同源有义构建体能够将相同链的mRNA转录为内源基因的转录物。Napoli et al.,PlantCell 2:279-289(1990);van der Krol et al.,PlantCell 2:291-299(1990)。
“粗大豆油”是指从大豆种子提取的、但还没有精制、加工或掺混的大豆油,但它可以是脱胶的。
“CTP”是指叶绿体转运肽,由“叶绿体转运肽编码序列”编码。
当提到本文的蛋白和核酸时,“来源于”是指直接(例如,通过观察已知蛋白或核酸的序列,并且制备具有至少部分与已知蛋白或核酸的序列相似的序列的蛋白或核酸)或间接(例如,通过从与已知蛋白或核酸相关的生物获得蛋白或核酸)从已知蛋白或核酸获得蛋白或核酸。蛋白或核酸“来源于”已知蛋白或核酸的其它方法是本领域技术人员已知的。
双链RNA(“dsRNA”)、双链RNA干扰(“dsRNAi”)和RNA干扰(“RNAi”)都是指通过导入能够转录至少部分双链的RNA分子的构建体而诱导的基因特异性沉默。“dsRNA分子”和“RNAi分子”都是指RNA分子的一个区域,其含有具有互补核酸序列的区段,因此可以与彼此杂交,并且形成双链RNA。当导入细胞或生物时,所述双链RNA分子能够至少部分降低细胞或生物的细胞中存在的mRNA物质的水平。此外,dsRNA可以在通过不合理重组和定点重组进行合适DNA片段的体内组装后产生,如2005年2月11日提交的国际申请号PCT/US2005/004681的描述,该申请在此通过引用而并入本文。
“外显子”指该术语的通常含义,即指核酸分子,通常是指DNA的片段,它编码被表达蛋白的全部或部分。
“脂肪酸”是指游离脂肪酸和脂肪酰基。
“基因”是指核酸序列,该序列包含与基因产物的表达相关的5’启动子区域、任意的内含子和外显子区域以及与基因产物表达相关的3’或5’非翻译区。
“基因沉默”是指基因表达的抑制或基因表达的下调。
“基因家族”是指生物中的两个或更多的基因,它们编码具有相似功能属性的蛋白。“基因家族成员”是指在植物遗传物质中发现的基因家族中的任意基因,例如“FAD2基因家族成员”是指在植物遗传物质中发现的任意FAD2基因。基因家族的两个成员的例子是FAD2-1和FAD2-2。基因家族还可以按照核酸序列的相似性进一步进行分类。基因,如FAD2,包括在该基因座的等位基因。基因家族的成员在基因编码序列部分优选有至少60%,更优选至少70%,再优选至少有80%的核酸序列同一性。
“异源”意味着非天然在一起。
如果核酸分子由于人操作而插入细胞或生物,无论是如何间接插入的,则认为核酸分子是“导入的”。导入的核酸分子的实例包括但不限于通过转化、转染、注射和发射而导入细胞的核酸,和通过包括但不限于缀合、胞吞和吞噬的方法导入生物的核酸。
“内含子”是常规意义的术语,意思是核酸分子的片段,通常指DNA片段,它不对表达蛋白的全部或部分进行编码,在内源性条件下,它转录成RNA分子,但在RNA翻译为蛋白质之前要被剪切出内源RNA。“内含子dsRNA分子”和“内含子RNAi分子”都是指双链的RNA分子,其在导入细胞或生物时能够至少部分降低细胞或生物的细胞内的mRNA物质的水平,其中双链RNA分子显示出与细胞或生物中存在的基因的内含子足够的同一性,以降低含有该内含子序列的mRNA的水平。
“低饱和脂肪酸”的油组成包含3.6%-8%的饱和脂肪酸。
“中等油酸的大豆种子”是指一种种子,在其种子的油组成中含有50%-85%的油酸。
“低亚麻酸”油组成包含总脂肪酸的约3重量%以下的亚麻酸。
术语“非编码”是指核酸分子的序列,它不编码表达的蛋白的全部或部分。非编码序列包括但并不限于内含子、启动子区、3’非翻译区(3’UTR),和5’非翻译区(5’UTR)。
术语“油组成”是指脂肪酸水平。
与一种或多种核酸序列“可操作地连接”的启动子能够驱动一种或多种核酸序列的表达,包括以多顺反子构型排列的多编码或非编码核酸序列。
“物理连接的”核酸序列是指发现于单个核酸分子上的核酸序列。
“植物”包括完整植物、植物器官(例如叶、茎、根等)、种子、植物细胞及其后代。
术语“植物细胞”包括,但不限于,种子的悬浮培养液、胚、分生组织区、愈伤组织、叶、根、芽、配子体、孢子体、花粉和小孢子。
“植物启动子”包括但不限于,植物病毒启动子、来源于植物的启动子,和能够在植物细胞中发挥功能以促进mRNA表达的合成启动子。
“多顺反子基因”或“多顺反子mRNA”是指含有转录的核酸序列的任意基因或mRNA,该核酸序列相应于一个以上靶定用于抑制或表达的基因的核酸序列。由此可见这样的多顺反子基因或mRNA含有相应于内含子、5’UTR、3’UTR或其组合的序列;并且重组的多顺反子基因或mRNA可能例如但不限于含有相应于来自一个基因的一个或多个UTR和来自第二个基因的一个或多个内含子的序列。
“种子特异性启动子”是指一种启动子,它优先或专门在种子中有活性。“优先活性”是指启动子的活性,该活性在种子中显著高于植物的其它组织、器官或细胞器。“种子特异性”包括但不限于种子糊粉层、胚乳和/或胚中的活性。
“有义内含子抑制”是指基因沉默,它是由有义内含子或其片段的导入而诱导的。有义内含子抑制描述于例如Fillatti的PCT WO01/14538A2中。
一种以上试剂例如mRNA或蛋白的“同时表达”是指一种试剂与另一种试剂同时表达。这样的表达可能仅仅部分重叠并且也能够发生于不同组织或不同水平。
“总油水平”是指脂肪酸的总聚集量,而不针对脂肪酸的类型。本文用到的总油水平不包括甘油主链。
“转基因”是指与导入生物中的基因的表达相关的核酸序列。转基因包括,但不限于,生物中的内源基因或非天然存在的基因。“转基因植物”是指任何一种这样的植物,它以促进通过任何有性或无性方法从植物传递转基因的方式稳定掺入了转基因。
“零饱和脂肪酸”油组成包含低于3.6%的饱和脂肪酸。
在本文中提到蛋白和核酸时,用普通的大写字母,例如“FAD2”代表酶、蛋白、多肽或肽;用斜体大写字母,例如“FAD2”代表核酸,包括,但不限于,基因、cDNA、和mRNA。细胞或生物可以具有编码特定酶的一个以上基因的家族,基因术语后面的大写字母(A、B、C)用来表示家族的成员,即,FAD2-1A是一个不同于FAD2-1B的基因家族成员。
在本文中,任何范围的限定都包括该范围的端点,除非另有说明。
A.试剂
本发明的试剂将优选在结构属性方面是“生物活性的”,例如核酸分子与另一核酸分子杂交的能力,或蛋白与抗体结合(或与另一个分子竞争所述结合)的能力。或者,这样的属性可以是催化性的,因此包括试剂介导化学反应或应答的能力。这样的试剂优选是“基本纯化的”。用在此处的术语“基本纯化的”是指从正常情况下与分子的天然环境条件相关的基本所有其它分子中分离的分子。更优选地,基本纯化的分子是制剂中存在的优势种类。基本纯化的分子可以是60%以上、75%以上、优选90%以上、最优选95%以上游离于天然混合物中存在的其它分子(溶剂除外)。术语“基本纯化的”不意欲包括它们的天然环境条件中存在的分子。
本发明的试剂也可以是重组的。本文用到的术语“重组的”表示任何来自核酸分子的人工操作,或由核酸分子的人工操作导致(但间接地)的试剂。也可以理解,本发明的试剂可以用促进所述试剂的检测的试剂,例如,荧光标记、化学标记和/或修饰的碱基进行标记。
本发明的试剂包括DNA分子,其具有能够以有义和反义方向转录、形成至少一种至少部分双链的RNA分子的核苷酸序列。在一个优选实施方案中,本发明的试剂是双链RNA分子,其具有的核苷酸序列是FAD2、FATB或FAD2和FATB的片段。在另一实施方案中,本发明的试剂是DNA分子,其能够在宿主细胞中转录产生有义和反义方向的核苷酸序列。在另一实施方案中,核酸分子可以具有有义方向和反义方向的核苷酸序列,或在另一实施方案中,核酸分子可以具有有义方向或反义方向的核苷酸序列。所述核苷酸序列可以可操作性连接于相同的启动子、不同的启动子、单个启动子,或一个以上启动子。所述核苷酸序列可以在单个DNA分子或一个以上DNA分子上。
本发明的试剂包括核酸分子,其包含DNA序列,所述DNA序列在全长上与植物编码区或非编码区,或与植物编码区或非编码区的互补核酸序列具有至少50%、60%或70%同一性。更优选的是这样的DNA序列,其在全长上与植物编码区或非编码区,或与植物编码区或非编码区的互补核酸序列具有至少80%同一性;至少85%同一性;至少90%同一性;至少95%同一性;至少97%同一性;至少98%同一性;至少99%同一性;或100%同一性。
“同一性”是本领域所熟知的,是指两个或多个多肽序列之间或两个或多个核酸序列之间的关系,经序列比较决定;在本领域中,“同一性”也指多肽之间或核酸分子序列之间的序列相关程度,由这些序列串之间的匹配程度决定。“同一性”可以根据已知的方法容易地计算出,这些方法包括,但不限于,以下文献中描述的那些:ComputationalMolecularBiology,Lesk,ed.,Oxford University Press,New York 1988;Biocomputing:Informatics and Genome Projects,Smith,ed.,AcademicPress,New York 1993;Computer Analysis of Sequence Data,Part I,Griffinand Griffin,eds.,HumanaPress,New Jersey 1994;Sequence Analysis inMolecular Biology,von Heinje,Academic Press1987;Sequence AnalysisPrimer,Gribskov and Devereux,eds.,Stockton Press,New York 1991;和Carillo and Lipman,SIAM J.Applied Math,48:10731988。
设计用于确定同一性的方法,以得到测试的序列之间的最大匹配。此外,确定同一性的方法编辑在公众可得到的程序中。可以用于确定两个序列之间的同一性的计算机程序包括但不限于GCG;即五个BLAST程序的程序组,其中三个设计用于核苷酸序列查询(BLASTN,BLASTX和TBLASTX),两个设计用于蛋白序列查询(BLASTP和TBLASTN)。BLASTX程序是公众可以从NCBI和其它来源,如BLAST Manual,Altschul et al.,NCBI NLM NIH,Bethesda,MD20894;Altschul et al.,J.Mol.Biol.215:403-410(1990)得到的。也可以用公知的Smith Waterman算法确定同一性。
用于多肽序列比较的参数典型地包括以下这些:算法:Needlemanand Wunsch,J.Mol.Biol.48:443-453(1970);比较矩阵:BLOSSUM62,Hentikoff and Hentikoff,Proc.Natl.Acad.Sci.USA 89:10915-10919(1992);空位罚分:12;空位长度罚分:4。可以采用这些参数的程序是公众可得到的,即来自Genetics Computer Group(“GCG”),Madison,Wisconsin的“gap”程序。上述参数以及末端空位无罚分,是用于肽比较的默认参数。
用于核酸分子序列比较的参数包括以下这些:算法:Needleman andWunsch,J.Mol.Bio.48:443-453(1970);比较矩阵:匹配-+10;错配=0;空位罚分:50;空位长度罚分:3。本文用到的“同一性%”是用上面的参数作为默认参数进行核酸序列比较,并且采用来自GCG第10.2版的“gap”程序确定的。
本发明的核酸序列的亚组包括片段核酸分子。“片段核酸分子”是指较大核酸分子的片段,并且它可以由较大核酸分子的显著部分或实际上大部分组成。片段核酸分子可以包含较小的寡核苷酸,其具有大约15-大约400个连续核苷酸,更优选具有大约15-大约45个连续核苷酸,大约20-大约45个连续核苷酸,大约15-大约30个连续核苷酸,大约21-大约30个连续核苷酸,大约21-大约25个连续核苷酸,大约21-大约24个连续核苷酸,大约19-大约25个连续核苷酸,或大约21个连续核苷酸。片段核酸分子可以由植物编码区或非编码区的显著部分,或实际上大部分组成,或可以包含较小的寡核苷酸。在一个优选实施方案中,片段与植物编码区或非编码区显示100%同一性。在另一优选实施方案中,片段包含较大核酸序列的一部分。另一方面,片段核酸分子的核酸序列具有本发明的核酸分子的至少15,25,50,100,200,300或400个连续核苷酸。在一个优选实施方案中,核酸分子的核酸序列具有植物编码区或非编码区的至少15,25,50,100,200,300或400个连续核苷酸。在一个最优选的实施方案中,核酸分子的核酸序列具有完整编码区或非编码区的大约1,2,5,10,20,30,40,50,60,70,80或90%的连续核苷酸。在一个优选实施方案中,完整编码区或非编码区可以是选自完整基因、单外显子、单内含子、信号序列或非翻译区(UTR)的基因元件。不具有完整遗传元件的完整序列的遗传元件可以是基因元件的片段。在本发明的一个优选方面,遗传元件的长度是至少40个核苷酸。在本发明的一个方面,基因片段是完整基因元件的一部分,并且所述片段含有来自完整基因元件的大约1,2,5,10,20,30,40,50,60,70,80或90%的连续核苷酸。在本发明的另一方面,片段核酸分子是完整基因元件长度的大约5%-大约80%,大约10%-大约70%,大约10%-大约60%,大约10%-大约50%,大约25%-大约60%,大约25%-大约50%,大约40%-大约60%,大约40%-大约80%,大约50%-大约90%。
在一个优选实施方案中,FAD2-1内含子的片段是大约20-大约420,大约30-大约420,大约40-大约320,大约50-大约200,大约50-大约400,大约50-大约420,大约60-大约320,大约70-大约220,大约100-大约200,大约100-大约320,大约150-大约200,大约150-大约220,大约150-大约400,大约200-大约300,或大约300-大约400个连续核苷酸。在另一优选实施方案中,FAD2-1内含子的片段的长度是大约100,大约150,大约200,大约220,大约250,大约300,大约320,或大约350个连续核苷酸。在另一优选实施方案中,与SEQ IDNO:1的长度相比,FAD2-1内含子片段的长度减少大约20,大约40,大约60,大约80,大约100,大约120,大约140,大约160,大约180,大约200,大约220,大约240,大约260,大约280,大约290,大约300,大约320,大约340,大约360,大约380,或大约400个连续核苷酸。对于全部这些FAD2-1内含子片段,截短或缺失可以从5’端开始、从3’末端开始,或在FAD2-1内含子内部。对于所有这些FAD2-1内含子片段,FAD2-1内含子的序列可以是SEQ ID NO:1。
在一个优选实施方案中,FATB基因的片段是FATB基因的大约80-大约450,大约100-大约500,大约70-大约500,大约200-大约400,大约150-大约300,大约250-大约350,大约200-大约350个连续核苷酸。在一个优选实施方案中,FATB片段来源于从5’末端开始的FATB中的总核苷酸的一半。对于所有这些FATB片段,截短或缺失可以从5’端开始、从3’末端开始,或在FATB内部。在一个优选实施方案中,FATB片段来源于从FATB的5’末端开始的FATB中的总核苷酸的一半,来源于最接近5’末端的FATB中的总核苷酸的三分之一。在一个特别优选的实施方案中,FATB片段含有转运肽编码序列,其优选编码叶绿体转运肽。在一个特别优选的实施方案中,FATB片段是转运肽编码序列的片段,其优选编码叶绿体转运肽。在另一个特别优选的实施方案中,FATB片段进一步包含FATB5’UTR的大约20,大约25,大约30,大约35,38,39,40,41,42,43,大约45,大约50,大约55或大约60个连续核苷酸。在一个最优选的实施方案中,片段包括两个或多个不连续片段或分开的基因元件的组合,如与FATB5’UTR融合的FATB3’UTR。本发明的试剂包括核酸分子。例如,但不限于,在本发明的一个方面,本发明的核酸分子包含SEQ ID NO:19,20,21,22,23,25,32,33,34,35,44,45,46或47的内含子序列,或其片段或其互补序列。在本发明的另一方面,核酸分子包含一种核酸序列,当将其导入细胞或生物时,能够抑制RNA或蛋白的产生,同时表达、共表达或协同表达另一种RNA或蛋白。在本发明的另一方面,核酸分子包含一种核酸序列,当将其导入细胞或生物时,能够抑制、至少部分减少、减少、显著减少或有效消除内源性的表达FAD2、FAD3和/或FATB RNA的表达,同时共表达、同时表达或协同表达β-酮脂酰-ACP合酶I,β-酮脂酰-ACP合酶IV,Δ-9去饱和酶,和/或CP4EPSPS RNA或蛋白中的至少一种。
通过抑制、至少部分减少、减少、显著减少或有效消除至少一种或多种内源基因的表达,植物细胞中可获得的FAD2和/或FAD3的量减少,即,蛋白的稳态水平降低,并且可以使多不饱和脂肪酸如亚油酸(C18:2)和亚麻酸(C18:3)的百分比减少。可以用于掺入三酰甘油的脂肪酸集合中的修饰可能同样影响植物细胞中油的组成。因此,FAD2和/或FAD3表达的减少可能导致单不饱和脂肪酸如油酸(C18:1)的比例增加。当植物细胞中的FATB量减少时,可以使饱和脂肪酸如棕榈酸和硬脂酸的量减少。因此,FATB表达的减少可以导致不饱和脂肪酸如油酸(18:1)的比例增加。因此,FAD2,FAD3和FATB表达的同时抑制,导致驱动FAS途径朝向长度为18个碳的单不饱和脂肪酸,如油酸(C18:1)的总体增加。参见美国专利号5,955,650。
通过增加植物细胞中可获得的β-酮脂酰-ACP合酶I(KAS I)和/或β-酮脂酰-ACP合酶IV(KAS IV)的量,可以使16:0-ACP的百分比减少,导致18:0-ACP的百分比增加。更大量的18:0-ACP与FAD2、FAD3和FATB中一种或多种的同时抑制的组合,从而帮助驱动油组成朝向油酸(C18:1)的总体增加。通过增加植物细胞中可获得的Δ-9去饱和酶的量,可以使不饱和脂肪酸的百分比增加,导致硬脂酸和总饱和脂肪酸的总体减少。
增加和减少的酶表达的这些组合可以进行操作,以产生具有增加的油酸水平、减少的亚油酸、亚麻酸、硬脂酸和/或棕榈酸水平,以及减少的饱和脂肪酸总水平的包括脂肪酸的油组成。可以通过将额外拷贝的基因编码序列导入植物细胞,或优选将额外拷贝的基因编码序列掺入植物基因组,增强植物中的基因表达。也可以通过增加调节基因表达的调节机制的活性而发生超量表达,即上调基因表达。
植物细胞中CP4 EPSPS的产生给植物细胞提供了对草甘膦的抗性或耐受性,从而提供了通过草甘膦耐受性选择而鉴定成功的转化体的方便方法。
植物中基因表达的抑制,也称作基因沉默,是在转录水平和转录后水平这两种水平发生的。存在多种用于抑制宿主细胞中的内源序列表达的方法,包括但不限于反义抑制、共抑制、核酶、有义和反义的组合(双链RNAi)、启动子沉默和DNA结合蛋白,如锌指蛋白。(参见例如WO98/53083,WO01/14538和美国专利5,759,829(Shewmaker.))。这些机制中的某些与DNA或RNA水平的核酸同源性相关。所述同源性是指相同物种或不同物种中DNA或蛋白序列的相似性。如果导入宿主细胞的DNA序列与内源基因足够同源,使得导入的DNA序列的转录将诱导内源基因的转录或转录后基因沉默,则发生基因沉默。用于抑制稳态表达水平的足够同源性可以是在DNA序列的全长上与植物编码区或非编码区,或与植物编码区或非编码区的互补核酸序列具有至少50%,大约60%,或大约70%同一性。更优选的是在全长上与植物编码区或非编码区,或与植物编码区或非编码区的互补核酸序列具有至少80%同一性;至少85%同一性;至少90%同一性;至少95%同一性;至少97%同一性;至少98%同一性;至少99%同一性;或100%同一性的DNA序列。在植物中,双链RNA分子可以可以诱导序列特异性沉默。基因沉默在植物中通常称作双链RNA(“dsRNAi”),在秀丽新杆线虫和动物中称作RNA干扰或RNAi,在真菌中称作压抑。
在一个优选实施方案中,本发明的核酸分子包括第一组DNA序列,其中每个序列都与植物基因的一个或多个编码序列或非编码序列具有足够的同源性,使得当它表达时,它能够有效消除、显著减少或至少部分减少编码序列或非编码序列所来源的基因,或任何与靶编码序列或非编码序列具有同源性的基因编码的mRNA转录物或蛋白的水平。
在一个优选实施方案中,本发明的核酸分子包括(a)第一组DNA序列,其中每个序列都与植物基因的一个或多个编码序列或非编码序列具有足够的同源性,使得当它表达时,它能够有效消除、显著减少或至少部分减少编码序列或非编码序列所来源的基因,或任何与靶非编码序列具有同源性的基因编码的mRNA转录物或蛋白的水平,和(b)第二组DNA序列,其中每个序列都与植物基因具有足够的同源性,使得当它表达时,它能够至少部分提高、增加、提高或显著提高所述基因编码的mRNA或蛋白的水平。
本文用到的“一组”DNA序列可以是一个或多个序列,其编码或不编码蛋白。例如,第一组DNA序列可以仅仅包含启动子、非编码区和终止子。第二组DNA能或不能在第一组DNA序列之后或之前存在。
本文用到的试剂如蛋白或mRNA水平或量的“减少”表示相对于缺少能够减少试剂的DNA序列的细胞或生物,所述水平或量减少。例如,“至少部分减少”是指减少至少25%,“显著减少”是指减少至少75%,“有效消除”是指减少95%以上,所有这些试剂水平或量的减少都是相对于缺少能够减少试剂的DNA序列的细胞或生物。
本文用到的试剂如蛋白或mRNA水平或量的“提高”或“增加”表示所述水平或量高于具有相似遗传背景但缺乏导入的编码蛋白或mRNA的核酸分子的细胞、组织或植物中存在的试剂的水平或量。例如,“至少部分提高的”水平是指增加至少25%,“显著提高的”水平是指增加至少100%,所有这些试剂水平或量的增加都是相对于具有相似遗传背景但缺乏导入的编码蛋白或mRNA的核酸分子的细胞、组织或植物中存在的试剂的水平或量。在一个优选实施方案中,表达的增加可以是任何这样的表达,即蛋白对于系统是异源的。例如,如果在导入编码蛋白的核酸分子之前植物中没有表达,则CP4 EPSPS的任何表达都可以是表达的增加。
当比较试剂的水平时,所述比较优选是在具有相似遗传背景的生物之间进行的。优选地,相似的遗传背景是这样的背景,即其中进行比较的生物具有核遗传物质的50%或更高、更优选75%或更高,甚至更优选90%或更高序列同一性。在另一优选方面,相似的遗传背景是这样的背景,即其中进行比较的生物是植物,并且除了任何最初用植物转化技术导入的遗传物质外,植物是同基因的。可以通过任何合适的方法进行试剂水平或量的测量,其非限制性实例包括比较mRNA转录物水平、蛋白或肽水平和/或表型,特别是油含量。如本文用到的,mRNA转录物包括加工的和未加工的mRNA转录物,并且蛋白或肽包括具有或不具有任何翻译后修饰的蛋白或肽。
第一组DNA序列的DNA序列可以是编码序列、内含子序列、3’UTR序列、5’UTR序列、启动子序列、其它非编码序列或前述任意组合。第一组DNA序列编码一种或多种序列,当其表达时能够选择性减少由选自FAD2、FAD3和FATB的基因编码的蛋白和转录物之一或这两者。在一个优选实施方案中,第一组DNA序列能够表达反义RNA,其中各个反义序列可以连接为一个转录物,或可以是未连接的各个转录物。在一个进一步优选的实施方案中,第一组DNA序列是物理连接的序列,它们能够表达单个dsRNA分子。在一个不同的优选实施方案中,第一组DNA序列能够表达有义共抑制RNA,其中各个有义序列可以连接为一个转录物,或可以是未连接的各个转录物。第一组DNA序列的示例性实施方案描述于发明详述的B部分和实施例中。
第二组DNA序列编码一种或多种序列,当其表达时,能够增加由选自β-酮脂酰-ACP合酶I(KASI)、β-酮脂酰-ACP合酶IV(KASIV)、Δ-9去饱和酶和CP4 EPSPS的基因编码的蛋白和转录物之一或这两者。第二组DNA序列的DNA序列可以是物理连接的序列。第二组DNA序列的示例性实施方案描述于下文发明详述的C和D部分。
因此,本发明提供了用于改变脂肪酸和含有所述脂肪酸的化合物,如油、蜡和脂肪的组成的方法。本发明也提供了在宿主细胞植物中生产特定脂肪酸的方法。所述采用文本描述的表达盒,用于修饰宿主植物细胞的FAS途径。
B.第一组DNA序列
在本发明的一方面,核酸分子包括第一组DNA序列,当其导入细胞或生物时,表达一种或多种序列,其能够有效消除、显著减少、或至少部分减少由一种或多种基因编码的mRNA转录物或蛋白的水平。优选的方面包括内源基因、植物基因和非病毒基因作为靶。在本发明的一方面,所述基因是FAD2、FAD3或FATB基因。
一方面,本发明的核酸分子包括DNA序列,其与植物基因的一种或多种编码或非编码序列具有足够的同源性,当其导入植物细胞或植物中并且表达时,能够有效消除、显著减少、或至少部分减少由基因编码的mRNA转录物或蛋白的水平,其中编码序列或非编码序列来源于所述基因。第一组DNA序列的DNA序列转录的RNA序列或RNA片段与来源于要被抑制的基因的编码或非编码区具有至少90%,优选至少95%,更优选至少98%,或最优选100%的同一性。所述同一性百分比可以是与另一核酸片段比较。
优选地,非编码序列是3’UTR、5’UTR或编码蛋白的序列的一部分,或来自植物基因的内含子。更优选,非编码序列是启动子序列、3’UTR、5′UTR或来自植物基因的内含子。内含子可以位于外显子之间或位于植物基因的5’或3’UTR内。编码序列优选是蛋白编码框的一部分。
第一组DNA序列的序列可以设计用于产生dsRNA、有义抑制RNA,或反义RNA,或任何其它抑制性转录物,从而当导入植物细胞或植物中时,达到需要的效果。所述DNA序列可以是片段核酸分子。
植物内含子可以是来自内源或导入基因的任意植物内含子。这些来自生物的内含子的核酸序列可以获自或来源于多个来源,包括但不限于数据库,如EMBL和Genbank,其可以在因特网以网址ebi.ac.uk/swisprot/;expasy.ch/;embl-heidelberg.de/;和ncbi.nlm.nih.gov找到。所述内含子的核酸序列也可以来源于,但不限于诸如GENSCAN程序的来源,所述程序可以在因特网以网址genes.mit.edu/GENSCAN.html找到。
其它内含子也可以通过以下方法获得,包括但不限于,用已知外显子或内含子序列的探针筛选基因组文库,将基因组序列与其相应的cDNA序列比较,或通过与来自另一种生物如拟南芥的基因组序列比对而克隆内含子,如大豆cDNA。另外,内含子的其它核酸序列对本领域普通技术人员是显而易见的。上述描述的方法也可以用于驱动和获得其它非编码序列,包括,但不限于,启动子序列、3’UTR序列和5’UTR序列。
“FAD2”、“Δ12去饱和酶”或“ω-6-去饱和酶”基因编码一种酶(FAD2),该酶能够催化双键插入脂肪酰基部分从羧基端起第12位处。术语“FAD2-1”用于指FAD2基因,该基因在种子组织中以特异的方式天然表达。术语“FAD-2-2”用于指FAD2基因,该基因(a)不同于FAD2-1基因,并且(b)在多种组织包括种子中天然表达。有代表性的FAD2序列包括,但不限于,描述于2002年6月21日提交的美国专利申请号10/176,149,以及序列SEQ ID Nos:1-6中的那些。
“FAD3”,“Δ15去饱和酶”或“ω-3-去饱和酶”基因编码一种酶(FAD3),该酶能够催化双键插入脂肪酰基部分从羧基端起第15位处。术语“FAD3-1、FAD3-A、FAD3-B和FAD3-C”用于指FAD3基因家族成员,它们能够在多种组织包括种子中天然表达。有代表性的FAD3序列包括,但不限于,描述于2002年6月21日提交的美国专利申请号10/176,149,以及序列SEQID Nos:7-27中的那些。
“FATB”或“棕榈酰-ACP-硫酯酶”基因编码一种酶(FATB),该酶能够催化位于棕榈酰-ACP的panthothene辅基的碳-硫硫酯键的水解裂解,作为其优选反应。其它脂肪酸-ACP硫酯酶的水解也可以被该酶催化。有代表性的FATB-1序列包括,但不限于,2002年6月21日提交的美国临时申请号60/390,185;美国专利号5,955,329;5,723,761;5,955,650和6,331,664以及序列SEQ ID Nos:28-37中所示的那些。有代表性的FATB-2序列包括,但不限于SEQ ID NOs:42-47中所示的那些。
C.第二组DNA序列
在本发明的一个方面,核酸分子包括第二组DNA序列,该序列在导入细胞或生物时,能够部分提高、增加、提高或显著提高由一种或多种基因编码的mRNA转录物或蛋白的水平。在本发明的一方面,基因是内源基因。在本发明的另一方面,基因可以是异源基因。在一个优选的方面,异源和内源基因可以位于相同的核酸分子上。在本发明的一个方面,基因是植物基因。在本发明的另一方面,基因是截短的基因,该截短的基因能催化由全基因催化的反应。在本发明的一个方面,基因是β-酮脂酰-ACP合酶I基因、β-酮脂酰-ACP合酶IV基因、Δ-9去饱和酶基因、CP4EPSPS基因,或这些基因的组合。
本发明的基因可以是任何内源的或导入的基因。这些基因的核酸序列可以来源于多种来源,包括,但不限于,数据库例如EMBL和Genbank,这些数据库可以从因特网以网址ebi.ac.uk/swisprot/;expasy.ch/;embl-heidelberg.de;和获得ncbi.nlm.nih.gov。这些基因的核酸序列也可以来源于,但不限于诸如GENSCAN程序的来源,所述程序可以在因特网以网址genes.mit.edu/GENSCAN.html找到。
其它基因也可以通过以下方法获得,包括但不限于,用任一已知基因序列的探针筛选基因组文库或cDNA文库,通过与来自另一种生物如拟南芥的基因或探针比对而克隆基因。另外,基因的其它核酸序列对本领域普通技术人员是显而易见的。其它基因可以,例如但并不限于,通过聚合酶链式反应(PCR)扩增并用于本发明的实施方案中。另外,基因的其它核酸序列对本领域普通技术人员是显而易见的。
为此目的可以使用自动核酸合成仪,以制备核酸分子,该分子具有也存在于细胞或生物中的序列。根据所述合成,核酸分子可被用于定义一对引物,该引物可以用于PCR,以扩增并获得第一个基因的需要的核酸分子或片段。
“KASI”或“β-酮脂酰-ACP合酶I”基因编码一种酶(KASI),该酶能够催化脂肪酰基部分延长至棕榈酰-ACP(C16:0)。有代表性的KASI序列包括,但不限于,美国专利号5,475,099和PCT公开WO94/10189以及SEQ ID No:38中所示的那些。
“KASIV”或“β-酮脂酰-ACP合酶IV”基因编码一种酶(KASIV),该酶能够催化中等链酰基-ACP的缩合并且促进18:0-ACP的生成。有代表性的KASIV序列包括,但不限于,在PCT公开WO98/46776和SEQ ID NO:39中所示的那些。
“Δ-9去饱和酶”或“硬脂酰-ACP去饱和酶”或“ω-9去饱和酶”基因编码一种酶,该酶能够催化双键插入脂肪酰基部分从羧基端起第9位处。本发明优选的Δ-9去饱和酶是植物或蓝细菌Δ-9去饱和酶,更优选Δ-9去饱和酶也存在于选自下组的生物中:即红花(Cartharmus tinctorius),蓖麻(Ricinus communis),希蒙得木(Simmonsia chinensis),和芸苔(Brassica campestris)。有代表性的Δ-9去饱和酶序列包括,但不限于,美国专利号5,723,595和SEQ IDNos:40-41中所示的那些。
“CP4EPSPS”或“CP45-烯醇丙酮酰莽草酸-3-磷酸合酶”基因编码一种酶(CP4EPSPS),该酶能够赋予植物细胞和由其产生的植物显著程度的草甘膦抗性。CP4 EPSPS序列可以是来源于根癌土壤杆菌种CP4的CP4 EPSPS序列或其变体或其合成形式,如美国专利号5,633,435的描述。有代表性的CP4EPSPS序列包括,但不限于,公开于美国专利号5,627,061和5,633,435中的那些。
D.重组载体和构建体
本发明的一种或多种核酸构建体可用于植物的转化或转染中。产物如转录物或蛋白的水平可以在整个生物例如植物中提高或降低,或定位于该生物的一种或多种特定器官或组织。例如,产物的水平可以在植物的一种或多种组织和器官中被提高或降低,包括,但不限于:根,块茎、茎、叶、柄、果实、浆果、坚果、树皮、豆荚、种子和花。优选的器官是种子。例如,外源性遗传物质可以被转移到植物细胞中,植物细胞再生成完整的、可育或不育的植物或植物部分。
“外源遗传物质”是指任意的以下遗传物质:其或者是天然存在的或者是来自于能够被插入任意生物的来源。这些外源遗传物质包括,但不限于,本发明的核酸分子和构建体。外源遗传物质可以通过使用为此目的设计的DNA载体或构建体转移到宿主细胞中。类似地,病毒可以将外源遗传物质转移到宿主细胞中。外源遗传物质可能具有与内源基因相同的DNA序列,但是通过使用DNA载体或构建体重新导入宿主细胞,从而达到抑制内源基因表达的目的。这种载体的设计通常是本领域的常规技术(参见例如Plant MolecularBiology:A Laboratory Manual,Clark(ed.),Springer,New York(1997))。在一个优选实施方案中,外源遗传物质是重组DNA。
构建体或载体可以包括在植物细胞中发挥功能的启动子或植物启动子,以表达所选择的核酸分子。众多在植物细胞中有活性的启动子已记载于文献中,CaMV35S和FMV启动子优选用于植物中。优选的启动子的其它实例包括菜豆arcelin和7Sα。其它优选的启动子是CaMV35S和FMV35S启动子的增强或复制型。Odell et al.,Nature 313:810-812(1985);美国专利号5,378,619。其它可使用的启动子描述于例如美国专利5,378,619;5,391,725;5,428,147;5,447,858;5,608,144;5,608,144;5,614,399;5,633,441;5,633,435;和4,633,436中。此外,可以使用组织特异性增强子。
特别优选的启动子也可以用于在种子或果实中表达本发明的核酸分子。实际上,在一个优选实施方案中,所用的启动子是种子特异性启动子。这些启动子的实例包括来自于诸如油菜籽蛋白(Kridl et al.,SeedSci.Res.1:209-219(1991))、菜豆球蛋白、硬脂酰-ACP去饱和酶、7Sα、7sα’(Chen et al.,Proc.Natl.Acad.Sci.,83:8560-8564(1986))、USP、arcelin和油质蛋白的基因的5’调节区域。用于在种子中表达的优选启动子是7Sα、7sα’、油菜籽蛋白和FAD2-1A启动子。
构建体或载体也可以包括其它的遗传元件,包括但不限于,3’转录终止子、3’聚腺苷酸化信号、其它非翻译核酸序列、转运或靶定序列、可选择的或可筛选的标记物、启动子、增强子和操纵子。构建体或载体也包括无启动子基因,该基因在插入时可以使用内源性启动子。
可以用于植物转化或转染的核酸分子可以是本发明的任意的核酸分子。本发明并不只限于列举的实施方案。列举的核酸分子已描述于详述的A部分,进一步的非限制性列举核酸分子描述于下文和附图1-4以及实施例中。
现在参照附图,本发明的核酸分子的实施方案表示在附图1-4中。如上所述,核酸分子包含(a)第一组核酸序列,和(b)第二组核酸序列,这些序列位于一个或多个T-DNA区域上,每一个该区域都由右边界和左边界侧接。在T-DNA区域内,转录的方向由箭头所示。所述的核酸分子的DNA序列可以按单顺反子或多顺反子构型排列。优选构型包括第一组DNA序列和第二组DNA序列位于单一的T-DNA区域内的构型。
在每一个列举的实施方案中,第一组DNA序列包括一种或多种序列,当其表达时,能够选择性地减少由选自FAD2,FAD3和FATB的基因编码的蛋白和转录物中的一种、两种或全部。优选第一组DNA序列中的每一个序列在表达时都能够抑制不同基因的表达,包括,但不限于,不同基因家族的成员。这些序列可以包括编码序列、内含子序列、3’UTR序列、5’UTR序列、其它非编码序列或上述序列的任意组合。第一组DNA序列可以以任意适合的方式表达,包括作为dsRNA构建体、有义共抑制构建体或作为反义构建体。第一组DNA序列可操作地与至少一种驱动该序列表达的启动子连接,该启动子可以是任意在植物中有功能的启动子或任意的植物启动子。优选的启动子包括,但不限于,油菜籽蛋白启动子、7Sα启动子、7sα’启动子、arcelin启动子或FAD2-1A启动子。
第二组DNA序列包括编码序列,每一个编码序列都是这样的DNA序列,其编码在表达时能够增加由选自AKSI,KASIV,Δ-9去饱和酶和CP4EPSPS的基因编码的蛋白和转录物之一或这两者的序列。每一种编码序列都与启动子相连,该启动子可以是任意在植物中有功能的启动子或任意的植物启动子。用于第二组DNA序列的优选启动子是FMV启动子和/或种子特异性启动子。特别优选的种子特异性启动子包括,但不限于,油菜籽蛋白启动子、7Sα启动子、7sα’启动子、arcelin启动子、Δ-9去饱和酶启动子或FAD2-1A启动子。
在图1和2描述的实施方案中,第一组DNA序列在表达时能够形成dsRNA分子,它能够抑制由选自FAD2、FAD3和FATB的基因编码或由所述基因转录的蛋白和转录物之一或这两者的表达。图1描述的第一组DNA序列包括三个非编码序列,每一个非编码序列都表达一种RNA序列(未示出),其与选自FAD2、FAD3和FATB基因的基因的非编码区有同一性。非编码区序列每一个都表达一种RNA序列,其显示出与选自FAD2、FAD3和FATB基因的基因的非编码区有至少90%的同一性。第一组DNA序列也包括三个反义序列,每一个反义序列表达一种反义RNA序列(未示出),其能够与其各自相应的RNA序列(由非编码序列表达)形成双链RNA分子。
非编码序列通过间隔序列从反义序列分隔开,优选的间隔序列能够促进dsRNA分子的形成。这些间隔序列的实例包括Wesleyetal.,PlantJ.,27(6):581-90(2001),和Hamilton et al.,Plant J.,15:737-746(1988)所述的间隔序列。在一个优选方面,间隔序列能够形成在上文Wesley等人的文献中所述的发夹结构。在本文中特别优选的间隔序列是植物内含子或其部分。特别优选的植物内含子是可剪切的内含子。可剪切的内含子包括,但不限于,选自下组的内含子:PDK内含子、FAD3-1A或FAD3-1B内含子#5、FAD3内含子#1、FAD3内含子#3A、FAD3内含子#3B、FAD3内含子#3C、FAD3内含子#4、FAD3内含子#5、FAD2内含子#1和FAD2-2内含子。优选的可剪切内含子包括,但不限于,选自下组的内含子:FAD3内含子#1、FAD3内含子#3A、FAD3内含子#3B、FAD3内含子#3C、FAD3内含子#5。其它优选的可剪切内含子包括,但不限于,长度大约为0.75kb至大约为1.1kb、并且能够促进RNA发夹结构的可剪切内含子。特别优选的可剪切内含子的一个非限制性实例是FAD3内含子#5。
有义定向的非编码序列可以任选通过DNA的间隔片段与相应的反义定向的分子分隔开。间隔片段可以是基因片段或人工DNA。间隔片段可以是短的,以促进形成发夹dsRNA,或是长的,以促进没有发夹结构的dsRNA。可以通过延长US2005/0176670A1中公开的有义或反义分子之一的长度来提供间隔区。或者,在插入植物基因组后,可以建立右边界-右边界(“RB-RB”)序列,如美国专利申请2005/0183170中的公开。
参照图1,核酸分子包括两个T-DNA区域,每一个都侧接右边界和左边界。第一T-DNA区域包括与启动子可操作性连接的第一组DNA序列,第一T-DNA区域进一步包括第二组DNA序列的第一部分,该部分包括与第一编码序列可操作性连接的第一启动子,和与第二编码序列可操作性连接的第二启动子。第二T-DNA区域包括第二组DNA序列的第二部分,该部分包括与第三编码序列可操作性连接的第三启动子。在图2描述的优选实施方案中,核酸分子包括单一的T-DNA区域,并且侧接右边界和左边界。第一组和第二组DNA序列都位于单一的T-DNA区域上。
在图1和2表示的dsRNA表达实施方案中,序列的顺序与所列举和描述的序列顺序相比可以发生改变,但是非编码序列和反义序列优选围绕间隔序列排列,这样在表达时第一非编码序列能够与第一反义序列杂交,第二非编码序列能够与第二反义序列杂交,并且第三非编码序列能够与第三反义序列杂交,因此可以形成单一的dsRNA分子。优选非编码序列相对于启动子是有义方向,反义序列相对于启动子是反义方向。为了实现本发明的目的,非编码序列、反义序列和编码序列的数量以及其在T-DNA区域上的各种相对位置都可以以任何适当方式改变。
参照图3和4,列举的核酸分子包括侧接右边界和左边界的T-DNA区域,第一组和第二组DNA序列位于此区域上。第一组DNA序列与启动子与转录终止信号可操作性连接。第二组DNA序列包括与第一编码序列可操作性连接的第一启动子、与第二编码序列可操作性连接的第二启动子以及与第三编码序列可操作性连接的第三启动子。转录终止信号可以是在植物内有功能的任意转录终止信号或任意的植物转录终止信号。优选的转录终止信号包括,但不限于,豌豆Rubisco E9 3′序列,芸苔油菜籽蛋白3′序列,tml 3′序列和nos 3′序列。
在图3描述的实施方案中,第一组DNA序列在表达时能够形成有义共抑制构建体,它能够抑制一种或多种由选自FAD2、FAD3和FATB的基因编码或来源于所述基因的蛋白或转录物的表达。第一组DNA序列包括三个非编码序列,每一个非编码序列都表达一种RNA序列(未示出),其与选自FAD2、FAD3和FATB基因的基因的一个或多个非编码区有足够的同一性。非编码区序列每一个都表达一种RNA序列,其显示出与选自FAD2、FAD3和FATB基因的基因的一个或多个非编码区有至少90%的同一性。第一组DNA序列内的非编码序列的顺序与本文所列举和所描述的序列顺序相比可以发生改变,但是非编码序列相对于启动子以有义方向排列。
图4描述了一种实施方案,其中第一组DNA序列在表达时能够形成反义构建体,该反义构建体能够抑制一种或多种由选自FAD2、FAD3和FATB的基因编码或来源于所述基因的蛋白或转录物的表达。第一组DNA序列包括三个反义序列,每一个反义序列都表达一种反义RNA序列(未示出),其与选自FAD2、FAD3和FATB基因的基因的一个或多个非编码区有同一性。反义序列每一个都表达一种反义RNA序列,其显示出与选自FAD2、FAD3和FATB基因的基因的一个或多个非编码区有至少90%的同一性。第一组DNA序列内的反义序列的顺序与本文所列举和所描述的序列顺序相比可以发生改变,但是反义序列相对于启动子以反义方向排列。
如上所述的核酸分子是实现本发明的目的、特征和优点的优选的实施方案。本发明无意限制于所列举的实施方案。在第一组和第二组DNA序列中序列的排列并不限于所列举和所描述的排列,并且可以以适于实现本文描述并且在附图中列举的本发明的目的、特征和优点的任何方式改变。
E.转基因生物,以及制备它们的方法
本发明的任何核酸分子和构建体都可以以永久或瞬时的方式导入植物或植物细胞。本发明优选的核酸分子和构建体描述在上述详述的A到D部分以及实施例中。本发明的另一个实施方案涉及生产转基因植物的方法,该方法通常包括以下步骤:选择合适的植物或植物细胞,用重组载体转化该植物或植物细胞,和获得转化的宿主细胞。
在一个优选实施方案中,植物或细胞是、或来源于参与食用和工业用植物油的生产的植物。特别优选的是温带油籽作物。感兴趣的植物包括,但不限于,油菜籽(油菜(canola)和高芥酸品种)、玉米、大豆、海甘蓝、芥菜、蓖麻籽、花生、芝麻、棉花、亚麻籽、红花、油棕、亚麻、向日葵和椰子。本发明适用于单子叶或双子叶物种等,也将容易地适用于新的和/或改进的转化和调节技术。
将DNA导入植物细胞的方法和技术是本领域技术人员所熟知的,而且基本任何将核酸分子导入细胞的方法对本发明来说都是适宜的。非限制性的适宜方法的实例包括:化学方法;物理方法例如显微注射法、电穿孔、基因枪、微粒轰击,和真空渗透;病毒载体;和受体介导的机制。其它细胞转化的方法也可以使用,包括,但不限于,通过将DNA直接转移到花粉中而将DNA导入植物中、将DNA直接注射入植物的生殖器官,或将DNA直接注射入未成熟的胚细胞中,然后再水化干燥的胚。
根癌土壤杆菌介导的转化是一种用于将基因导入植物细胞的广泛应用的系统。参见,例如Fraley et al.,Bio/Technology 3:629-635(1985);Rogers et al.,MethodsEnzymol.153:253-277(1987)。被转移的DNA区域通过边界序列限定,介入性DNA通常被插入到植物基因组中。Spielmannetal.,Mol.Gen.Genet.205:34(1986)。现代的根癌土壤杆菌转化载体能够在大肠杆菌和根癌土壤杆菌中复制,从而能够进行方便的操作。Kleeet al.,:Plant DNA Infectious Agents,Hohn and Schell(eds.),Springer-Verlag,New York,pp.179-203(1985)。
来自单一植物原生质体转化体或来自各种被转化的外植体的植物的再生、发育和栽培是本领域所熟知的。一般参见Maliga et al.,Methodsin Plant Molecular Biology,Cold Spring Harbor Press(1995);Weissbachand Weissbach,In:Methods for PlantMolecular Biology,Academic Press,San Diego,CA(1988)。本发明的植物可以是育种过程的一部分或来自育种过程,也可以使用孤雌生殖来繁殖。生产孤雌生殖植物的方法是本领域所熟知的。参见例如美国专利5,811,636。
在一个优选实施方案中,本发明的植物包括核酸序列,当该序列表达时能够选择性地减少FAD2、FAD3和/或FATB蛋白水平,和/或FAD2、FAD3和/或FATB转录物水平,该植物与本发明的另一植物杂交,所述另一植物包括核酸序列,当该序列表达时能够超量表达另一种酶。优选地,其它酶选自:β-酮脂酰-ACP合酶I、β-酮脂酰-ACP合酶IV、Δ-9去饱和酶和CP4EPSPS。
另一方面,本发明的植物可以与另一转基因或非转基因植物杂交。本发明的植物可以与另一植物杂交,所述另一植物的油组成包含改变水平的脂肪酸,例如,但不限于,油组成中具有较低水平的亚麻酸的品种。在一个优选实施方案中,本发明的植物与具有少于3重量%的亚麻酸的品种杂交。或在另一实施方案中,本发明的植物与具有高于20重量%的硬脂酸的另一植物杂交。所述具有改变水平的脂肪酸的植物是本领域已知的,并且描述于例如Hawkins and Kridl(1998)Plant Journal13(6):743-752和美国专利号6,365,802中。
F.本发明的产物
本发明的植物可以以整体或部分的方式使用。优选的植物部分包括生殖或贮藏部分。术语“植物部分”在本文中包括,但不限于,种子、胚乳、胚珠、花粉、根、块茎、茎、叶、柄、果实、浆果、坚果、树皮、豆荚、种子和花。在本发明特别优选的实施例中,植物部分是指种子。
本发明的任意植物或其部分都可以经过加工以生产饲料、粗粉、蛋白或油制品。在本发明的一个优选实施方案中,可以是植物,其油具有本发明的脂肪酸组成。用于此目的的特别优选的植物部分是种子。在一个优选实施方案中,饲料、粗粉、蛋白或油制品被设计用于家畜、鱼或人类或其任意组合。生产饲料、粗粉、蛋白和油制品的方法是本领域所熟知的。参见例如美国专利4,957,748,5,100,679,5,219,596,5,936,069,6,005,076,6,146,669,和6,156,227。在一个优选实施方案中,蛋白制品是一种高蛋白制品。这样的高蛋白制品优选含有大于5%w/v,更优选10%w/v,甚至更优选15%w/v的蛋白含量。
在优选的油制品中,油制品是一种高油制品,其具有来源于本发明的植物或其部分的油含量,所述含量大于5%w/v,更优选10%w/v,甚至更优选15%w/v。在一个优选实施方案中,油制品是液体,其体积大于1,5,10或50升。本发明提供产自本发明植物的油或通过本发明方法生产的油。这样的油可以呈现提高的氧化稳定性。而且这样的油是任何所得产物的次要或主要成分。
而且,这样的油可以与其它油掺混。在一个优选实施方案中,产自本发明植物的油或通过本发明方法生产的油构成任意产品油成分的0.5%、1%、5%、10%、25%、50%、75%或90%以上(体积或重量)。在另一个实施方案中,油制品可以被掺混并构成掺混物体积的10%、25%、35%、50%或75%以上。产自本发明植物的油可以与一种或多种有机溶剂或石油蒸馏物混合。
植物的种子可以放置在容器内。在此处,容器是指能够容纳这些种子的任意物体。容器优选含有大于约500,1,000,5,000,或25,000粒种子,其中至少约10%、25%、50%、75%或100%的种子来源于本发明的植物。本发明也提供含有超过大约10,000,更优选约20,000,甚至更优选大约40,000粒种子的容器,其中超过大约10%,更优选大约25%,更优选50%,甚至更优选大约75%或90%的种子是来源于本发明植物的种子。本发明也提供含有超过大约10kg、更优选大约25kg、甚至更优选大约50kg种子的容器,其中超过大约10%,更优选25%,更优选大约50%,甚至更优选大约75%或90%的种子是来源于本发明植物的种子。
G.油组成
对于许多油应用,饱和脂肪酸水平优选小于8重量%,更优选约2-3重量%。饱和脂肪酸有较高的熔点,这是许多应用中所不期望的。当作为饲料或燃料时,饱和脂肪酸在低温时出现浑浊,而且带来差的低温流动性,例如对于燃料来说是流点和冷滤器堵塞点。含有低饱和脂肪酸的油产品可能是消费者和食品工业所优选的,因为它们被认为是较健康的和/或按照FDA规则被贴上“无饱和脂肪”的标签。还有,对于食品的应用如色拉油,低饱和脂肪酸油减少或消除了使该油防冻的需求。在生物柴油和润滑油的应用方面,含有低饱和脂肪酸的油赋予了改进的低温流动特性并且在低温时不会发生浑浊。
调控特定油的物理特性的因素是复杂的。在室温状态,棕榈酸、硬脂酸和其它饱和脂肪酸典型呈固态,相反对于不饱和脂肪酸来说,其呈现液态。因为饱和脂肪酸在其酰基链上没有双键,在温度升高时能够对氧化作用保持稳定。在人造黄油和巧克力配方中饱和脂肪酸是重要的成分,但在许多食品应用方面,降低饱和脂肪酸则是期望的。
油酸有一个双键,但其在高温时依然能够保持相对的稳定。含有高水平油酸的油适宜烹调和需要加热的其它操作。最近推荐多使用高油酸的油,因为油酸显示出较低血液水平的低密度脂蛋白(“LDLs”)同时又不影响高密度脂蛋白(“HDLs”)的水平。但是对油酸水平的一定程度的限制也是期望的,因为当油酸在高温降解时,会产生味道不佳的化合物同时降低了亚油酸氧化产生的好味道。Neff et al.,JAOCS,77:1303-1313(2000);Warner etal.,J.Agric.Food Chem.49:899-905(2001)。优选的油含有65-85重量%或更低的油酸水平,以限制食品应用如煎炸油或煎炸食物的不佳味道。其它优选的油含有大于55重量%的油酸以提高氧化稳定性。
亚油酸是食物中主要的不饱和脂肪酸而且是人体的必需营养成分。它是许多食物应用的理想成分,因为它是煎炸食物风味物质例如2,4癸二烯醛的主要前体物质,能使煎炸食物味道较好。但是,在加热时亚油酸的稳定性有限。优选的食物油其亚油酸的水平是10重量%或更高,以提高理想煎炸食品风味物质的形成,也可以是25重量%或更低,以减少异味的形成。亚油酸也有降低胆固醇的特性,尽管饮食过量会降低人细胞保护自身从而抗氧化损伤的能力,由此加大了心血管疾病的危险。Toborek et al.,Am J.Clin.J.75:119-125(2002)。一般参见FlavorChemistry of Lipid Foods,编者D.B.Min & T.H Smouse,Am OilChem.Soc.,Champaign,IL(1989)。
亚油酸与油酸相比有较低的熔点,能够进一步改善低温流动性,这在生物柴油和生物润滑剂应用方面是期望的。用于大多数用途的优选油的亚油酸水平为30重量%或更低,因为亚油酸的氧化限制了煎炸油、食物、饲料、燃料和润滑剂产品的保质期或使用期。一般参见PhysicalProperties of Fats,Oils,and Emulsifiers,ed.N.Widlak,AOCS Press(1999);Erhan & Asadauskas,Lubricant Basestocks from Vegetable Oils,IndustrialCrops and Products,11:277-282(2000)。此外,牛饲料中的高亚油酸水平会导致奶牛牛乳中不期望的高水平亚油酸以及由此导致的差的氧化稳定性和口味。Timmons et al.,J.Dairy Sci.84:2440-2449(2001)。广泛有用的油组成中具有10-25重量%的亚油酸水平。
亚麻酸也是人类食物中的重要成分。它用于合成长链脂肪酸的ω-3家族和来源于它的前列腺素。但是它的双键对氧化是高度易感性的,这样含有高水平亚麻酸的油暴露于空气中时,特别在高温时会很快变质。在可以用于食品之前,这些油的部分氢化通常是必需的,以抑制油加热时异味和恶臭的形成,但是氢化会产生不利健康的反式脂肪酸,它们会导致心血管疾病。为了获得改进的氧化稳定性和减少对氢化油的需要,优选的油的亚麻酸水平是本发明的油中总脂肪酸的8重量%或更低,6重量%或更低,4%或更低,低于大约3%,更优选0.5-2重量%。
本发明的大豆油也可以用作掺混源,用于制备掺混的油产品。掺混源表示本发明的大豆油可以与其它植物油混合,以改进其它油的特征,如脂肪酸组成、味道和氧化稳定性。可以使用的本发明的大豆油的量取决于要在得到的最终掺混油产品中实现的所需特性。掺混油产品的实例包括但不限于人造黄油、起酥、煎炸油、色拉油等。本发明的大豆油可以是掺混油、合成油或在一个优选实施方案中,是由具有合适油组成的油籽产生的油。直接从油籽产生的油是非掺混油。另一方面,油是直接来自成熟的油籽。在此方面,成熟的种子定义为在大田中收获的、用于商业农业实践,例如出售用于饲料的种子。在一个优选实施方案中,油是大豆油。油可以是粗油,如粗大豆油,或可以是加工的油,例如,油可以是精制的、漂白的、除臭的、和/或防冻的。本文用到的“精制”是指处理天然或加工的脂肪或油以除去杂质的过程,并且可以通过用腐蚀性苏打处理脂肪或油,然后离心,用水洗涤,并且真空下加热而实现。“漂白”是指处理脂肪或油以除去或减少脂肪或油中的着色材料水平的过程。漂泊可以通过用活性炭或富勒(硅藻)土处理脂肪或油而实现。“除臭”是指从脂肪或油除去给终产品带来讨厌的味道或气味的成分的过程,并且可以通过使用高真空和过热的蒸气洗涤而实现。“防冻”是指从油除去饱和甘油酯的过程,并且可以通过冷却和从油除去脂肪的凝固部分而实现。
本发明优选的油具有低饱和脂肪酸油组成,或零饱和脂肪酸油组成。在其它优选实施方案中,本发明的油具有提高的油酸水平、降低的饱和脂肪酸水平和降低的多不饱和脂肪酸水平。在进一步优选的实施方案中,油是大豆油。本文中的脂肪酸含量百分比或脂肪酸水平是指重量百分比。
在第一个实施方案中,本发明的油优选具有55-80%油酸,大约12-43%多不饱和脂肪酸,和2-8%饱和脂肪酸的油组成;更优选具有55-80%油酸,大约14-42%多不饱和脂肪酸,和3-6%饱和脂肪酸的油组成;甚至更优选具有55-80%油酸,大约16.5-43%多不饱和脂肪酸,和2-3.6%饱和脂肪酸的油组成。
在第二个实施方案中,本发明的油优选具有65-80%油酸,大约12-33%多不饱和脂肪酸,和2-8%饱和脂肪酸的油组成;更优选具有65-80%油酸,大约14-32%多不饱和脂肪酸,和3-6%饱和脂肪酸的油组成;甚至更优选具有65-80%油酸,大约16.5-33%多不饱和脂肪酸,和2-3.6%饱和脂肪酸的油组成。
在第三个实施方案中,本发明的油优选具有大约42-大约85%油酸和大约8%-大约1.5%饱和脂肪酸的油组成;更优选地,油组成进一步具有等于总油组成的大约65重量%-大约95重量%的油酸和亚油酸的组合量。甚至更优选地,本发明的油组成具有等于总油组成的大约75重量%-大约90重量%,大约75重量%-大约95重量%,大约75重量%-大约85重量%,大约65重量%-大约90重量%,大约70重量%-大约90重量%的油酸和亚油酸的组合量。
在第四个实施方案中,本发明的油具有大约42-大约85%油酸,大约8%-大约1.5%饱和脂肪酸,大约6%-大约15重量%亚麻酸的油组成;更优选具有大约42-大约85%油酸,大约8%-大约1.5%饱和脂肪酸,少于35重量%亚麻酸的油组成;甚至更优选具有大约42-大约85%油酸,大约8%-大约1.5%饱和脂肪酸,大约9重量%亚麻酸的油组成。
在第五个实施方案中,本发明的油具有大约50%-大约85%油酸和大约8%-大约1.5%饱和脂肪酸的油组成;更优选大约50%-大约85%油酸,大约8%-大约1.5%饱和脂肪酸,大约4重量%-大约14重量%亚麻酸的油组成;更优选具有大约50%-大约85%油酸,大约8%-大约1.5%饱和脂肪酸,少于35重量%亚麻酸的油组成;甚至更优选具有大约42-大约85%油酸,大约8%-大约1.5%饱和脂肪酸,大约2重量%-大约45重量%亚麻酸的油组成。
在另一实施方案中,本发明的油具有大约65-80%油酸,大约3-8%饱和脂肪酸,和大约12-32%多不饱和脂肪酸的油组成。在另一实施方案中,本发明的油具有大约65-80%油酸,大约2-3.5%饱和脂肪酸,和大约16.5-33%多不饱和脂肪酸的油组成。
在一个特别优选的实施方案中,本发明的油具有以下油组成:大约47-83%油酸和大约5%饱和脂肪酸;大约60-80%油酸和大约5%饱和脂肪酸;大约50-85%油酸和大约2-7%饱和脂肪酸;大约55-85%油酸和大约2.5-7%饱和脂肪酸;大约47-88%油酸和大约3-7%饱和脂肪酸;大约43-85%油酸和大约5-7%饱和脂肪酸;大约81-85%油酸和大约5%饱和脂肪酸;大约74-83%油酸和大约6%饱和脂肪酸;大约65-87%油酸和大约6%饱和脂肪酸;大约66-80%油酸和大约6%饱和脂肪酸;大约42-77%油酸和大约5-8%饱和脂肪酸;大约60-77%油酸和大约6%饱和脂肪酸;大约70-81%油酸和大约5-7%饱和脂肪酸;大约52-71%油酸和大约5-7%饱和脂肪酸;大约44-71%油酸和大约6%饱和脂肪酸;大约61-71%油酸和大约8%饱和脂肪酸;大约57-71%油酸和大约7%饱和脂肪酸;大约23-58%油酸和大约8-14%饱和脂肪酸;大约20-70%油酸和大约6%饱和脂肪酸;大约21-35%油酸和大约5-6%饱和脂肪酸;或大约19-28%油酸和大约5%饱和脂肪酸。
在其它实施方案中,油酸的百分比是50%或更高;55%或更高;60%或更高;65%或更高;70%或更高;75%或更高;或80%或更高;或以下范围:50-80%;55-80%;55-75%;55-65%;60-85%;60-80%;60-75%;60-70%;65-85%;65-80%;65-75%;65-70%;或69-73%。本发明的油中的油酸含量的合适百分比范围也包括这样的范围,即其中下限选自以下百分比:50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,或80%;并且上限选自以下百分比60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89或90%。
在这些其它的实施方案中,本发明的油中的亚油酸的百分比是以下范围:10-40%;10-39%;10-30%;10-29%;10-28%;10-25%;10-21%;10-20%;11-30%;12-30%;15-25%;20-25%;20-30%;或21-24%。本发明的油中亚油酸含量的合适百分比范围也包括这样的范围,即其中下限选自以下百分比:10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29或30%,并且上限选自以下百分比:20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39或40%。
在这些其它的实施方案中,本发明的油中的亚麻酸百分比是10%或更低;9%或更低;8%或更低;7%或更低;6%或更低;5%或更低;4.5%或更低;4%或更低;3.5%或更低;3%或更低;3.0%或更低;2.5%或更低;或2%或更低;或是以下范围:0.5-2%;0.5-3%;0.5-4.5%;0.5%-6%;3-5%;3-6%;3-8%;1-2%;1-3%;或1-4%。在这些其它的实施方案中,本发明的油组成中的饱和脂肪酸是15%或更低;14%或更低;13%或更低;12%或更低,11%或更低;10%或更低;9%或更低;8%或更低;7%或更低;6%或更低;5%或更低;4%或更低;或3.6%或更低;或是以下范围:2-3%;2-3.6%;2-4%;2-8%;3-15%;3-10%;3-8%;3-6%;3.6-7%;5-8%;7-10%;或10-15%。
在其它实施方案中,本发明的油中的饱和脂肪酸包括棕榈酸和硬脂酸的组合。在一种实施方案中,饱和脂肪酸的百分比范围是大约10%或更低;大约9%或更低;大约8%或更低;大约7%或更低;大约6%或更低;大约5%或更低;大约4.5%或更低;大约4%或更低;大约3.5%或更低;大约3%或更低;大约3.0%或更低;大约2.5%或更低;或大约2%或更低;或范围是0.5-2%;0.5-3%;0.5-4.5%;0.5-6%;0.5-7%;0.5-8%;0.5-9%;1-4%;1-5%;1-6%;1-7%;1-8%;1-9%;1.5-5%;1.5-6%;1.5-7%;1.5-8%;1.5-9%;2-5%;2-6%;2-7%;2-8%;2-9%;3-5%;3-6%;3-7%;3-8%;3-9%;4-7%;4-8%;4-9%;5-7%;5-8%;和5-9%。在这些实施方案中,本发明的油中饱和脂肪酸含量的合适百分比范围也包括这样的范围,即其中下限选自以下百分比:0.5,1,1.5,2.,2.5,3,3.5,4,4.5,5,5.5,6,或6.5%,并且上限选自以下百分比:11,10,9,8,7,6,5,4.5,4,3.5,3,2.5,2,1.5,1,或0.5%。
在其它实施方案中,本发明的油组成中的棕榈酸的百分比范围是6%或更低;5%或更低;4.5%或更低;4%或更低;3.5%或更低;3%或更低;3.0%或更低;2.5%或更低;或2%或更低;或是以下范围:0.5-2%;0.5-3%;0.5-4.5%;0.5-6%;1-3%;1-4%;1-5%;1-6%;1.5-2%;1.5-3%;1.5-4%;1.5-4.5%;1.5-5%;1.5-5.5%;1.5-6%;1.5-6.5%;1.5-7%;2-3%;2-3.5%;2-4%;2-4.5%;2-5%;2-6%;2-7%;2-8%;3-5%;3-6%;3-7%;3-8%;3-9%。在这些实施方案中,本发明的油中亚油酸的合适百分比范围也包括这样的范围,即其中下限选自以下百分比:0.5,1,1.5,2.,2.5,3,3.5,4,4.5,5,5.5,6,6.5,7或7.5%;并且上限选自以下百分比:11,10,9,8,7,6,5,4.5,4,3.5,3,或2%。
在其它实施方案中,本发明的油组成中的硬脂酸的百分比范围是3%或更低;3.0%或更低;2.5%或更低;或2%或更低;或是以下范围:0.5-1%;0.5-1.5%;0.5-2%;0.5-2.5%;0.5-3%;0.5-4%;1-2%;1-3%;1-4%;1.5-2%;1.5-3%;或1.5-4%。在这些实施方案中,本发明的油中亚油酸的合适百分比范围也包括这样的范围,即其中下限选自以下百分比:0.5,1,1.5,2.,2.5,3,或3.5%;并且上限选自以下百分比:3.5,3,2.5,2,或1.5%。
本发明的油特别适合用作烹调或煎炸油。由于其降低的多不饱和脂肪酸含量,本发明的油不需要典型油的广泛加工,因为其存在较少的讨厌的气味和有色化合物。而且,本发明的油的低饱和脂肪酸含量改善了油的低温流动特性,而且避免了加热储存油以防其结晶或固化的需要。改善的低温流动性还提高了当煎炸食品材料从煎炸油取出时油从煎炸食品材料内的排出,因此获得较低脂肪的食品。参见Bouchon et al.,J.Food Science 66:918-923(2001)。本发明的油中低水平的亚麻酸在煎炸中是特别有用的,即减少异味。
本发明的油也特别适合作为色拉油(在华氏40-50度的冰箱温度下能保持澄清的油)。由于其低饱和脂肪酸和中等的亚油酸含量,其在冰箱温度下具有改善的澄清度,减少或消除了在作为色拉油使用之前使油防冻的需要。
而且,本发明的油的中等的油酸含量和低亚麻酸含量使其非常适合生产用于食料的起酥、人造黄油和其它半固体植物脂肪。这些脂肪的生产典型地包括不饱和油,例如大豆油、玉米油或油菜油的氢化。该油的提高的氧化稳定性和口味稳定性是指它不需要氢化到典型植物油用于诸如人造黄油和起酥的用途时需要的程度,从而减少加工成本和不健康的反式异构体的产生。
本发明的油也适宜用作给料(feedstock),以生产生物柴油,特别是因为用此油制造的生物柴油具有改善的低温流动性、改善的点燃质量(十六烷数目)、改善的氧化稳定性和降低的一氧化氮排放量。生物柴油是一种替代的柴油燃料,通常包括饱和、单不饱和和多不饱和C16-C22脂肪酸的甲酯。十六烷的数目是点燃质量的检测标准——发动机中燃料的点燃延迟时间越短,十六烷数目越高。生物柴油燃料的ASTM标准规则(D6751-02)要求的最少十六烷数目是47。
在传统的柴油发动机中使用生物柴油与使用石油柴油燃料相比导致了污染物例如硫酸盐、一氧化碳和颗粒物质的显著减少,并且在校车中使用生物柴油能够极大地减少孩子们暴露于有毒柴油尾气。限制使用100%传统生物柴油作燃料是因为与2号柴油(-16℃)相比,传统大豆生物柴油的浊点高(2℃)。Dunn et al.,Recent.Res.Devel.in OilChem.,1:31-56(1997)。用本发明油制备的生物柴油有提高的(降低的)浊点和冷滤器堵塞点,并且也可以掺混使用以改善由便宜的但高饱和的脂肪来源,例如动物脂肪(动物脂、猪油、鸡脂肪)和棕榈油制成的生物柴油的低温特性。生物柴油也可以与任何水平的石油柴油掺混。
生物柴油通常是通过提取、过滤和精制大豆油以去除游离脂肪和磷脂,然后用甲醇对油进行酯交换以形成脂肪酸甲酯而获得的。参见例如美国专利号5,891,203。得到的大豆甲酯通常称作“生物柴油”。本发明的油也可以用作没有甲酯形成的柴油燃料,例如通过混合缩醛与该油。参见例如美国专利号6,013,114。由于改善的低温流动性和氧化稳定性,本发明的油也适宜用作润滑剂和柴油燃料的添加剂。参见例如美国专利号5,888,947;5,454,842;和4,557,734。
本发明的大豆和油也适宜用于各种豆制品,该豆制品由完整的大豆制作,例如豆奶、大豆坚果奶油、水豆豉和印尼豆豉,以及经过加工的大豆和大豆油制作的豆制品,包括大豆粗粉、大豆粉、大豆蛋白浓缩物、大豆蛋白分离物、构造的大豆蛋白浓缩物、氢化的大豆蛋白、生奶油、烹调油、色拉油、起酥和卵磷脂。完整的大豆也是可食用的而且通常以未加工的、烘烤的形式,或作为日本大豆(edamamé)出售给消费者。通常通过浸泡和磨碎完整大豆而生产的豆奶可以直接食用、喷雾干燥或加工形成大豆酸奶、大豆奶酪、豆腐或腐竹。本发明的大豆或油可以有利地用于这些和其它豆制品,这是由于其改善的氧化稳定性、异味前体物质的减少和它的低饱和脂肪酸水平。
G.抑制的调节
本发明的另一实施方案涉及调节基因抑制水平的方法。基因抑制的调节可以导致更高或更低的基因抑制。基因产物的抑制可以由于本发明的构建体插入植物基因组而导致。类似地,基因抑制的调节可以是本发明的构建体插入植物基因组的结果。调节基因抑制的方法的其它实例包括但不限于反义技术、共抑制、RNA干扰(dsRNAi)、转基因动物、杂交、和采用本发明的构建体的核酶。以下实例是通过举例的反式提供的,不意欲限制本发明。
可以通过改变用于抑制的可转录DNA的长度而调节基因的抑制,所述DNA序列来源于被靶定用于抑制的基因。采用转录后基因沉默机制,很多方法可以用于抑制基因。不限制于特定理论,认为这些方法共同具有RNA分子的表达,所述RNA分子与另一RNA分子杂交。出乎意料地,采用具有特定长度的RNA分子来调节或缓和被靶定的内源基因的稳态表达水平是有利的。
FAD2-1的基因抑制导致油酸水平升高和亚油酸水平降低。当FAD2-1被重度抑制时,油酸水平可以高于65%,这导致棕榈酸和亚麻酸水平降低。例如,当FAD2-1被抑制时,油酸水平可以达到85%,棕榈酸和硬脂酸的组合水平减少到大约10%。类似地,FATB的下调导致饱和脂肪酸,主要是棕榈酸的水平降低。当FAD2和FATB被抑制使得油酸水平是大约85%时,饱和脂肪酸的水平是大约10%。当FAD2和FATB被抑制,使得油酸水平高于85%时,饱和脂肪酸水平可以降低到10%以下。
根据本发明,饱和脂肪酸水平可以降低到10%以下,而不使油酸高于85%。在一个实施方案中,FAD2的抑制是通过减少导入植物中的FAD2-1内含子的长度而调节的。FAD2的较少抑制导致中等水平的油酸,大约是40-85%油酸。FAD2的抑制随着导入的FAD2-1内含子片段长度减少而减少。例如,FAD2-1内含子的长度减少至少100个连续核苷酸,可以减少FAD2的抑制,以及油酸的相应增加和亚油酸水平的相应降低。
可以通过导入不同长度的DNA,经验确定内源基因抑制的减少和同源DNA长度减少之间的关系。例如,通过去除导入的同源DNA的增加部分,并且测定靶基因的表达,可以确定通过减少导入的同源DNA的长度可以获得的抑制的减少量。
本发明包括用于调节FAD2的抑制同时在植物中仍然具有饱和脂肪酸水平的强降低的方法。在所述植物中,油酸水平可以是40-85%。类似地,与将全长FATB基因导入宿主细胞时相比,当导入组合的3’和5’非翻译区时,发生FATB的不够完全的抑制。以相似的方式,当将大多数情况下编码叶绿体转运肽的可读框的5’部分导入宿主细胞时,FATB的抑制水平降低。在用本发明的方法对FAD2和FATB进行了抑制的细胞中,油酸水平可以是40-85%,而饱和脂肪酸水平可以是1-9%。
在一个实施方案中,本发明涉及调节基因抑制,以便相对于完整基因元件的抑制而减少抑制的方法,其中完整基因元件可以是完整基因、完整外显子、完整内含子、完整信号序列,或完整UTR,然后构建包含来自基因元件的内源序列的片段的重组核酸分子;起始宿主细胞中的重组核酸分子表达;并且用重组核酸分子抑制内源基因。被抑制的基因可以是任何基因,包括FAD2和FATB。在一个实施方案中,本发明涉及调节FAD2或FATB抑制的方法,包括:在宿主细胞中表达部分FAD2或FATB基因元件序列,其中所述FAD2或FATB基因元件来自宿主细胞中的FAD2或FATB基因,并且FAD2或FATB基因元件序列可以是FAD2或FATB基因、FAD2或FATB外显子、FAD2或FATB内含子、FAD2或FATB转运肽编码区,或FAD2或FATB UTR;并且部分FAD2或FATB基因元件序列少于完整的FAD2或FATB基因元件序列;并且用部分FAD2或FATB基因元件序列抑制内源FAD2或FATB,其中宿主细胞中的FAD2或FATB内源基因的抑制水平少于具有相似遗传背景和包含FAD2或FATB基因元件的完整FAD2或FATB基因元件序列的第二FAD2或FATB核酸序列的宿主细胞中的FAD2或FATB内源基因的抑制水平。
在另一实施方案中,本发明涉及改变植物细胞的油组成的方法,该方法是通过:用重组核酸分子转化植物细胞,所述核酸分子包含抑制FAD2、FATB或FAD2和FATB的内源表达的DNA序列,其中所述DNA序列包含FAD2,FATB或FAD2和FATB的核酸序列,所述序列短于选自下组的完整遗传元件的完整序列:基因、外显子、内含子、转运肽编码区、3’-UTR、5’-UTR和可读框;并且在起始所述DNA序列的转录的条件下使植物细胞生长,从而相对于具有相似遗传背景但缺乏重组核酸分子的植物细胞而改变油组成。FAD2或FATB的基因元件的长度可以缩短50,75,100,150,175,200,250,300,350,400,450,500,600,800,1000,2000,3000或4000个核苷酸。FAD2或FATB的基因元件的长度可以是50,75,100,150,175,200,220,250,300,320,350,400,420,450,500,550600,800或1000个核苷酸。
在另一实施方案中,本发明涉及提高植物种子中的油酸含量并且降低植物种子中的饱和脂肪酸含量的方法,该方法是通过:i)缩短宿主细胞中外源FAD2DNA序列的长度,直到转化的植物的FAD2表达的抑制量相对于具有相似遗传背景和完整外源FAD2基因DNA序列的宿主细胞中FAD2表达的抑制至少部分减少;和ii)使具有饱和缩短的FAD2DNA序列的核酸分子的植物生长,其中缩短的FAD2DNA序列至少部分抑制FAD2的内源表达;和iii)栽培植物,所述植物产生的种子相对于来自具有相似遗传背景但缺乏缩短的FAD2DNA序列的植物的种子,具有减少的饱和脂肪酸含量。可以通过导入不同长度的DNA,经验确定外源FAD2DNA序列缩短从而至少部分减少内源FAD2的抑制的量。例如,通过去除导入的同源DNA的增加部分,并且测定靶基因的表达,可以确定通过减少导入的同源DNA长度可获得的抑制减少量。可以获得作为来自植物的3个或更多、6个或更多、10个或更多、15个或更多,或20个或更多个种子的平均值的FAD2表达的抑制量。
在另一实施方案中,本发明涉及生产转化的植物的方法,所述植物具有减少的饱和脂肪酸含量的种子,该方法是通过:用包含抑制FAD2和FATB的内源表达的DNA序列的重组核酸分子转化植物细胞,其中所述DNA序列包含FAD2的核酸序列,所述序列短于选自下组的完整遗传元件的完整序列:基因、外显子、内含子、转运肽编码区和UTR;并且使转化的植物生长,其中转化的植物产生的种子相对于具有相似遗传背景但缺乏所述重组核酸分子的植物的种子,具有减少的饱和脂肪酸含量。
在另一实施方案中,本发明涉及调节来自温代油籽作物的种子的油的脂肪酸组成的方法,该方法是通过:分离长度为至少40个核苷酸、能够抑制脂肪酸合成途径中内源基因表达的遗传元件;制备所述遗传元件的一个以上缩短的片段;将所述一个以上缩短的片段的每一个导入温代油籽作物的植物细胞中,以生产转基因植物;并且选择转基因植物,所述植物包含确定长度的缩短的片段和实现种子油脂肪酸组成的需要的改变的序列。在一个优选实施方案中,上述方法也包括构建重组DNA构建体,其具有两个不同内源基因的至少两个缩短的片段,所述片段实现种子油脂肪酸组成的不同的需要的改变;将重组DNA构建体导入温代油籽作物的植物细胞中,以生产转基因植物;并且选择转基因植物,所述植物包含所述至少两个缩短的片段和来自一种种子的油的脂肪酸组成,所述种子具有通过所述至少两个缩短的片段实现的一种以上需要的改变。
在另一实施方案中,本发明涉及大豆种子,其油组成具有显著减少的饱和脂肪酸含量和中度提高的油酸含量,所述种子具有抑制宿主细胞中FAD2的内源表达的DNA序列,其中所述DNA序列具有FAD2的核酸序列,所述序列短于选自下组的完整遗传元件的完整序列:基因、外显子、内含子、转运肽编码序列和UTR。
以下实施例是说明性的,不意欲以任何方式进行限制。
在此通过引用将说明书中提到的所有公开文件、专利和专利申请并入本文,其程度如同特别和单独指出通过引用将每篇单独的公开文件、专利和专利申请并入本文。
实施例
实施例1FATB-2序列的分离
从Asgrow大豆品种A3244获得叶组织,在液氮中研磨,在-80℃保存备用。将6mlSDS提取缓冲液(650ml无菌ddH20,100ml 1M Tris-ClpH8,100ml 0.25M EDTA,50ml 20%SDS,100ml 5M NaCl,4μl β-巯基乙醇)加入2ml冷冻/研磨的叶组织,将混合物在65℃下温育45分钟。每15分钟振荡样品。将2ml冰冷的5M醋酸钾加入样品中,振荡样品,然后在冰上温育20分钟。将3ml CHCl3加入样品,将样品振荡10分钟。
以10,000rpm将样品离心20分钟,收集上清液。将2ml异丙醇加入上清液,并且混合。然后以10,000rpm将样品离心20分钟,吸去上清液。将沉淀重悬于200μl RNA酶中,65℃下温育20分钟。加入300μl醋酸铵/异丙醇(1:7)并且混合。然后10,000rpm下将样品离心15分钟,弃去上清液。用500μl80%乙醇冲洗上清液,空气中干燥。然后将基因组DNA的沉淀物重悬于200μl T10E1(10mM Tris:1mM EDTA)中。
用大豆FATB-2cDNA重叠群序列(SEQ ID NO:42)设计13种寡核苷酸,它们跨基因:F1(SEQ ID NO:48),F2(SEQ ID NO:49),F3(SEQ IDNO:50),F4(SEQ ID NO:51),F5(SEQ IDNO:52),F6(SEQ ID NO:53),F7(SEQ ID NO:54),R1(SEQ ID NO:55),R2(SEQ ID NO:56),R3(SEQID NO:57),R4(SEQ ID NO:58),R5(SEQ ID NO:59),和R6(SEQ IDNO:60)。将寡核苷酸成对用于从分离的大豆基因组DNA进行PCR扩增:第1对(F1+R1)、第2对(F2+R1)、第3对(F3+R2)、第4对(F4+R3)、第5对(F5+R4)、第6对(F6+R5)和第7对(F7+R6)。如下进行第5对的PCR扩增:1个循环,95℃下10分钟;30个循环,95℃下15秒,43℃下30秒,72℃下45秒;1个循环,72℃下7分钟。对于所有其它的寡核苷酸对,PCR扩增如下进行:1个循环,95℃下10分钟;30个循环,95℃下15秒,48℃下30秒,72℃下45秒;1个循环,72℃下7分钟。从引物对1、2、4、5、6和7获得阳性片段。将每个片段克隆到载体pCR2.1(Invitrogen)中。证实片段2、4、5和6,并且测序。对这4个序列进行比对,以形成FATB-2基因(SEQ ID NO:43)的基因组序列。
通过比较基因组序列与cDNA序列,在大豆FATB-2基因中鉴定了四种内含子:内含子I(SEQ ID NO:44)跨基因组序列(SEQ ID NO:43)的碱基119-碱基1333,并且长度是1215bp;内含子II(SEQ ID NO:45)跨基因组序列(SEQ ID NO:43)的碱基2231-碱基2568,并且长度是338bp;内含子III(SEQ ID NO:46)跨基因组序列(SEQ ID NO:43)的碱基2702-碱基3342,并且长度是641bp;内含子IV(SEQ ID NO:47)跨基因组序列(SEQ ID NO:43)的碱基3457-碱基3823,并且长度是367bp。
实施例2抑制构建体
2A.FAD2-1构建体
将FAD2-1A内含子#1(SEQ ID NO:1)以有义和反义方向克隆到表达盒pCGN3892中。载体pCGN3892含有大豆7S启动子和豌豆rbcS3’。然后将两个基因融合体分别连接到pCGN9372中,所述pCGN9372是含有受FMV启动子调节的CP4EPSPS基因的载体。将得到的表达构建体(pCGN5469有义和pCGN5471反义)用于转化大豆。
将FAD2-1B内含子(SEQ ID NO:2)分别以有义和反义方向融合于质粒pCGN5468(含有与FAD2-1A内含子(有义)和豌豆pea rbcS 3’融合的大豆7S启动子)或pCGN5470(含有与FAD2-1A内含子(反义)和豌豆pea rbcS 3’融合的大豆7S启动子)中的FAD2-1A内含子#1的3’末端。然后将得到的内含子组合融合体分别连接到pCGN9372中,所述pCGN9372是含有受FMV启动子调节的CP4 EPSPS基因的载体。将得到的表达构建体(pCGN5485、FAD2-1A和FAD2-1B内含子有义和pCGN5486、FAD2-1A和FAD2-1B内含子反义)用于转化大豆。
2B.FAD3-1构建体
将FAD3-1A内含子#1,#2,#4和#5(分别是SEQ ID NOs:7,8,10和11),FAD3-1B内含子#3C(SEQ ID NO:23)和#4(SEQ ID NO:24)都以有义或反义方向分别连接到pCGN3892中。pCGN3892含有大豆7S启动子和豌豆rbcS 3’。将这些融合体连接到pCGN9372中,所述pCGN9372是用于转化到大豆中的、含有受FMV启动子调节的CP4EPSPS基因的载体。将得到的表达构建体(pCGN5455,FAD3-1A内含子#4有义;pCGN5459,FAD3-1A内含子#4反义;pCGN5456,FAD3内含子#5有义;pCGN5460,FAD3-1A内含子#5反义;pCGN5466,FAD3-1A内含子#2反义;pCGN5473,FAD3-1A内含子#1反义)用于转化大豆。
2C.FatB构建体
采用FATB-1部分基因组克隆作为模板,通过PCR扩增大豆FATB-1内含子II序列(SEQ ID NO:30)。如下进行PCR扩增:1个循环,95℃下10分钟;25个循环,95℃下30秒,62℃下30秒,72℃下30秒;1个循环,72℃下7分钟。PCR扩增得到854bp长的产物,包括位于两端的重新工程化的限制位点。通过工程化到PCR引物5’末端上的XhoI位点,以有义方向将PCR产物直接克隆到表达盒pCGN3892中,形成pMON70674。载体pCGN3892含有大豆7S启动子和豌豆rbcS 3’。然后用NotI切割pMON70674,并且连接到pMON41164中,所述pMON41164是含有受FMV启动子调节的CP4 EPSPS基因的载体。将得到的基因表达构建体pMON70678用于采用土壤杆菌方法转化大豆。
建立了含有大豆FATB-1内含子II序列(SEQ ID NO:30)的两个其它的表达构建体。用NotI切割pMON70674,并且连接到含有受FMV启动子调节的CP4EPSPS基因和受油菜籽蛋白启动子调节的KASIV基因的pMON70675中,得到pMON70680。然后用SnaBI切割表达载体pMON70680,以有义方向与受7S启动子调节的加州西蒙得木Δ-9去饱和酶基因(SEQ ID NO:41)的基因融合体连接。将表达构建体pMON70680和pMON70681用于采用土壤杆菌方法转化大豆。
2D.组合构建体
制备含有第一组DNA序列的各种排列的表达构建体。第一组DNA序列是任意所描述的,或示于图5和6,或任意其它组DNA序列,它们含有有义、反义或有义和反义FAD2,FAD3和FATB非编码区或编码区的多种组合,使得它们能够形成dsRNA构建体、有义共抑制构建体、反义构建体、或前述的各种组合。
图5(a)-(c)描述了一些第一组DNA序列,它们能够表达本发明的有义共抑制或反义构建体,它们的非编码序列描述于下文表1和2。非编码序列可以是单个序列、序列的组合(如连接于3’UTR的5’UTR),或前述的任意组合。为了表达有义共抑制构建体,所有非编码序列都是有义序列,并且为了表达反义构建体,所有非编码序列是反义序列。图5(d)描述了第一组DNA序列,其能够表达本发明的有义和反义构建体。
图6(a)-(c)描述了一些第一组DNA序列,它们能够表达本发明的dsRNA构建体,它们的非编码序列描述于下文表1和2。图6中描述的第一组DNA序列包含相关的有义和反义序列对,它们的排列使得例如第一有义序列表达的RNA能够与第一反义序列表达的反义RNA形成双链RNA。例如,参照图6(a)和示例的1号组合(表1),第一组DNA序列包含有义FAD2-1序列、有义FAD3-1序列、反义FAD2-1序列和反义FAD3-1序列。两个反义序列都与有义序列相对应,使得第一组DNA序列的表达产物能够彼此形成双链RNA。有义序列可以与反义序列通过间隔序列隔开,间隔序列优选是促进dsRNA分子形成的序列。所述间隔序列的实例包括Wesley et al.,supra,和Hamilton et al.,Plant J.,15:737-746(1988)中阐述的间隔序列。启动子是任何在植物中有功能的启动子,或任何植物启动子。合适的启动子的非限制性实例描述于发明详述的D部分。
采用多种DNA操作技术,将第一组DNA序列以有义或反义方向插入表达构建体中。如果DNA序列中存在方便的限制位点,则通过用限制性内切核酸酶消化,并且连接到已经在一个或多个可获得的克隆位点被消化的构建体中,将所述限制位点插入表达构建体。如果DNA序列中不存在方便的限制位点,则以多种方式修饰构建体的DNA或修饰DNA序列,以促进DNA序列克隆到构建体中。修饰DNA的方法的实例包括通过PCR、合成的接头,或衔接子连接、体外定点诱变、5’或3’突出端的填充或切除等。这些和其它操作DNA的方法是本领域技术人员公知的。
pMON97552含有大豆7Sα’启动子,其可操作性连接于大豆FAD2-1A内含子1(SEQ IDNO:1),该内含子1从3’末端减少140个连续核苷酸,该内含子1可操作性连接于FATB-1a5’UTR的42个连续核苷酸,后面是FATB-1aCTP编码区,该编码区可操作性连接于FAD3-1A内含子4的70个核苷酸,所述内含子4可操作性连接于反义方向的FATB-1aCTP编码区,后面是反义方向的FATB-1a5’UTR的42个连续核苷酸,后面是大豆FAD2-1A内含子1(SEQ ID NO:1),其从3’末端减少140个连续核苷酸并且是反义方向,该内含子1可操作性连接于H63’聚腺苷酸化片段,该片段中具有可操作性连接于EFMV启动子和豌豆Rubisco E93’终止序列的CP4EPSPS基因,它们都侧接RB和LB。将得到的基因表达构建体用于采用本文描述的方法进行转化。
pMON93758含有大豆7Sα’启动子,其可操作性连接于大豆FAD2-1A内含子1(SEQ IDNO:1),该内含子1从5’末端减少160个连续核苷酸并且连接于FATB-1a3’UTR,后面是FATB-1a5’UTR,其可操作性连接于FAD3-1A内含子4的70个核苷酸,所述内含子4可操作性连接于反义方向的FATB-1a5’UTR,后面是反义方向的FATB-1a3’UTR,后面是大豆FAD2-1A内含子1(SEQ ID NO:1),该内含子1从5’末端减少160个连续核苷酸并且是反义方向的,该内含子1可操作性连接于H63’聚腺苷酸化片段,该片段中具有可操作性连接于EFMV启动子和豌豆Rubisco E93’终止序列的CP4EPSPS基因,它们都在同一DNA分子上侧接RB和LB。将得到的基因表达构建体用于采用本文描述的方法进行转化。
pMON97553含有大豆7Sα’启动子,其可操作性连接于大豆FAD2-1A内含子1(SEQ IDNO:1),该内含子1从3’末端减少200个连续核苷酸并且连接于FATB-1a 5’UTR的42个连续核苷酸,后面是FATB-1aCTP编码区,该编码区可操作性连接于FAD3-1A内含子4的70个核苷酸,所述内含子4可操作性连接于反义方向的FATB-1aCTP编码区,后面是反义方向的FATB-1a5’UTR的42个连续核苷酸,后面是大豆FAD2-1A内含子1(SEQ ID NO:1),其从3’末端减少200个连续核苷酸并且是反义方向,该内含子1可操作性连接于H6 3’聚腺苷酸化片段,该片段中具有可操作性连接于EFMV启动子和豌豆Rubisco E93’终止序列的CP4 EPSPS基因,它们都侧接RB和LB。将得到的基因表达构建体用于采用本文描述的方法进行转化。
pMON93770含有大豆7Sα’启动子,其可操作性连接于大豆FAD2-1A内含子1(SEQ IDNO:1),该内含子1从3’末端减少240个连续核苷酸并且连接于FATB-1a 3’UTR,后面是FATB-1a 5’UTR,其可操作性连接于FAD3-1A内含子4的70个核苷酸,所述内含子4可操作性连接于反义方向的FATB-1a 5’UTR,后面是反义方向的FATB-1a 3’UTR,后面是大豆FAD2-1A内含子1(SEQ ID NO:1),该内含子1从3’末端减少240个连续核苷酸并且是反义方向的,该内含子1可操作性连接于H6 3’聚腺苷酸化片段,该片段中具有可操作性连接于EFMV启动子和豌豆Rubisco E9 3’终止序列的CP4 EPSPS基因,它们都在同一DNA分子上侧接RB和LB。将得到的基因表达构建体用于采用本文描述的方法进行转化。
pMON93759含有大豆7Sα’启动子,其可操作性连接于大豆FAD2-1A内含子1(SEQ IDNO:1),该内含子1从5’末端减少240个连续核苷酸并且连接于FATB-1a 3’UTR,后面是FATB-1a 5’UTR,其可操作性连接于FAD3-1A内含子4的70个核苷酸,所述内含子4可操作性连接于反义方向的FATB-1a 5’UTR,后面是反义方向的FATB-1a 3’UTR,后面是大豆FAD2-1A内含子1(SEQ ID NO:1),该内含子1从5’末端减少240个连续核苷酸并且是反义方向的,该内含子1可操作性连接于H6 3’聚腺苷酸化片段,该片段中具有可操作性连接于EFMV启动子和豌豆Rubisco E9 3’终止序列的CP4 EPSPS基因,它们都在同一DNA分子上侧接RB和LB。将得到的基因表达构建体用于采用本文描述的方法进行转化。
pMON97554含有大豆7Sα’启动子,其可操作性连接于大豆FAD2-1A内含子1(SEQ IDNO:1),该内含子1从3’末端减少260个连续核苷酸并且连接于FATB-1a 5’UTR的42个连续核苷酸,后面是FATB-1a CTP编码区,该编码区可操作性连接于FAD3-1A内含子4的70个核苷酸,所述内含子4可操作性连接于反义方向的FATB-1a CTP编码区,后面是反义方向的FATB-1a 5’UTR的42个连续核苷酸,后面是大豆FAD2-1A内含子1(SEQ ID NO:1),其从3’末端减少260个连续核苷酸并且是反义方向,该内含子1可操作性连接于H6 3’聚腺苷酸化片段,该片段中具有可操作性连接于EFMV启动子和豌豆Rubisco E9 3’终止序列的CP4 EPSPS基因,它们都侧接RB和LB。将得到的基因表达构建体用于采用本文描述的方法进行转化。
pMON93771含有大豆7Sα’启动子,其可操作性连接于大豆FAD2-1A内含子1(SEQ IDNO:1),该内含子1从3’末端减少300个连续核苷酸并且连接于FATB-1a 3’UTR,后面是FATB-1a 5’UTR,其可操作性连接于FAD3-1A内含子4的70个核苷酸,所述内含子4可操作性连接于反义方向的FATB-1a 5’UTR,后面是反义方向的FATB-1a 3’UTR,后面是大豆FAD2-1A内含子1(SEQ ID NO:1),该内含子1从3’末端减少300个连续核苷酸并且是反义方向的,该内含子1可操作性连接于H6 3’聚腺苷酸化片段,该片段中具有可操作性连接于EFMV启动子和豌豆Rubisco E9 3’终止序列的CP4EPSPS基因,它们都在同一DNA分子上侧接RB和LB。将得到的基因表达构建体用于采用本文描述的方法进行转化。
pMON97555含有大豆7Sα’启动子,其可操作性连接于大豆FAD2-1A内含子1(SEQ IDNO:1),该内含子1从3’末端减少320个连续核苷酸并且连接于FA TB-1a 5’UTR的42个连续核苷酸,后面是FATB-1a CTP编码区,该编码区可操作性连接于FAD3-1A内含子4的70个核苷酸,所述内含子4可操作性连接于反义方向的FATB-1a CTP编码区,后面是反义方向的FATB-1a 5’UTR的42个连续核苷酸,后面是大豆FAD2-1A内含子1(SEQ ID NO:1),其从3’末端减少320个连续核苷酸并且是反义方向,该内含子1可操作性连接于H6 3’聚腺苷酸化片段,该片段中具有可操作性连接于EFMV启动子和豌豆Rubisco E9 3’终止序列的CP4 EPSPS基因,它们都侧接RB和LB。将得到的基因表达构建体用于采用本文描述的方法进行转化。
pMON93760含有大豆7Sα’启动子,其可操作性连接于大豆FAD2-1A内含子1(SEQ IDNO:1),该内含子1从5’末端减少320个连续核苷酸并且连接于FATB-1a 3’UTR,后面是FATB-1a 5’UTR,其可操作性连接于FAD3-1A内含子4的70个核苷酸,所述内含子4可操作性连接于反义方向的FATB-1a 5’UTR,后面是反义方向的FATB-1a 3’UTR,后面是大豆FAD2-1A内含子1(SEQ ID NO:1),该内含子1从5’末端减少320个连续核苷酸并且是反义方向的,该内含子1可操作性连接于H6 3’聚腺苷酸化片段,该片段中具有可操作性连接于EFMV启动子和豌豆Rubisco E9 3’终止序列的CP4 EPSPS基因,它们都在同一DNA分子上侧接RB和LB。将得到的基因表达构建体用于采用本文描述的方法进行转化。
pMON93772含有大豆7Sα’启动子,其可操作性连接于大豆FAD2-1A内含子1(SEQ IDNO:1),该内含子1从3’末端减少360个连续核苷酸并且连接于FATB-1a 3’UTR,后面是FATB-1a 5’UTR,其可操作性连接于FAD3-1A内含子4的70个核苷酸,所述内含子4可操作性连接于反义方向的FATB-1a 5’UTR,后面是反义方向的FATB-1a 3’UTR,后面是大豆FAD2-1A内含子1(SEQ ID NO:1),该内含子1从3’末端减少360个连续核苷酸并且是反义方向的,该内含子1可操作性连接于H6 3’聚腺苷酸化片段,该片段中具有可操作性连接于EFMV启动子和豌豆Rubisco E9 3’终止序列的CP4 EPSPS基因,它们都在同一DNA分子上侧接RB和LB。将得到的基因表达构建体用于采用本文描述的方法进行转化。
pMON97556含有大豆7Sα’启动子,其可操作性连接于大豆FAD2-1A内含子1(SEQ IDNO:1),该内含子1从3’末端减少380个连续核苷酸并且连接于FATB-1a 5’UTR的42个连续核苷酸,后面是FATB-1a CTP编码区,该编码区可操作性连接于FAD3-1A内含子4的70个核苷酸,所述内含子4可操作性连接于反义方向的FATB-1a CTP编码区,后面是反义方向的FATB-1a 5’UTR的42个连续核苷酸,后面是大豆FAD2-1A内含子1(SEQ ID NO:1),其从3’末端减少380个连续核苷酸并且是反义方向,该内含子1可操作性连接于H6 3’聚腺苷酸化片段,该片段中具有可操作性连接于EFMV启动子和豌豆Rubisco E9 3’终止序列的CP4 EPSPS基因,它们都侧接RB和LB。将得到的基因表达构建体用于采用本文描述的方法进行转化。
pMON93764含有大豆7Sα’启动子,其可操作性连接于大豆FAD2-1A内含子1(SEQ IDNO:1),该内含子1从3’末端减少400个连续核苷酸并且连接于FATB-1a CTP编码区,后面是FATB-2a CTP编码区,该编码区可操作性连接于FAD3-1A内含子4的70个核苷酸,所述内含子4可操作性连接于反义方向的FATB-2a CTP编码区,后面是反义方向的FATB-1a CTP编码区,后面是大豆FAD2-1A内含子1(SEQ ID NO:1),其从3’末端减少400个连续核苷酸并且是反义方向,该内含子1可操作性连接于反义方向的FATB-2a CTP编码区,所述编码区后面是反义方向的FATB-2a 5’UTR的42个连续核苷酸,其可操作性连接于H63’聚腺苷酸化片段,该片段中具有可操作性连接于EFMV启动子和豌豆Rubisco E93’终止序列的CP4 EPSPS基因,它们都侧接RB和LB。将得到的基因表达构建体用于采用本文描述的方法进行转化。
表1
表2
实施例3组合构建体
在图7-15中,启动子由箭头表示,编码序列(编码和非编码)由指向转录方向的五边形指出,有义序列以正常文本标出,反义序列以颠倒的文本标出。用于这些图中的缩写包括:7Sa=7Sα启动子;7Sa’=7Sα’启动子;Br油菜籽蛋白=芸苔油菜籽蛋白启动子;FMV=FMV启动子;ARC=arcelin启动子;RBC E93’=Rubisco E9终止信号;Nos3’=nos终止信号;TML 3’=tml终止信号;油菜籽蛋白3’=油菜籽蛋白终止信号;‘3(与FAD或FAT在同一框中)=3’UTR;5’(与FAD或FAT在同一框中)=5’UTR;Cr=Cuphea pulcherrima;Gm=大豆;Rc=蓖麻;FAB2=Δ9硬脂酰-去饱和酶基因的FAB2等位基因;Intr或Int=内含子。
3A.dsRNA构建体
图7-9描述了本发明的核酸分子,其中第一组DNA序列能够表达dsRNA构建体。图7-9描述的第一组DNA序列包含相关的有义和反义序列对,它们的排列使得例如第一有义序列表达的RNA能够与第一反义序列表达的反义RNA形成双链RNA。有义序列可以与反义序列相邻,或通过间隔序列与反义序列隔开,如图9所示。
第二组DNA序列包含编码序列,每个编码序列都是一种DNA序列,该DNA序列编码表达时能够增加选自下组的基因编码的蛋白和转录物之一或这两者的序列:KASI、KASIV、Δ-9去饱和酶,和CP4EPSPS。每个编码序列都与启动子连接,所述启动子可以是任何在植物中有功能的启动子,或任何植物启动子,并且可以是FMV启动子、油菜籽蛋白启动子、7S(7Sα或7Sα’)启动子、arcelin启动子、Δ-9去饱和酶启动子,或FAD2-1A启动子。
参照图7,通过PCR扩增大豆FAD2-1内含子1(SEQ ID NO:1或2)、FAD3-1A3’UTR(SEQID NO:16),和FATB-1 3’UTR(SEQ ID NO:36)序列,得到两端都包括重新工程化的限制位点的PCR产物。通过工程化到PCR引物的5’末端上的XhoI位点,以有义和反义方向将PCR产物直接克隆到含有大豆7Sα’启动子和tml 3’终止序列的载体中,其中间隔可剪接的大豆FAD3-1A内含子5(SEQ ID NO:11)。然后用NotI切割载体,并且连接到pMON41164中,所述pMON41164是包含受FMV启动子和豌豆Rubisco E9 3’终止序列调节的CP4EPSPS基因的载体。用合适的限制酶切割含有受芸苔油菜籽蛋白启动子和芸苔油菜籽蛋白3’终止序列调节的C.pulcherrima KAS IV基因(SEQ ID NO:39)以及受大豆FAD2启动子和nos 3’终止序列调节的蓖麻Δ-9去饱和酶(FAB2)基因(SEQ IDNO:40)的载体,连接到pMON41164中。得到的基因表达构建体pMON68539描述于图7中,并且用于采用本文描述的方法进行转化。
通过PCR扩增大豆FAD2-1内含子1(SEQ ID NO:1或2)、FAD3-1A内含子4(SEQ IDNO:10),和FATB-1内含子II(SEQ ID NO:30)序列,得到两端都包括重新工程化的限制位点的PCR产物。通过工程化到PCR引物的5’末端上的XhoI位点,以有义和反义方向将PCR产物直接克隆到含有大豆7Sα’启动子和tml 3’终止序列的载体中,其中间隔可剪接的大豆FAD3-1A内含子5(SEQ ID NO:11)。然后用NotI切割载体,并且连接到pMON41164中,所述pMON41164是包含受FMV启动子和豌豆Rubisco E93’终止序列调节的CP4 EPSPS基因的载体。得到的基因表达构建体pMON68540描述于图7中,并且用于采用本文描述的方法进行转化。
通过PCR扩增大豆FAD2-1内含子1(SEQ ID NO:1或2)、FAD3-1A内含子4(SEQ IDNO:10),和FATB-1内含子II(SEQ ID NO:30)序列,得到两端都包括重新工程化的限制位点的PCR产物。通过工程化到PCR引物的5’末端上的XhoI位点,以有义和反义方向将PCR产物直接克隆到含有大豆7Sα’启动子和tml 3’终止序列的载体中,其中间隔可剪接的大豆FAD3-1A内含子5(SEQ ID NO:11)。然后用NotI切割载体,并且连接到pMON41164中,所述pMON41164是包含受FMV启动子和豌豆Rubisco E9 3’终止序列调节的CP4 EPSPS基因的载体。用合适的限制酶切割含有受芸苔油菜籽蛋白启动子和芸苔油菜籽蛋白3’终止序列调节的C.pulcherrima KAS IV基因(SEQ ID NO:39)的载体,连接到pMON41164中。得到的基因表达构建体pMON68544描述于图7中,并且用于采用本文描述的方法进行转化。
通过PCR扩增大豆FAD2-1内含子1(SEQ ID NO:1或2)、FAD3-1A内含子4(SEQ IDNO:10)、FATB-1内含子II(SEQ ID NO:30),和FAD3-1B内含子4(SEQ ID NO:24)序列,得到两端都包括重新工程化的限制位点的PCR产物。通过工程化到PCR引物的5’末端上的XhoI位点,以有义和反义方向将PCR产物直接克隆到含有大豆7Sα’启动子和tml3’终止序列的载体中,其中间隔可剪接的大豆FAD3-1A内含子5(SEQ IDNO:11)。然后用NotI切割载体,并且连接到pMON41164中,所述pMON41164是包含受FMV启动子和豌豆Rubisco E9 3’终止序列调节的CP4 EPSPS基因的载体。得到的基因表达构建体pMON68546描述于图7中,并且用于采用本文描述的方法进行转化。
参照图8,通过PCR扩增大豆FAD2-1内含子1(SEQ ID NO:1或2),FAD3-1A 3’UTR(SEQ ID NO:16),和FATB-1 3’UTR(SEQ ID NO:36)序列,得到两端都包括重新工程化的限制位点的PCR产物。通过工程化到PCR引物的5’末端上的XhoI位点,以有义和反义方向将PCR产物直接克隆到含有大豆7Sα’启动子和tml 3’终止序列的载体中,其中间隔可剪接的大豆FAD3-1A内含子5(SEQ ID NO:11)。然后用NotI切割载体,并且连接到pMON41164中,所述pMON41164是包含受FMV启动子和豌豆Rubisco E9 3’终止序列调节的CP4 EPSPS基因的载体。得到的基因表达构建体pMON68536描述于图7中,并且用于采用本文描述的方法进行转化。
通过PCR扩增大豆FAD2-1内含子1(SEQ ID NO:1或2),FAD3-1A3’UTR(SEQ ID NO:16),和FATB-13’UTR(SEQ ID NO:36)序列,得到两端都包括重新工程化的限制位点的PCR产物。通过工程化到PCR引物的5’末端上的XhoI位点,以有义和反义方向将PCR产物直接克隆到含有大豆7Sα’启动子和tml 3’终止序列的载体中,其中间隔可剪接的大豆FAD3-1A内含子5(SEQ ID NO:11)。用合适的限制酶切割含有受大豆FAD2启动子和nos 3’终止序列调节的蓖麻Δ-9去饱和酶(FAB2)基因(SEQ ID NO:40)的载体,连接到紧邻tml 3’终止序列的上游。然后用NotI切割载体,并且连接到pMON41164中,所述pMON41164是包含受FMV启动子和豌豆Rubisco E9 3’终止序列调节的CP4EPSPS基因的载体。得到的基因表达构建体pMON68537描述于图8中,并且用于采用本文描述的方法进行转化。
通过PCR扩增大豆FAD2-1内含子1(SEQ ID NO:1或2),FAD3-1A3’UTR(SEQ ID NO:16),和FATB-13’UTR(SEQ ID NO:36)序列,得到两端都包括重新工程化的限制位点的PCR产物。通过工程化到PCR引物的5’末端上的XhoI位点,以有义和反义方向将PCR产物直接克隆到含有大豆7Sα’启动子和tml 3’终止序列的载体中,其中间隔可剪接的大豆FAD3-1A内含子5(SEQ ID NO:11)。然后用NotI切割载体,并且连接到pMON41164中,所述pMON41164是包含受FMV启动子和豌豆Rubisco E9 3’终止序列调节的CP4EPSPS基因的载体。用合适的限制酶切割含有受芸苔油菜籽蛋白启动子和芸苔油菜籽蛋白3’终止序列调节的C.pulcherrimaKAS IV基因(SEQ ID NO:39)的载体,连接到pMON41164中。得到的基因表达构建体pMON68538描述于图8中,并且用于采用本文描述的方法进行转化。
参照图9,通过PCR扩增大豆FAD2-1 3’UTR(SEQ ID NO:5),FATB-1 3’UTR(SEQ IDNO:36),FAD3-1A 3’UTR(SEQ ID NO:16),和FAD3-1B 3’UTR(SEQ ID NO:26)序列,得到两端都包括重新工程化的限制位点的PCR产物。通过工程化到PCR引物的5’末端上的XhoI位点,以有义和反义方向将PCR产物直接克隆到含有大豆7Sα’启动子和tml 3’终止序列的载体中,其中间隔可剪接的大豆FAD3-1A内含子5(SEQ IDNO:11)。然后用NotI切割载体,并且连接到pMON41164中,所述pMON41164是包含受FMV启动子和豌豆Rubisco E9 3’终止序列调节的CP4 EPSPS基因的载体。得到的基因表达构建体pMON80622描述于图9中,并且用于采用本文描述的方法进行转化。
通过PCR扩增大豆FAD2-13’UTR(SEQ ID NO:5),FATB-1 3’UTR(SEQ ID NO:36),和FAD3-1A 3’UTR(SEQ ID NO:16)序列,得到两端都包括重新工程化的限制位点的PCR产物。通过工程化到PCR引物的5’末端上的XhoI位点,以有义和反义方向将PCR产物直接克隆到含有大豆7Sα’启动子和tml 3’终止序列的载体中,其中间隔可剪接的大豆FAD3-1A内含子5(SEQ ID NO:11)。然后用NotI切割载体,并且连接到pMON41164中,所述pMON41164是包含受FMV启动子和豌豆Rubisco E9 3’终止序列调节的CP4EPSPS基因的载体。得到的基因表达构建体pMON80623描述于图9中,并且用于采用本文描述的方法进行转化。
通过PCR扩增大豆FAD2-15’UTR-3’UTR(SEQ ID NOs:6和5,连接在一起),FATB-15’UTR-3’UTR(SEQ ID NOs:37和36,连接在一起),FAD3-1A 3’UTR(SEQ ID NO:16)和FAD3-1B 5’UTR-3’UTR(SEQ IDNOs:27和26,连接在一起)序列,得到两端都包括重新工程化的限制位点的PCR产物。通过工程化到PCR引物的5’末端上的XhoI位点,以有义和反义方向将PCR产物直接克隆到含有大豆7Sα’启动子和tml 3’终止序列的载体中。然后用NotI切割载体,并且连接到pMON41164中,所述pMON41164是包含受FMV启动子和豌豆Rubisco E9 3’终止序列调节的CP4 EPSPS基因的载体。得到的基因表达构建体O5描述于图9中,并且用于采用本文描述的方法进行转化。
通过PCR扩增大豆FAD2-1 5’UTR-3’UTR(SEQ ID NOs:6和5,连接在一起),FATB-15’UTR-3’UTR(SEQ ID NOs:37和36,连接在一起),FAD3-1A 3’UTR(SEQ ID NO:16)和FAD3-1B 5’UTR-3’UTR(SEQ IDNOs:27和26,连接在一起)序列,得到两端都包括重新工程化的限制位点的PCR产物。通过工程化到PCR引物的5’末端上的XhoI位点,以有义和反义方向将PCR产物直接克隆到含有大豆7Sα’启动子和tml 3’终止序列的载体中。然后用NotI切割载体,并且连接到pMON41164中,所述pMON41164是包含受FMV启动子和豌豆Rubisco E9 3’终止序列调节的CP4 EPSPS基因的载体。用合适的限制酶切割含有受芸苔油菜籽蛋白启动子和芸苔油菜籽蛋白3’终止序列调节的C.pulcherrima KAS IV基因(SEQ ID NO:39)的载体,连接到pMON41164中。得到的基因表达构建体O6描述于图9中,并且用于采用本文描述的方法进行转化。
3B.有义共抑制构建体
图1-13和19-20描述了本发明的核酸分子,其中第一组DNA序列能够表达有义共抑制构建体。第二组DNA序列包含编码序列,每个编码序列都是一种DNA序列,该DNA序列编码表达时能够增加选自下组的基因编码的蛋白和转录物之一或这两者的序列:KASI、KASIV、Δ-9去饱和酶,和CP4 EPSPS。每个编码序列都与启动子连接,所述启动子可以是任何在植物中有功能的启动子,或任何植物启动子,并且可以是FMV启动子、油菜籽蛋白启动子、7S(7Sα或7Sα’)启动子、arcelin启动子、Δ-9去饱和酶启动子,或FAD2-1A启动子。
参照图10,通过PCR扩增大豆FAD2-1内含子1(SEQ ID NO:1或2),FAD3-1C内含子4(SEQ ID NO:14),FATB-1内含子II(SEQ ID NO:30),FAD3-1A内含子4(SEQ ID NO:10),和FAD3-1B内含子4(SEQ IDNO:24)序列,得到两端都包括重新工程化的限制位点的PCR产物。通过工程化到PCR引物的5’末端上的XhoI位点,以有义方向将PCR产物直接克隆到含有大豆7Sα’启动子和豌豆Rubisco E9 3’终止序列的载体中。然后用NotI切割载体,并且连接到pMON41164中,所述pMON41164是包含受FMV启动子和豌豆Rubisco E9 3’终止序列调节的CP4 EPSPS基因的载体。得到的基因表达构建体pMON68522描述于图10中,并且用于采用本文描述的方法进行转化。
通过PCR扩增大豆FAD2-1内含子1(SEQ ID NO:1或2),FAD3-1A内含子4(SEQ IDNO:10),FAD3-1B内含子4(SEQ ID NO:24),和FATB-1内含子II(SEQ ID NO:30)序列,得到两端都包括重新工程化的限制位点的PCR产物。通过工程化到PCR引物的5’末端上的XhoI位点,以有义方向将PCR产物直接克隆到含有大豆7Sα’启动子和tml 3’终止序列的载体中。然后用NotI切割载体,并且连接到pMON41164中,所述pMON41164是包含受FMV启动子和豌豆Rubisco E9 3’终止序列调节的CP4 EPSPS基因的载体。用合适的限制酶切割含有受芸苔油菜籽蛋白启动子和芸苔油菜籽蛋白3’终止序列调节的C.pulcherrima KAS IV基因(SEQ IDNO:39)以及受大豆FAD2启动子和nos 3’终止序列调节的蓖麻Δ-9去饱和酶(FAB2)基因(SEQ ID NO:40)的载体,连接到pMON41164中。得到的基因表达构建体pMON80614描述于图10中,并且用于采用本文描述的方法进行转化。
通过PCR扩增大豆FAD2-1内含子1(SEQ ID NO:1或2),FAD3-1A3’UTR(SEQ ID NO:16),和FATB-1 3’UTR(SEQ ID NO:36)序列,得到两端都包括重新工程化的限制位点的PCR产物。通过工程化到PCR引物的5’末端上的XhoI位点,以有义方向将PCR产物直接克隆到含有大豆7Sα’启动子和tml 3’终止序列的载体中。然后用NotI切割载体,并且连接到pMON41164中,所述pMON41164是包含受FMV启动子和豌豆Rubisco E9 3’终止序列调节的CP4EPSPS基因的载体。得到的基因表达构建体pMON68531描述于图10中,并且用于采用本文描述的方法进行转化。
通过PCR扩增大豆FAD2-1内含子1(SEQ ID NO:1或2),FAD3-1A3’UTR(SEQ ID NO:16),和FATB-1 3’UTR(SEQ ID NO:36)序列,得到两端都包括重新工程化的限制位点的PCR产物。通过工程化到PCR引物的5’末端上的XhoI位点,以有义方向将PCR产物直接克隆到含有大豆7Sα’启动子和tml 3’终止序列的载体中。然后用NotI切割载体,并且连接到pMON41164中,所述pMON41164是包含受FMV启动子和豌豆Rubisco E9 3’终止序列调节的CP4 EPSPS基因的载体。用合适的限制酶切割含有受芸苔油菜籽蛋白启动子和芸苔油菜籽蛋白3’终止序列调节的C.pulcherrima KAS IV基因(SEQ ID NO:39)以及受大豆FAD2启动子和nos 3’终止序列调节的蓖麻Δ-9去饱和酶(FAB2)基因(SEQ ID NO:40)的载体,连接到pMON41164中。得到的基因表达构建体pMON68534描述于图10中,并且用于采用本文描述的方法进行转化。
通过PCR扩增大豆FAD2-1内含子1(SEQ ID NO:1或2),FAD3-1A3’UTR(SEQ ID NO:16),和FATB-1 3’UTR(SEQ ID NO:36)序列,得到两端都包括重新工程化的限制位点的PCR产物。通过工程化到PCR引物的5’末端上的XhoI位点,以有义方向将PCR产物直接克隆到含有大豆7Sα’启动子和tml 3’终止序列的载体中。然后用NotI切割载体,并且连接到pMON41164中,所述pMON41164是包含受FMV启动子和豌豆Rubisco E9 3’终止序列调节的CP4 EPSPS基因的载体。用合适的限制酶切割含有受大豆FAD2启动子和nos 3’终止序列调节的蓖麻Δ-9去饱和酶(FAB2)基因(SEQ ID NO:40)的载体,连接到pMON41164中。得到的基因表达构建体pMON68535描述于图10中,并且用于采用本文描述的方法进行转化。
参照图11,通过PCR扩增大豆FAD2-1 3’UTR(SEQ ID NO:5),FAD3-1A 3’UTR(SEQID NO:16),和FATB-1 3’UTR(SEQ ID NO:36)序列,得到两端都包括重新工程化的限制位点的PCR产物。通过工程化到PCR引物的5’末端上的XhoI位点,以有义方向将PCR产物直接克隆到含有大豆7Sα’启动子和tml 3’终止序列的载体中。然后用NotI切割载体,并且连接到pMON41164中,所述pMON41164是包含受FMV启动子和豌豆Rubisco E9 3’终止序列调节的CP4 EPSPS基因的载体。得到的基因表达构建体pMON80605描述于图11中,并且用于采用本文描述的方法进行转化。
通过PCR扩增大豆FAD2-1 3’UTR(SEQ ID NO:5),FAD3-1A3’UTR(SEQ ID NO:16),和FATB-1 3’UTR(SEQ ID NO:36)序列,得到两端都包括重新工程化的限制位点的PCR产物。通过工程化到PCR引物的5’末端上的XhoI位点,以有义方向将PCR产物直接克隆到含有大豆7Sα’启动子和tml 3’终止序列的载体中。然后用NotI切割载体,并且连接到pMON41164中,所述pMON41164是包含受FMV启动子和豌豆Rubisco E9 3’终止序列调节的CP4 EPSPS基因的载体。用合适的限制酶切割含有受芸苔油菜籽蛋白启动子和芸苔油菜籽蛋白3’终止序列调节的C.pulcherrima KAS IV基因(SEQ ID NO:39)的载体,连接到pMON41164中。得到的基因表达构建体pMON80606描述于图11中,并且用于采用本文描述的方法进行转化。
通过PCR扩增大豆FAD2-1 3’UTR(SEQ ID NO:5),FAD3-1A3’UTR(SEQ ID NO:16),和FATB-1 3’UTR(SEQ ID NO:36)序列,得到两端都包括重新工程化的限制位点的PCR产物。通过工程化到PCR引物的5’末端上的XhoI位点,以有义方向将PCR产物直接克隆到含有大豆7Sα’启动子和tml 3’终止序列的载体中。然后用NotI切割载体,并且连接到pMON41164中,所述pMON41164是包含受FMV启动子和豌豆Rubisco E9 3’终止序列调节的CP4 EPSPS基因的载体。用合适的限制酶切割含有受大豆FAD2启动子和nos 3’终止序列调节的蓖麻Δ-9去饱和酶(FAB2)基因(SEQ ID NO:40)的载体,连接到pMON41164中。得到的基因表达构建体pMON80607描述于图11中,并且用于采用本文描述的方法进行转化。
通过PCR扩增大豆FAD2-13’UTR(SEQ ID NO:5),FAD3-1A3’UTR(SEQ ID NO:16),和FATB-1 3’UTR(SEQ ID NO:36)序列,得到两端都包括重新工程化的限制位点的PCR产物。通过工程化到PCR引物的5’末端上的XhoI位点,以有义方向将PCR产物直接克隆到含有大豆7Sα’启动子和tml 3’终止序列的载体中。然后用NotI切割载体,并且连接到pMON41164中,所述pMON41164是包含受FMV启动子和豌豆Rubisco E9 3’终止序列调节的CP4 EPSPS基因的载体。用合适的限制酶切割含有受芸苔油菜籽蛋白启动子和芸苔油菜籽蛋白3’终止序列调节的C.pulcherrima KAS IV基因(SEQ ID NO:39)以及受大豆FAD2启动子和nos3’终止序列调节的蓖麻Δ-9去饱和酶(FAB2)基因(SEQ ID NO:40)的载体,连接到pMON41164中。得到的基因表达构建体pMON80614描述于图11中,并且用于采用本文描述的方法进行转化。
参照图12,通过PCR扩增大豆FAD2-1 3’UTR(SEQ ID NO:5),FATB-1 3’UTR(SEQ IDNO:36),和FAD3-1A 3’UTR(SEQ ID NO:16)序列,得到两端都包括重新工程化的限制位点的PCR产物。通过工程化到PCR引物的5’末端上的XhoI位点,以有义方向将PCR产物直接克隆到含有大豆7Sα’启动子和tml 3’终止序列的载体中。然后用NotI切割载体,并且连接到pMON41164中,所述pMON41164是包含受FMV启动子和豌豆Rubisco E9 3’终止序列调节的CP4EPSPS基因的载体。得到的基因表达构建体pMON80629描述于图12中,并且用于采用本文描述的方法进行转化。
通过PCR扩增大豆FAD2-1内含子1(SEQ ID NO:1或2),FAD3-1A内含子4(SEQ IDNO:10),FATB-1内含子II(SEQ ID NO:30),和FAD3-1A内含子4(SEQ ID NO:10)序列,得到两端都包括重新工程化的限制位点的PCR产物。通过工程化到PCR引物的5’末端上的XhoI位点,以有义方向将PCR产物直接克隆到含有大豆7Sα’启动子和tml 3’终止序列的载体中。然后用NotI切割载体,并且连接到pMON41164中,所述pMON41164是包含受FMV启动子和豌豆Rubisco E9 3’终止序列调节的CP4 EPSPS基因的载体。得到的基因表达构建体pMON81902描述于图12中,并且用于采用本文描述的方法进行转化。
通过PCR扩增大豆FAD2-15’UTR-3’UTR(SEQ ID NOs:6和5,连接在一起),FAD3-15’UTR-3’UTR(SEQ ID NOs:17和16,连接在一起,或27和26,连接在一起),和FATB-1 5’UTR-3’UTR(SEQ ID NOs:37和36,连接在一起)序列,得到两端都包括重新工程化的限制位点的PCR产物。通过工程化到PCR引物的5’末端上的XhoI位点,以有义方向将FAD2-1 PCR产物直接克隆到含有大豆7Sα’启动子和tml 3’终止序列的载体中。类似地,通过工程化到PCR引物的5’末端上的XhoI位点,以有义方向将FAD3-1 PCR产物直接克隆到含有大豆7Sα’启动子和tml 3’终止序列的载体中。通过工程化到PCR引物的5’末端上的XhoI位点,以有义方向将FATB-1 PCR产物直接克隆到含有arcelin启动子和tml 3’终止序列的载体中。然后用NotI切割这些载体,并且连接到pMON41164中,所述pMON41164是包含受FMV启动子和豌豆Rubisco E9 3’终止序列调节的CP4 EPSPS基因的载体。得到的基因表达构建体O1描述于图12中,并且用于采用本文描述的方法进行转化。
通过PCR扩增大豆FAD2-15’UTR-3’UTR(SEQ ID NOs:6和5,连接在一起),FAD3-15’UTR-3’UTR(SEQ ID NOs:17和16,连接在一起,或27和26,连接在一起),和FATB-1 5’UTR-3’UTR(SEQ ID NOs:37和36,连接在一起)序列,得到两端都包括重新工程化的限制位点的PCR产物。通过工程化到PCR引物的5’末端上的XhoI位点,以有义方向将FAD2-1PCR产物直接克隆到含有大豆7Sα’启动子和tml 3’终止序列的载体中。类似地,通过工程化到PCR引物的5’末端上的XhoI位点,以有义方向将FAD3-1 PCR产物直接克隆到含有大豆7Sα’启动子和tml 3’终止序列的载体中。通过工程化到PCR引物的5’末端上的XhoI位点,以有义方向将FATB-1PCR产物直接克隆到含有arcelin启动子和tml 3’终止序列的载体中。然后用NotI切割这些载体,并且连接到pMON41164中,所述pMON41164是包含受FMV启动子和豌豆RubiscoE9 3’终止序列调节的CP4 EPSPS基因的载体。然后用NotI切割载体,并且连接到pMON41164中,所述pMON41164是包含受FMV启动子和豌豆RubiscoE9 3’终止序列调节的CP4 EPSPS基因的载体。用合适的限制酶切割含有受芸苔油菜籽蛋白启动子和芸苔油菜籽蛋白3’终止序列调节的C.pulcherrima KAS IV基因(SEQ ID NO:39)的载体,连接到pMON41164中。得到的基因表达构建体O2描述于图12中,并且用于采用本文描述的方法进行转化。
参照图13,通过PCR扩增大豆FAD2-1 5’UTR-3’UTR(SEQ ID NOs:6和5,连接在一起),FATB-1 5’UTR-3’UTR(SEQ ID NOs:37和36,连接在一起),FAD3-1A 3’UTR(SEQ ID NO:16),和FAD3-1B 5’UTR-3’UTR(SEQ ID NOs:27和26,连接在一起)序列,得到两端都包括重新工程化的限制位点的PCR产物。通过工程化到PCR引物的5’末端上的XhoI位点,以有义方向将PCR产物直接克隆到含有大豆7Sα’启动子和tml 3’终止序列的载体中。然后用NotI切割载体,并且连接到pMON41164中,所述pMON41164是包含受FMV启动子和豌豆Rubisco E93’终止序列调节的CP4EPSPS基因的载体。用合适的限制酶切割含有受芸苔油菜籽蛋白启动子和芸苔油菜籽蛋白3’终止序列调节的C.pulcherrima KAS IV基因(SEQ ID NO:39)的载体,连接到pMON41164中。得到的基因表达构建体O7描述于图13中,并且用于采用本文描述的方法进行转化。
通过PCR扩增大豆FAD2-1内含子1(SEQ ID NO:1或2)序列,得到两端都包括重新工程化的限制位点的PCR产物。通过工程化到PCR引物的5’末端上的XhoI位点,以有义方向将PCR产物直接克隆到含有大豆7Sα’启动子和tml 3’终止序列的载体中。通过PCR扩增大豆FATB-15’UTR-3’UTR(SEQ ID NOs:37和36,连接在一起),FAD3-1A 3’UTR(SEQ ID NO:16),和FAD3-1B 5’UTR-3’UTR(SEQ ID NOs:27和26,连接在一起)序列,得到两端都包括重新工程化的限制位点的PCR产物。通过工程化到PCR引物的5’末端上的XhoI位点,以有义方向将PCR产物直接克隆到含有大豆7Sα’启动子和tml 3’终止序列的载体中。然后用NotI切割载体,并且连接到pMON41164中,所述pMON41164是包含受FMV启动子和豌豆Rubisco E9 3’终止序列调节的CP4 EPSPS基因的载体。用合适的限制酶切割含有受芸苔油菜籽蛋白启动子和芸苔油菜籽蛋白3’终止序列调节的C.pulcherrima KAS IV基因(SEQ ID NO:39)的载体,连接到pMON41164中。得到的基因表达构建体O9描述于图13中,并且用于采用本文描述的方法进行转化。
参照图19,通过PCR扩增大豆FA TB-2非编码序列(SEQ ID NOs:44-47),FAD2-1非编码序列(SEQ ID NOs:1和5-6),和FATB-1非编码序列(SEQ ID NOs:29-37),得到两端都包括重新工程化的限制位点的PCR产物。通过工程化到PCR引物的5’末端上的XhoI位点,以有义方向将PCR产物直接克隆到含有大豆7Sα’启动子和tml 3’终止序列的载体中。然后用NotI切割载体,并且连接到pMON80612中,所述pMON80612是包含受FMV启动子和豌豆Rubisco E9 3’终止序列调节的CP4EPSPS基因的载体。得到的基因表达构建体描述于图19-A中,并且用于采用本文描述的方法进行转化。
用合适的限制酶切割含有受7Sα启动子和TML 3’终止序列调节的Δ-9去饱和酶的DNA序列,连接到上述表达构建体中。得到的表达构建体描述于图19-B中,并且用于采用本文描述的方法进行转化。
用合适的限制酶切割含有受菜豆arcelin启动子和油菜籽蛋白3’终止序列调节的C.pulcherrima KAS IV基因(SEQ ID NO:39)的载体,连接到上述表达构建体中。得到的基因表达构建体描述于图19-C中,并且用于采用本文描述的方法进行转化。
参照图20,通过PCR扩增大豆FA TB-2非编码序列(SEQ ID NOs:44-47),FAD2-1非编码序列(SEQ ID NOs:1和5-6),FATB-1非编码序列(SEQ ID NOs:29-37),FAD3-1A非编码序列(SEQ ID NOs:7-13和16-17),和FAD3-1B非编码序列(SEQ ID NOs:19-27),得到两端都包括重新工程化的限制位点的PCR产物。通过工程化到PCR引物的5’末端上的XhoI位点,以有义方向将PCR产物直接克隆到含有大豆7Sα’启动子和tml 3’终止序列的载体中。然后用NotI切割载体,并且连接到pMON80612中,所述pMON80612是包含受FMV启动子和豌豆Rubisco E9 3’终止序列调节的CP4EPSPS基因的载体。得到的基因表达构建体描述于图20-A中,并且用于采用本文描述的方法进行转化。
用合适的限制酶切割含有受7Sα启动子和TML 3’终止序列调节的Δ-9去饱和酶的DNA序列,连接到上述表达构建体中。得到的表达构建体描述于图20-B中,并且用于采用本文描述的方法进行转化。
用合适的限制酶切割含有受菜豆arcelin启动子和油菜籽蛋白3’终止序列调节的C.pulcherrima KAS IV基因(SEQ ID NO:39)的载体,连接到上述表达构建体中。得到的基因表达构建体描述于图20-C中,并且用于采用本文描述的方法进行转化。
pMON93501含有可操作性连接于大豆7Sα’启动子和H6 3’终止序列的FAD2-1A内含子1(SEQ ID NO:1)、可操作性连接于芸苔油菜籽蛋白启动子和芸苔油菜籽蛋白3’终止序列的C.pulcherrima KAS IV基因(SEQ ID NO:39)、可操作性连接于大豆7SA启动子和nos 3’终止序列的蓖麻△9去饱和酶基因(美国专利申请公开号2003/00229918A1),和可操作性连接于EFMV启动子(来源于玄参花叶病毒的组成型启动子)启动子和豌豆Rubisco E9 3’终止序列的CP4EPSPS基因,它们都侧接土壤杆菌T-DNA边界元件,即右边界DNA(RB)和左边界DNA(LB)。得到的基因表达构建体用于采用本文描述的方法进行转化。
3C.反义构建体
图14描述了本发明的核酸分子,其中第一组DNA序列能够表达反义构建体。图15-18描述了本发明的核酸分子,其中第一组DNA序列能够表达有义和反义构建体的组合。第二组DNA序列包含编码序列,每个编码序列都是一种DNA序列,该DNA序列编码表达时能够增加选自下组的基因编码的蛋白和转录物之一或这两者的序列:KASI、KASIV、Δ-9去饱和酶,和CP4EPSPS。每个编码序列都与启动子连接,所述启动子可以是任何在植物中有功能的启动子,或任何植物启动子,并且可以是FMV启动子、油菜籽蛋白启动子、7S(7Sα或7Sα’)启动子、arcelin启动子、Δ-9去饱和酶启动子,或FAD2-1A启动子。
参照图14,通过PCR扩增大豆FAD2-13’UTR(SEQ ID NO:5),FATB-1 3’UTR(SEQ IDNO:36),和FAD3-1A 3’UTR(SEQ ID NO:16)序列,得到两端都包括重新工程化的限制位点的PCR产物。通过工程化到PCR引物的5’末端上的XhoI位点,以反义方向将PCR产物直接克隆到含有大豆7Sα’启动子和tml3’终止序列的载体中。然后用NotI切割载体,并且连接到pMON41164中,所述pMON41164是包含受FMV启动子和豌豆Rubisco E9 3’终止序列调节的CP4EPSPS基因的载体。得到的基因表达构建体pMON80615描述于图14中,并且用于采用本文描述的方法进行转化。
通过PCR扩增大豆FAD2-1 3’UTR(SEQ ID NO:5),FATB-1 3’UTR(SEQ ID NO:36),和FAD3-1A 3’UTR(SEQ ID NO:16)序列,得到两端都包括重新工程化的限制位点的PCR产物。通过工程化到PCR引物的5’末端上的XhoI位点,以反义方向将PCR产物直接克隆到含有大豆7Sα’启动子和tml 3’终止序列的载体中。然后用NotI切割载体,并且连接到pMON41164中,所述pMON41164是包含受FMV启动子和豌豆RubiscoE9 3’终止序列调节的CP4EPSPS基因的载体。用合适的限制酶切割含有受芸苔油菜籽蛋白启动子和芸苔油菜籽蛋白3’终止序列调节的C.pulcherrima KAS IV基因(SEQ ID NO:39)的载体,连接到pMON41164中。得到的基因表达构建体pMON80616描述于图14中,并且用于采用本文描述的方法进行转化。
通过PCR扩增大豆FAD2-1 3’UTR(SEQ ID NO:5),FATB-1 3’UTR(SEQ ID NO:36),和FAD3-1A 3’UTR(SEQ ID NO:16)序列,得到两端都包括重新工程化的限制位点的PCR产物。通过工程化到PCR引物的5’末端上的XhoI位点,以反义方向将PCR产物直接克隆到含有大豆7Sα’启动子和tml 3’终止序列的载体中。然后用NotI切割载体,并且连接到pMON41164中,所述pMON41164是包含受FMV启动子和豌豆RubiscoE9 3’终止序列调节的CP4EPSPS基因的载体。用合适的限制酶切割含有受大豆FAD2启动子和nos 3’终止序列调节的蓖麻Δ-9去饱和酶(FAB2)基因(SEQ ID NO:40)的载体,连接到pMON41164中。得到的基因表达构建体pMON80617描述于图14中,并且用于采用本文描述的方法进行转化。
通过PCR扩增大豆FAD2-1 3’UTR(SEQ ID NO:5),FATB-1 3’UTR(SEQ ID NO:36),和FAD3-1A 3’UTR(SEQ ID NO:16)序列,得到两端都包括重新工程化的限制位点的PCR产物。通过工程化到PCR引物的5’末端上的XhoI位点,以反义方向将PCR产物直接克隆到含有大豆7Sα’启动子和tml3’终止序列的载体中。然后用NotI切割载体,并且连接到pMON41164中,所述pMON41164是包含受FMV启动子和豌豆RubiscoE93’终止序列调节的CP4EPSPS基因的载体。得到的基因表达构建体pMON80630描述于图14中,并且用于采用本文描述的方法进行转化。
通过PCR扩增大豆FAD2-15’UTR-3’UTR(SEQ ID NOs:6和5,连接在一起),FATB-15’UTR-3’UTR(SEQ ID NOs:37和36,连接在一起),FAD3-1A 3’UTR(SEQ ID NO:16),和FAD3-1B 5’UTR-3’UTR(SEQ IDNOs:27和26,连接在一起)序列,得到两端都包括重新工程化的限制位点的PCR产物。通过工程化到PCR引物的5’末端上的XhoI位点,以反义方向将PCR产物直接克隆到含有大豆7Sα’启动子和tml 3’终止序列的载体中。然后用NotI切割载体,并且连接到pMON41164中,所述pMON41164是包含受FMV启动子和豌豆Rubisco E93’终止序列调节的CP4 EPSPS基因的载体。用合适的限制酶切割含有受芸苔油菜籽蛋白启动子和芸苔油菜籽蛋白3’终止序列调节的C.pulcherrima KAS IV基因(SEQ ID NO:39)的载体,连接到pMON41164中。得到的基因表达构建体O8描述于图14中,并且用于采用本文描述的方法进行转化。
参照图15,通过PCR扩增大豆FAD2-15’UTR-3’UTR(SEQ ID NOs:6和5,连接在一起),FAD3-1A 5’UTR-3’UTR(SEQ ID NOs:17和16,连接在一起),和FATB-1 5’UTR-3’UTR(SEQ ID NOs:37和36,连接在一起)序列,得到两端都包括重新工程化的限制位点的PCR产物。通过工程化到PCR引物的5’末端上的XhoI位点,以有义和反义方向将PCR产物直接克隆到含有大豆7Sα’启动子和tml 3’终止序列的载体中,另外的大豆7Sα启动子位于有义和反义序列之间。然后用NotI切割载体,并且连接到pMON41164中,所述pMON41164是包含受FMV启动子和豌豆Rubisco E9 3’终止序列调节的CP4EPSPS基因的载体。得到的基因表达构建体O3描述于图15中,并且用于采用本文描述的方法进行转化。
通过PCR扩增大豆FAD2-1 5’UTR-3’UTR(SEQ ID NOs:6和5,连接在一起),FAD3-1A5’UTR-3’UTR(SEQ ID NOs:27和26,连接在一起),和FATB-1 5’UTR-3’UTR(SEQ ID NOs:37和36,连接在一起)序列,得到两端都包括重新工程化的限制位点的PCR产物。通过工程化到PCR引物的5’末端上的XhoI位点,以有义和反义方向将PCR产物直接克隆到含有大豆7Sα’启动子和tml 3’终止序列的载体中,另外的大豆7Sα启动子位于有义和反义序列之间。然后用NotI切割载体,并且连接到pMON41164中,所述pMON41164是包含受FMV启动子和豌豆RubiscoE9 3’终止序列调节的CP4 EPSPS基因的载体。用合适的限制酶切割含有受芸苔油菜籽蛋白启动子和芸苔油菜籽蛋白3’终止序列调节的C.pulcherrima KAS IV基因(SEQ IDNO:39)的载体,连接到pMON41164中。得到的基因表达构建体O4描述于图15中,并且用于采用本文描述的方法进行转化。
参照图16,通过PCR扩增大豆FA TB-2非编码序列(SEQ ID NOs:44-47),FATB-1非编码序列(SEQ ID NOs:29-37),和FAD2-1非编码序列(SEQ ID NOs:1和5-6),得到两端都包括重新工程化的限制位点的PCR产物。以有义和反义方向将PCR产物直接克隆到含有大豆7Sα’启动子和tml 3’终止序列的载体中。然后用合适的限制性内切核酸酶切割载体,并且连接到pMON80612中,所述pMON80612是包含受FMV启动子和豌豆Rubisco E9 3’终止序列调节的CP4E尸SPS基因的载体。得到的基因表达构建体描述于图16-A中,并且用于采用本文描述的方法进行转化。
用合适的限制酶切割含有受7Sα启动子和TML 3’终止序列调节的Δ-9去饱和酶的DNA序列,连接到上述表达构建体中。得到的表达构建体描述于图16-B中,并且用于采用本文描述的方法进行转化。
用合适的限制酶切割含有受菜豆arcelin启动子和油菜籽蛋白3’终止序列调节的C.pulcherrima KAS IV基因(SEQ ID NO:39)的载体,连接到上述表达构建体中。得到的基因表达构建体描述于图16-C中,并且用于采用本文描述的方法进行转化。
参照图17,通过PCR扩增大豆FA TB-2非编码序列(SEQ ID NOs:44-47),FATB-1非编码序列(SEQ ID NOs:29-37),FAD2-1非编码序列(SEQ ID NOs:1和5-6),和FAD3-1A非编码序列(SEQ ID NOs:7-13和16-17),得到两端都包括重新工程化的限制位点的PCR产物。以有义和反义方向将PCR产物直接克隆到含有大豆7Sα’启动子和tml 3’终止序列的载体中。然后用合适的限制性内切核酸酶切割载体,并且连接到pMON80612中,所述pMON80612是包含受FMV启动子和豌豆RubiscoE9 3’终止序列调节的CP4 EPSPS基因的载体。得到的基因表达构建体描述于图17-A中,并且用于采用本文描述的方法进行转化。
用合适的限制酶切割含有受7Sα启动子和TML 3’终止序列调节的Δ-9去饱和酶的DNA序列,连接到上述表达构建体中。得到的表达构建体描述于图17-B中,并且用于采用本文描述的方法进行转化。
用合适的限制酶切割含有受菜豆arcelin启动子和油菜籽蛋白3’终止序列调节的C.pulcherrima KAS IV基因(SEQ ID NO:39)的载体,连接到上述表达构建体中。得到的基因表达构建体描述于图17-C中,并且用于采用本文描述的方法进行转化。
参照图18,通过PCR扩增大豆FA TB-2非编码序列(SEQ ID NOs:44-47),FATB-1非编码序列(SEQ ID NOs:29-37),FAD2-1非编码序列(SEQ ID NOs:1和5-6),FAD3-1A非编码序列(SEQ ID NOs:7-13和16-17)和FAD3-1B非编码序列(SEQ ID NOs:19-27),得到两端都包括重新工程化的限制位点的PCR产物。以有义和反义方向将PCR产物直接克隆到含有大豆7Sα’启动子和tml3’终止序列的载体中。然后用合适的限制性内切核酸酶切割载体,并且连接到pMON80612中,所述pMON80612是包含受FMV启动子和豌豆Rubisco E93’终止序列调节的CP4EPSPS基因的载体。得到的基因表达构建体描述于图18-A中,并且用于采用本文描述的方法进行转化。
用合适的限制酶切割含有受7Sα启动子和TML3’终止序列调节的Δ-9去饱和酶的DNA序列,连接到上述表达构建体中。得到的表达构建体描述于图18-B中,并且用于采用本文描述的方法进行转化。
用合适的限制酶切割含有受菜豆arcelin启动子和油菜籽蛋白3’终止序列调节的C.pulcherrima KAS IV基因(SEQ ID NO:39)的载体,连接到上述表达构建体中。得到的基因表达构建体描述于图18-C中,并且用于采用本文描述的方法进行转化。上文描述的核酸分子是实现本发明的目的、特征和优点的优选实施方案。本发明不意欲限制于示例的实施方案。核酸分子内第一组和第二组DNA序列中序列的排列不限于举例和描述的排列,并且可以通过适合实现本文描述的、在附图中说明的和在权利要求中包括的本发明的目的、特征和优点的任何方式进行改变。
3D.体内组装
本发明的一方面包括DNA构建体,其在植物中组装成植物染色体上的、能够形成双链RNA的重组转录单位。所述构建体的组装和在体组装用于基因抑制的重组转录单位的方法描述于国际申请号PCT/US2005/00681,在此通过全文引用而并入本文。
pMON93505是用于体内组装的构建体,具有两个T-DNA片段,每个片段都侧接土壤杆菌T-DNA边界元件,即右边界DNA(RB)和左边界DNA(LB)。第一T-DNA片段含有可操作性连接于大豆FAD2-1A内含子1(SEQ ID NO:1)的大豆7Sα’启动子,所述内含子1从3’末端减少100个连续核苷酸,并且连接于FATB-1a3’UTR,后面是FATB-1a5’UTR、可操作性连接于芸苔油菜籽蛋白启动子和芸苔油菜籽蛋白3’终止序列的C.pulcherrima KAS IV基因(SEQ IDNO:39)、可操作性连接于大豆7SA启动子和nos3’终止序列的蓖麻Δ9去饱和酶基因(美国专利申请公开号2003/00229918A1),和可操作性连接于eFMV启动子和豌豆Rubisco E93’终止序列的CP4EPSPS基因,它们都侧接土壤杆菌T-DNA边界元件,即右边界DNA(RB)和左边界DNA(LB)。在同一构建体上,在侧接另一RB和LB的第二T-DNA片段中,存在可操作性连接于大豆FAD2-1A内含子1(SEQ ID NO:1)的H63’终止序列,所述内含子1从3’末端减少100个连续核苷酸,并且连接于FATB-1a3’UTR,后面是FATB-1a5’UTR。得到的基因表达构建体用于采用本文描述的方法进行转化。
当上述构建体的两个T-DNA片段以RB到RB的方向插入宿主生物的染色体的单个基因座时,组装的转录单位具有可操作性连接有义和反义方向的大豆FAD2-1A内含子1和FATB-1aDNA片段的大豆7Sα’启动子。当转录时,可操作性连接的有义和反义方向的RNA序列能够形成有效抑制FAD2-1A和FATB的双链RNA。
pMON93506是用于体内组装的构建体,具有两个T-DNA片段,每个片段都侧接土壤杆菌T-DNA边界元件,即右边界DNA(RB)和左边界DNA(LB)。第一T-DNA片段含有可操作性连接于大豆FAD2-1A内含子1(SEQ ID NO:1)的大豆7Sα’启动子,所述内含子1从3’末端减少100个连续核苷酸,并且连接于FATB-1a3’UTR,后面是FATB-1a5’UTR、可操作性连接于大豆7SA启动子和nos3’终止序列的蓖麻Δ9去饱和酶基因(美国专利申请公开号2003/00229918A1),和可操作性连接于eFMV启动子和豌豆Rubisco E93’终止序列的CP4EPSPS基因,它们都侧接RB和LB。在同一构建体上,在第二T-DNA片段中,存在可操作性连接于大豆FAD2-1A内含子1(SEQ ID NO:1)的H6 3’终止序列,所述内含子1从3’末端减少100个连续核苷酸,并且连接于FATB-1a3’UTR,后面是FATB-1a 5’UTR,侧接另一RB和LB。得到的基因表达构建体用于采用本文描述的方法进行转化。
当上述构建体的两个T-DNA片段以RB到RB的方向插入宿主生物的染色体的单个基因座时,组装的转录单位具有可操作性连接有义和反义方向的大豆FAD2-1A内含子1和FATB-1aDNA片段的大豆7Sα’启动子。当转录时,可操作性连接的有义和反义方向的RNA序列能够形成有效抑制FAD2-1A和FATB的双链RNA。
pMON95829是用于体内组装的构建体,具有两个T-DNA片段,每个片段都侧接土壤杆菌T-DNA边界元件,即右边界DNA(RB)和左边界DNA(LB)。第一T-DNA片段含有可操作性连接于大豆FAD2-1A内含子1(SEQ ID NO:1)的大豆7Sα’启动子,所述内含子1从3’末端减少100个连续核苷酸,并且连接于FATB-1a 5’UTR的42个连续核苷酸,后面是FATB-1a叶绿体转运肽(“CTP”)编码区,和可操作性连接于EFMV启动子和豌豆Rubisco E9 3’终止序列的CP4EPSPS基因,它们都侧接土壤杆菌T-DNA边界元件,即右边界DNA(RB)和左边界DNA(LB)。在同一构建体上,在侧接另一RB和LB的第二T-DNA片段中,存在可操作性连接于大豆FAD2-1A内含子1(SEQ ID NO:1)的H6 3’终止序列,所述内含子1从3’末端减少100个连续核苷酸,并且连接于FATB-1a5’UTR的42个连续核苷酸,后面是FATB-1a叶绿体转运肽(“CTP”)编码区。得到的基因表达构建体用于采用本文描述的方法进行转化。
当上述构建体的两个T-DNA片段以RB到RB的方向插入宿主生物的染色体的单个基因座时,组装的转录单位具有可操作性连接有义和反义方向的大豆FAD2-1A内含子1和FATB-1aDNA片段的大豆7Sα’启动子。当转录时,可操作性连接的有义和反义方向的RNA序列能够形成有效抑制FAD2-1A和FATB的双链RNA。
pMON97595是用于体内组装的构建体,具有两个T-DNA片段,每个片段都侧接土壤杆菌T-DNA边界元件,即右边界DNA(RB)和左边界DNA(LB)。第一T-DNA片段含有可操作性连接于大豆FAD2-1A内含子1(SEQ ID NO:1)的大豆7Sα’启动子,所述内含子1从3’末端减少320个连续核苷酸,并且连接于FATB-1a 5’UTR的42个连续核苷酸,后面是FATB-1a叶绿体转运肽(“CTP”)编码区,和可操作性连接于EFMV启动子和豌豆Rubisco E9 3’终止序列的CP4EPSPS基因,它们都侧接土壤杆菌T-DNA边界元件,即右边界DNA(RB)和左边界DNA(LB)。在侧接另一RB和LB的第二T-DNA片段上,存在可操作性连接于大豆FAD2-1A内含子1(SEQ ID NO:1)的H6 3’终止序列,所述内含子1从3’末端减少320个连续核苷酸,并且连接于FATB-1a 5’UTR的42个连续核苷酸,后面是FATB-1a CTP编码区。得到的基因表达构建体用于采用本文描述的方法进行转化。
当上述构建体的两个T-DNA片段以RB到RB的方向插入宿主生物的染色体的单个基因座时,组装的转录单位具有可操作性连接有义和反义方向的大豆FAD2-1A内含子1和FATB-1a DNA片段的大豆7Sα’启动子。当转录时,可操作性连接的有义和反义方向的RNA序列能够形成有效抑制FAD2-1A和FATB的双链RNA。
pMON97581是用于体内组装的构建体,具有两个T-DNA片段,每个片段都侧接土壤杆菌T-DNA边界元件,即右边界DNA(RB)和左边界DNA(LB)。第一T-DNA片段含有可操作性连接于大豆FAD2-1A内含子1(SEQ ID NO:1)的大豆7Sα’启动子,所述内含子1从3’末端减少320个连续核苷酸,并且连接于FATB-1a叶绿体转运肽(“CTP”)编码区,和可操作性连接于EFMV启动子和豌豆Rubisco E9 3’终止序列的CP4 EPSPS基因,它们都侧接土壤杆菌T-DNA边界元件,即右边界DNA(RB)和左边界DNA(LB)。在同一载体上,在侧接另一RB和LB的第二T-DNA片段中,存在可操作性连接于大豆FAD2-1A内含子1(SEQ IDNO:1)的H6 3’终止序列,所述内含子1从3’末端减少320个连续核苷酸,并且连接于FATB-1a CTP编码区。得到的基因表达构建体用于采用本文描述的方法进行转化。
当上述构建体的两个T-DNA片段以RB到RB的方向插入宿主生物的染色体的单个基因座时,组装的转录单位具有可操作性连接有义和反义方向的大豆FAD2-1A内含子1和FATB-1aDNA片段的大豆7Sα’启动子。当转录时,可操作性连接的有义和反义方向的RNA序列能够形成有效抑制FAD2-1A和FATB的双链RNA。
pMON97596是用于体内组装的构建体,具有两个T-DNA片段,每个片段都侧接土壤杆菌T-DNA边界元件,即右边界DNA(RB)和左边界DNA(LB)。第一T-DNA片段含有可操作性连接于大豆FAD2-1A内含子1(SEQ ID NO:1)的大豆7Sα’启动子,所述内含子1从3’末端减少320个连续核苷酸,并且连接于FATB-1a叶绿体转运肽(“CTP”)编码区的5’180bp,和可操作性连接于EFMV启动子和豌豆Rubisco E9 3’终止序列的CP4 EPSPS基因,它们都侧接土壤杆菌T-DNA边界元件,即右边界DNA(RB)和左边界DNA(LB)。在同一载体上,在侧接另一RB和LB的第二T-DNA片段中,存在可操作性连接于大豆FAD2-1A内含子1(SEQ ID NO:1)的H6 3’终止序列,所述内含子1从3’末端减少320个连续核苷酸,并且连接于FATB-1a CTP编码区的5’180bp。得到的基因表达构建体用于采用本文描述的方法进行转化。
当上述构建体的两个T-DNA片段以RB到RB的方向插入宿主生物的染色体的单个基因座时,组装的转录单位具有可操作性连接有义和反义方向的大豆FAD2-1A内含子1和FATB-1aDNA片段的大豆7Sα’启动子。当转录时,可操作性连接的有义和反义方向的RNA序列能够形成有效抑制FAD2-1A和FATB的双链RNA。
pMON97597是用于体内组装的构建体,具有两个T-DNA片段,每个片段都侧接土壤杆菌T-DNA边界元件,即右边界DNA(RB)和左边界DNA(LB)。第一T-DNA片段含有可操作性连接于大豆FAD2-1A内含子1(SEQ ID NO:1)的大豆7Sα’启动子,所述内含子1从3’末端减少320个连续核苷酸,并且连接于FATB-1a叶绿体转运肽(“CTP”)编码区的5’120bp,和可操作性连接于EFMV启动子和豌豆Rubisco E9 3’终止序列的CP4 EPSPS基因,它们都侧接土壤杆菌T-DNA边界元件,即右边界DNA(RB)和左边界DNA(LB)。在同一载体上,在侧接另一RB和LB的第二T-DNA片段中,存在可操作性连接于大豆FAD2-1A内含子1(SEQ ID NO:1)的H63’终止序列,所述内含子1从3’末端减少320个连续核苷酸,并且连接于FATB-1a CTP编码区的5’120bp。得到的基因表达构建体用于采用本文描述的方法进行转化。
当上述构建体的两个T-DNA片段以RB到RB的方向插入宿主生物的染色体的单个基因座时,组装的转录单位具有可操作性连接有义和反义方向的大豆FAD2-1A内含子1和FATB-1aDNA片段的大豆7Sα’启动子。当转录时,可操作性连接的有义和反义方向的RNA序列能够形成有效抑制FAD2-1A和FATB的双链RNA。
pMON97598是用于体内组装的构建体,具有两个T-DNA片段,每个片段都侧接土壤杆菌T-DNA边界元件,即右边界DNA(RB)和左边界DNA(LB)。第一T-DNA片段含有可操作性连接于大豆FAD2-1A内含子1(SEQ ID NO:1)的大豆7Sα’启动子,所述内含子1从3’末端减少340个连续核苷酸,并且连接于FATB-1a叶绿体转运肽(“CTP”)编码区,和可操作性连接于EFMV启动子和豌豆Rubisco E9 3’终止序列的CP4 EPSPS基因,它们都侧接土壤杆菌T-DNA边界元件,即右边界DNA(RB)和左边界DNA(LB)。在同一载体上,在侧接另一RB和LB的第二T-DNA片段中,存在可操作性连接于大豆FAD2-1A内含子1(SEQ IDNO:1)的H6 3’终止序列,所述内含子1从3’末端减少340个连续核苷酸,并且连接于FATB-1a CTP编码区。得到的基因表达构建体用于采用本文描述的方法进行转化。
当上述构建体的两个T-DNA片段以RB到RB的方向插入宿主生物的染色体的单个基因座时,组装的转录单位具有可操作性连接有义和反义方向的大豆FAD2-1A内含子1和FATB-1a DNA片段的大豆7Sα’启动子。当转录时,可操作性连接的有义和反义方向的RNA序列能够形成有效抑制FAD2-1A和FATB的双链RNA。
实施例4 植物转化和分析
通过以前描述的方法,包括McCabe et al.,Bio/Technology,6:923-926(1988)的方法或土壤杆菌介导的转化,将实施例2和3的构建体稳定导入大豆(例如,Asgrow品种A4922或Asgrow品种A3244或Asgrow品种A3525)。通过在含有草甘膦的培养基上选择,鉴定转化的大豆植物。采用气相色谱,从构建体转化的大豆品系的种子分析脂肪酸组成。此外,任何构建体都可以含有其它感兴趣的序列,以及不同的启动子组合。
对于一些应用,在正在发育的种子中检测改变的脂肪酸组成,而在其它情况下,例如为了分析油谱、检测在FAS途径后期存在的脂肪酸改变,或为了检测脂肪酸组成的微小改变,优选分析来自成熟种子的脂肪酸或油。此外,各个种子的油和/或脂肪酸含量的分析可能是需要的,特别是在检测分离的R1种子群体中的油改变时。本文用到的R0代表示由本文描述的转化/再生方案产生的植物,R1代表示在自交的转基因R0植物上生长的种子。R1植物从R1种子生长。
确定用实施例3的构建体转化的大豆品系种子中的脂肪酸组成。将转基因和对照大豆品系的1-10个种子用组织匀浆器(Pro Scientific)分别进行研磨以进行油提取。来自研磨大豆种子的油在1.5ml含有十七烷酸甘油三酯(triheptadecanoin)(0.50mg/ml)的庚烷中提取过夜。200ul的提取油的等分物随着在无水甲醇中添加500 1甲醇钠而衍生为甲酯。衍生反应在50℃进行20分钟。通过同时加入500 1 10%(w/v)氯化钠和400 1庚烷终止反应。在庚烷中提取的得到的脂肪酸甲酯在Hewlett-Packard 6890GC型(Palo Alto,CA)上通过气相色谱(GC)进行分辨。GC配有Supelcowax 250柱(30m,0.25mm id,0.25微米膜厚)(Supelco,Bellefonte,PA)。柱温在注入时为175℃,温度以40℃/min的速度从175℃升到245℃然后降回175℃。注入器和检测器的温度分别为250℃和270℃。
实施例5 具有改进的生物柴油特性的合成的染料油
制备含有下列脂肪酸甲酯混合物的合成燃料脂肪酸组合物:73.3%油酸,21.4%亚油酸,2.2%棕榈酸,2.1%亚麻酸和1.0%硬脂酸(都以重量计)。纯化的脂肪酸甲酯购自Nu-Chek Prep,Inc.,Elysian,MN,USA。该组合物中十六烷的数目和点燃延迟时间由Southwest研究所通过点燃质量测试器(“IQT”)613(Southwest研究所,San Antonio,Texas,USA)测试。
IQT由电加热的恒定容量燃烧室、染料注入系统和用于控制实验、记录数据和提供对该数据的解释的计算机组成。染料注入系统包括染料注入喷嘴,该喷嘴形成进入燃烧室的入口。染料注入喷嘴中的针状抬升传感器探测进入燃烧室的燃油流。连接到燃烧室上的压力传感器检测汽缸压力,即燃烧室内的压力。IQT的基本概念是检测从染料注入燃烧室开始至燃烧开始的时间。燃烧室内的热动力学条件被精确控制以提供对点燃延迟时间的一致的测量。
对于十六烷数量和点燃延迟时间的测试,将被测燃油用5微米的滤器过滤。燃油贮池、注入管道和喷嘴都用加压氮气清扫。燃油贮池然后用无纺绒布擦试。一部分被测燃油用于冲洗燃油贮池、管道和喷嘴。贮池用被测燃油填充并将所有气体从系统排出。贮池加压至50psig。该方法基本由在高压下将精确计量的被测染料注入燃烧室组成,所述燃烧室填充空气达到理想的压力和温度。检测过程由确定燃油注入开始至燃烧开始的时间组成,即通常所述的点燃延迟时间。这种测定基于所测的针抬升和燃烧室的压力。通常的十六烷评定程序要求设定壳温为567.5℃,气压为2.1Mpa。
在操作开始之日,使具有已知注入延迟的燃油在IQT燃烧罐中运行,以确保设备在正常参数运行。然后运行被测的合成燃油。再次运行已知燃油以验证该系统没有发生变化。一旦燃油贮池与燃油注入泵相连,PC控制器上的测试程序便开始运行。该计算机控制着所有的程序,包括空气填充、燃油注入和废气的排放。燃烧事件重复进行32次。
点燃延迟时间是指从注入开始至点燃开始之间的时间。该延迟时间由针抬升和气缸压力数据确定。注入针的抬升作为注入开始的信号。由于燃油气化的冷却效应,会使得气缸压力轻微下降。燃烧开始被定义为气缸压力的恢复时间——由于燃烧使压力升高至燃油刚要注入之前的压力。
然后根据整合到数据采集和压缩软件中的校准曲线,用所测的点燃延迟时间来确定十六烷数量。由作为点燃延迟时间的函数的十六烷数量组成的校准曲线是通过使用基本参照燃油和NEG检测燃油的掺混物获得的。在被测燃油其在环境条件下是液体的情况下,采用至少一种已知十六烷数量的检验燃油,每日对校准曲线进行检验(Ryan,“CorrelationofPhysical and Chemical Ignition Delay to Cetane Number”,SAE Paper852103(1985);Ryan,“Diesel Fuel Ignition Quality as Determined in aConstant VolumeCombustion Bomb”,SAE Paper 870586(1986);Ryan,“Development of a Portable FuelCetane Quality Monitor”,Belvoir Fuelsand Lubricants Research Facility ReportNo.277,May(1992);Ryan,“Engine and Constant Volume Bomb Studies of DieselIgnition andCombustion”,SAE Paper 881616(1988);和Allard et al.,“DieselFuelIgnition Quality as Determined in the Ignition Quality Tester(“IQT”)”,SAEPaper 961182(1996))。如表3所示,合成油组合物显示了适宜作为例如但不限于生物柴油使用的十六烷数量和点燃延迟时间。
表3
燃油名称 测试数量 十六烷数量 标准差十六烷数量 点燃延迟时间(ms) 标准差点燃延迟时间
Check-High1Check-High 17771778 495549.33 0.5340.611 4.0094028 0.0440.051
平均值 49.4 4.02
合成油合成油合成油 177917801781 550255.6555.63 1.8971.8071.649 3.6223.5833.583 0.1160.1090.098
平均值 554 3.60
Check-High 1786 49.2 0.727 4.04 0.061
1名称为“Check-High”的燃油是一校准燃油。它的十六烷数量应该是49.3±0.5。用合成的测试燃油运行前后的的校准来检验仪器。
用ASTM D程序测定合成油的密度(ASTM D-4052)、浊点(ASTMD-2500)、流点(ASTMD-97)和冷滤器堵塞点(IP309/ASTM D-6371)。ASTM D程序获自ASTM,100Barr HarborDrive,West Conshohocken,PA,USA。这些测试的结果列于表4。如表4所示,合成油组合物具有适用于例如但不限于生物柴油的数量。
表4
测试 方法 结果
密度 ASTM D-4052 0.8791g/mL
浊点 ASTM D-2500 -18℃
流点 ASTM D-97 -21℃
冷滤器堵塞点 IP309(与ASTM D-6371相同) -21℃
通过评估基于生物的燃油的不饱和水平来估算一氧化氮排放水平,该评估是通过测量燃油密度并且间接计算估计的排放水平,或通过直接测量。也有可获得的标准程序来直接测量一氧化氮的排放水平。据估计,合成油与由传统的大豆油制备的脂肪酸甲酯相比有较低的一氧化氮排放水平,这种估计是基于合成油中总体不饱和水平的评估。油含有的双键越多,即不饱和程度越高,倾向于产生更高的一氧化氮排放。总共有123个双键的油与总共有153个双键的传统大豆油的比较列于表5。
表5
据国家可再生能源实验室,合同号ACG-8-17106-02最后报告:生物柴油组合物对DDC系列60柴油发动机排放的影响,(2000年6月),生物柴油组合物的硝酸排放通过公式y=46.959x-36.388来预测,其中y是以克/刹车马力小时表示的氧化物排放;x是生物柴油的密度。该公式基于包括16种生物柴油燃料的测试中硝酸排放数据的回归分析。该测试使用1991标度,生产系列60型底特律柴油公司发动机。
合成油的密度由Southwest研究所通过ASTM D4052方法测定。表4中的结果用于上述方程式中以预测硝酸排放值为4.89g/bhp-h。这一结果与对照的大豆产品进行比较。国家可再生能源实验室的报告给出了基于对照大豆的生物柴油(甲基大豆酯IGT)的密度和一氧化氮排放。对照生物柴油的密度是0.8877g/mL,给出了计算的一氧化氮排放为5.30g/bhp-h。这个计算的排放值与硝酸排放的实验值5.32g/bhp-h相似。与对照相比,合成油组合物显示了改进的数目,并且适于用作例如但不限于生物柴油。
实施例6 获得健康血清脂质水平的最优脂肪酸组成
确定植物组合物的胆固醇降低特性,来鉴定与传统大豆油相比,对血清脂质水平具有更有利影响的脂肪酸组成(即较低的LDL-胆固醇和较高的HDL胆固醇)。采用基于27个临床试验的公布方程(Mensink,R.P.and Katan,MB.Arteriosclerosis and Thrombosis,12:911-919(1992))来比较对使用新油籽组合物和使用普通大豆油的人的血清脂质水平的影响。
下表6显示了血清脂质水平的变化结果,其中30%的来自于碳水化合物的食物能量用脂质代替。结果表明,当用大豆油代替饮食中碳水化合物时,对血清脂质具有有利的影响。这种组成的改进可能是通过降低饱和脂肪酸水平,并且是通过获得总脂肪酸的10-30%,优选总脂肪酸的约15-25%的亚油酸水平。当亚油酸的比例低于总脂肪酸的10%时,与对照大豆油相比,新组合物提高了LDL-胆固醇,即使饱和脂肪酸的含量降低至总脂肪酸的5%时也是如此。当亚油酸的比例升高时,组合物提高血清HDL水平的能力降低。因此,确定优选的亚油酸组成是总脂肪酸的约15-25%。
表6
实施例7
以下14个步骤说明了设计用于植物转化,以在大豆中抑制FAD2,FAD3和FATB基因并且超量表达Δ-9去饱和酶的载体pMON68537的构建。具体地,该构建体包括7Sα启动子,其可操作性连接于大豆有义方向的内含子和3’UTR,即FAD2-1A内含子#1,FAD3-1A 3’UTR,FATB-1 3’UTR,发夹成环可剪接内含子,和互补系列的大豆反义方向的内含子和3’UTR,即FATB-1 3’UTR,FAD3-1A 3’UTR和FAD2-1A内含子#1,以及驱动Δ-9去饱和酶的大豆FAD2启动子。
步骤1-采用大豆基因组DNA作为模板,对作为dsRNAi构建体的可剪接内含子部分的大豆FAD3-1A内含子#5进行PCR扩增,采用以下引物
5’引物=19037=
ACTAGTATATTGAGCTCATATTCCACTGCAGTGGATATT
GTTTAAACATAGCTAGCATATTACGCGTATATTATACAAGCTTATATTCCCGGGATATTGTCGACATATTAGCGGTACATTTTATTGCTTATTCAC
3’引物=19045=
ACTAGTATATTGAGCTCATATTCCTGCAGGATATTCTCGAG
ATATTCACGGTAGTAATCTCCAAGAACTGGTTTTGCTGCTTGTGTCTGCAGTGAATC。
这些引物在5’和3’末端添加克隆位点。在5’末端添加:SpeI,SacI,BstXI,PmeI,NheI,MluI,HindIII,XmaI,SmaI,SalI。在3’末端添加:SpeI,SacI,Sse8387I,XhoI。将大豆FAD3-1A内含子#5PCR产物克隆到pCR2.1中,得到KAWHIT03.0065。然后用SpeI消化KAWHIT03.0065,用Pfu聚合酶填充末端,用HindIII消化pMON68526(空氯霉素(下文称作CM)抗性载体),用Pfu聚合酶填充末端。然后连接KAWHIT03.0065和pMON68526,得到pMON68541(在Amp抗性载体中具有多个克隆位点的大豆FAD3-1A内含子#5)。
步骤2-用以下引物扩增大豆FATB-13’UTR:18662=TTTTAATTACAATGAGAATGAGATTTACTGC(在5’末端添加Bsp120I)和18661=GGGCCCGATTTGAAATGGTTAACG。然后将PCR产物连接到pCR2.1中,制备KAWHIT03.0036。
步骤3-然后用Bsp120I和EcoRI消化KAWHIT03.0036,然后克隆到KAWHIT03.0032(具有多个克隆位点的空CM抗性载体)中,制备KAWHIT03.0037(空CM抗性载体中的FATB-13’UTR)。
步骤4-用以下引物扩增大豆FAD3-1A3’UTR:18639=GGGCCCGTTTCAAACTTTTTGG(在5’末端添加Bsp120I)和18549=TGAAACTGACAATTCAA。然后将PCR产物连接到pCR2.1中,制备KAWHIT03.0034。
步骤5-用Bsp120I和EcoRI消化KAWHIT03.0034,然后连接到KAWHIT03.0032(具有多个克隆位点的空CM抗性载体)中,制备KAWHIT03.0035(空CM抗性载体中的FAD3-1A3’UTR)。
步骤6-用大豆基因组DNA作为模板,PCR扩增大豆FAD2-1A内含子#1,采用以下引物:5’引物=18663=GGGCCCGGTAAATTAAATTGTGC(在5’末端添加Bsp120I);和3’引物=18664=CTGTGTCAAAGTATAAACAAGTTCAG。将得到的PCR产物克隆到pCR2.1中,制备KAWHIT03.0038。
步骤7-采用限制位点Bsp120I和EcoRI,将KAWHIT03.0038中的大豆FAD2-1A内含子#1PCR产物克隆到KAWHIT03.0032(具有多个克隆位点的空CM抗性载体)中。得到的质粒是KAWHIT03.0039(空CM抗性载体中的大豆FAD2-1A内含子#1)。
步骤8-用AscI和HindIII消化KAWHIT03.0039,并且用MluI和HindIII消化pMON68541(FAD3-1A内含子#5dsRNAi AMP抗性碱基载体)。然后将大豆FAD2-1A内含子#1有方向地克隆到pMON68541中,得到KAWHIT03.0071(具有大豆FAD3-1A内含子#5的大豆FAD2-1A内含子#1)。
步骤9-用AscI和HindIII消化KAWHIT03.0035(CM抗性载体中的FAD3-1A3’UTR),并且用MluI和HindIII消化KAWHIT03.0071(FAD2-1A内含子和FAD3-1A内含子#5dsRNAi AMP抗性碱基载体)。然后将大豆FAD3-1A3’UTR有方向地克隆到KAWHIT03.0071中,得到KAWHIT03.0072(具有大豆FAD3-1A内含子#5的大豆FAD2-1A内含子#1和FAD3-1A3’UTR)。
步骤10-用AscI和HindIII消化(CM抗性载体中的FATB-13’UTR),并且用MluI和HindIII消化KAWHIT03.0072。然后将FATB-13’UTR有方向地克隆到KAWHIT03.0072中,以制备KAWHIT03.0073(具有FAD3-1A内含子#5的大豆FAD2-1A内含子,FAD3-1A3’UTR,FATB-13’UTR)。
步骤11-用BstXI和SalI消化KAWHIT03.0073,凝胶纯化含有FAD2-1A内含子,FAD3-1A 3’UTR和FATB-1 3’UTR的片段。在不同的试管中,用XhoI和Sse8387I消化KAWHIT03.0073。然后将内含子/3’UTR片段以相反的方向,在大豆FAD3-1A内含子#5的另一位点克隆回到KAWHIT03.0073中,产生KAWHIT03.0074(大豆FAD2-1A内含子#1有义,大豆FAD3-1A 3’UTR有义,大豆FATB-1 3’UTR有义,大豆,可剪接大豆FAD3-1A内含子#5,大豆FATB-1 3’UTR反义,大豆FAD3-1A3’UTR反义,大豆FAD2-1A内含子#1反义)。
步骤12-为了将dsRNAi构建体连接于7Sα’启动子和TML3’,用SacI消化KAWHIT03.0074和pMON68527(7Sa′/TML3′盒),并且连接在一起,以制备pMON68563(7Sα’启动子-FAD2-1A内含子#1有义,大豆FAD3-1A 3’UTR有义,大豆FATB-1 3’UTR有义,可剪接的大豆FATB-1 3’UTR反义,大豆FAD3-1A 3’UTR反义,大豆FAD2-1A内含子#1反义-TML3’)。
步骤13-为了将组装的dsRNAi构建体导入pMON70682,用NotI消化pMON68563和pMON70682,并且连接在一起,以形成pMON68536,其包含7Sα’启动子,该启动子可操作性连接于FAD2-1A内含子#1有义,大豆FAD3-1A 3’UTR有义,大豆FATB-1 3’UTR有义,可剪接的大豆FAD3-1A内含子#5,大豆FATB-1 3’UTR反义,大豆FAD3-1A 3’UTR反义,大豆FAD2-1A内含子#1反义和TML3’终止子的形成双链RNA的构建体)。
步骤14-然后用AscI和RsrII消化pMON68536,并且用SanDI和AscI消化pMON68529(其含有与FMV启动子融合的选择标记CP4和RBCS3’以及驱动Δ9去饱和酶的大豆FAD2启动子)。然后将pMON68536的dsRNAi部分有方向地克隆到pMON68529中,得到pMON68537(7Sα’启动子,其可操作性连接于FAD2-1A内含子#1有义,大豆FAD3-1A 3’UTR有义,大豆FATB-1 3’UTR有义,可剪接的大豆FAD3-1A内含子#5,大豆FATB-1 3’UTR反义,大豆FAD3-1A3’UTR反义,大豆FAD2-1A内含子#1反义和TML3’终止子和驱动Δ9去饱和酶的大豆FAD2启动子的形成双链RNA的构建体)。
实施例8
以下15个步骤说明了设计用于植物转化,以在大豆中抑制FAD2,FAD3和FATB基因并且超量表达Δ-9去饱和酶的载体pMON68539(图22)的构建。具体地,该构建体包括7Sα启动子,其可操作性连接于大豆有义方向的内含子和3’UTR,即FAD2-1A内含子#1,FAD3-1A3’UTR,FATB-1 3’UTR,发夹成环可剪接内含子,和互补系列的大豆反义方向的内含子和3’UTR,即FATB-1 3’UTR,FAD3-1A 3’UTR和FAD2-1A内含子#1,驱动Δ-9去饱和酶的大豆FAD2启动子,以及驱动KASIV的油菜籽蛋白启动子。
步骤1-采用大豆基因组DNA作为模板,对作为dsRNAi构建体的可剪接内含子部分的大豆FAD3-1A内含子#5进行PCR扩增,采用以下引物:
5’引物=19037=
ACTAGTATATTGAGCTCATATTCCACTGCAGTGGATATTG
TTTAAACATAGCTAGCATATTACGCGTATATTATACAAGCTTATATTCCCGGGATATTGTCGACATATTAGCGGTACATTTTATTGCTTATTCAC
3’引物=19045=
ACTAGTATATTGAGCTCATATTCCTGCAGGATATTCTCGAG
ATATTCACGGTAGTAATCTCCAAGAACTGGTTTTGCTGCTTGTGTCTGCAGTGAATC。
这些引物在5’和3’末端添加克隆位点。在5’末端添加:SpeI,SacI,BstXI,PmeI,NheI,MluI,HindIII,XmaI,SmaI,SalI。在3’末端添加:SpeI,SacI,Sse8387I,XhoI。将大豆FAD3-1A内含子#5PCR产物克隆到pCR2.1中,得到KAWHIT03.0065。然后用SpeI消化KAWHIT03.0065,用Pfu聚合酶填充末端,用HindIII消化pMON68526(空CM抗性载体),用Pfu聚合酶填充末端。然后连接KAWHIT03.0065和pMON68526,得到pMON68541(在Amp抗性载体中具有多个克隆位点的大豆FAD3-1A内含子#5)。
步骤2-用以下引物扩增大豆FATB-13’UTR:18662=TTTTAATTACAATGAGAATGAGATTTACTGC(在5’末端添加Bsp120I)和18661=GGGCCCGATTTGAAATGGTTAACG。然后将PCR产物连接到pCR2.1中,制备KAWHIT03.0036。
步骤3-然后用Bsp120I和EcoRI消化KAWHIT03.0036,然后克隆到KAWHIT03.0032(具有多个克隆位点的空CM抗性载体)中,制备KAWHIT03.0037(空CM抗性载体中的FATB-13’UTR)。
步骤4-用以下引物扩增大豆FAD3-1A3’UTR:18639=GGGCCCGTTTCAAACTTTTTGG(在5’末端添加Bsp120I)和18549=TGAAACTGACAATTCAA。然后将PCR产物连接到pCR2.1中,制备KAWHIT03.0034。
步骤5-用Bsp120I和EcoRI消化KAWHIT03.0034,然后连接到KAWHIT03.0032(具有多个克隆位点的空CM抗性载体)中,制备KAWHIT03.0035(空CM抗性载体中的FAD3-1A3’UTR)。
步骤6-用大豆基因组DNA作为模板,PCR扩增大豆FAD2-1A内含子#1,采用以下引物:5’引物=18663=GGGCCCGGTAAATTAAATTGTGC(在5’末端添加Bsp120I);和3’引物=18664=CTGTGTCAAAGTATAAACAAGTTCAG。将得到的PCR产物克隆到pCR2.1中,制备KAWHIT03.0038。
步骤7-采用限制位点Bsp120I和EcoRI,将KAWHIT03.0038中的大豆FAD2-1A内含子#1PCR产物克隆到KAWHIT03.0032(具有多个克隆位点的空CM抗性载体)中。得到的质粒是KAWHIT03.0039(空CM抗性载体中的大豆FAD2-1A内含子#1)。
步骤8-用AscI和HindIII消化KAWHIT03.0039,并且用MluI和HindIII消化pMON68541(FAD3-1A内含子#5dsRNAi AMP抗性碱基载体)。然后将大豆FAD2-1A内含子#1有方向地克隆到pMON68541中,得到KAWHIT03.0071(具有大豆FAD3-1A内含子#5的大豆FAD2-1A内含子#1)。
步骤9-用AscI和HindIII消化KAWHIT03.0035(CM抗性载体中的FAD3-1A 3’UTR),并且用MluI和HindIII消化KAWHIT03.0071(FAD2-1A内含子和FAD3-1A内含子#5dsRNAi AMP抗性碱基载体)。然后将大豆FAD3-1A3’UTR有方向地克隆到KAWHIT03.0071中,得到KAWHIT03.0072(具有大豆FAD3-1A内含子#5的大豆FAD2-1A内含子#1和FAD3-1A3’UTR)。
步骤10-用AscI和HindIII消化(CM抗性载体中的FATB-13’UTR),并且用MluI和HindIII消化KAWHIT03.0072。然后将FATB-1 3’UTR有方向地克隆到KAWHIT03.0072中,以制备KAWHIT03.0073(具有FAD3-1A内含子#5的大豆FAD2-1A内含子,FAD3-1A3’UTR,FATB-13’UTR)。
步骤11-用BstXI和SalI消化KAWHIT03.0073,凝胶纯化含有FAD2-1A内含子,FAD3-1A3’UTR和FATB-1 3’UTR的片段。在不同的试管中,用XhoI和Sse8387I消化KAWHIT03.0073。然后将内含子/3’UTR片段以相反的方向,在大豆FAD3-1A内含子#5的另一位点克隆回到KAWHIT03.0073中,产生KAWHIT03.0074(大豆FAD2-1A内含子#1有义,大豆FAD3-1A 3’UTR有义,大豆FATB-1 3’UTR有义,大豆,可剪接大豆FAD3-1A内含子#5,大豆FATB-13’UTR反义,大豆FAD3-1A3’UTR反义,大豆FAD2-1A内含子#1反义)。
步骤12-为了将dsRNAi构建体连接于7Sα’启动子和TML3’,用SacI消化KAWHIT03.0074和pMON68527(7Sa′/TML3′盒),并且连接在一起,以制备pMON68563(7Sα’启动子-FAD2-1A内含子#1有义,大豆FAD3-1A 3’UTR有义,大豆FATB-1 3’UTR有义,可剪接的大豆FATB-1 3’UTR反义,大豆FAD3-1A 3’UTR反义,大豆FAD2-1A内含子#1反义-TML3’)。
步骤13-为了将组装的dsRNAi构建体导入pMON70682,用NotI消化pMON68563和pMON70682,并且连接在一起,以形成pMON68536,其包含7Sα’启动子,该启动子可操作性连接于FAD2-1A内含子#1有义,大豆FAD3-1A 3’UTR有义,大豆FATB-1 3’UTR有义,可剪接的大豆FAD3-1A内含子#5,大豆FATB-1 3’UTR反义,大豆FAD3-1A 3’UTR反义,大豆FAD2-1A内含子#1反义和TML3’终止子的形成双链RNA的构建体)。
步骤14-然后用AscI和RsrII消化pMON68536,并且用SanDI和AscI消化pMON68529(其含有与FMV启动子融合的选择标记CP4和RBCS 3’以及驱动Δ9去饱和酶的大豆FAD2启动子)。然后将pMON68536的dsRNAi部分有方向地克隆到pMON68529中,得到pMON68537(7Sα’启动子,其可操作性连接于FAD2-1A内含子#1有义,大豆FAD3-1A 3’UTR有义,大豆FATB-1 3’UTR有义,可剪接的大豆FAD3-1A内含子#5,大豆FATB-1 3’UTR反义,大豆FAD3-1A3’UTR反义,大豆FAD2-1A内含子#1反义和TML3’终止子和驱动Δ9去饱和酶的大豆FAD2启动子的形成双链RNA的构建体)。
步骤15-然后用SanDI和AscI消化pMON68537,并且用AscI和RsrII消化pMON70683(驱动KasIV的油菜籽蛋白启动子)。将油菜籽蛋白启动子/KasIV片段有方向地克隆到pMON68537中,产生pMON68539(7Sα’启动子,其可操作性连接于FAD2-1A内含子#1有义,大豆FAD3-1A 3’UTR有义,大豆FATB-1 3’UTRense,可剪接的大豆FAD3-1A内含子#5,大豆FATB-13’UTR反义,大豆FAD3-1A 3’UTR反义,大豆FAD2-1A内含子#1反义和TML3’终止子,驱动Δ9去饱和酶的大豆FAD2启动子和驱动KasIV的油菜籽蛋白启动子的形成双链RNA的构建体)。
实施例9
本实施例说明了植物转化,用于生产具有抑制的基因的大豆植物。
用实施例7中制备的转化载体pMON68537将内含子/3’UTR形成双链RNA的构建体导入大豆,用于抑制Δ12去饱和酶、Δ15去饱和酶和FATB基因。载体pMON68537也含有Δ-9去饱和酶(FAB2)和CP4基因。通过根癌土壤杆菌ABI株(Martinell,美国专利号6,384,301),将载体稳定导入大豆(Asgrow品种A4922)。CP4选择标记使得能够通过在含有草甘膦除草剂的培养基上的选择,鉴定转化的大豆植物。
采用气相色谱从内含子/3’UTR dsRNAi表达构建体转化的大豆品系的种子分析脂肪酸组成。R1合并的种子和R1单种子的油组成证明,与来自未转化的大豆的种子的油相比,来自转基因大豆品系的种子的油中单和多不饱和脂肪酸组成发生改变(参见表7)。例如,FAD2抑制提供了油酸酯化合物含量增加的植物;FAD3抑制提供了亚麻酸酯化合物减少的植物;FATB抑制提供了饱和脂肪酸酯化合物,如棕榈酸酯和硬脂酸酯减少的植物。可以根据需要的相对脂肪酸组成,从所述品系进行选择。采用气相色谱从用构建体转化的大豆品系的种子分析脂肪酸组成。
实施例10
本实施例说明了植物转化,用于生产具有抑制的基因的大豆植物。
用实施例3中制备的转化载体pMON68539将内含子/3’UTR形成双链RNA的构建体导入大豆,用于抑制Δ12去饱和酶、Δ15去饱和酶和FATB基因。载体pMON68539也含有KasIV和CP4基因。通过根癌土壤杆菌ABI株(Martinell,美国专利号6,384,301),将载体稳定导入大豆(Asgrow品种A4922)。CP4选择标记使得能够通过在含有草甘膦除草剂的培养基上的选择,鉴定转化的大豆植物。
采用气相色谱从内含子/3’UTR dsRNAi表达构建体转化的大豆品系的种子分析脂肪酸组成。R1合并的种子和R1单种子的油组成证明,与来自未转化的大豆的种子的油相比,来自转基因大豆品系的种子的油中单和多不饱和脂肪酸组成发生改变(参见表8)。例如,FAD2抑制提供了油酸酯化合物含量增加的植物;FAD3抑制提供了亚麻酸酯化合物减少的植物;FATB抑制提供了饱和脂肪酸酯化合物,如棕榈酸酯和硬脂酸酯减少的植物。可以根据需要的相对脂肪酸组成,从所述品系进行选择。采用气相色谱从用构建体转化的大豆品系的种子分析脂肪酸组成。
表7.来自pMON68537事件的R1单种子的脂肪酸组成
构建体 事件 18:1 18:3 16:0 18:0 18:2
PMON68537 GM_A36305 74.92 4.42 6.35 2.93 10.24
PMON68537 GM_A36305 74.8 4.33 6.57 2.93 10.23
PMON68537 GM_A36305 74.43 3.95 5.98 2.82 11.81
PMON68537 GM_A36305 73.32 3.99 6.79 3.24 11.48
PMON68537 GM_A36305 72.87 4.33 7.06 3.08 11.7
PMON68537 GM_A36305 16.63 9.53 13.5 4.06 55.31
PMON68537 GM_A36305 16.52 9.61 13.92 4.24 54.79
PMON68537 GM_A36305 15.67 9.66 13.64 4.19 55.89
PMON68537 GM_A36306 77.45 3.93 6.76 2.47 8.4
PMON68537 GM_A36306 74.51 4.38 6.58 2.47 10.94
PMON68537 GM_A36306 73.21 4.64 7.04 3.08 11.04
PMON68537 GM_A36306 72.78 4.4 6.97 2.55 12.21
PMON68537 GM_A36306 71.67 4.76 6.94 3.25 12.2
PMON68537 GM_A36306 71.01 4.86 7.64 3.05 12.41
PMON68537 GM_A36306 69.72 4.76 7.66 2.95 13.75
PMON68537 GM_A36306 17.41 8.88 13.35 3.85 55.63
PMON68537 GM_A36307 77.22 3.71 6.8 2.77 8.5
PMON68537 GM_A36307 76.79 3.65 6.76 2.85 8.75
PMON68537 GM_A36307 71.44 4.54 7.2 3.58 12.17
PMON68537 GM_A36307 18.83 8.62 13.94 4.02 53.61
PMON68537 GM_A36307 18.81 8.38 13.27 3.7 54.97
PMON68537 GM_A36307 15.68 9.97 14.06 4.55 54.79
PMON68537 GM_A36307 15.28 10.64 14.68 4.43 53.97
PMON68537 GM_A36307 14.08 9.36 14.39 4.31 56.89
PMON68537 GM_A36309 78.67 3.53 6.09 2.5 8.18
PMON68537 GM_A36309 75.43 3.96 6.7 2.53 10.3
PMON68537 GM_A36309 71.41 4.19 6.92 2.74 13.67
PMON68537 GM_A36309 70.51 4.14 6.85 3.16 14.33
PMON68537 GM_A36309 67.51 5.01 7.45 3.15 15.69
构建体 事件 18:1 18:3 16:0 18:0 18:2
PMON68537 GM_A36309 66.99 4.92 7.15 3.9 15.79
PMON68537 GM_A36309 20.09 8.46 12.41 5 52.97
PMON68537 GM_A36309 15.15 9.73 14.61 3.85 55.79
PMON68537 GM_A36310 74.28 4.77 7.31 1.85 10.9
PMON68537 GM_A36310 74.03 5.43 8.23 1.63 9.66
PMON68537 GM_A36310 73.07 5.09 7.37 1.76 11.75
PMON68537 GM_A36310 71.83 5.04 7.78 1.86 12.54
PMON68537 GM_A36310 68.01 6.26 9.8 1.97 13.13
PMON68537 GM_A36310 67.22 6.28 8.71 3.28 13.45
PMON68537 GM_A36310 65.37 6.87 10.01 1.94 14.9
PMON68537 GM_A36310 15.76 10.09 13.4 4.28 55.52
PMON68537 GM_A36311 77.87 3.56 5.9 2.46 9.05
PMON68537 GM_A36311 75.8 3.87 5.91 2.93 10.22
PMON68537 GM_A36311 75.61 3.71 6.21 2.56 10.75
PMON68537 GM_A36311 73.68 4.06 6 3.09 11.98
PMON68537 GM_A36311 72.66 4.11 6.41 3.14 12.48
PMON68537 GM_A36311 70.89 4.39 6.52 3.11 13.93
PMON68537 GM_A36311 70.82 3.97 6.52 3.18 14.29
PMON68537 GM_A36311 16.67 9.39 13.65 4.44 54.77
PMON68537 GM_A36312 78.32 4.3 6.36 1.79 8.16
PMON68537 GM_A36312 77.55 4.46 6.51 2.13 8.23
PMON68537 GM_A36312 77.43 4.17 6.31 1.81 9.24
PMON68537 GM_A36312 76.98 4.29 6.25 2.27 9.05
PMON68537 GM_A36312 76.43 4.55 6.82 2.16 8.96
PMON68537 GM_A36312 76.38 4.5 6.46 2.04 9.54
PMON68537 GM_A36312 75.25 4.27 6.41 1.97 11.06
PMON68537 GM_A36312 18.24 9.43 13.6 3.07 54.75
PMON68537 GM_A36313 80.18 4.07 6.17 2.59 5.85
PMON68537 GM_A36313 79.96 4.16 6.03 2.59 6.11
PMON68537 GM_A36313 78.88 3.9 5.6 2.8 7.65
PMON68537 GM_A36313 78.76 3.92 5.44 2.91 7.82
构建体 事件 18:1 18:3 16:0 18:0 18:2
PMON68537 GM_A36313 77.64 4.22 5.88 2.9 8.25
PMON68537 GM_A36313 76.15 4.14 6.06 3.13 9.42
PMON68537 GM_A36313 19.05 8.87 13.45 3.71 54.03
PMON68537 GM_A36313 18.47 8.46 13.13 3.63 55.41
PMON68537 GM_A36314 80.27 3.17 5.77 3.4 6.03
PMON68537 GM_A36314 79.66 3.24 5.72 3.19 6.91
PMON68537 GM_A36314 79.5 3.45 5.83 3.23 6.74
PMON68537 GM_A36314 77.42 3.52 5.76 3.57 8.42
PMON68537 GM_A36314 77.33 3.71 6.36 3.34 8.01
PMON68537 GM_A36314 76.83 3.71 6.38 3.24 8.59
PMON68537 GM_A36314 16.6 9.3 12.63 4.43 55.99
PMON68537 GM_A36314 15.26 8.59 13.71 4.54 56.84
PMON68537 GM_A36315 20.21 8.25 13.61 3.59 53.37
PMON68537 GM_A36315 17.47 9.22 13.46 3.35 55.57
PMON68537 GM_A36315 16.75 9.3 13.61 3.66 55.75
PMON68537 GM_A36315 16.54 9.18 13.54 3.88 55.9
PMON68537 GM_A36315 16.06 10.07 13.44 4.01 55.42
PMON68537 GM_A36315 16.05 9.58 12.82 4.25 56.29
PMON68537 GM_A36315 15.95 10.42 13.12 3.63 55.91
PMON68537 GM_A36315 15.5 10.22 13.25 3.78 56.3
PMON68537 GM_A36316 79.61 3.56 5.79 2.94 6.87
PMON68537 GM_A36316 75.11 4.01 6.45 3.44 9.76
PMON68537 GM_A36316 75.07 4.25 6.74 3.09 9.64
PMON68537 GM_A36316 73.92 3.97 6.53 3.56 10.75
PMON68537 GM_A36316 17.26 9.59 13.1 4.26 54.78
PMON68537 GM_A36316 17.15 9.03 12.81 4.04 55.97
PMON68537 GM_A36316 16.62 9.2 13.15 3.99 56.03
PMON68537 GM_A36316 16.6 9.44 13.19 3.95 55.84
PMON68537 GM_A36317 18.96 7.55 13.2 3.75 55.51
PMON68537 GM_A36317 16.19 9.43 13.33 3.96 56.04
PMON68537 GM_A36317 16.05 9.1 1402 3.94 55.91
构建体 事件 18:1 18:3 16:0 18:0 18:2
PMON68537 GM_A36317 15.33 9.4 13.91 4.22 56.11
PMON68537 GM_A36317 15.28 9.2 13.87 4.27 56.36
PMON68537 GM_A36317 14.58 10.15 13.74 4.38 56.15
PMON68537 GM_A36317 13.95 9.47 13.98 4.76 56.79
PMON68537 GM_A36317 13.91 9.88 14.26 4.62 56.25
PMON68537 GM_A36318 78.82 3.64 5.7 2.77 7.87
PMON68537 GM_A36318 77.94 3.73 5.9 2.94 8.29
PMON68537 GM_A36318 75.18 4.11 6.08 3.48 9.95
PMON68537 GM_A36318 75.1 3.93 6.02 3.04 10.75
PMON68537 GM_A36318 75.01 4.22 6.57 3.29 9.72
PMON68537 GM_A36318 74.17 4.2 6.51 3.27 10.68
PMON68537 GM_A36318 73.47 4.27 6.7 3.22 11.16
PMON68537 GM_A36318 30.57 10.54 14.83 5.55 36.92
PMON68537 GM_A36319 80 3.65 5.83 2.31 7.02
PMON68537 GM_A36319 79.89 3.65 5.64 2.35 7.26
PMON68537 GM_A36319 79.4 3.59 5.73 1.76 8.46
PMON68537 GM_A36319 78 3.87 6.11 2.35 8.5
PMON68537 GM_A36319 76.08 4.22 6.5 2.35 9.74
PMON68537 GM_A36319 75.56 3.89 6.41 1.78 11.3
PMON68537 GM_A36319 75.26 4.27 6.47 2.37 10.5
PMON68537 GM_A36319 75.16 4.1 6.48 2.49 10.66
PMON68537 GM_A36320 81.27 3.19 5.84 2.4 6.09
PMON68537 GM_A36320 80.21 3.27 5.18 2.44 7.76
PMON68537 GM_A36320 79.64 3.38 5.5 2.67 7.63
PMON68537 GM_A36320 79.46 3.38 5.82 2.67 7.42
PMON68537 GM_A36320 78.5 3.59 6.24 2.49 8
PMON68537 GM_A36320 73.83 3.79 6.72 2.78 11.74
PMON68537 GM_A36320 73.1 3.95 6.9 2.39 12.48
PMON68537 GM_A36320 22.99 8.03 12.19 4.81 50.89
PMON68537 GM_A36324 75.93 3.77 6.58 2.76 9.76
PMON68537 GM_A36324 75.1 4.05 7.01 2.83 9.8
构建体 事件 18:1 18:3 16:0 18:0 18:2
PMON68537 GM_A36324 17.83 8.79 12.78 4.11 55.49
PMON68537 GM_A36324 16.46 8.88 12.84 4.48 56.29
PMON68537 GM_A36324 16.35 9.25 13.51 4.17 55.66
PMON68537 GM_A36324 15.25 8.99 13.73 4.28 56.69
PMON68537 GM_A36324 14.16 10.17 13.95 4.11 56.58
PMON68537 GM_A36324 13.59 9.87 14.61 4.5 56.33
PMON68537 GM_A36357 80.19 3.03 5.59 3.2 6.62
PMON68537 GM_A36357 79.78 3.19 5.51 3.24 6.89
PMON68537 GM_A36357 78.5 3.55 5.75 3.17 7.71
PMON68537 GM_A36357 77.48 3.68 5.71 3.55 8.23
PMON68537 GM_A36357 77.28 3.79 5.66 3.48 8.46
PMON68537 GM_A36357 77.1 3.51 5.43 3.65 8.99
PMON68537 GM_A36357 71.9 4.24 6.47 3.67 12.39
PMON68537 GM_A36357 17.66 9.32 13.26 4.21 54.51
PMON68537 GM_A36359 77.91 3.35 5.67 3.24 8.53
PMON68537 GM_A36359 77.85 3.29 5.42 3.29 8.87
PMON68537 GM_A36359 76.71 3.65 6.07 3.35 8.95
PMON68537 GM_A36359 71.73 4.01 6.79 3.49 12.68
PMON68537 GM_A36359 69.32 4.51 6.99 3.66 14.13
PMON68537 GM_A36359 68.63 4.44 6.91 3.76 14.89
PMON68537 GM_A36359 18.87 8.03 13.38 3.86 54.81
PMON68537 GM_A36359 16.81 9.83 13.08 4.68 54.55
PMON68537 GM_A36360 79.34 3.29 5.99 3.15 6.88
PMON68537 GM_A36360 75.42 3.47 6.47 3.08 10.26
PMON68537 GM_A36360 75.3 3.86 6.69 3.2 9.64
PMON68537 GM_A36360 74.51 3.8 6.39 3.32 10.67
PMON68537 GM_A36360 21.49 6.95 13.07 3.92 53.46
PMON68537 GM_A36360 20.05 7.4 13.09 3.83 54.57
PMON68537 GM_A36360 16.08 9.14 13.02 4.64 56.03
PMON68537 GM_A36360 15.86 9.07 13.44 4.49 56.04
PMON68537 GM_A36361 82.13 2.83 5.67 3.13 4.81
构建体 事件 18:1 18:3 16:0 18:0 18:2
PMON68537 GM_A36361 80.99 3.2 5.79 3.01 5.64
PMON68537 GM_A36361 74.39 3.85 6.33 3.5 10.59
PMON68537 GM_A36361 18.01 8.46 13.18 3.92 55.41
PMON68537 GM_A36361 17.99 8.11 13.05 4.09 55.7
PMON68537 GM_A36361 17.35 8.31 13.4 4 55.88
PMON68537 GM_A36361 16.81 10.2 12.9 4.32 54.87
PMON68537 GM_A36361 16.55 8.5 13.21 4.22 56.45
PMON68537 GM_A36362 78.05 3.89 6.29 2.81 7.76
PMON68537 GM_A36362 76.89 3.69 6.32 3.12 8.76
PMON68537 GM_A36362 76.1 4 6.57 3.02 9.24
PMON68537 GM_A36362 76.01 4.08 6.24 3.03 9.48
PMON68537 GM_A36362 75.86 3.76 5.68 3.56 9.95
PMON68537 GM_A36362 75.79 4.07 6.43 3.15 9.34
PMON68537 GM_A36362 74.89 4.14 6.63 3.11 10.07
PMON68537 GM_A36362 17.22 8.8 13.75 3.77 55.54
PMON68537 GM_A36363 79.15 3.57 6.2 3.03 6.84
PMON68537 GM_A36363 75.69 3.83 7.07 2.73 9.53
PMON68537 GM_A36363 73.97 4.22 6.82 3.39 10.33
PMON68537 GM_A36363 72.53 4.31 6.64 3.7 11.59
PMON68537 GM_A36363 68.42 4.5 7.05 3.95 14.79
PMON68537 GM_A36363 18.39 8.7 13.61 4.1 54.28
PMON68537 GM_A36363 17.54 8.87 14.08 4.07 54.56
PMON68537 GM_A36363 15.87 9.66 14.56 4.2 54.69
PMON68537 GM_A36365 78.79 3.11 5.87 1.27 9.9
PMON68537 GM_A36365 76.76 3.86 5.79 1.66 10.91
PMON68537 GM_A36365 75.41 3.49 6.06 1.83 12.15
PMON68537 GM_A36365 73.57 3.65 6.11 1.5 14.19
PMON68537 GM_A36365 71.55 3.56 6.62 1.24 16.08
PMON68537 GM_A36365 70.41 4 6.07 2.15 16.33
PMON68537 GM_A36365 66.66 3.9 6.84 1.5 20.21
PMON68537 GM_A36365 63.96 4.22 708 227 21.52
构建体 事件 18:1 18:3 16:0 18:0 18:2
PMON68537 GM_A36366 75.44 4.33 6.49 3.21 9.32
PMON68537 GM_A36366 74.75 4.21 6.87 2.71 10.33
PMON68537 GM_A36366 74.69 4.65 6.91 3.06 9.65
PMON68537 GM_A36366 73.23 4.89 7.23 2.99 10.52
PMON68537 GM_A36366 72.53 4.76 742 3.26 10.85
PMON68537 GM_A36366 67.15 5.05 7.47 3.33 15.87
PMON68537 GM_A36366 65.81 5.6 7.9 3.37 16.09
PMON68537 GM_A36366 62.31 6.19 8.71 3.22 18.55
PMON68537 GM_A36367 80.56 3.3 6.07 2.58 6.34
PMON68537 GM_A36367 77.78 3.58 6.47 2.66 8.45
PMON68537 GM_A36367 77.78 3.46 6.25 2.84 8.51
PMON68537 GM_A36367 77.39 3.81 6.71 2.86 8.11
PMON68537 GM_A36367 77.32 3.74 6.17 3.12 8.47
PMON68537 GM_A36367 75.93 3.97 6.23 3.43 9.29
PMON68537 GM_A36367 72.82 4.09 6.85 3.25 11.88
PMON68537 GM_A36367 19.31 7.58 13.7 3.59 55
PMON68537 GM_A36410 21.67 7.62 13.38 3.43 53.1
PMON68537 GM_A36410 20.9 8.33 12.93 3.64 53.33
PMON68537 GM_A36410 20.21 8.04 13.28 3.86 53.66
PMON68537 GM_A36410 20.02 8.71 12.79 3.71 53.87
PMON68537 GM_A36410 18.96 8.95 13.3 3.77 54.15
PMON68537 GM_A36410 18.18 8.98 13.56 3.74 54.66
PMON68537 GM_A36410 17.61 9.29 12.93 4.12 55.13
PMON68537 GM_A36410 16.78 9.8 13.78 3.92 54.83
PMON68537 GM_A36411 75.06 4.33 6.49 2.93 10.08
PMON68537 GM_A36411 74.32 4.46 6.76 2.96 10.38
PMON68537 GM_A36411 73.41 4.76 6.91 3.11 10.78
PMON68537 GM_A36411 73.24 4.87 7.28 2.89 10.67
PMON68537 GM_A36411 22.38 8.17 13.47 3.6 51.51
PMON68537 GM_A36411 18.26 9.07 14.14 3.81 54.02
PMON68537 GM_A36411 17.52 10.1 13.1 4.03 54.36
构建体 事件 18:1 18:3 16:0 18:0 18:2
PMON68537 GM_A36411 17.02 9.71 13.45 4.02 54.89
A3244 A3244 18.29 7.79 13.69 4.15 55.08
A3244 A3244 17.54 8.19 13.32 4.32 55.57
A3244 A3244 17.13 8.13 13.21 4.46 56.04
A3244 A3244 15.47 9.56 13.04 4.43 56.46
A3244 A3244 15.17 8.95 13.79 4.3 56.78
A3244 A3244 +5.05 9.03 14.16 4.01 56.8
A3244 A3244 13.51 10.07 12.95 5.07 57.3
A3244 A3244 13.49 9.91 13.31 4.56 57.67
表8.来自pMON68539事件的R1单种子的脂肪酸组成
构建体 事件 16:0 18:0 18:1 18:2 18:3
PMON68539 GM_A36448 4.51 2.65 79.64 8.66 3.55
PMON68539 GM_A36448 4.62 2.64 78.35 9.99 3.77
PMON68539 GM_A36448 5.89 2.65 76.86 9.79 3.84
PMON68539 GM_A36448 4.92 2.62 72.61 14.61 4.01
PMON68539 GM_A36448 5.48 2.86 71.07 15.63 4.16
PMON68539 GM_A36448 13.5 4.2 16.28 56.86 8.29
PMON68539 GM_A36448 14.49 4.67 14.88 56.56 9.07
PMON68539 GM_A36449 5.16 2.42 81.91 6.54 3.12
PMON68539 GM_A36449 4.26 2.41 79.99 8.4 3.94
PMON68539 GM_A36449 4.26 2.72 79.07 9.32 3.38
PMON68539 GM_A36449 5.01 2.54 75.71 11.94 3.9
PMON68539 GM_A36449 4.34 2.76 75.07 12.75 4.16
PMON68539 GM_A36449 11.57 3.52 44.08 35.22 4.98
PMON68539 GM_A36449 13.42 3.84 21.35 52.38 8.17
PMON68539 GM_A36449 13.25 3.99 15.3 57.6 9.04
PMON68539 GM_A36450 3.28 2.6 82.21 7.26 3.95
PMON68539 GM_A36450 4.16 2.51 80.93 7.72 3.76
PMON68539 GM_A36450 4.3 3.42 78.78 8.43 4.22
PMON68539 GM_A36450 4.84 3.16 77.07 9.6 4.22
PMON68539 GM_A36450 5.11 3.1 75.21 10.98 4.49
PMON68539 GM_A36450 13.74 4.26 17.31 54.32 10.11
PMON68539 GM_A36450 13.82 4.34 17.13 54.96 9.47
PMON68539 GM_A36450 13.56 3.83 17.06 56.7 8.6
PMON68539 GM_A36705 9.73 1.83 75.04 8.23 4.27
PMON68539 GM_A36705 10.85 1.74 72.89 9.29 4.53
PMON68539 GM_A36705 10.05 1.78 72.68 9.83 4.48
PMON68539 GM_A36705 10.02 1.77 72.57 10.04 4.36
PMON68539 GM_A36705 10.75 1.75 72.37 9.68 4.77
PMON68539 GM_A36705 10.58 1.78 70.35 11.64 4.43
构建体 事件 16:0 18:0 18:1 18:2 18:3
PMON68539 GM_A36705 7.69 5.63 16.21 60.39 8.85
PMON68539 GM_A36705 8.02 5.69 15.58 60.65 8.86
A3244 13.03 4.31 21.23 52.61 7.77
A3244 12.69 3.98 20.71 55.12 6.53
A3244 15.2 5.02 19.83 49.96 8.83
A3244 12.63 4.84 19.55 53.18 8.66
A3244 13.27 4.48 18.28 54.4 8.5
A3244 13.22 4.91 17.38 54.73 8.63
A3244 13.44 4.81 15.46 56.49 8.91
实施例11
用实施例3D描述的构建体pMON95829将FAD2-1内含子,即形成双链RNA的构建体导入大豆,用于抑制Fad2基因。通过根癌土壤杆菌ABI株(Martinell,美国专利号6,384,301),将载体稳定导入大豆(Asgrow品种A4922)。CP4选择标记使得能够通过在含有草甘膦除草剂的培养基上的选择,鉴定转化的大豆植物。随后,筛选转化的植物基因组中第一T-DNA和第二T-DNA的同时串联插入,即,在“右边界到右边界”组装物中。用DNA杂交作图方法进行筛选。将基因组中含有优选构型的转化的大豆植物转移到温室中进行种子生产。
例如,从构建体pMON95829转化的R0植物取出叶组织,进行DNA分析。选择探针和限制酶消化物,以便鉴定含有所有两个T-DNA的右边界-右边界(“RB-RB”)组装物。典型地,所有转化体的大约25%具有合适组装的RB-RB T-DNA。
采用实施例4中描述的气相色谱,从pMON95829构建体转化的大豆品系的种子分析脂肪酸组成,以鉴定从种子提取的脂肪酸化合物的甲酯。首先,收获从构建体pMON95829转化的大豆植物取出的6个R1种子,并且确定每单个种子的脂肪酸组成。由于每个事件的R1植物对于转基因来说都是分离的,因此产生具有常规大豆组成的种子以及修饰的形式。合并阳性种子,对每个事件取平均值。合并的阳性平均值证明,与来自未转化的大豆的种子的油相比,来自转基因大豆品系的种子的油中单和多不饱和脂肪酸组成发生改变(参见表9)。例如,FAD2抑制提供油酸酯化合物含量增加的植物。
表9.来自pMON95829事件的R1单种子的脂肪酸组成
构建体 事件# 16:0 18:0 18:1 18:2 18:3
PMON95829 GM_A94247 2.1 2.8 83.0 6.0 5.5
PMON95829 GM_A94296 2.6 2.9 80.6 7.1 5.8
PMON95829 GM_A93590 2.5 2.8 80.4 7.4 5.8
PMON95829 GM_A93437 2.6 2.8 79.8 7.9 6.0
PMON95829 GM_A93517 2.9 2.8 79.5 7.7 6.0
PMON95829 GM_A93647 2.3 3.0 78.6 9.0 6.5
PMON95829 GM_A93670 3.1 2.9 77.3 10.1 6.2
PMON95829 GM_A92396 2.9 2.6 76.0 11.1 7.0
PMON95829 GM_A92455 3.6 3.1 74.9 12.0 5.5
PMON95829 GM_A93678 2.8 3.4 74.0 11.9 7.4
PMON95829 GM_A93640 2.5 2.7 71.6 14.6 7.6
PMON95829 GM_A94937 4.5 3.3 67.2 17.7 7.1
PMON95829 GM_A92481 4.9 2.8 58.1 25.3 8.1
PMON95829 GM_A94306 3.1 3.2 55.9 29.0 7.9
PMON95829 GM_A94211 3.0 2.7 47.0 38.3 8.7
实施例12
用实施例3D描述的构建体pMON93505将FAD2-1A内含子,即形成双链RNA的构建体导入大豆,用于抑制Fad2基因。通过根癌土壤杆菌ABI株(Martinell,美国专利号6,384,301),将载体稳定导入大豆(Asgrow品种A4922)。CP4选择标记使得能够通过在含有草甘膦除草剂的培养基上的选择,鉴定转化的大豆植物。随后,筛选转化的植物基因组中第一T-DNA和第二T-DNA的同时串联插入,即,在“右边界到右边界”组装物中。用DNA杂交作图方法进行筛选。将基因组中含有优选构型的转化的大豆植物转移到温室中进行种子生产。
例如,从构建体pMON93505转化的R0植物取出叶组织,进行DNA分析。选择探针和限制酶消化物,以便鉴定含有所有两个T-DNA的右边界-右边界(“RB-RB”)组装物。典型地,所有转化体的大约25%具有合适组装的RB-RB T-DNA。
采用实施例4中描述的气相色谱,从pMON93505构建体转化的大豆品系的种子分析脂肪酸组成,以鉴定从种子提取的脂肪酸化合物的甲酯。首先,收获从构建体pMON93505转化的大豆植物取出的6个R1种子,并且确定每单个种子的脂肪酸组成。由于每个事件的R1植物对于转基因来说都是分离的,因此产生具有常规大豆组成的种子以及修饰的形式。合并阳性种子,对每个事件取平均值。合并的阳性平均值证明,与来自未转化的大豆的种子的油相比,来自转基因大豆品系的种子的油中单和多不饱和脂肪酸组成发生改变(参见表10)。例如,FAD2抑制提供油酸酯化合物含量增加的植物。
表10.来自pMON93505事件的R1单种子的脂肪酸组成
构建体 事件# 16:0 18:0 18:1 18:2 18:3
PMON93505 GM_A87814 1.3 1.0 84.9 5.5 6.3
PMON93505 GM_A86449 1.5 0.9 84.9 4.9 6.8
PMON93505 GM_A86032 1.5 1.1 83.5 6.3 7.0
PMON93505 GM_A86159 1.5 0.9 82.8 6.7 7.5
PMON93505 GM_A86178 1.7 1.0 82.5 6.7 7.3
PMON93505 GM_A86075 1.4 0.9 81.4 6.6 8.5
PMON93505 GM_A86303 1.0 0.6 81.4 7.4 8.8
PMON93505 GM_A86454 1.4 0.9 79.9 7.4 8.8
PMON93505 GM_A86799 1.4 1.1 79.4 9.6 7.7
PMON93505 GM_A85997 2.2 2.5 79.3 7.7 7.4
PMON93505 GM_A86058 1.8 1.0 76.8 11.3 8.3
PMON93505 GM_A86274 1.2 0.7 74.6 10.2 11.9
PMON93505 GM_A86325 1.1 0.7 72.8 15.4 9.2
PMON93505 GM_A85969 2.0 0.7 70.7 13.6 12.1
PMON93505 GM_A86033 1.7 0.9 69.1 18.2 9.5
PMON93505 GM_A86372 1.7 1.0 65.7 12.6 17.6
PMON93505 GM_A86403 1.5 0.9 64.6 16.8 15.4
PMON93505 GM_A87803 1.1 0.6 57.7 26.0 13.8
PMON93505 GM_A86036 3.1 1.5 54.8 30.4 9.7
PMON93505 GM_A86269 4.9 1.8 51.4 31.9 9.5
实施例13
用实施例3D描述的构建体pMON93506将FAD2-1A内含子,即形成双链RNA的构建体导入大豆,用于抑制FAD2基因。通过根癌土壤杆菌ABI株(Martinell,美国专利号6,384,301),将载体稳定导入大豆(Asgrow品种A4922)。CP4选择标记使得能够通过在含有草甘膦除草剂的培养基上的选择,鉴定转化的大豆植物。随后,筛选转化的植物基因组中第一T-DNA和第二T-DNA的同时串联插入,即,在“右边界到右边界”组装物中。用DNA杂交作图方法进行筛选。将基因组中含有优选构型的转化的大豆植物转移到温室中进行种子生产。
例如,从构建体pMON93506转化的R0植物取出叶组织,进行DNA分析。选择探针和限制酶消化物,以便鉴定含有所有两个T-DNA的右边界-右边界(“RB-RB”)组装物。典型地,所有转化体的大约25%具有合适组装的RB-RB T-DNA。
采用实施例4中描述的气相色谱,从pMON93506构建体转化的大豆品系的种子分析脂肪酸组成,以鉴定从种子提取的脂肪酸化合物的甲酯。首先,收获从构建体pMON93506转化的大豆植物取出的6个R1种子,并且确定每单个种子的脂肪酸组成。由于每个事件的R1植物对于转基因来说都是分离的,因此产生具有常规大豆组成的种子以及修饰的形式。合并阳性种子,对每个事件取平均值。合并的阳性平均值证明,与来自未转化的大豆的种子的油相比,来自转基因大豆品系的种子的油中单和多不饱和脂肪酸组成发生改变(参见表11)。例如,FAD2抑制提供油酸酯化合物含量增加的植物。
表11.来自pMON93506事件的R1单种子的脂肪酸组成
构建体 事件# 16:0 18:0 18:1 18:2 18:3
PMON93506 GM_A87174 2.2 0.8 88.1 2.3 5.1
PMON93506 GM_A86998 2.1 0.6 87.1 3.4 5.5
PMON93506 GM_A87075 2.7 1.2 85.9 4.8 4.2
PMON93506 GM_A87255 2.9 0.8 84.8 5.5 5.4
PMON93506 GM_A91253 2.7 0.9 84.5 5.9 5.1
PMON93506 GM_A86561 2.8 0.7 83.8 5.9 6.0
PMON93506 GM_A86875 3.1 1.0 83.6 6.2 5.5
PMON93506 GM_A89967 1.8 1.3 83.2 4.1 7.9
PMON93506 GM_A86927 2.1 0.8 82.6 4.8 8.5
PMON93506 GM_A87883 2.7 0.7 82.4 6.5 7.2
PMON93506 GM_A87133 3.0 3.1 81.5 5.2 6.3
PMON93506 GM_A88072 2.8 0.7 80.6 8.2 7.1
PMON93506 GM_A87069 3.8 0.7 80.4 8.2 6.4
PMON93506 GM_A86835 2.7 3.0 80.3 6.4 6.4
PMON93506 GM_A87929 2.7 1.0 76.3 7.8 11.5
PMON93506 GM_A87298 3.0 1.2 72.9 13.0 9.1
PMON93506 GM_A91226 3.4 1.0 69.3 18.0 7.7
PMON93506 GM_A88076 3.7 3.9 68.0 15.4 8.1
PMON93506 GM_A86530 2.9 1.0 59.3 25.0 11.5
PMON93506 GM_A87292 4.6 4.3 54.2 27.6 8.3
PMON93506 GM_A87076 5.5 0.9 46.7 38.0 8.4
实施例14
用实施例3B描述的构建体pMON93501将FAD2-1A内含子,即形成双链RNA的构建体导入大豆,用于抑制FAD2基因。通过根癌土壤杆菌ABI株(Martinell,美国专利号6,384,301),将载体稳定导入大豆(Asgrow品种A4922)。CP4选择标记使得能够通过在含有草甘膦除草剂的培养基上的选择,鉴定转化的大豆植物。
采用实施例4中描述的气相色谱,从pMON93501构建体转化的大豆品系的种子分析脂肪酸组成,以鉴定从种子提取的脂肪酸化合物的甲酯。首先,收获从构建体pMON93501转化的大豆植物取出的6个R1种子,并且确定每单个种子的脂肪酸组成。由于每个事件的R1植物对于转基因来说都是分离的,因此产生具有常规大豆组成的种子以及修饰的形式。合并阳性种子,对每个事件取平均值。合并的阳性平均值证明,与来自未转化的大豆的种子的油相比,来自转基因大豆品系的种子的油中单和多不饱和脂肪酸组成发生改变(参见表12)。例如,FAD2抑制提供油酸酯化合物含量增加的植物。
表12.来自pMON93501事件的R1单种子的脂肪酸组成
构建体 事件# 16:0 18:0 18:1 18:2 18:3
PMON93501 GM_A85435 4.4 1.1 85.8 2.5 5.1
PMON93501 GM_A85439 4.6 0.9 84.8 3.7 5.1
PMON93501 GM_A85276 4.8 1.4 84.3 3.0 4.9
PMON93501 GM_A85697 4.8 1.3 83.6 3.8 5.6
PMON93501 GM_A85777 6.6 1.8 80.0 4.5 6.4
PMON93501 GM_A84790 7.2 5.7 78.3 2.9 4.7
PMON93501 GM_A85910 4.2 1.1 77.8 6.9 9.3
PMON93501 GM_A86186 5.3 1.1 77.4 7.4 7.7
PMON93501 GM_A85065 7.3 2.2 76.8 5.7 6.9
PMON93501 GM_A85744 4.1 0.9 76.0 7.4 10.6
PMON93501 GM_A85261 4.7 1.0 75.8 4.9 11.9
PMON93501 GM_A85479 3.7 1.1 75.8 8.6 9.8
PMON93501 GM_A85819 4.5 1.7 74.9 6.9 11.1
PMON93501 GM_A85945 4.6 1.2 74.6 8.7 10.0
PMON93501 GM_A85301 6.9 1.2 73.1 9.5 8.4
PMON93501 GM_A85929 6.1 1.4 72.4 10.8 8.7
PMON93501 GM_A85908 6.9 1.3 70.0 8.0 13.6
PMON93501 GM_A85393 4.8 1.3 67.0 13.3 12.2
PMON93501 GM_A85756 4.8 1.8 57.3 17.6 17.8
PMON93501 GM_A85415 5.0 1.3 52.9 26.0 12.1
PMON93501 GM_A85950 5.5 1.8 47.5 38.6 6.1
PMON93501 GM_A84705 5.7 2.3 46.0 37.7 7.4
PMON93501 GM_A85787 4.5 1.6 43.4 37.0 13.1
实施例15
用实施例2D描述的构建体pMON97552将FAD2-1A内含子,即形成双链RNA的构建体导入大豆,用于抑制FAD2基因。通过根癌土壤杆菌ABI株(Martinell,美国专利号6,384,301),将载体稳定导入大豆(Asgrow品种A4922)。CP4选择标记使得能够通过在含有草甘膦除草剂的培养基上的选择,鉴定转化的大豆植物。
采用实施例4中描述的气相色谱,从pMON97552构建体转化的大豆品系的种子分析脂肪酸组成,以鉴定从种子提取的脂肪酸化合物的甲酯。首先,收获从构建体pMON97552转化的大豆植物取出的6个R1种子,并且确定每单个种子的脂肪酸组成。由于每个事件的R1植物对于转基因来说都是分离的,因此产生具有常规大豆组成的种子以及修饰的形式。合并阳性种子,对每个事件取平均值。合并的阳性平均值证明,与来自未转化的大豆的种子的油相比,来自转基因大豆品系的种子的油中单和多不饱和脂肪酸组成发生改变(参见表13)。例如,FAD2抑制提供油酸酯化合物含量增加的植物。
表13.来自pMON97552事件的R1单种子的脂肪酸组成
构建体 事件# 16:0 18:0 18:1 18:2 18:3
PMON97552 GM_A98359 2.1 2.7 84.4 4.7 5.3
PMON97552 GM_A98361 2.3 2.7 84.0 5.3 4.8
PMON97552 GM_A98358 2.3 2.7 81.6 6.8 6.2
实施例16
用实施例2D描述的构建体pMON93758将FAD2-1A内含子,即形成双链RNA的构建体导入大豆,用于抑制FAD2基因。通过根癌土壤杆菌ABI株(Martinell国专利号6,384,301),将载体稳定导入大豆(Asgrow品种A4922)。CP4选择标记使得能够通过在含有草甘膦除草剂的培养基上的选择,鉴定转化的大豆植物。
采用实施例4中描述的气相色谱,从pMON93758构建体转化的大豆品系的种子分析脂肪酸组成,以鉴定从种子提取的脂肪酸化合物的甲酯。首先,收获从构建体pMON93758转化的大豆植物取出的6个R1种子,并且确定每单个种子的脂肪酸组成。由于每个事件的R1植物对于转基因来说都是分离的,因此产生具有常规大豆组成的种子以及修饰的形式。合并阳性种子,对每个事件取平均值。合并的阳性平均值证明,与来自未转化的大豆的种子的油相比,来自转基因大豆品系的种子的油中单和多不饱和脂肪酸组成发生改变(参见表14)。例如,FAD2抑制提供油酸酯化合物含量增加的植物。
表14.来自pMON93758事件的R1单种子的脂肪酸组成
构建体 事件# 16:0 18:0 18:1 18:2 18:3
PMON93758 GM_A89686 2.7 2.9 82.7 5.3 5.5
PMON93758 GM_A89678 2.9 2.9 81.8 5.5 6.0
PMON93758 GM_A89670 2.8 3.0 81.7 5.6 6.1
PMON93758 GM_A89688 2.7 3.2 81.6 5.8 5.9
PMON93758 GM_A89683 2.9 2.9 81.5 5.8 6.1
PMON93758 GM_A89699 2.7 3.1 81.4 5.8 6.1
PMON93758 GM_A89675 2.9 3.0 81.4 5.6 6.2
PMON93758 GM_A89690 3.0 2.8 81.3 5.7 6.3
PMON93758 GM_A89680 3.0 2.8 81.3 5.9 6.0
PMON93758 GM_A89674 2.9 2.9 80.4 6.3 6.7
PMON93758 GM_A89677 3.0 2.8 79.7 7.0 6.8
PMON93758 GM_A89676 3.0 2.9 78.7 7.6 7.4
PMON93758 GM_A89694 3.2 2.8 76.7 8.8 8.0
PMON93758 GM_A89696 3.0 2.6 74.7 10.4 8.9
实施例17
用实施例2D描述的构建体pMON97553将FAD2-1A内含子,即形成双链RNA的构建体导入大豆,用于抑制FAD2基因。通过根癌土壤杆菌ABI株(Martinell,美国专利号6,384,301),将载体稳定导入大豆(Asgrow品种A4922)。CP4选择标记使得能够通过在含有草甘膦除草剂的培养基上的选择,鉴定转化的大豆植物。
采用实施例4中描述的气相色谱,从pMON97553构建体转化的大豆品系的种子分析脂肪酸组成,以鉴定从种子提取的脂肪酸化合物的甲酯。首先,收获从构建体pMON97553转化的大豆植物取出的6个R1种子,并且确定每单个种子的脂肪酸组成。由于每个事件的R1植物对于转基因来说都是分离的,因此产生具有常规大豆组成的种子以及修饰的形式。合并阳性种子,对每个事件取平均值。合并的阳性平均值证明,与来自未转化的大豆的种子的油相比,来自转基因大豆品系的种子的油中单和多不饱和脂肪酸组成发生改变(参见表15)。例如,FAD2抑制提供油酸酯化合物含量增加的植物。
表15.来自pMON97553事件的R1单种子的脂肪酸组成
构建体 事件# 16:0 18:0 18:1 18:2 18:3
PMON97553 GM_A98670 2.1 2.6 86.7 2.9 4.3
PMON97553 GM_A98595 2.3 2.7 86.3 3.5 4.7
PMON97553 GM_A98649 2.2 2.9 86.3 3.6 4.7
PMON97553 GM_A98669 2.1 3.0 85.5 3.3 4.6
PMON97553 GM_A98656 2.4 2.8 85.5 4.2 4.6
PMON97553 GM_A98643 2.3 2.8 85.0 3.8 4.9
PMON97553 GM_A98647 2.2 2.8 84.2 5.1 5.6
PMON97553 GM_A98582 2.6 2.8 84.0 4.1 5.6
PMON97553 GM_A98674 2.1 2.3 83.9 5.8 5.3
PMON97553 GM_A98663 2.2 2.8 83.3 5.5 5.1
PMON97553 GM_A98587 2.8 2.8 83.0 5.5 5.3
PMON97553 GM_A98592 2.9 2.9 82.9 4.6 5.8
PMON97553 GM_A98677 2.2 3.0 82.4 5.9 5.4
PMON97553 GM_A98594 2.2 2.9 82.3 6.5 5.4
PMON97553 GM_A98659 2.5 3.0 82.2 5.4 6.1
PMON97553 GM_A98622 2.8 3.0 81.6 6.0 6.1
PMON97553 GM_A98589 2.9 3.0 81.3 6.2 6.1
PMON97553 GM_A98679 2.2 3.1 81.2 6.7 5.7
PMON97553 GM_A98642 2.3 3.1 80.0 7.4 6.1
PMON97553 GM_A98639 2.7 3.0 78.4 8.0 6.8
PMON97553 GM_A98563 3.3 2.9 78.1 9.9 5.6
PMON97553 GM_A98618 2.9 2.8 78.0 8.8 6.9
PMON97553 GM_A98567 2.7 3.2 77.5 9.1 6.3
PMON97553 GM_A98625 2.3 2.9 77.4 9.5 6.9
PMON97553 GM_A98660 3.3 2.9 77.1 10.7 5.6
PMON97553 GM_A98615 2.7 3.2 76.4 9.9 7.1
PMON97553 GM_A98561 3.3 3.1 75.3 10.9 6.7
PMON97553 GM_A98603 2.9 3.6 73.5 11.0 7.8
PMON97553 GM_A98648 2.7 3.3 70.2 14.4 8.3
PMON97553 GM_A98565 3.2 2.8 67.9 17.9 7.2
PMON97553 GM_A98681 3.1 3.0 65.9 19.3 7.7
实施例18
用实施例2D描述的构建体pMON93770将FAD2-1A内含子,即形成双链RNA的构建体导入大豆,用于抑制FAD2基因。通过根癌土壤杆菌ABI株(Martinell,美国专利号6,384,301),将载体稳定导入大豆(Asgrow品种A4922)。CP4选择标记使得能够通过在含有草甘膦除草剂的培养基上的选择,鉴定转化的大豆植物。
采用实施例4中描述的气相色谱,从pMON93770构建体转化的大豆品系的种子分析脂肪酸组成,以鉴定从种子提取的脂肪酸化合物的甲酯。首先,收获从构建体pMON93770转化的大豆植物取出的6个R1种子,并且确定每单个种子的脂肪酸组成。由于每个事件的R1植物对于转基因来说都是分离的,因此产生具有常规大豆组成的种子以及修饰的形式。合并阳性种子,对每个事件取平均值。合并的阳性平均值证明,与来自未转化的大豆的种子的油相比,来自转基因大豆品系的种子的油中单和多不饱和脂肪酸组成发生改变(参见表16)。例如,FAD2抑制提供油酸酯化合物含量增加的植物。
表16.来自pMON93770事件的R1单种子的脂肪酸组成
构建体 事件# 16:0 18:0 18:1 18:2 18:3
PMON93770 GM_A97973 2.8 2.7 80.0 7.3 6.2
PMON93770 GM_A97996 2.5 3.5 76.6 9.5 6.8
PMON93770 GM_A97977 2.7 3.1 75.8 9.8 7.5
PMON93770 GM_A97981 3.1 3.0 71.8 13.2 8.0
PMON93770 GM_A97971 3.4 3.1 70.3 14.8 7.5
PMON93770 GM_A97985 2.9 2.7 67.9 15.9 9.6
PMON93770 GM_A97991 3.2 2.9 66.4 19.0 7.6
实施例19
用实施例2D描述的构建体pMON93759将FAD2-1A内含子,即形成双链RNA的构建体导入大豆,用于抑制FAD2基因。通过根癌土壤杆菌ABI株(Martinell,美国专利号6,384,301),将载体稳定导入大豆(Asgrow品种A4922)。CP4选择标记使得能够通过在含有草甘膦除草剂的培养基上的选择,鉴定转化的大豆植物。
采用实施例4中描述的气相色谱,从pMON93759构建体转化的大豆品系的种子分析脂肪酸组成,以鉴定从种子提取的脂肪酸化合物的甲酯。首先,收获从构建体pMON93759转化的大豆植物取出的6个R1种子,并且确定每单个种子的脂肪酸组成。由于每个事件的R1植物对于转基因来说都是分离的,因此产生具有常规大豆组成的种子以及修饰的形式。合并阳性种子,对每个事件取平均值。合并的阳性平均值证明,与来自未转化的大豆的种子的油相比,来自转基因大豆品系的种子的油中单和多不饱和脂肪酸组成发生改变(参见表17)。例如,FAD2抑制提供油酸酯化合物含量增加的植物。
表17.来自pMON93759事件的R1单种子的脂肪酸组成
构建体 事件# 16:0 18:0 18:1 18:2 18:3
PMON93759 GM_A88219 3.0 2.7 77.0 9.1 7.4
PMON93759 GM_A88212 3.1 2.7 76.6 9.1 7.6
PMON93759 GM_A88205 3.1 2.8 73.9 11.5 7.8
PMON93759 GM_A88209 2.9 2.7 73.9 11.6 8.2
PMON93759 GM_A88222 3.1 2.6 73.7 11.9 8.0
PMON93759 GM_A88223 2.7 2.6 73.5 12.4 8.3
PMON93759 GM_A88215 2.9 2.9 73.3 12.1 7.9
PMON93759 GM_A88202 3.4 2.8 72.9 12.6 7.7
PMON93759 GM_A88220 3.0 3.0 72.1 13.3 7.7
PMON93759 GM_A88213 2.9 3.0 71.8 13.1 8.3
PMON93759 GM_A88210 3.3 2.8 71.6 13.5 8.3
PMON93759 GM_A88217 2.5 2.7 71.5 14.9 7.8
PMON93759 GM_A88206 2.9 2.9 71.3 13.3 8.8
PMON93759 GM_A88211 3.1 3.0 71.3 13.8 7.9
PMON93759 GM_A88204 3.1 2.8 70.5 14.3 8.8
PMON93759 GM_A88201 3.2 2.7 69.4 15.5 8.4
PMON93759 GM_A88200 3.3 3.0 67.3 17.1 8.5
PMON93759 GM_A88214 3.3 2.9 60.6 23.7 8.7
PMON93759 GM_A88203 3.5 3.1 60.6 23.3 8.9
PMON93759 GM_A88226 3.0 2.8 60.5 23.7 9.5
PMON93759 GM_A88198 4.7 3.1 42.7 39.6 9.1
实施例20
用实施例2D描述的构建体pMON97554将FAD2-1A内含子,即形成双链RNA的构建体导入大豆,用于抑制FAD2基因。通过根癌土壤杆菌ABI株(Martinell,美国专利号6,384,301),将载体稳定导入大豆(Asgrow品种A4922)。CP4选择标记使得能够通过在含有草甘膦除草剂的培养基上的选择,鉴定转化的大豆植物。
采用实施例4中描述的气相色谱,从pMON97554构建体转化的大豆品系的种子分析脂肪酸组成,以鉴定从种子提取的脂肪酸化合物的甲酯。首先,收获从构建体pMON97554转化的大豆植物取出的6个R1种子,并且确定每单个种子的脂肪酸组成。由于每个事件的R1植物对于转基因来说都是分离的,因此产生具有常规大豆组成的种子以及修饰的形式。合并阳性种子,对每个事件取平均值。合并的阳性平均值证明,与来自未转化的大豆的种子的油相比,来自转基因大豆品系的种子的油中单和多不饱和脂肪酸组成发生改变(参见表18)。例如,FAD2抑制提供油酸酯化合物含量增加的植物。
表18来自pMON97554事件的R1单种子的脂肪酸组成
构建体 事件# 16:0 18:0 18:1 18:2 18:3
PMON97554 GM_A98420 2.3 2.6 80.4 8.0 5.7
PMON97554 GM_A98445 2.1 3.0 77.4 10.1 6.3
PMON97554 GM_A98423 2.7 2.9 77.0 10.3 6.1
PMON97554 GM_A98440 2.7 2.8 76.0 10.8 6.6
PMON97554 GM_A98438 2.8 3.0 70.6 15.2 7.3
PMON97554 GM_A98435 3.6 3.0 69.6 16.5 6.3
实施例21
用实施例2D描述的构建体pMON93771将FAD2-1A内含子,即形成双链RNA的构建体导入大豆,用于抑制FAD2基因。通过根癌土壤杆菌ABI株(Martinell,美国专利号6,384,301),将载体稳定导入大豆(Asgrow品种A4922)。CP4选择标记使得能够通过在含有草甘膦除草剂的培养基上的选择,鉴定转化的大豆植物。
采用实施例4中描述的气相色谱,从pMON93771构建体转化的大豆品系的种子分析脂肪酸组成,以鉴定从种子提取的脂肪酸化合物的甲酯。首先,收获从构建体pMON93771转化的大豆植物取出的6个R1种子,并且确定每单个种子的脂肪酸组成。由于每个事件的R1植物对于转基因来说都是分离的,因此产生具有常规大豆组成的种子以及修饰的形式。合并阳性种子,对每个事件取平均值。合并的阳性平均值证明,与来自未转化的大豆的种子的油相比,来自转基因大豆品系的种子的油中单和多不饱和脂肪酸组成发生改变(参见表19)。例如,FAD2抑制提供油酸酯化合物含量增加的植物。
表19.来自pMON93771事件的R1单种子的脂肪酸组成
构建体 事件# 16:0 18:0 18:1 18:2 18:3
PMON93771 GM_A97841 2.5 2.3 70.8 17.0 6.6
PMON93771 GM_A97839 3.8 3.0 65.8 18.3 8.1
PMON93771 GM_A97836 4.1 2.9 65.5 19.3 7.1
PMON93771 GM_A97844 2.6 2.7 65.2 20.9 8.0
PMON93771 GM_A97835 4.4 2.9 62.9 21.0 7.8
PMON93771 GM_A97852 3.3 3.1 62.9 21.0 8.9
PMON93771 GM_A97857 3.4 2.7 61.7 22.6 8.7
PMON93771 GM_A97846 4.2 2.7 52.0 30.8 9.6
实施例22
用实施例2D描述的构建体pMON97555将FAD2-1A内含子,即形成双链RNA的构建体导入大豆,用于抑制FAD2基因。通过根癌土壤杆菌ABI株(Martinell,美国专利号6,384,301),将载体稳定导入大豆(Asgrow品种A4922)。CP4选择标记使得能够通过在含有草甘膦除草剂的培养基上的选择,鉴定转化的大豆植物。
采用实施例4中描述的气相色谱,从pMON97555构建体转化的大豆品系的种子分析脂肪酸组成,以鉴定从种子提取的脂肪酸化合物的甲酯。首先,收获从构建体pMON97555转化的大豆植物取出的6个R1种子,并且确定每单个种子的脂肪酸组成。由于每个事件的R1植物对于转基因来说都是分离的,因此产生具有常规大豆组成的种子以及修饰的形式。合并阳性种子,对每个事件取平均值。合并的阳性平均值证明,与来自未转化的大豆的种子的油相比,来自转基因大豆品系的种子的油中单和多不饱和脂肪酸组成发生改变(参见表20)。例如,FAD2抑制提供油酸酯化合物含量增加的植物。
表20.来自pMON97555事件的R1单种子的脂肪酸组成
构建体 事件# 16:0 18:0 18:1 18:2 18:3
PMON97555 GM_A98913 2.7 2.9 71.0 14.5 7.8
PMON97555 GM_A98912 2.1 2.2 70.5 18.0 6.4
PMON97555 GM_A98905 2.7 3.1 65.9 19.0 8.2
PMON97555 GM_A98909 2.4 2.8 63.5 21.5 9.1
PMON97555 GM_A98936 4.9 2.4 61.9 24.9 5.3
PMON97555 GM_A98893 2.5 2.8 61.5 23.7 8.6
PMON97555 GM_A98924 3.0 3.0 61.4 23.5 8.1
PMON97555 GM_A98904 3.1 2.9 60.6 24.0 8.3
PMON97555 GM_A98938 2.3 2.9 58.3 28.1 7.6
PMON97555 GM_A98900 3.2 2.8 56.7 28.4 8.0
PMON97555 GM_A98906 2.7 2.9 56.7 27.8 8.8
PMON97555 GM_A98917 2.7 3.1 53.0 32.1 8.4
PMON97555 GM_A98939 3.0 3.1 52.9 31.4 8.9
PMON97555 GM_A98935 4.5 3.2 48.2 35.4 7.8
PMON97555 GM_A98919 3.1 3.4 44.2 40.3 8.0
实施例23
用实施例2D描述的构建体pMON93760将FAD2-1A内含子,即形成双链RNA的构建体导入大豆,用于抑制FAD2基因。通过根癌土壤杆菌ABI株(Martinell,美国专利号6,384,301),将载体稳定导入大豆(Asgrow品种A4922)。CP4选择标记使得能够通过在含有草甘膦除草剂的培养基上的选择,鉴定转化的大豆植物。
采用实施例4中描述的气相色谱,从pMON93760构建体转化的大豆品系的种子分析脂肪酸组成,以鉴定从种子提取的脂肪酸化合物的甲酯。首先,收获从构建体pMON93760转化的大豆植物取出的6个R1种子,并且确定每单个种子的脂肪酸组成。由于每个事件的R1植物对于转基因来说都是分离的,因此产生具有常规大豆组成的种子以及修饰的形式。合并阳性种子,对每个事件取平均值。合并的阳性平均值证明,与来自未转化的大豆的种子的油相比,来自转基因大豆品系的种子的油中单和多不饱和脂肪酸组成发生改变(参见表21)。例如,从SEQ ID NO:1的5’末端减少320个连续核苷酸的长度并且能够形成dsRNA的FAD2-1内含子确实至少部分抑制FAD2。
表21.来自pMON93760事件的R1单种子的脂肪酸组成
构建体 事件# 16:0 18:0 18:1 18:2 18:3
PMON93760 GM_A88236 10.0 3.6 58.3 23.4 4.4
PMON93760 GM_A88240 2.9 2.6 56.0 28.4 9.5
PMON93760 GM_A88245 3.3 3.2 54.8 28.7 9.6
PMON93760 GM_A88231 3.2 2.7 48.8 35.0 9.6
PMON93760 GM_A88234 3.8 2.7 47.7 36.1 9.1
PMON93760 GM_A88252 3.1 2.5 45.3 40.9 7.5
PMON93760 GM_A88244 3.4 3.0 41.6 42.2 9.2
PMON93760 GM_A88256 2.7 2.7 41.3 44.6 8.5
PMON93760 GM_A88243 2.8 2.7 36.6 50.4 7.1
PMON93760 GM_A88254 3.7 2.6 27.5 58.1 7.6
PMON93760 GM_A88253 3.7 2.8 25.4 60.6 6.9
PMON93760 GM_A88239 7.2 2.8 25.0 58.6 6.2
PMON93760 GM_A88250 4.7 2.9 24.4 59.2 8.4
PMON93760 GM_A88251 5.5 3.0 22.7 60.0 8.6
实施例24
用实施例2D描述的构建体pMON93772将FAD2-1A内含子,即形成双链RNA的构建体导入大豆,用于抑制FAD2基因。通过根癌土壤杆菌ABI株(Martinell,美国专利号6,384,301),将载体稳定导入大豆(Asgrow品种A4922)。CP4选择标记使得能够通过在含有草甘膦除草剂的培养基上的选择,鉴定转化的大豆植物。
采用实施例4中描述的气相色谱,从pMON93772构建体转化的大豆品系的种子分析脂肪酸组成,以鉴定从种子提取的脂肪酸化合物的甲酯。首先,收获从构建体pMON93772转化的大豆植物取出的6个R1种子,并且确定每单个种子的脂肪酸组成。由于每个事件的R1植物对于转基因来说都是分离的,因此产生具有常规大豆组成的种子以及修饰的形式。合并阳性种子,对每个事件取平均值。合并的阳性平均值证明,与来自未转化的大豆的种子的油相比,来自转基因大豆品系的种子的油中单和多不饱和脂肪酸组成发生改变(参见表22)。例如,从SEQ ID NO:1的3’末端减少360个连续核苷酸的长度并且能够形成dsRNA的FAD2-1内含子确实对于某些事件能够至少部分抑制FAD2。
表22.来自pMON93772事件的R1单种子的脂肪酸组成
构建体 事件# 16:0 18:0 18:1 18:2 18:3
PMON93772 GM_A97768 3.4 2.3 69.6 17.6 6.3
PMON93772 GM_A97781 3.3 2.6 55.1 30.9 7.3
PMON93772 GM_A97763 3.7 2.6 45.2 38.2 9.6
PMON93772 GM_A97796 2.3 2.9 35.1 50.3 8.7
PMON93772 GM_A97798 3.3 2.6 33.5 51.2 8.6
PMON93772 GM_A97782 2.6 2.7 33.4 52.0 8.5
PMON93772 GM_A97819 3.8 3.1 30.1 53.8 8.7
PMON93772 GM_A97777 3.3 2.7 28.1 56.7 8.6
PMON93772 GM_A97767 2.9 2.8 26.3 57.9 9.6
PMON93772 GM_A97792 3.7 2.6 26.2 57.8 9.1
PMON93772 GM_A97808 3.0 3.0 25.7 58.4 9.2
PMON93772 GM_A97790 2.8 2.7 25.1 59.7 9.2
PMON93772 GM_A97805 3.5 2.8 24.6 59.7 8.7
PMON93772 GM_A97817 3.5 2.9 24.0 59.4 9.5
PMON93772 GM_A97828 3.2 2.9 23.4 60.3 9.8
PMON93772 GM_A97812 2.5 2.9 230 61.3 9.8
PMON93772 GM_A97765 2.8 3.0 20.7 63.0 10.1
实施例25
用实施例2D描述的构建体pMON97556将FAD2-1A内含子,即形成双链RNA的构建体导入大豆,用于抑制FAD2基因。通过根癌土壤杆菌ABI株(Martinell,美国专利号6,384,301),将载体稳定导入大豆(Asgrow品种A4922)。CP4选择标记使得能够通过在含有草甘膦除草剂的培养基上的选择,鉴定转化的大豆植物。
采用实施例4中描述的气相色谱,从pMON97556构建体转化的大豆品系的种子分析脂肪酸组成,以鉴定从种子提取的脂肪酸化合物的甲酯。首先,收获从构建体pMON97556转化的大豆植物取出的6个R1种子,并且确定每单个种子的脂肪酸组成。由于每个事件的R1植物对于转基因来说都是分离的,因此产生具有常规大豆组成的种子以及修饰的形式。合并阳性种子,对每个事件取平均值。合并的阳性平均值证明,与来自未转化的大豆的种子的油相比,来自转基因大豆品系的种子的油中单和多不饱和脂肪酸组成发生改变(参见表23)。例如,从SEQ ID NO:1的3’末端减少200个连续核苷酸的长度并且能够形成dsRNA的FAD2-1内含子确实至少部分抑制FAD2。
表23.来自pMON97556事件的R1单种子的脂肪酸组成
构建体 事件# 16:0 18:0 18:1 18:2 18:3
PMON97556 GM_A98772 3.6 2.8 34.3 51.0 74
PMON97556 GM_A98744 2.4 2.6 26.6 60.3 7.4
PMON97556 GM_A98787 2.5 2.8 26.4 58.9 8.7
PMON97556 GM_A98745 2.2 2.5 26.3 60.2 8.0
PMON97556 GM_A98758 2.5 2.9 25.6 59.6 8.7
PMON97556 GM_A98789 2.1 2.5 22.3 64.9 7.7
PMON97556 GM_A98790 2.2 3.0 22.1 62.8 9.4
PMON97556 GM_A98783 2.5 2.6 21.5 64.0 8.7
PMON97556 GM_A98761 2.3 2.3 20.9 65.2 8.7
实施例26
用实施例2D描述的构建体pMON93764将FAD2-1A内含子,即形成双链RNA的构建体导入大豆,用于抑制FAD2基因。通过根癌土壤杆菌ABI株(Martinell,美国专利号6,384,301),将载体稳定导入大豆(Asgrow品种A4922)。CP4选择标记使得能够通过在含有草甘膦除草剂的培养基上的选择,鉴定转化的大豆植物。
采用实施例4中描述的气相色谱,从pMON93764构建体转化的大豆品系的种子分析脂肪酸组成,以鉴定从种子提取的脂肪酸化合物的甲酯。首先,收获从构建体pMON93764转化的大豆植物取出的6个R1种子,并且确定每单个种子的脂肪酸组成。由于每个事件的R1植物对于转基因来说都是分离的,因此产生具有常规大豆组成的种子以及修饰的形式。合并阳性种子,对每个事件取平均值。合并的阳性平均值证明,与来自未转化的大豆的种子的油相比,来自转基因大豆品系的种子的油中饱和脂肪酸组成发生改变(参见表24)。同样,从SEQ ID NO:1的3’末端减少400个连续核苷酸的长度并且能够形成dsRNA的FAD2-1内含子没有显著减少FAD2表达。
表24.来自pMON93764事件的R1单种子的脂肪酸组成
构建体 事件# 16:0 18:0 18:1 18:2 18:3
PMON93764 GM_A98489 2.1 2.2 28.1 60.5 6.5
PMON93764 GM_A98452 2.2 2.2 27.4 61.3 6.8
PMON93764 GM_A98451 2.3 2.5 26.2 60.7 7.8
PMON93764 GM_A98467 2.5 2.8 25.4 60.9 8.2
PMON93764 GM_A98455 1.8 2.3 24.4 63.5 7.8
PMON93764 GM_A98499 1.8 2.5 24.1 63.5 7.8
PMON93764 GM_A98453 2.5 2.6 23.7 63.2 7.5
PMON93764 GM_A98492 1.6 2.7 23.7 63.6 7.7
PMON93764 GM_A98456 1.8 2.4 23.4 64.2 8.0
PMON93764 GM_A98471 2.2 2.7 23.4 64.2 7.4
PMON93764 GM_A98500 2.5 2.3 22.9 64.1 7.9
PMON93764 GM_A98482 2.3 2.5 22.9 64.6 7.3
PMON93764 GM_A98485 2.5 2.7 22.8 63.8 8.0
PMON93764 GM_A98463 1.9 2.2 22.6 64.7 8.3
PMON93764 GM_A98469 3.4 2.5 22.1 63.3 8.5
PMON93764 GM_A98474 1.6 2.3 21.5 65.7 8.4
PMON93764 GM_A98483 2.0 2.5 21.4 65.4 8.5
PMON93764 GM_A98476 2.7 2.6 21.2 64.4 8.8
PMON93764 GM_A98498 2.5 2.5 21.1 64.8 8.9
PMON93764 GM_A98496 2.5 2.3 20.6 65.2 8.9
PMON93764 GM_A98468 1.9 2.7 19.3 66.0 9.7
实施例27
TaqMan是一种通过选择性扩增和实时荧光测量对核酸进行定量的测定(也称作实时PCR)。该程序用于确定转基因发育种子中的靶转录物抑制的程度。为了确定样品中靶mRNA的绝对转录物水平,对每个TaqMan实验建立标准曲线。为此目的,与未知靶量的样品平行扩增稀释于来自油菜的20ng总RNA中的不同量的克隆大豆靶基因序列。以此方式确定的转录物拷贝数目的精确度具有25%的误差容限。
对于模板物质,用ABI6100核酸制备台提取总RNA,并且每个TaqMan样品采用20ng。用ABI Prism-一步RT-PCR主混合物化学,在ABI700序列检测仪上分析样品。用来自TaqManPCR反应末的TaqMan计数(Ct)值对已知量的合成靶序列进行作图,以计算线性回归,使得可以从每个TaqMan PCR反应末建立的TaqMan Ct值确定未知样品中的FAD2-1靶DNA量。
用pMON68540、pMON68546,或pMON80623转化植物,它们都抑制FAD2-1A(构建体的描述参见3A部分和图7)。
采用ABI 6100核酸制备台从未转化和转化植物获得总RNA。转化植物是第三代纯合的,并且油酸水平高于50%。FAD2-1A引物、FAD2-1B引物或FAD2-2A引物在分开的TaqMan样品中加入来自每个要测试的植物的总RNA中。用ABI Prism-一步RT-PCR主混合物化学,在ABI 700序列检测仪上分析样品。
所有转基因植物都显著抑制FAD2-1A和FAD2-1B转录物水平。这些转基因都没有甚至部分降低FAD2-2A或FAD2-2B水平。
未转化植物中FAD2-1A转录物水平的植物与植物的比较确定了植物之间的天然变异。采用在多个植物中产生探针序列的PCR引物测定来自发育中的种子的FAD2-1AmRNA。从4个不同的R2未转化分离植物取出大小为0.2g新鲜重量的种子,每个植物来自不同品系。测试了相同大小类型并且来自四个不同未转化分离体的R2种子集合。以三份进行PCR反应,并且与每个样品中的18S RNA量进行比较而标准化。4个样品中的3个具有大约65的标准化TaqMan计数(Ct)值,并且一个样品具有大约50的标准化TaqMan Ct值。
实施例28
通过PCR扩增大豆FAD2-1内含子1(SEQ ID NO:1)序列的200个连续核苷酸的片段,得到包括从SEQ ID NO:1的5’末端开始的SEQ IDNO:1的前200个核苷酸的PCR产物。通过工程化到PCR引物5’末端上的限制位点,以有义方向将PCR产物直接克隆到含有大豆7Sα’启动子和tml 3’终止序列的载体中。然后用限制酶切割载体,并且连接到含有受FMV启动子和豌豆Rubisco E9 3’终止序列调节的CP4 EPSPS基因的载体中。将得到的基因表达构建体用于采用本文描述的方法进行转化。
采用实施例4中描述的气相色谱,从该构建体转化的大豆品系的种子分析脂肪酸组成,以鉴定从种子提取的脂肪酸化合物的甲酯。首先,收获从该构建体转化的大豆植物取出的6个R1种子,并且确定每单个种子的脂肪酸组成。由于每个事件的R1植物对于转基因来说都是分离的,因此产生具有常规大豆组成的种子以及修饰的形式。合并阳性种子,对每个事件取平均值。合并的阳性平均值证明,与来自未转化的大豆的种子的油相比,来自转基因大豆品系的种子的油中饱和脂肪酸组成发生改变。
实施例29
通过PCR扩增大豆FAD2-1内含子1(SEQ ID NO:1)序列的180个连续核苷酸的片段,得到包括从SEQ ID NO:1的3’末端开始的SEQ IDNO:1的前180个核苷酸的PCR产物。通过工程化到PCR引物5’末端上的限制位点,以有义方向将PCR产物直接克隆到含有大豆7Sα’启动子和tml 3’终止序列的载体中。然后用限制酶切割载体,并且连接到含有受FMV启动子和豌豆Rubisco E9 3’终止序列调节的CP4 EPSPS基因的载体中。将得到的基因表达构建体用于采用本文描述的方法进行转化。
采用实施例4中描述的气相色谱,从该构建体转化的大豆品系的种子分析脂肪酸组成,以鉴定从种子提取的脂肪酸化合物的甲酯。首先,收获从该构建体转化的大豆植物取出的6个R1种子,并且确定每单个种子的脂肪酸组成。由于每个事件的R1植物对于转基因来说都是分离的,因此产生具有常规大豆组成的种子以及修饰的形式。合并阳性种子,对每个事件取平均值。合并的阳性平均值证明,与来自未转化的大豆的种子的油相比,来自转基因大豆品系的种子的油中饱和脂肪酸组成发生改变。
实施例30
pMON97562含有大豆7Sα’启动子,该启动子可操作性连接于大豆FAD2-1A内含子1(SEQ ID NO:1),所述内含子1从3’末端减少100个连续核苷酸,并且连接于FAD3-1A5’UTR,后面是FAD3-1A 3’UTR,其连接于FAD3-1B 5’UTR,后面是FAD3-1B 3’UTR,后面是FATB-1a5’UTR,后面是FATB-1a 3’UTR,其可操作性连接于FAD3-1A内含子4的70个核苷酸,所述核苷酸可操作性连接于反义方向的FATB-1a3’UTR,后面是反义方向的FATB-1a 5’UTR,其连接于反义方向的FAD3-1B 3’UTR,后面是FAD3-1B 5’UTR,其连接于反义方向的FAD3-1A 3’UTR,后面是反义方向的FAD3-1A 5’UTR,后面是大豆FAD2-1A内含子1(SEQ ID NO:1),所述内含子1从3’末端减少100个连续核苷酸并且是反义方向的,所述内含子1可操作性连接于具有可操作性连接于EFMV启动子和豌豆Rubisco E9 3’终止序列的CP4 EPSPS基因的H6 3’聚腺苷酸化片段,所述启动子和终止序列在相同DNA分子上都侧接RB和LB。将得到的基因表达构建体用于采用本文描述的方法进行大豆转化。采用实施例4中描述的气相色谱,从该构建体转化的大豆品系的种子确定脂肪酸组成。表25给出了代表性种子的组成。18:3的水平降低到大约1%。
表25.来自pMON97562事件的R1单种子的脂肪酸组成
构建体 事件 16:0 18:0 18:1 18:2 18:3
PMON97562 GM_A103478 2.82 3.17 82.88 9.18 1.15
PMON97562 GM_A103481 2.99 2.75 82.7 9.39 1.13
PMON97562 GM_A103476 3.13 3.11 81.35 10.25 1.12
实施例31
pMON97563含有大豆7Sα’启动子,该启动子可操作性连接于大豆FAD2-1A内含子1(SEQ ID NO:1),所述内含子1从3’末端减少100个连续核苷酸,并且连接于FAD3-1A 5’UTR,后面是FAD3-1A 3’UTR,其连接于FAD3-1B 5’UTR,后面是FAD3-1B3’UTR,其连接于FAD3-1C5’UTR,后面是FAD3-1C 3’UTR,后面是FATB-1a CTP编码区,后面是FATB-2a CTP编码区,其可操作性连接于FAD3-1A内含子4的70个核苷酸,所述核苷酸可操作性连接于反义方向的FATB-2a CTP编码区,后面是反义方向的FATB-1a CTP编码区,其连接于反义方向的FAD3-1C3’UTR,后面是反义方向的FAD3-1C 5’UTR,其连接于反义方向的FAD3-1B 3’UTR,后面是反义方向的FAD3-1B 5’UTR,其连接于反义方向的FAD3-1A 3’UTR,后面是反义方向的FAD3-1A 5’UTR,后面是大豆FAD2-1A内含子1(SEQ ID NO:1),所述内含子1从3’末端减少100个连续核苷酸并且是反义方向的,所述内含子1可操作性连接于具有可操作性连接于EFMV启动子和豌豆Rubisco E9 3’终止序列的CP4 EPSPS基因的H6 3’聚腺苷酸化片段,所述启动子和终止序列在相同DNA分子上都侧接RB和LB。将得到的基因表达构建体用于采用本文描述的方法进行大豆转化。采用实施例4中描述的气相色谱,从该构建体转化的大豆品系的种子确定脂肪酸组成。表26给出了代表性种子的组成。18:3的水平降低到大约1%。
表26.来自pMON97563事件的R1单种子的脂肪酸组成
构建体 事件 16:0 18:0 18:1 18:2 18:3
PMON97563 GM_A109156 2.21 2.78 85.05 8.48 0.69
PMON97563 GM_A109196 2.07 2.31 84.4 9.42 0.97
PMON97563 GM_A109207 2.24 2.78 83.98 9.36 0.82
PMON97563 GM_A103543 2.21 2.63 83.94 10.28 0.95
PMON97563 GM_A103547 2.06 2.47 83.67 10.47 0.89
PMON97563 GM_A109146 1.71 2.34 81.14 13.71 0.91
PMON97563 GM_A109155 2.33 2.7 80.76 12.28 1.11
PMON97563 GM_A109164 2.07 2.61 78.8 14.6 1
PMON97563 GM_A109170 2.68 1.95 78.78 14.14 1.55
PMON97563 GM_A109277 2.49 3.19 78.19 14.51 0.93
PMON97563 GM_A109194 246 2.81 76.62 16.26 0.92
PMON97563 GM_A109177 2.56 2.49 72.64 20.14 1.44
PMON97563 GM_A109201 2.46 2.9 72.21 20.13 1.11
PMON97563 GM_A103550 2.18 2.67 70.84 22.25 1.17
PMON97563 GM_A109203 2.18 2.81 69.93 22.91 0.98
根据本公开内容,可以在不进行过多实验的条件下制备和实施本文公开和要求保护的所有组合物和/或方法。尽管已经在优选实施方案方面描述了本发明的组合物和方法,但本领域技术人员可以明确,可以对本文描述的组合物和/或方法以及方法的步骤或步骤的顺序进行改变,而不背离本发明的概念、精神和范围。更具体地,可以明确,某些化学和物理相关的试剂可以替代本文描述的试剂,而得到相同或相似的结果。所有这些相似的替代和修饰对于本领域技术人员是明确的,并且认为是在所附权利要求所定义的本发明的精神、范围和概念内。

Claims (19)

1.核酸构建体,其包含第一组DNA序列,该第一组DNA序列具有:
(i)为SEQ ID NO:1的大豆FAD2-1A内含子的片段、长度是50-400个连续核苷酸的核酸序列,其选自:
SEQ ID NO:1的从161位到420位的260个核苷酸的序列;
SEQ ID NO:1的从1位到180位的180个核苷酸的序列;
SEQ ID NO:1的从1位到100位的100个核苷酸的序列;SEQ ID NO:1的从1位到320位的320个核苷酸的序列;
SEQ ID NO:1的从1位到280位的280个核苷酸的序列;
SEQ ID NO:1的从1位到220位的220个核苷酸的序列;
SEQ ID NO:1的从241位到420位的180个核苷酸的序列;
SEQ ID NO:1的从1位到160位的160个核苷酸的序列;
SEQ ID NO:1的从1位到120位的120个核苷酸的序列,及
(ii)为SEQ ID NO:28的大豆FATB-1基因的片段、长度是80-450个连续核苷酸的核酸序列,
其中所述第一组DNA序列不包含能抑制FAD3基因表达的SEQ ID NO:7-27的大豆FAD3基因的核酸序列或其片段;和
其中所述核酸构建体不包含第二组DNA序列,该第二组DNA序列具有增加SEQ ID NO:38的β-酮脂酰-ACP合酶I、SEQ ID NO:39的β-酮脂酰-ACP合酶IV或SEQ ID NO:40-41的Δ-9去饱和酶的表达的核酸序列。
2.权利要求1的核酸构建体,其中所述为SEQ ID NO:28的大豆FATB-1基因的片段、长度是80-450个连续核苷酸的核酸序列包含大豆FATB-1 5’UTR序列和编码大豆FATB-1叶绿体转运肽的序列。
3.权利要求2的核酸构建体,其中所述为SEQ ID NO:28的大豆FATB-1基因的片段、长度是80-450个连续核苷酸的核酸序列包含SEQ ID NO:28的从274位到296位和1122位到1290位的192个核苷酸的序列。
4.权利要求1的核酸构建体,其中所述核酸序列从选自以下的构建体获得:
pMON95829,其具有两个T-DNA片段,每个片段都侧接土壤杆菌T-DNA边界元件,即RB和LB;第一T-DNA片段含有可操作性连接于大豆FAD2-1A内含子1(SEQ ID NO:1)的大豆7Sα’启动子,所述内含子1从3’末端减少100个连续核苷酸,并且连接于FATB-1a5’UTR的42个连续核苷酸,后面是FATB-1a CTP编码区,和可操作性连接于EFMV启动子和豌豆Rubisco E9 3’终止序列的CP4EPSPS基因,它们都侧接土壤杆菌T-DNA边界元件;在侧接另一RB和LB的第二T-DNA片段中,存在可操作性连接于大豆FAD2-1A内含子1(SEQ ID NO:1)的H6 3’终止序列,所述内含子1从3’末端减少100个连续核苷酸,并且连接于FATB-1a5’UTR的42个连续核苷酸,后面是FATB-1a CTP编码区;
pMON97552,其含有大豆7Sα’启动子,其可操作性连接于大豆FAD2-1A内含子1(SEQ IDNO:1),该内含子1从3’末端减少140个连续核苷酸,该内含子1可操作性连接于FATB-1a 5’UTR的42个连续核苷酸,后面是FATB-1a CTP编码区,该编码区可操作性连接于FAD3-1A内含子4的70个核苷酸,所述内含子4可操作性连接于反义方向的FATB-1a CTP编码区,后面是反义方向的FATB-1a 5’UTR的42个连续核苷酸,后面是大豆FAD2-1A内含子1(SEQ ID NO:1),其从3’末端减少140个连续核苷酸并且是反义方向,该内含子1可操作性连接于H6 3’聚腺苷酸化片段,该片段中具有可操作性连接于EFMV启动子和豌豆Rubisco E9 3’终止序列的CP4EPSPS基因,它们都侧接RB和LB;
pMON93758,其含有大豆7Sα’启动子,其可操作性连接于大豆FAD2-1A内含子1(SEQ IDNO:1),该内含子1从5’末端减少160个连续核苷酸并且连接于FATB-1a 3’UTR,后面是FATB-1a 5’UTR,其可操作性连接于FAD3-1A内含子4的70个核苷酸,所述内含子4可操作性连接于反义方向的FATB-1a 5’UTR,后面是反义方向的FATB-1a 3’UTR,后面是大豆FAD2-1A内含子1(SEQ ID NO:1),该内含子1从5’末端减少160个连续核苷酸并且是反义方向的,该内含子1可操作性连接于H6 3’聚腺苷酸化片段,该片段中具有可操作性连接于EFMV启动子和豌豆Rubisco E9 3’终止序列的CP4EPSPS基因,它们都在同一DNA分子上侧接RB和LB;
pMON97553,其含有大豆7Sα’启动子,其可操作性连接于大豆FAD2-1A内含子1(SEQ IDNO:1),该内含子1从3’末端减少200个连续核苷酸并且连接于FATB-1a 5’UTR的42个连续核苷酸,后面是FATB-1a CTP编码区,该编码区可操作性连接于FAD3-1A内含子4的70个核苷酸,所述内含子4可操作性连接于反义方向的FATB-1a CTP编码区,后面是反义方向的FATB-1a 5’UTR的42个连续核苷酸,后面是大豆FAD2-1A内含子1(SEQ ID NO:1),其从3’末端减少200个连续核苷酸并且是反义方向,该内含子1可操作性连接于H6 3’聚腺苷酸化片段,该片段中具有可操作性连接于EFMV启动子和豌豆Rubisco E9 3’终止序列的CP4EPSPS基因,它们都侧接RB和LB;
pMON93759,其含有大豆7Sα’启动子,其可操作性连接于大豆FAD2-1A内含子1(SEQ IDNO:1),该内含子1从5’末端减少240个连续核苷酸并且连接于FATB-1a 3’UTR,后面是FATB-1a 5’UTR,其可操作性连接于FAD3-1A内含子4的70个核苷酸,所述内含子4可操作性连接于反义方向的FATB-1a 5’UTR,后面是反义方向的FATB-1a 3’UTR,后面是大豆FAD2-1A内含子1(SEQ ID NO:1),该内含子1从5’末端减少240个连续核苷酸并且是反义方向的,该内含子1可操作性连接于H6 3’聚腺苷酸化片段,该片段中具有可操作性连接于EFMV启动子和豌豆Rubisco E9 3’终止序列的CP4EPSPS基因,它们都在同一DNA分子上侧接RB和LB;
pMON93770,其含有大豆7Sα’启动子,其可操作性连接于大豆FAD2-1A内含子1(SEQ IDNO:1),该内含子1从3’末端减少240个连续核苷酸并且连接于FATB-1a 3’UTR,后面是FATB-1a 5’UTR,其可操作性连接于FAD3-1A内含子4的70个核苷酸,所述内含子4可操作性连接于反义方向的FATB-1a 5’UTR,后面是反义方向的FATB-1a 3’UTR,后面是大豆FAD2-1A内含子1(SEQ ID NO:1),该内含子1从3’末端减少240个连续核苷酸并且是反义方向的,该内含子1可操作性连接于H6 3’聚腺苷酸化片段,该片段中具有可操作性连接于EFMV启动子和豌豆Rubisco E9 3’终止序列的CP4EPSPS基因,它们都在同一DNA分子上侧接RB和LB;
pMON97554,其含有大豆7Sα’启动子,其可操作性连接于大豆FAD2-1A内含子1(SEQ IDNO:1),该内含子1从3’末端减少260个连续核苷酸并且连接于FATB-1a 5’UTR的42个连续核苷酸,后面是FATB-1a CTP编码区,该编码区可操作性连接于FAD3-1A内含子4的70个核苷酸,所述内含子4可操作性连接于反义方向的FATB-1a CTP编码区,后面是反义方向的FATB-1a 5’UTR的42个连续核苷酸,后面是大豆FAD2-1A内含子1(SEQ ID NO:1),其从3’末端减少260个连续核苷酸并且是反义方向,该内含子1可操作性连接于H6 3’聚腺苷酸化片段,该片段中具有可操作性连接于EFMV启动子和豌豆Rubisco E9 3’终止序列的CP4EPSPS基因,它们都侧接RB和LB;
pMON93771,其含有大豆7Sα’启动子,其可操作性连接于大豆FAD2-1A内含子1(SEQ IDNO:1),该内含子1从3’末端减少300个连续核苷酸并且连接于FATB-1a 3’UTR,后面是FATB-1a 5’UTR,其可操作性连接于FAD3-1A内含子4的70个核苷酸,所述内含子4可操作性连接于反义方向的FATB-1a 5’UTR,后面是反义方向的FATB-1a 3’UTR,后面是大豆FAD2-1A内含子1(SEQ ID NO:1),该内含子1从3’末端减少300个连续核苷酸并且是反义方向的,该内含子1可操作性连接于H6 3’聚腺苷酸化片段,该片段中具有可操作性连接于EFMV启动子和豌豆Rubisco E9 3’终止序列的CP4EPSPS基因,它们都在同一DNA分子上侧接RB和LB;和
pMON97555,其含有大豆7Sα’启动子,其可操作性连接于大豆FAD2-1A内含子1(SEQ IDNO:1),该内含子1从3’末端减少320个连续核苷酸并且连接于FATB-1a 5’UTR的42个连续核苷酸,后面是FATB-1a CTP编码区,该编码区可操作性连接于FAD3-1A内含子4的70个核苷酸,所述内含子4可操作性连接于反义方向的FATB-1a CTP编码区,后面是反义方向的FATB-1a 5’UTR的42个连续核苷酸,后面是大豆FAD2-1A内含子1(SEQ ID NO:1),其从3’末端减少320个连续核苷酸并且是反义方向,该内含子1可操作性连接于H6 3’聚腺苷酸化片段,该片段中具有可操作性连接于EFMV启动子和豌豆Rubisco E9 3’终止序列的CP4EPSPS基因,它们都侧接RB和LB。
5.权利要求1的核酸构建体,其中所述第一组DNA序列进一步包含在植物细胞中发挥功能的启动子。
6.使转化的大豆植物生长的方法,其中该转化的大豆植物的大豆种子中油酸含量提高,该方法包括:
(a)使具有重组核酸分子的大豆种子生长,所述核酸分子包含第一组DNA序列,该第一组DNA序列具有:
(i)为SEQ ID NO:1的大豆FAD2-1A内含子的片段、长度是50-400个连续核苷酸的核酸序列,其选自:
SEQ ID NO:1的从161位到420位的260个核苷酸的序列;
SEQ ID NO:1的从1位到180位的180个核苷酸的序列;
SEQ ID NO:1的从1位到100位的100个核苷酸的序列;
SEQ ID NO:1的从1位到320位的320个核苷酸的序列;
SEQ ID NO:1的从1位到280位的280个核苷酸的序列;
SEQ ID NO:1的从1位到220位的220个核苷酸的序列;
SEQ ID NO:1的从241位到420位的180个核苷酸的序列;
SEQ ID NO:1的从1位到160位的160个核苷酸的序列;和
SEQ ID NO:1的从1位到120位的120个核苷酸的序列,和
(ii)为SEQ ID NO:28的大豆FATB-1基因的片段、长度是80-450个连续核苷酸的核酸序列,
其中所述第一组DNA序列不包含能抑制FAD3基因表达的SEQ ID NO:7-27的大豆FAD3基因的核酸序列或其片段;和
其中所述核酸分子不包含第二组DNA序列,该第二组DNA序列具有增加SEQ ID NO:38的β-酮脂酰-ACP合酶I、SEQ ID NO:39的β-酮脂酰-ACP合酶IV或SEQ ID NO:40-41的Δ-9去饱和酶的表达的核酸序列;和
(b)栽培产自所述大豆种子的大豆植物,以产生相对于来自具有相似遗传背景但缺乏所述重组核酸分子的植物的大豆种子油酸含量提高的另外的种子。
7.权利要求6的方法,其中所述为SEQ ID NO:28的大豆FATB-1基因的片段、长度是80-450个连续核苷酸的核酸序列包含SEQ ID NO:28的从274位到296位和1122位到1290位的192个核苷酸的序列。
8.权利要求7的方法,其中所述为SEQ ID NO:28的大豆FATB-1基因的片段、长度是80-450个连续核苷酸的核酸序列进一步包含大豆FATB-1 3’UTR序列,其为SEQ ID NO:36的FATB-1序列的至少25个连续核苷酸。
9.权利要求6的方法,其中所述重组核酸分子从选自以下的构建体获得:
pMON95829,其具有两个T-DNA片段,每个片段都侧接土壤杆菌T-DNA边界元件,即RB和LB;第一T-DNA片段含有可操作性连接于大豆FAD2-1A内含子1(SEQ ID NO:1)的大豆7Sα’启动子,所述内含子1从3’末端减少100个连续核苷酸,并且连接于FATB-1a5’UTR的42个连续核苷酸,后面是FATB-1a CTP编码区,和可操作性连接于EFMV启动子和豌豆Rubisco E9 3’终止序列的CP4EPSPS基因,它们都侧接土壤杆菌T-DNA边界元件;在侧接另一RB和LB的第二T-DNA片段中,存在可操作性连接于大豆FAD2-1A内含子1(SEQ ID NO:1)的H6 3’终止序列,所述内含子1从3’末端减少100个连续核苷酸,并且连接于FATB-1a5’UTR的42个连续核苷酸,后面是FATB-1a CTP编码区;
pMON97552,其含有大豆7Sα’启动子,其可操作性连接于大豆FAD2-1A内含子1(SEQ IDNO:1),该内含子1从3’末端减少140个连续核苷酸,该内含子1可操作性连接于FATB-1a 5’UTR的42个连续核苷酸,后面是FATB-1a CTP编码区,该编码区可操作性连接于FAD3-1A内含子4的70个核苷酸,所述内含子4可操作性连接于反义方向的FATB-1a CTP编码区,后面是反义方向的FATB-1a 5’UTR的42个连续核苷酸,后面是大豆FAD2-1A内含子1(SEQ ID NO:1),其从3’末端减少140个连续核苷酸并且是反义方向,该内含子1可操作性连接于H6 3’聚腺苷酸化片段,该片段中具有可操作性连接于EFMV启动子和豌豆Rubisco E9 3’终止序列的CP4EPSPS基因,它们都侧接RB和LB;
pMON93758,其含有大豆7Sα’启动子,其可操作性连接于大豆FAD2-1A内含子1(SEQ IDNO:1),该内含子1从5’末端减少160个连续核苷酸并且连接于FATB-1a 3’UTR,后面是FATB-1a 5’UTR,其可操作性连接于FAD3-1A内含子4的70个核苷酸,所述内含子4可操作性连接于反义方向的FATB-1a 5’UTR,后面是反义方向的FATB-1a 3’UTR,后面是大豆FAD2-1A内含子1(SEQ ID NO:1),该内含子1从5’末端减少160个连续核苷酸并且是反义方向的,该内含子1可操作性连接于H6 3’聚腺苷酸化片段,该片段中具有可操作性连接于EFMV启动子和豌豆Rubisco E9 3’终止序列的CP4EPSPS基因,它们都在同一DNA分子上侧接RB和LB;
pMON97553,其含有大豆7Sα’启动子,其可操作性连接于大豆FAD2-1A内含子1(SEQ IDNO:1),该内含子1从3’末端减少200个连续核苷酸并且连接于FATB-1a 5’UTR的42个连续核苷酸,后面是FATB-1a CTP编码区,该编码区可操作性连接于FAD3-1A内含子4的70个核苷酸,所述内含子4可操作性连接于反义方向的FATB-1a CTP编码区,后面是反义方向的FATB-1a 5’UTR的42个连续核苷酸,后面是大豆FAD2-1A内含子1(SEQ ID NO:1),其从3’末端减少200个连续核苷酸并且是反义方向,该内含子1可操作性连接于H6 3’聚腺苷酸化片段,该片段中具有可操作性连接于EFMV启动子和豌豆Rubisco E9 3’终止序列的CP4EPSPS基因,它们都侧接RB和LB;
pMON93759,其含有大豆7Sα’启动子,其可操作性连接于大豆FAD2-1A内含子1(SEQ IDNO:1),该内含子1从5’末端减少240个连续核苷酸并且连接于FATB-1a 3’UTR,后面是FATB-1a 5’UTR,其可操作性连接于FAD3-1A内含子4的70个核苷酸,所述内含子4可操作性连接于反义方向的FATB-1a 5’UTR,后面是反义方向的FATB-1a 3’UTR,后面是大豆FAD2-1A内含子1(SEQ ID NO:1),该内含子1从5’末端减少240个连续核苷酸并且是反义方向的,该内含子1可操作性连接于H6 3’聚腺苷酸化片段,该片段中具有可操作性连接于EFMV启动子和豌豆Rubisco E9 3’终止序列的CP4EPSPS基因,它们都在同一DNA分子上侧接RB和LB;
pMON93770,其含有大豆7Sα’启动子,其可操作性连接于大豆FAD2-1A内含子1(SEQ IDNO:1),该内含子1从3’末端减少240个连续核苷酸并且连接于FATB-1a 3’UTR,后面是FATB-1a 5’UTR,其可操作性连接于FAD3-1A内含子4的70个核苷酸,所述内含子4可操作性连接于反义方向的FATB-1a 5’UTR,后面是反义方向的FATB-1a 3’UTR,后面是大豆FAD2-1A内含子1(SEQ ID NO:1),该内含子1从3’末端减少240个连续核苷酸并且是反义方向的,该内含子1可操作性连接于H6 3’聚腺苷酸化片段,该片段中具有可操作性连接于EFMV启动子和豌豆Rubisco E9 3’终止序列的CP4EPSPS基因,它们都在同一DNA分子上侧接RB和LB;
pMON97554,其含有大豆7Sα’启动子,其可操作性连接于大豆FAD2-1A内含子1(SEQ IDNO:1),该内含子1从3’末端减少260个连续核苷酸并且连接于FATB-1a 5’UTR的42个连续核苷酸,后面是FATB-1a CTP编码区,该编码区可操作性连接于FAD3-1A内含子4的70个核苷酸,所述内含子4可操作性连接于反义方向的FATB-1a CTP编码区,后面是反义方向的FATB-1a 5’UTR的42个连续核苷酸,后面是大豆FAD2-1A内含子1(SEQ ID NO:1),其从3’末端减少260个连续核苷酸并且是反义方向,该内含子1可操作性连接于H6 3’聚腺苷酸化片段,该片段中具有可操作性连接于EFMV启动子和豌豆Rubisco E9 3’终止序列的CP4EPSPS基因,它们都侧接RB和LB;
pMON93771,其含有大豆7Sα’启动子,其可操作性连接于大豆FAD2-1A内含子1(SEQ IDNO:1),该内含子1从3’末端减少300个连续核苷酸并且连接于FATB-1a 3’UTR,后面是FATB-1a 5’UTR,其可操作性连接于FAD3-1A内含子4的70个核苷酸,所述内含子4可操作性连接于反义方向的FATB-1a 5’UTR,后面是反义方向的FATB-1a 3’UTR,后面是大豆FAD2-1A内含子1(SEQ ID NO:1),该内含子1从3’末端减少300个连续核苷酸并且是反义方向的,该内含子1可操作性连接于H6 3’聚腺苷酸化片段,该片段中具有可操作性连接于EFMV启动子和豌豆Rubisco E9 3’终止序列的CP4EPSPS基因,它们都在同一DNA分子上侧接RB和LB;和
pMON97555,其含有大豆7Sα’启动子,其可操作性连接于大豆FAD2-1A内含子1(SEQ IDNO:1),该内含子1从3’末端减少320个连续核苷酸并且连接于FATB-1a 5’UTR的42个连续核苷酸,后面是FATB-1a CTP编码区,该编码区可操作性连接于FAD3-1A内含子4的70个核苷酸,所述内含子4可操作性连接于反义方向的FATB-1a CTP编码区,后面是反义方向的FATB-1a 5’UTR的42个连续核苷酸,后面是大豆FAD2-1A内含子1(SEQ ID NO:1),其从3’末端减少320个连续核苷酸并且是反义方向,该内含子1可操作性连接于H6 3’聚腺苷酸化片段,该片段中具有可操作性连接于EFMV启动子和豌豆Rubisco E9 3’终止序列的CP4EPSPS基因,它们都侧接RB和LB。
10.权利要求6的方法,其中所述大豆种子的油组成包含总脂肪酸的55重量%-80重量%的油酸含量,和总脂肪酸的2重量%-7重量%的饱和脂肪酸含量。
11.改变植物细胞的油组成的方法,其包括:
(a)用重组核酸分子转化大豆植物细胞,所述重组核酸分子包含第一组DNA序列,该第一组DNA序列具有:
(i)为SEQ ID NO:1的大豆FAD2-1A内含子的片段、长度是50-400个连续核苷酸的核酸序列,其选自:
SEQ ID NO:1的从161位到420位的260个核苷酸的序列;
SEQ ID NO:1的从1位到180位的180个核苷酸的序列;
SEQ ID NO:1的从1位到100位的100个核苷酸的序列;
SEQ ID NO:1的从1位到320位的320个核苷酸的序列;
SEQ ID NO:1的从1位到280位的280个核苷酸的序列;
SEQ ID NO:1的从1位到220位的220个核苷酸的序列;
SEQ ID NO:1的从241位到420位的180个核苷酸的序列;
SEQ ID NO:1的从1位到160位的160个核苷酸的序列;和
SEQ ID NO:1的从1位到120位的120个核苷酸的序列;和
(ii)为SEQ ID NO:28的大豆FATB-1基因的片段、长度是80-450个连续核苷酸的核酸序列,
其中所述第一组DNA序列不包含能抑制FAD3基因表达的SEQ ID NO:7-27的大豆FAD3基因的核酸序列或其片段;和
其中所述核酸分子不包含第二组DNA序列,该第二组DNA序列具有增加SEQ ID NO:38的β-酮脂酰-ACP合酶I、SEQ ID NO:39的β-酮脂酰-ACP合酶IV或SEQ ID NO:40-41的Δ-9去饱和酶的表达的核酸序列;和
(b)在条件下使所述大豆植物细胞生长,其中所述油组成包含总脂肪酸的55重量%-80重量%的油酸含量,和总脂肪酸的2重量%-7重量%的饱和脂肪酸含量。
12.权利要求11的方法,其中所述为大豆FATB-1基因的片段、长度是80-450个连续核苷酸的核酸序列包含大豆FATB-1 5’UTR序列和编码大豆FATB-1叶绿体转运肽的序列。
13.权利要求12的方法,其中所述为SEQ ID NO:28的大豆FATB-1基因的片段、长度是80-450个连续核苷酸的核酸序列进一步包含大豆FATB-1 3’UTR序列。
14.权利要求11的方法,其中所述重组核酸分子从选自以下的构建体获得:
pMON95829,其具有两个T-DNA片段,每个片段都侧接土壤杆菌T-DNA边界元件,即RB和LB;第一T-DNA片段含有可操作性连接于大豆FAD2-1A内含子1(SEQ ID NO:1)的大豆7Sα’启动子,所述内含子1从3’末端减少100个连续核苷酸,并且连接于FATB-1a5’UTR的42个连续核苷酸,后面是FATB-1a CTP编码区,和可操作性连接于EFMV启动子和豌豆Rubisco E9 3’终止序列的CP4EPSPS基因,它们都侧接土壤杆菌T-DNA边界元件;在侧接另一RB和LB的第二T-DNA片段中,存在可操作性连接于大豆FAD2-1A内含子1(SEQ ID NO:1)的H6 3’终止序列,所述内含子1从3’末端减少100个连续核苷酸,并且连接于FATB-1a5’UTR的42个连续核苷酸,后面是FATB-1a CTP编码区;
pMON97552,其含有大豆7Sα’启动子,其可操作性连接于大豆FAD2-1A内含子1(SEQ IDNO:1),该内含子1从3’末端减少140个连续核苷酸,该内含子1可操作性连接于FATB-1a 5’UTR的42个连续核苷酸,后面是FATB-1a CTP编码区,该编码区可操作性连接于FAD3-1A内含子4的70个核苷酸,所述内含子4可操作性连接于反义方向的FATB-1a CTP编码区,后面是反义方向的FATB-1a 5’UTR的42个连续核苷酸,后面是大豆FAD2-1A内含子1(SEQ ID NO:1),其从3’末端减少140个连续核苷酸并且是反义方向,该内含子1可操作性连接于H6 3’聚腺苷酸化片段,该片段中具有可操作性连接于EFMV启动子和豌豆Rubisco E9 3’终止序列的CP4EPSPS基因,它们都侧接RB和LB;
pMON93758,其含有大豆7Sα’启动子,其可操作性连接于大豆FAD2-1A内含子1(SEQ IDNO:1),该内含子1从5’末端减少160个连续核苷酸并且连接于FATB-1a 3’UTR,后面是FATB-1a 5’UTR,其可操作性连接于FAD3-1A内含子4的70个核苷酸,所述内含子4可操作性连接于反义方向的FATB-1a 5’UTR,后面是反义方向的FATB-1a 3’UTR,后面是大豆FAD2-1A内含子1(SEQ ID NO:1),该内含子1从5’末端减少160个连续核苷酸并且是反义方向的,该内含子1可操作性连接于H6 3’聚腺苷酸化片段,该片段中具有可操作性连接于EFMV启动子和豌豆Rubisco E9 3’终止序列的CP4EPSPS基因,它们都在同一DNA分子上侧接RB和LB;
pMON97553,其含有大豆7Sα’启动子,其可操作性连接于大豆FAD2-1A内含子1(SEQ IDNO:1),该内含子1从3’末端减少200个连续核苷酸并且连接于FATB-1a 5’UTR的42个连续核苷酸,后面是FATB-1a CTP编码区,该编码区可操作性连接于FAD3-1A内含子4的70个核苷酸,所述内含子4可操作性连接于反义方向的FATB-1a CTP编码区,后面是反义方向的FATB-1a 5’UTR的42个连续核苷酸,后面是大豆FAD2-1A内含子1(SEQ ID NO:1),其从3’末端减少200个连续核苷酸并且是反义方向,该内含子1可操作性连接于H6 3’聚腺苷酸化片段,该片段中具有可操作性连接于EFMV启动子和豌豆Rubisco E9 3’终止序列的CP4EPSPS基因,它们都侧接RB和LB;
pMON93759,其含有大豆7Sα’启动子,其可操作性连接于大豆FAD2-1A内含子1(SEQ IDNO:1),该内含子1从5’末端减少240个连续核苷酸并且连接于FATB-1a 3’UTR,后面是FATB-1a 5’UTR,其可操作性连接于FAD3-1A内含子4的70个核苷酸,所述内含子4可操作性连接于反义方向的FATB-1a 5’UTR,后面是反义方向的FATB-1a 3’UTR,后面是大豆FAD2-1A内含子1(SEQ ID NO:1),该内含子1从5’末端减少240个连续核苷酸并且是反义方向的,该内含子1可操作性连接于H6 3’聚腺苷酸化片段,该片段中具有可操作性连接于EFMV启动子和豌豆Rubisco E9 3’终止序列的CP4EPSPS基因,它们都在同一DNA分子上侧接RB和LB;
pMON93770,其含有大豆7Sα’启动子,其可操作性连接于大豆FAD2-1A内含子1(SEQ IDNO:1),该内含子1从3’末端减少240个连续核苷酸并且连接于FATB-1a 3’UTR,后面是FATB-1a 5’UTR,其可操作性连接于FAD3-1A内含子4的70个核苷酸,所述内含子4可操作性连接于反义方向的FATB-1a 5’UTR,后面是反义方向的FATB-1a 3’UTR,后面是大豆FAD2-1A内含子1(SEQ ID NO:1),该内含子1从3’末端减少240个连续核苷酸并且是反义方向的,该内含子1可操作性连接于H6 3’聚腺苷酸化片段,该片段中具有可操作性连接于EFMV启动子和豌豆Rubisco E9 3’终止序列的CP4EPSPS基因,它们都在同一DNA分子上侧接RB和LB;
pMON97554,其含有大豆7Sα’启动子,其可操作性连接于大豆FAD2-1A内含子1(SEQ IDNO:1),该内含子1从3’末端减少260个连续核苷酸并且连接于FATB-1a 5’UTR的42个连续核苷酸,后面是FATB-1a CTP编码区,该编码区可操作性连接于FAD3-1A内含子4的70个核苷酸,所述内含子4可操作性连接于反义方向的FATB-1a CTP编码区,后面是反义方向的FATB-1a 5’UTR的42个连续核苷酸,后面是大豆FAD2-1A内含子1(SEQ ID NO:1),其从3’末端减少260个连续核苷酸并且是反义方向,该内含子1可操作性连接于H6 3’聚腺苷酸化片段,该片段中具有可操作性连接于EFMV启动子和豌豆Rubisco E9 3’终止序列的CP4EPSPS基因,它们都侧接RB和LB;
pMON93771,其含有大豆7Sα’启动子,其可操作性连接于大豆FAD2-1A内含子1(SEQ IDNO:1),该内含子1从3’末端减少300个连续核苷酸并且连接于FATB-1a 3’UTR,后面是FATB-1a 5’UTR,其可操作性连接于FAD3-1A内含子4的70个核苷酸,所述内含子4可操作性连接于反义方向的FATB-1a 5’UTR,后面是反义方向的FATB-1a 3’UTR,后面是大豆FAD2-1A内含子1(SEQ ID NO:1),该内含子1从3’末端减少300个连续核苷酸并且是反义方向的,该内含子1可操作性连接于H6 3’聚腺苷酸化片段,该片段中具有可操作性连接于EFMV启动子和豌豆Rubisco E9 3’终止序列的CP4EPSPS基因,它们都在同一DNA分子上侧接RB和LB;和
pMON97555,其含有大豆7Sα’启动子,其可操作性连接于大豆FAD2-1A内含子1(SEQ IDNO:1),该内含子1从3’末端减少320个连续核苷酸并且连接于FATB-1a 5’UTR的42个连续核苷酸,后面是FATB-1a CTP编码区,该编码区可操作性连接于FAD3-1A内含子4的70个核苷酸,所述内含子4可操作性连接于反义方向的FATB-1a CTP编码区,后面是反义方向的FATB-1a 5’UTR的42个连续核苷酸,后面是大豆FAD2-1A内含子1(SEQ ID NO:1),其从3’末端减少320个连续核苷酸并且是反义方向,该内含子1可操作性连接于H6 3’聚腺苷酸化片段,该片段中具有可操作性连接于EFMV启动子和豌豆Rubisco E9 3’终止序列的CP4EPSPS基因,它们都侧接RB和LB。
15.权利要求11的方法,其中所述油组成包含总脂肪酸的65重量%-80重量%的油酸含量,和总脂肪酸的2重量%-7重量%的饱和脂肪酸含量。
16.从根据权利要求6的方法改变的大豆植物的大豆种子提取的粗大豆油,其包含总脂肪酸的55重量%-80重量%的油酸含量,和总脂肪酸的3重量%-6重量%的饱和脂肪酸含量。
17.粗大豆油,其包含总脂肪酸的55重量%-80重量%的油酸含量,和总脂肪酸的2重量%-7重量%的饱和脂肪酸含量,其中所述油是从包含核酸分子的种子提取的,其中所述核酸分子包含第一组DNA序列,该第一组DNA序列具有:
(i)为SEQ ID NO:1的大豆FAD2-1A内含子的片段、长度是50-400个连续核苷酸的核酸序列,其选自:
SEQ ID NO:1的从161位到420位的260个核苷酸的序列;
SEQ ID NO:1的从1位到180位的180个核苷酸的序列;
SEQ ID NO:1的从1位到100位的100个核苷酸的序列;
SEQ ID NO:1的从1位到320位的320个核苷酸的序列;
SEQ ID NO:1的从1位到280位的280个核苷酸的序列;
SEQ ID NO:1的从1位到220位的220个核苷酸的序列;
SEQ ID NO:1的从241位到420位的180个核苷酸的序列;
SEQ ID NO:1的从1位到160位的160个核苷酸的序列;和
SEQ ID NO:1的从1位到120位的120个核苷酸的序列;和
(ii)为SEQ ID NO:28的大豆FATB-1基因的片段、长度是80-450个连续核苷酸的核酸序列,
其中所述第一组DNA序列不包含能抑制FAD3基因表达的SEQ ID NO:7-27的大豆FAD3基因的核酸序列或其片段;和
其中所述核酸分子不包含第二组DNA序列,该第二组DNA序列具有增加SEQ ID NO:38的β-酮脂酰-ACP合酶I、SEQ ID NO:39的β-酮脂酰-ACP合酶IV或SEQ ID NO:40-41的Δ-9去饱和酶的表达的核酸序列。
18.权利要求17的粗大豆油,其中所述油酸含量是总脂肪酸的大65重量%-80重量%。
19.权利要求17的粗大豆油,其中所述核酸分子从选自以下的构建体获得:
pMON95829,其具有两个T-DNA片段,每个片段都侧接土壤杆菌T-DNA边界元件,即RB和LB;第一T-DNA片段含有可操作性连接于大豆FAD2-1A内含子1(SEQ ID NO:1)的大豆7Sα’启动子,所述内含子1从3’末端减少100个连续核苷酸,并且连接于FATB-1a5’UTR的42个连续核苷酸,后面是FATB-1a CTP编码区,和可操作性连接于EFMV启动子和豌豆Rubisco E9 3’终止序列的CP4EPSPS基因,它们都侧接土壤杆菌T-DNA边界元件;在侧接另一RB和LB的第二T-DNA片段中,存在可操作性连接于大豆FAD2-1A内含子1(SEQ ID NO:1)的H6 3’终止序列,所述内含子1从3’末端减少100个连续核苷酸,并且连接于FATB-1a5’UTR的42个连续核苷酸,后面是FATB-1a CTP编码区;
pMON97552,其含有大豆7Sα’启动子,其可操作性连接于大豆FAD2-1A内含子1(SEQ IDNO:1),该内含子1从3’末端减少140个连续核苷酸,该内含子1可操作性连接于FATB-1a 5’UTR的42个连续核苷酸,后面是FATB-1a CTP编码区,该编码区可操作性连接于FAD3-1A内含子4的70个核苷酸,所述内含子4可操作性连接于反义方向的FATB-1a CTP编码区,后面是反义方向的FATB-1a 5’UTR的42个连续核苷酸,后面是大豆FAD2-1A内含子1(SEQ ID NO:1),其从3’末端减少140个连续核苷酸并且是反义方向,该内含子1可操作性连接于H6 3’聚腺苷酸化片段,该片段中具有可操作性连接于EFMV启动子和豌豆Rubisco E9 3’终止序列的CP4EPSPS基因,它们都侧接RB和LB;
pMON93758,其含有大豆7Sα’启动子,其可操作性连接于大豆FAD2-1A内含子1(SEQ IDNO:1),该内含子1从5’末端减少160个连续核苷酸并且连接于FATB-1a 3’UTR,后面是FATB-1a 5’UTR,其可操作性连接于FAD3-1A内含子4的70个核苷酸,所述内含子4可操作性连接于反义方向的FATB-1a 5’UTR,后面是反义方向的FATB-1a 3’UTR,后面是大豆FAD2-1A内含子1(SEQ ID NO:1),该内含子1从5’末端减少160个连续核苷酸并且是反义方向的,该内含子1可操作性连接于H6 3’聚腺苷酸化片段,该片段中具有可操作性连接于EFMV启动子和豌豆Rubisco E9 3’终止序列的CP4EPSPS基因,它们都在同一DNA分子上侧接RB和LB;
pMON97553,其含有大豆7Sα’启动子,其可操作性连接于大豆FAD2-1A内含子1(SEQ IDNO:1),该内含子1从3’末端减少200个连续核苷酸并且连接于FATB-1a 5’UTR的42个连续核苷酸,后面是FATB-1a CTP编码区,该编码区可操作性连接于FAD3-1A内含子4的70个核苷酸,所述内含子4可操作性连接于反义方向的FATB-1a CTP编码区,后面是反义方向的FATB-1a 5’UTR的42个连续核苷酸,后面是大豆FAD2-1A内含子1(SEQ ID NO:1),其从3’末端减少200个连续核苷酸并且是反义方向,该内含子1可操作性连接于H6 3’聚腺苷酸化片段,该片段中具有可操作性连接于EFMV启动子和豌豆Rubisco E9 3’终止序列的CP4EPSPS基因,它们都侧接RB和LB;
pMON93759,其含有大豆7Sα’启动子,其可操作性连接于大豆FAD2-1A内含子1(SEQ IDNO:1),该内含子1从5’末端减少240个连续核苷酸并且连接于FATB-1a 3’UTR,后面是FATB-1a 5’UTR,其可操作性连接于FAD3-1A内含子4的70个核苷酸,所述内含子4可操作性连接于反义方向的FATB-1a 5’UTR,后面是反义方向的FATB-1a 3’UTR,后面是大豆FAD2-1A内含子1(SEQ ID NO:1),该内含子1从5’末端减少240个连续核苷酸并且是反义方向的,该内含子1可操作性连接于H6 3’聚腺苷酸化片段,该片段中具有可操作性连接于EFMV启动子和豌豆Rubisco E9 3’终止序列的CP4EPSPS基因,它们都在同一DNA分子上侧接RB和LB;
pMON93770,其含有大豆7Sα’启动子,其可操作性连接于大豆FAD2-1A内含子1(SEQ IDNO:1),该内含子1从3’末端减少240个连续核苷酸并且连接于FATB-1a 3’UTR,后面是FATB-1a 5’UTR,其可操作性连接于FAD3-1A内含子4的70个核苷酸,所述内含子4可操作性连接于反义方向的FATB-1a 5’UTR,后面是反义方向的FATB-1a 3’UTR,后面是大豆FAD2-1A内含子1(SEQ ID NO:1),该内含子1从3’末端减少240个连续核苷酸并且是反义方向的,该内含子1可操作性连接于H6 3’聚腺苷酸化片段,该片段中具有可操作性连接于EFMV启动子和豌豆Rubisco E9 3’终止序列的CP4EPSPS基因,它们都在同一DNA分子上侧接RB和LB;
pMON97554,其含有大豆7Sα’启动子,其可操作性连接于大豆FAD2-1A内含子1(SEQ IDNO:1),该内含子1从3’末端减少260个连续核苷酸并且连接于FATB-1a 5’UTR的42个连续核苷酸,后面是FATB-1a CTP编码区,该编码区可操作性连接于FAD3-1A内含子4的70个核苷酸,所述内含子4可操作性连接于反义方向的FATB-1a CTP编码区,后面是反义方向的FATB-1a 5’UTR的42个连续核苷酸,后面是大豆FAD2-1A内含子1(SEQ ID NO:1),其从3’末端减少260个连续核苷酸并且是反义方向,该内含子1可操作性连接于H6 3’聚腺苷酸化片段,该片段中具有可操作性连接于EFMV启动子和豌豆Rubisco E9 3’终止序列的CP4EPSPS基因,它们都侧接RB和LB;
pMON93771,其含有大豆7Sα’启动子,其可操作性连接于大豆FAD2-1A内含子1(SEQ IDNO:1),该内含子1从3’末端减少300个连续核苷酸并且连接于FATB-1a 3’UTR,后面是FATB-1a 5’UTR,其可操作性连接于FAD3-1A内含子4的70个核苷酸,所述内含子4可操作性连接于反义方向的FATB-1a 5’UTR,后面是反义方向的FATB-1a 3’UTR,后面是大豆FAD2-1A内含子1(SEQ ID NO:1),该内含子1从3’末端减少300个连续核苷酸并且是反义方向的,该内含子1可操作性连接于H6 3’聚腺苷酸化片段,该片段中具有可操作性连接于EFMV启动子和豌豆Rubisco E9 3’终止序列的CP4EPSPS基因,它们都在同一DNA分子上侧接RB和LB;和
pMON97555,其含有大豆7Sα’启动子,其可操作性连接于大豆FAD2-1A内含子1(SEQ IDNO:1),该内含子1从3’末端减少320个连续核苷酸并且连接于FATB-1a 5’UTR的42个连续核苷酸,后面是FATB-1a CTP编码区,该编码区可操作性连接于FAD3-1A内含子4的70个核苷酸,所述内含子4可操作性连接于反义方向的FATB-1a CTP编码区,后面是反义方向的FATB-1a 5’UTR的42个连续核苷酸,后面是大豆FAD2-1A内含子1(SEQ ID NO:1),其从3’末端减少320个连续核苷酸并且是反义方向,该内含子1可操作性连接于H6 3’聚腺苷酸化片段,该片段中具有可操作性连接于EFMV启动子和豌豆Rubisco E9 3’终止序列的CP4EPSPS基因,它们都侧接RB和LB。
CN200780013373.0A 2006-02-13 2007-02-12 用于产生改变的种子油组成的核酸构建体和方法 Active CN101421406B (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US77261406P 2006-02-13 2006-02-13
US60/772,614 2006-02-13
US78151906P 2006-03-10 2006-03-10
US60/781,519 2006-03-10
US11/376,328 2006-03-16
US11/376,328 US7566813B2 (en) 2002-03-21 2006-03-16 Nucleic acid constructs and methods for producing altered seed oil compositions
PCT/US2007/003823 WO2007095243A2 (en) 2006-02-13 2007-02-12 Nucleic acid constructs and methods for producing altered seed oil compositions

Publications (2)

Publication Number Publication Date
CN101421406A CN101421406A (zh) 2009-04-29
CN101421406B true CN101421406B (zh) 2016-08-31

Family

ID=40631448

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200780013373.0A Active CN101421406B (zh) 2006-02-13 2007-02-12 用于产生改变的种子油组成的核酸构建体和方法

Country Status (3)

Country Link
US (5) US20070192903A1 (zh)
CN (1) CN101421406B (zh)
AR (1) AR110665A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110760608A (zh) * 2019-12-02 2020-02-07 浙江省农业科学院 一种新型的油菜BnFAD2基因高油酸等位突变及其SNP标记引物的开发和应用

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7531718B2 (en) * 1999-08-26 2009-05-12 Monsanto Technology, L.L.C. Nucleic acid sequences and methods of use for the production of plants with modified polyunsaturated fatty acids
US9404148B2 (en) * 2007-10-22 2016-08-02 Lgc Limited Oligonucleotides and uses thereof
US7968525B1 (en) 2007-12-03 2011-06-28 University Of Florida Research Foundation, Inc. Use of RNA interference to validate new termiticide target sites and a method of termite control
JP5767585B2 (ja) 2008-09-29 2015-08-19 モンサント テクノロジー エルエルシー 大豆遺伝子組換え事象mon87705およびその検出方法
WO2011060151A2 (en) * 2009-11-11 2011-05-19 Kansas State University Research Foundation Compositions and methods for controlling parasitic nematodes
WO2011060946A1 (en) * 2009-11-20 2011-05-26 Bayer Bioscience N.V. Brassica plants comprising mutant fad3 alleles
EP2521437A4 (en) * 2009-12-18 2013-05-01 Cargill Inc OBTAINING OIL FROM CARBON PLANTS WITH A LOW TOTAL CONTENT OF SATURATED FATTY ACIDS
CN101736030B (zh) * 2010-01-08 2012-05-23 河南科技大学 一种杨树乙酰-乙酰载体蛋白硫脂酶基因RNAi载体及其应用
WO2011150028A2 (en) 2010-05-25 2011-12-01 Cargill, Incorporated Brassica plants yielding oils with a low alpha linolenic acid content
US9695434B2 (en) 2010-05-25 2017-07-04 Cargill, Incorporated Brassica plants yielding oils with a low alpha linolenic acid content
EP2588617B1 (en) * 2010-07-01 2015-12-30 E. I. du Pont de Nemours and Company Plant seeds with altered storage compound levels, related constructs and methods involving genes encoding pae and pae-like polypeptides
US9222100B2 (en) 2010-08-24 2015-12-29 Monsanto Technology Llc Methods and DNA constructs for autoregulating transgene silencing
US10196662B2 (en) 2012-08-10 2019-02-05 Mello Biotechnology, Inc. Composition for producing microRNA precursors as drugs for enhancing wound healing and production method of the microRNA precursors
US9850512B2 (en) 2013-03-15 2017-12-26 The Research Foundation For The State University Of New York Hydrolysis of cellulosic fines in primary clarified sludge of paper mills and the addition of a surfactant to increase the yield
CN103525931A (zh) * 2013-10-16 2014-01-22 山东省花生研究所 一种花生高油酸性状基因选择方法
US9951363B2 (en) 2014-03-14 2018-04-24 The Research Foundation for the State University of New York College of Environmental Science and Forestry Enzymatic hydrolysis of old corrugated cardboard (OCC) fines from recycled linerboard mill waste rejects
EP3167053B1 (en) * 2014-07-10 2019-10-09 Corbion Biotech, Inc. Novel ketoacyl acp synthase genes and uses thereof
CN108456679B (zh) * 2018-02-03 2021-07-30 吉林省农业科学院 高油酸转基因大豆事件e2d8037-3外源插入片段侧翼序列及其应用
BR112022014799A2 (pt) * 2020-01-31 2022-09-20 Calyxt Inc Planta de soja, parte de planta ou célula de planta, método para gerar uma planta de soja e composição de óleo de soja

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1378602A (zh) * 1999-08-26 2002-11-06 卡尔根尼有限公司 含修饰的多不饱和脂肪酸的植物
CN1655669A (zh) * 2002-03-21 2005-08-17 孟山都技术有限公司 核酸构建体及其生产改良的种子油组合物的方法
CN1674778A (zh) * 2002-06-21 2005-09-28 加利福尼亚基因公司 用于生产具有改变的多不饱和脂肪酸的植物的核酸序列和方法

Family Cites Families (113)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5208149A (en) 1983-10-20 1993-05-04 The Research Foundation Of State University Of New York Nucleic acid constructs containing stable stem and loop structures
US5190931A (en) 1983-10-20 1993-03-02 The Research Foundation Of State University Of New York Regulation of gene expression by employing translational inhibition of MRNA utilizing interfering complementary MRNA
US5272065A (en) 1983-10-20 1993-12-21 Research Foundation Of State University Of New York Regulation of gene expression by employing translational inhibition of MRNA utilizing interfering complementary MRNA
US4557734A (en) 1984-08-08 1985-12-10 The United States Of America As Represented By The Secretary Of Agriculture Microemulsions from vegetable oil and lower alcohol with octanol surfactant as alternative fuel for diesel engines
US5453566A (en) 1986-03-28 1995-09-26 Calgene, Inc. Antisense regulation of gene expression in plant/cells
US5107065A (en) 1986-03-28 1992-04-21 Calgene, Inc. Anti-sense regulation of gene expression in plant cells
US5188958A (en) 1986-05-29 1993-02-23 Calgene, Inc. Transformation and foreign gene expression in brassica species
US5004863B2 (en) 1986-12-03 2000-10-17 Agracetus Genetic engineering of cotton plants and lines
US5015580A (en) 1987-07-29 1991-05-14 Agracetus Particle-mediated transformation of soybean plants and lines
US5534425A (en) 1988-02-03 1996-07-09 Iowa State University Research Foundation, Inc. Soybeans having low linolenic acid content and method of production
US5416011A (en) 1988-07-22 1995-05-16 Monsanto Company Method for soybean transformation and regeneration
US5231020A (en) 1989-03-30 1993-07-27 Dna Plant Technology Corporation Genetic engineering of novel plant phenotypes
US7705215B1 (en) 1990-04-17 2010-04-27 Dekalb Genetics Corporation Methods and compositions for the production of stably transformed, fertile monocot plants and cells thereof
US5550318A (en) 1990-04-17 1996-08-27 Dekalb Genetics Corporation Methods and compositions for the production of stably transformed, fertile monocot plants and cells thereof
US5585535A (en) 1990-01-05 1996-12-17 Iowa State University Research Foundation, Inc. Soybeans and soybean products having low palmitic acid content
HU220773B1 (hu) 1990-01-22 2002-05-28 Dekalb Genetics Corporation Eljárás termő transzgenikus kukoricanövények előállítására
US5484956A (en) 1990-01-22 1996-01-16 Dekalb Genetics Corporation Fertile transgenic Zea mays plant comprising heterologous DNA encoding Bacillus thuringiensis endotoxin
US7037692B1 (en) 1990-03-16 2006-05-02 Calgene, Inc. Plant desaturases compositions and uses
US5475099A (en) 1990-08-15 1995-12-12 Calgene Inc. Plant fatty acid synthases
US6403865B1 (en) 1990-08-24 2002-06-11 Syngenta Investment Corp. Method of producing transgenic maize using direct transformation of commercially important genotypes
US5633435A (en) 1990-08-31 1997-05-27 Monsanto Company Glyphosate-tolerant 5-enolpyruvylshikimate-3-phosphate synthases
US6022577A (en) 1990-12-07 2000-02-08 Nabisco Technology Company High stearic acid soybean oil blends
ATE207126T1 (de) 1991-05-15 2001-11-15 Monsanto Technology Llc Verfahren zur schöpfung einer transformierten reispflanze
US5518908A (en) 1991-09-23 1996-05-21 Monsanto Company Method of controlling insects
US5763245A (en) 1991-09-23 1998-06-09 Monsanto Company Method of controlling insects
EP0667906A1 (en) 1991-11-15 1995-08-23 E.I. Du Pont De Nemours And Company $g(b)-KETOACYL-ACP SYNTHETASE II GENES FROM PLANTS
US5593874A (en) 1992-03-19 1997-01-14 Monsanto Company Enhanced expression in plants
ATE398679T1 (de) 1992-07-07 2008-07-15 Japan Tobacco Inc Verfahren zur transformation einer monokotyledon pflanze
JPH08502891A (ja) 1992-11-02 1996-04-02 カルジーン,インコーポレイティド 植物脂肪酸シンターゼ
US6872872B1 (en) 1992-11-17 2005-03-29 E. I. Du Pont De Nemours And Company Genes for microsomal delta-12 fatty acid desaturases and related enzymes from plants
EP0668919B1 (en) 1992-11-17 2003-06-04 E.I. Du Pont De Nemours And Company Genes for microsomal delta-12 fatty acid desaturases and related enzymes from plants
US6372965B1 (en) * 1992-11-17 2002-04-16 E.I. Du Pont De Nemours And Company Genes for microsomal delta-12 fatty acid desaturases and hydroxylases from plants
US6118047A (en) 1993-08-25 2000-09-12 Dekalb Genetic Corporation Anthranilate synthase gene and method of use thereof for conferring tryptophan overproduction
CA2176137A1 (en) 1993-11-10 1995-05-18 Alois Toni Voelker Plant acyl acp thioesterase sequences
US5516980A (en) 1994-01-10 1996-05-14 Iowa State University Research Foundation, Inc. Soybean variety XB37ZA
HUT76842A (en) 1994-08-31 1997-11-28 Du Pont Nucleotide sequences of canola and soybean palmitoyl-acp thioesterase genes and their use in the regulation of fatty acid content of the oils of soybean and canola plants
US5631152A (en) 1994-10-26 1997-05-20 Monsanto Company Rapid and efficient regeneration of transgenic plants
US5454842A (en) 1994-12-02 1995-10-03 Exxon Research & Engineering Co. Cetane improver compositions comprising nitrated fatty acid derivatives
US5955329A (en) 1995-05-15 1999-09-21 Calgene, Inc. Engineering plant thioesterases for altered substrate specificity
US6150512A (en) 1995-05-15 2000-11-21 Yuan; Ling Engineering plant thioesterases and disclosure of plant thioesterases having novel substrate specificity
EP0858496B1 (en) 1995-06-06 2005-03-09 Agro Management Group, Inc. Vegetable based biodegradable liquid lubricants
AU750363B2 (en) 1997-06-12 2002-07-18 Cargill Incorporated Fatty acid desaturases and mutant sequences thereof
AR006830A1 (es) 1996-04-26 1999-09-29 Du Pont Aceite de soja con alta estabilidad oxidativa
US5850026A (en) 1996-07-03 1998-12-15 Cargill, Incorporated Canola oil having increased oleic acid and decreased linolenic acid content
DE19631919C2 (de) 1996-08-07 1998-07-16 Deutsches Krebsforsch Anti-Sinn-RNA mit Sekundärstruktur
US5750848A (en) 1996-08-13 1998-05-12 Monsanto Company DNA sequence useful for the production of polyhydroxyalkanoates
BRPI9706706B1 (pt) 1996-09-03 2015-08-18 Bayer Cropscience Nv Dna, proteína de barstar, e, uso do dna
US5850030A (en) 1996-12-23 1998-12-15 Iowa State University Research Foundation, Inc. Reduced linolenic acid production in soybeans
WO1998030083A1 (en) 1997-01-10 1998-07-16 The Regents Of The University Of California Rg nucleic acids for conferring disease resistance to plants
US5981840A (en) 1997-01-24 1999-11-09 Pioneer Hi-Bred International, Inc. Methods for agrobacterium-mediated transformation
DE19702989A1 (de) 1997-01-28 1998-07-30 Clariant Gmbh Umweltfreundlicher Dieseltreibstoff
AR013633A1 (es) 1997-04-11 2001-01-10 Calgene Llc METODO PARA LA ALTERACIoN DE LA COMPOSICIoN DE ÁCIDOS GRASOS DE CADENA MEDIA EN SEMILLAS VEGETALES QUE EXPRESAN UNA TIOESTERASA QUE PREFIERE CADENA MEDIA VEGETAL HETERoLOGA.
WO1998050569A2 (en) 1997-05-05 1998-11-12 Dow Agrosciences Llc Nucleotide sequences of maize oleoyl-acp thioesterase and palmitoyl-acp thioesterase genes and their use in the modification of fatty acid content of oil
GB9710475D0 (en) 1997-05-21 1997-07-16 Zeneca Ltd Gene silencing
US6933378B2 (en) 1997-05-30 2005-08-23 Joseph Atabekov Methods for coexpression of more than one gene in eukaryotic cells
GB9720148D0 (en) 1997-09-22 1997-11-26 Innes John Centre Innov Ltd Gene silencing materials and methods
US6506559B1 (en) 1997-12-23 2003-01-14 Carnegie Institute Of Washington Genetic inhibition by double-stranded RNA
US5891203A (en) 1998-01-20 1999-04-06 Ethyl Corporation Fuel lubricity from blends of a diethanolamine derivative and biodiesel
EP1555317B1 (en) 1998-03-20 2011-09-28 Commonwealth Scientific And Industrial Research Organisation Synthetic genes and genetic constructs comprising the same
AUPP249298A0 (en) 1998-03-20 1998-04-23 Ag-Gene Australia Limited Synthetic genes and genetic constructs comprising same I
ATE507299T1 (de) 1998-04-08 2011-05-15 Commw Scient Ind Res Org Verfahren und mittel zum erhalt von veränderten phänotypen
US6426448B1 (en) 1998-05-11 2002-07-30 E. I. Du Pont De Nemours And Company Gene combinations that alter the quality and functionality of soybean oil
US6307123B1 (en) 1998-05-18 2001-10-23 Dekalb Genetics Corporation Methods and compositions for transgene identification
EP0959133A1 (en) 1998-05-22 1999-11-24 Centrum Voor Plantenveredelings- En Reproduktieonderzoek (Cpro-Dlo) A process for inhibiting expression of genes
AR020078A1 (es) 1998-05-26 2002-04-10 Syngenta Participations Ag Metodo para alterar la expresion de un gen objetivo en una celula de planta
CA2330180A1 (en) 1998-06-05 1999-12-09 Calgene Llc Acyl coa:cholesterol acyltransferase related nucleic acid sequences
US7008664B1 (en) 1998-06-11 2006-03-07 E. I. Du Pont De Nemours And Company Method for improving the carcass quality of an animal
CA2331329C (en) 1998-07-02 2011-08-30 Calgene Llc Diacylglycerol acyl transferase proteins
US6281375B1 (en) 1998-08-03 2001-08-28 Cargill, Incorporated Biodegradable high oxidative stability oils
US6365802B2 (en) 1998-08-14 2002-04-02 Calgene Llc Methods for increasing stearate content in soybean oil
US6717034B2 (en) 2001-03-30 2004-04-06 Mendel Biotechnology, Inc. Method for modifying plant biomass
WO2000018880A2 (en) 1998-09-30 2000-04-06 The Regents Of The University Of California Inhibition of farnesyltransferase activity in plants
EP1141346A2 (en) 1999-01-14 2001-10-10 Monsanto Co. Soybean transformation method
US6733965B2 (en) 1999-01-15 2004-05-11 International Paper Company Microsatellite DNA markers and uses thereof
CA2361201A1 (en) 1999-01-28 2000-08-03 Medical College Of Georgia Research Institute, Inc. Composition and method for in vivo and in vitro attenuation of gene expression using double stranded rna
DE19956568A1 (de) 1999-01-30 2000-08-17 Roland Kreutzer Verfahren und Medikament zur Hemmung der Expression eines vorgegebenen Gens
EA200101186A1 (ru) 1999-05-10 2002-04-25 Зингента Партисипейшнс Аг Регуляция экспрессии вирусных генов
US6429357B1 (en) 1999-05-14 2002-08-06 Dekalb Genetics Corp. Rice actin 2 promoter and intron and methods for use thereof
US6207879B1 (en) 1999-05-14 2001-03-27 Dekalb Genetics Corporation Maize RS81 promoter and methods for use thereof
US6232526B1 (en) 1999-05-14 2001-05-15 Dekalb Genetics Corp. Maize A3 promoter and methods for use thereof
US6194636B1 (en) 1999-05-14 2001-02-27 Dekalb Genetics Corp. Maize RS324 promoter and methods for use thereof
CA2345028C (en) 1999-08-04 2013-06-18 The University Of British Columbia Regulation of embryonic transcription in plants
CA2390049C (en) 1999-11-12 2012-01-24 University Of South Carolina Control of post-transcriptional gene silencing in plants
EP2133360A3 (en) 1999-11-17 2010-03-03 Mendel Biotechnology, Inc. Environmental stress tolerance genes
WO2001051627A2 (en) 2000-01-07 2001-07-19 Monsanto Technology Llc. Soybean cyst nematode (scn) resistance loci rhg1 and rhg4
US20020133852A1 (en) 2000-01-07 2002-09-19 Hauge Brian M. Soybean SSRs and methods of genotyping
US6369296B1 (en) 2000-02-01 2002-04-09 Plant Bioscience Limited Recombinant plant viral vectors
AU2001240375A1 (en) 2000-03-17 2001-10-03 Benitec Australia Limited Genetic silencing
WO2001079499A1 (en) 2000-04-18 2001-10-25 Commonwealth Scientific And Industrial Research Organisation Method of modifying the content of cottonseed oil
JP3829595B2 (ja) 2000-07-06 2006-10-04 不二製油株式会社 耐寒性油脂組成物及びその製造法
WO2002010365A2 (en) 2000-08-02 2002-02-07 The Board Of Regents Of The University Of Nebraska Down-regulation of single genes and simultaneous down-regulation of multiple genes by nuclear localization of rna transcripts
WO2002015675A1 (en) 2000-08-22 2002-02-28 Mendel Biotechnology, Inc. Genes for modifying plant traits iv
US7151204B2 (en) 2001-01-09 2006-12-19 Monsanto Technology Llc Maize chloroplast aldolase promoter compositions and methods for use thereof
US6800748B2 (en) 2001-01-25 2004-10-05 Large Scale Biology Corporation Cytoplasmic inhibition of gene expression and expression of a foreign protein in a monocot plant by a plant viral vector
EP1354035B1 (en) 2001-01-26 2016-08-24 Commonwealth Scientific and Industrial Research Organisation Methods and means for producing efficient silencing construct using recombinational cloning
BRPI0206998B1 (pt) 2001-02-06 2015-08-18 Dow Agrosciences Llc Método de seleção auxiliada por marcador genético de nivel elevado de óleo em plantas de milho.
US20040132042A1 (en) 2001-04-06 2004-07-08 Frankard Valerie Marie-Noelle Use of double and opposite recombination sites or the single step cloning of two dna segments
WO2002088301A2 (en) 2001-05-02 2002-11-07 Gavish Galilee Bio Applications Ltd. Increased methionine in transgenic plants expressing mutant cystathionine gamma-synthase
AU2002361997B2 (en) 2001-12-18 2007-10-04 Bayer Bioscience N.V. Improved methods and means for delivering inhibitory RNA to plants and applications thereof
US7566813B2 (en) 2002-03-21 2009-07-28 Monsanto Technology, L.L.C. Nucleic acid constructs and methods for producing altered seed oil compositions
US20040107460A1 (en) 2002-03-21 2004-06-03 Fillatti Joanne J. Nucleic acid constructs and methods for producing altered seed oil compositions
US7166771B2 (en) 2002-06-21 2007-01-23 Monsanto Technology Llc Coordinated decrease and increase of gene expression of more than one gene using transgenic constructs
AU2003251579B2 (en) * 2002-06-21 2008-04-03 Monsanto Technology Llc Intron double stranded RNA constructs and uses thereof
KR20050027222A (ko) 2002-06-21 2005-03-18 몬산토 테크놀로지 엘엘씨 티오에스테라제-관련 핵산서열 및 변형된 지방산 조성을갖는 식물의 생산을 위한 사용방법
AUPS325302A0 (en) 2002-06-27 2002-07-18 Satellite Telemetry (Aust) Pty. Limited Straddle carrier position guidance system
US7803984B2 (en) 2002-07-10 2010-09-28 Kansas State University Research Foundation Compositions and methods for controlling plant parasitic nematodes
BR0316380A (pt) * 2002-11-18 2005-10-04 Monsanto Technology Llc Produção de proteìna e óleo aumentada em plantas pelo rompimento da trilha de fenilpropanóide
EP1644502A4 (en) 2003-07-14 2006-08-30 Monsanto Technology Llc MATERIALS AND METHOD FOR MODULATING CYCLINE-DEPENDENT KINASE-INHIBITOR-LIKE POLYPEPTIDES IN MAIZE
WO2005079389A2 (en) 2004-02-13 2005-09-01 Monsanto Technology, Llc In vivo assembly of transcription units
CA2762011C (en) 2004-04-09 2019-05-07 Monsanto Technology Llc Compositions and methods for control of insect infestations in plants
US20060200878A1 (en) 2004-12-21 2006-09-07 Linda Lutfiyya Recombinant DNA constructs and methods for controlling gene expression
WO2007095496A2 (en) 2006-02-13 2007-08-23 Monsanto Technology Llc Selecting and stabilizing dsrna constructs
CN105557503A (zh) 2009-07-08 2016-05-11 密苏里大学管委会 利用传统大豆育种技术培育高油酸大豆的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1378602A (zh) * 1999-08-26 2002-11-06 卡尔根尼有限公司 含修饰的多不饱和脂肪酸的植物
CN1655669A (zh) * 2002-03-21 2005-08-17 孟山都技术有限公司 核酸构建体及其生产改良的种子油组合物的方法
CN1674778A (zh) * 2002-06-21 2005-09-28 加利福尼亚基因公司 用于生产具有改变的多不饱和脂肪酸的植物的核酸序列和方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110760608A (zh) * 2019-12-02 2020-02-07 浙江省农业科学院 一种新型的油菜BnFAD2基因高油酸等位突变及其SNP标记引物的开发和应用
CN110760608B (zh) * 2019-12-02 2020-07-14 浙江省农业科学院 一种油菜BnFAD2基因高油酸等位突变及其SNP标记引物的开发和应用

Also Published As

Publication number Publication date
CN101421406A (zh) 2009-04-29
US11708577B2 (en) 2023-07-25
US20180002712A1 (en) 2018-01-04
US20200109410A1 (en) 2020-04-09
AR110665A2 (es) 2019-04-17
US20140315312A1 (en) 2014-10-23
US20100240128A1 (en) 2010-09-23
US20070192903A1 (en) 2007-08-16
US9765351B2 (en) 2017-09-19

Similar Documents

Publication Publication Date Title
CN101421406B (zh) 用于产生改变的种子油组成的核酸构建体和方法
US10280430B2 (en) Nucleic acid constructs and methods for producing altered seed oil compositions
US7601888B2 (en) Nucleic acid constructs and methods for producing altered seed oil compositions
US20080222756A1 (en) Nucleic acid constructs and methods for producing altered seed oil compositions
EP3133162B1 (en) Soybean seed and oil compositions and methods of making same
US9816100B2 (en) Soybean seed and oil compositions and methods of making same
JP5242418B2 (ja) 核酸構築体および変化した種子油組成の生成方法
CA2878383A1 (en) Environmentally sustainable frying oils
CN101565716A (zh) 核酸构建体及其生产改良的种子油组合物的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant