CN101411057A - 噪音降低电路及方法 - Google Patents

噪音降低电路及方法 Download PDF

Info

Publication number
CN101411057A
CN101411057A CNA2007800114265A CN200780011426A CN101411057A CN 101411057 A CN101411057 A CN 101411057A CN A2007800114265 A CNA2007800114265 A CN A2007800114265A CN 200780011426 A CN200780011426 A CN 200780011426A CN 101411057 A CN101411057 A CN 101411057A
Authority
CN
China
Prior art keywords
signal
circuit
mentioned
leakage
noise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007800114265A
Other languages
English (en)
Other versions
CN101411057B (zh
Inventor
小松直树
岩城秀树
山田彻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN101411057A publication Critical patent/CN101411057A/zh
Application granted granted Critical
Publication of CN101411057B publication Critical patent/CN101411057B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/26Modifications of amplifiers to reduce influence of noise generated by amplifying elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/30Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0228Compensation of cross-talk by a mutually correlated lay-out of printed circuit traces, e.g. for compensation of cross-talk in mounted connectors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/0239Signal transmission by AC coupling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6605High-frequency electrical connections
    • H01L2223/6627Waveguides, e.g. microstrip line, strip line, coplanar line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1903Structure including wave guides
    • H01L2924/19032Structure including wave guides being a microstrip line type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1905Shape
    • H01L2924/19051Impedance matching structure [e.g. balun]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10166Transistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Amplifiers (AREA)
  • Transceivers (AREA)
  • Noise Elimination (AREA)

Abstract

本发明提供一种噪音降低电路,其中,晶体管电路(21),从直流电压源(Vcc)通过电源线电路(24)接受电力的供给,对输入信号进行放大后将输出信号输出。抵消信号加法电路(25),通过获得上述输出信号的一部分并使其衰减,来生成相对于泄漏到上述电源线电路(24)的泄漏信号为近似逆相位且近似同振幅的抵消信号,并通过对上述泄漏信号加上上述抵消信号,来实质抵消上述泄漏信号。

Description

噪音降低电路及方法
技术领域
本发明涉及一种例如在便携电话机、无线通信终端等的无线通信装置上使用的噪音降低电路及方法,以及分别使用了上述噪音降低电路的信号放大器及无线通信装置。
背景技术
在便携电话机等的电子设备中,通过直流的电源供给电力的同时,通过交流信号实现各种的功能的电路被广泛的利用。在这样的电路的情况下,以特定的部位的基准电压恒定为前提,通过相对于该基准电压施加交流信号来进行信号的传送、放大等。因此,如果对基准电压叠加了没有预计到的噪音的话,电路的工作就会变得不稳定。这样,作为用于抑制基准电压的变动的方法,公知通过运算放大器生成正相输出和逆相输出,将两者对基准电压进行重叠的方案(例如,参照专利文献1)。
另外,还公开有一种不用过多配置多余的电路元件,也能降低感应带来的串扰的半导体集成电路装置(例如,参照专利文献2)。在该半导体集成电路装置中,不使用将实信号转换为逆相位的变换器等的有源元件,以将信号路径在中途折返来使之并列的方式,在信号路径的一部分,形成信号的流动方向互为反方向的多个并列布线部分。在各并列布线部分的中途不插入变换器,该部分是实布线的一部分,不需要多余的电路元件。如果从并列布线部分的一方传送信号的话,在中途该信号被折返,信号传送方向被置为逆向。在平行导线间流动的电流的方向如果相反的话,基于电磁的性质,不同方向的磁场被抵销,抑制了电磁波的发生。并列布线部分,能缓和甚至抑制对邻近的其他的布线的串扰。
专利文献1:特开昭59-107615号公报
专利文献2:特开2003-158238号公报
在便携电话机等、近年来不断小型化低功耗化的的电子设备中,即使有极微弱的泄漏信号,其影响也越来越不能忽视。也就是说,因为小型的电子设备中,由于内部的基板上的安装密度变高了,因此与低密度组装的电路相比,微弱泄漏信号的影响相对变大。另外,伴随着低功耗,直流电压源的施加电压下降,与地对应的基准电压也下降了,从而微弱的泄漏信号对基准电压给予的影响相对变大。
特别是,在便携电话机等的无线通信设备中,在极小型的箱体内通过放大电路将发送信号放大到无线通信所需的功率,该放大电路的输出信号在箱体内是最大级的功率的交流信号,该输出信号通过泄漏到电源线电路中,成为对其他的装置或电路等的干扰信号。
上述专利文献1中,虽然能抑制基准电压的变动,但由于为了抑制该变动而利用运算放大器的逆相输出,因此在低功耗化不断进步的近年来的电子设备中不可能采用。另外,需要用于构成运算放大器的部件,或用于调整放大率、输出电压的部件等许多的部件,在小型化不断进步的近年来的电子设备中也是不可能采用的。
再有,如果设想应用专利文献1的方法,作为反转放大器,就需要一种不会对在该反转放大器的前段放大的信号产生影响的线性高的反转放大器,以抵销极为微弱的信号为目的对电路进行追加是不现实的。并且,如果着眼于在放大器的电源线电路上泄漏的信号,则上述专利文献1中反转放大器上就需要电源线电路,不管是不是要通过反转放大器来抑制噪音,相反该反转放大器的电源线电路就成了噪音源。通过以上,象上述的公报那样,不能抑制微弱的泄漏信号。
发明内容
本发明的目的是解决以上的问题,提供一种不会损害小型化、低功耗化,且通过简单的结构就能降低噪音的噪音降低电路及方法,以及,分别使用上述噪音降低电路的信号放大器及无线通信装置。
第1个发明中的噪音降低电路,具备:信号放大机构,从电源通过电源线电路接受电力的供给,对输入信号进行放大后将输出信号输出;和,信号加法机构,通过获得来自上述信号放大机构的输出信号的一部分并使其衰减,来生成相对于泄漏到上述电源线电路中的泄漏信号为近似逆相位且近似同振幅的抵销信号,通过对上述泄漏信号加上上述抵销信号,来实质抵销上述泄漏信号。
上述噪音降低电路中,上述信号加法机构,是由多个无源元件构成的无源电路。
另外,上述噪音降低电路中,上述信号加法机构,使用以彼此电磁耦合的方式临近配置的从1对传送线路所构成的耦合器,将上述抵销信号加到上述泄漏信号。
再有,上述噪音降低电路中,上述电源线电路,具有:低阻抗部分,在上述泄漏信号的频率下,使上述的该泄漏信号近似短路接地;和,高阻抗部分,将上述低阻抗部分与上述信号放大机构之间的连接点,在上述泄漏信号的频率下设为近似开路状态,上述信号加法机构,在比上述低阻抗部分更靠上述电源侧的位置,对上述泄漏信号加上上述泄漏信号。
这里,上述高阻抗部分,是上述泄漏信号的1/4波长的长度的传送线路,上述低阻抗部分,是使上述泄漏信号的频率的信号通过的电容器。
并且,上述噪音降低电路中,上述信号加法机构,形成在安装有上述信号放大机构的基板上。
第2发明的信号放大器,具备上述的噪音降低电路,其特征是,具备:与上述电源线电路连接的电源端子;和,输出上述输出信号的输出端子。
第3发明的无线通信装置,具备上述的噪音降低电路,其特征是,具备:对由上述信号放大机构放大的信号进行发送的发送机构。
第4发明的无线通信装置,具备接收具有给定频率的无线信号的接收机构,其特征是,具备上述的噪音降低电路,上述输入信号是矩形波信号,上述电源线电路,在上述无线通信装置使用的无线信号的频率或与其关联的中间频率或者基带信号的频率下,使作为上述矩形波信号的频率成分的一部分的泄漏信号衰减。
第4发明的噪音降低方法,其特征是,包含:从电源通过电源线电路接受电力的供给,对输入信号进行放大后将输出信号输出的步骤;和,通过获得上述输出信号的一部分并使其衰减,生成相对于泄漏到上述电源线电路中的泄漏信号为近似逆相位且近似同振幅的抵销信号,通过对上述泄漏信号加上上述抵销信号,来实质抵销上述泄漏信号的步骤。
根据本发明的噪音降低电路及方法,从电源通过电源线电路接受电力的供给,对输入信号进行放大后将输出信号输出,通过获得上述输出信号的一部分并使其衰减,来生成相对于泄漏到上述电源线电路中的泄漏信号为近似逆相位且近似同振幅的抵销信号,通过对上述泄漏信号加上上述抵销信号,来实质抵销上述泄漏信号。这样,能在不损害小型化、低功耗化的情况下,通过简单的构成大幅且有效地降低噪音。
附图说明
图1是表示本发明的第1实施方式的便携电话机的无线通信电路的构成的方框图。
图2是表示图1的噪音降低电路18的详细构成的方框图。
图3是表示本发明的第2实施方式的噪音降低电路18a的详细构成的方框图。
图4是表示本发明的第3实施方式的噪音降低电路18b的详细构成的方框图。
图5是表示本发明的第4实施方式的噪音降低电路18c的详细构成的方框图。
图6是表示图4的相位调整用传送线路28c、28d的一个例子的详细构成的电路图。
图7是表示将图4的噪音降低电路18c在印刷布线基板120上应用时的第1应用例的平面图。
图8是表示将图4的噪音降低电路18c在信号放大器集成电路(以下,称为信号放大器IC)125上应用时的第2应用例的平面图。
图9是表示将图4的耦合器28A在印刷布线基板120上应用时的图7的实施例的纵截面图。
图10是表示将图4的耦合器28A在印刷布线基板120上应用时的第1变形例的纵截面图。
图11是表示将图4的耦合器28A在印刷布线基板120上应用时的第2变形例的纵截面图。
图12是表示将图4的耦合器28A在印刷布线基板120上应用时的第3变形例的纵截面图。
图13是表示作为图2的噪音降低电路18的输入信号的矩形波的时钟信号的时间波形图。
图14是表示图13的矩形波的时钟信号的频率成分的频率特性图的。
图15是本发明者在仿真中使用的、与图5的噪音降低电路18c实质对应的仿真电路的电路图。
图16是图15的仿真的结果,是表示用于确认噪音降低效果的有没有噪音降低电路的时的偏置电压的时间波形的波形图。
图17是表示图6的相位调整用传送线路28c、29d中的通过系数的相对电力的频率特性的图表。
图18是表示图6的相位调整用传送线路28c、29d中的通过系数的相位的频率特性的图表。
图中:10-便携电话机,11-天线,12-循环器,13-无线接收电路,14-基带信号处理电路,15-无线发送电路,16-调制电路,17-驱动器电路,18-噪音降低电路,21-晶体管电路,22、23-阻抗匹配电路,24-电源线电路,24a-旁路电容器,24b-传送线路,25、26-抵销信号加法电路,25a、25b、26a、26b-耦合器,25c、26c-信号线路,27-电容器,28、29-抵销信号加法电路,28A、29A、29B-耦合器,28a、28b、28c、28d、29a、29b、29c、29d、29e-传送线路,28as、28bs-条形导体,70-发送级别检测电路,80-贯通孔导体,110-印刷布线基板,110A-半导体基板,111-接地导体,112-电介质层,121、122、123、124-条形导体,121A、122A、123A、124A-微条形线路,125-信号放大器IC,125a-电源端子,125b-信号输出端子,126、127-电容器。
具体实施方式
以下,参照附图说明本发明的实施方式。另外,对相同的构成元素加相同的符号。
第1实施方式
图1是表示本发明的第1实施方式的便携电话机的无线通信电路的构成的方框图。图1主要是表示与无线信号的发送接收相关的电路,便携电话机10,为了进行无线信号的发送接收,具备:天线11、循环器(circulator)12、无线接收电路13、基带信号处理电路14和无线发送电路15。在便携电话机10中,在接收时,通过天线11接收到的无线信号,通过循环器12输入给无线接收电路13,无线接收电路13对接收到的无线信号,执行低频率变换和解调处理等处理,将解调后的基带信号输出给基带信号处理电路14。基带信号处理电路14,根据输入的解调信号,执行声音输出和数据处理等。
无线发送电路100,具有:调制电路16、驱动器电路17和噪音降低电路18,这些电路16、17、18,通过直流电压源的直流电压Vcc来驱动。在便携电话机10中,当发送时,通过基带信号处理电路14而被处理了的基带信号,被输入给无线发送电路100。无线发送电路100内的调制电路16,通过对给定的载波信号按照所输入的基带信号进行调制,产生调制后的无线信号,通过驱动器电路17、噪音降低电路18及循环器12,输出给天线11,并被从天线发送。
噪音降低电路18,象图2表示的那样,包含作为功率放大器发挥功能的晶体管电路21、和降低噪音的抵销信号加法电路25,后者的抵销信号加法电路25,获得来自晶体管电路21的输出信号的一部分,并使其衰减。这时,对于泄漏到晶体管电路21的电源线电路的输出信号,生成为基本逆相位且基本同振幅的抵销信号,对泄漏到该电源线电路的输出信号加上上述抵销信号。因此,能从噪音降低电路抑制泄漏到直流电压源侧的噪音。
图2是表示图1的噪音降低电路18的详细构成的方框图。在图2中,噪音降低电路具备:晶体管电路21;阻抗匹配电路22、23;电源线电路24;和抵销信号加法电路25。另外,在该例中,电源线电路24包含旁路电容器24a和传送线路24b。另外,从旁路电容器24a看去,电源线电路24在与晶体管电路21反方向的一侧上延伸,通过抵销信号加法电路25的耦合器25b与直流电压源Vcc连接。
晶体管电路21,是被输入从驱动器电路17输出的无线信号并进行放大的放大电路,放大后的发送无线信号S,为从天线11发送的发送无线信号。在晶体管电路21的输入侧设置有阻抗匹配电路22,其用于通过对驱动器电路17的输出阻抗、和晶体管电路21的输入阻抗进行匹配来抑制来自驱动器电路17的无线信号的损失,另一方面,在晶体管电路21的输出侧设置有阻抗匹配电路23,其用于通过对晶体管电路21的输出阻抗、和通过耦合器25a看天线11时的输出阻抗进行匹配,来抑制传送的无线信号的损失。这些晶体管电路21和阻抗匹配电路22、23构成为:在晶体管电路21的发送无线信号S的频带进行预先设定的放大及匹配。
另外,在晶体管电路21上连接有电源线电路24,从直流电压源Vcc通过电源线电路24向晶体管电路21供给电源电力。该电源线电路24,为了抑制来自晶体管电路21的泄漏信号,在从晶体管电路21侧与直流电压源Vcc之间,连接有传送线路24b、旁路电容器24a。这里,旁路电容器24a的一端连接着晶体管电路21的输出端子,另一方面,旁路电容器24a的另一端连接着接地导体(例如,后述的图9的接地导体111),将上述发送无线信号S的频带中的信号与接地电位基本短路。通过这样,旁路电容器24a,形成具有相对该频带较低的阻抗的低阻抗部分。
另外,相位调整用传送线路24b,被在与该旁路电容器24a和晶体管电路21之间,设定为相对于上述发送无线信号S的频带中的信号为1/4波长的发送线路。因此,对于上述发送无线信号S的频带中的信号,电源线电路24被置为近似开路状态,形成具有较高阻抗的高阻抗部分。因此,晶体管电路21的发送无线信号S,大部分被传递至阻抗匹配电路23,一部被分作为泄漏信号N′传递至电源线电路24侧。
该泄漏信号N′,在旁路电容器24a的作用下大部分流向接地导体,该泄漏信号N′的一部分通过电源线电路24传递到直流电压源Vcc。因此,如果不实施什么对策的话,就会发生得到从传送线路24b泄漏到直流电压源Vcc侧的输出信号(以下,称为泄漏信号N)。然而,在本实施方式的便携电话机10中,因为小型化、低功耗化不断发展,即使泄漏信号N很微弱也不能忽视。
因此,本实施方式中,象以下所示的那样,通过抵销信号加法电路25将泄漏信号N用发送无线信号S的一部分来抵销。抵销信号加法电路25,是具备耦合器25a、25b和信号线路25c而构成的无源电路。图2中,耦合器25a构成为,具备:阻抗匹配电路23与天线11之间的传送线路、和以对其电磁耦合的方式邻近配置的另一传送线路,并且取得从阻抗匹配电路23输出的发送无线信号S的一部分后,通过信号线路25c输出给耦合器25b。
另外,耦合器25b构成为,具备:在旁路电容器24a与直流电压源Vcc之间设置的传送线路、和以对其电磁耦合的方式邻近配置的另一传送线路。这里,以相对于从电源线电路24输入给耦合器25b的泄漏信号N,从耦合器25a通过信号线路25c对耦合器25b输入的发送无线信号S的一部分的信号成为近似逆相位且近似同振幅的方式,预先调整:电源线电路24的线路长及特性阻抗、和阻抗匹配电路23及抵销信号加法电路25的信号线路25c的线路长及特性阻抗。因此,抵销信号加法电路25的耦合器25b,通过对从电源线电路24向耦合器25b输入的泄漏信号N,加上通过耦合器25a取得的发送无线信号S的一部分的信号,来使泄漏信号N被抑制而不被传递到直流电压源Vcc侧。
另外,本实施方式中,因为泄漏信号N的信号源的信号是发送无线信号S,所以发送无线信号S与泄漏信号N的频带为同一带区。另外,某一频率的发送无线信号S被输出时,泄漏信号N的频率是近似相同的。因此,象本实施方式这样,通过构成作为可以调整相位和振幅的无源电路的抵销信号加法电路25,能够容易地对电源线电路24加上抵销泄漏信号N的信号。
再有,发送无线信号S是通过晶体管电路21放大后的信号,泄漏信号N是泄漏到电源线电路24的泄漏信号N′被进一步衰减后的信号。因此,泄漏信号N的功率与发送无线信号S的功率相比较极小,通过抵销信号加法电路25,通过使发送无线信号S的功率衰减,能生成用于抵销泄漏信号N的抵销信号。因此,不需要为了抵销泄漏信号N而花费放大电路等的新的功耗,通过无源电路能极简单地实现。
另外,本实施方式中,耦合器25b中,与信号线路25c连接的传送线路,因为是以相对于与旁路电容器24a与直流电压源Vcc之间的传送线路电磁耦合的方式被邻近配置的,因此能在不对从晶体管电路21的输出端子看电源线电路24时的阻抗产生影响的情况下,抵销泄漏信号N。
例如,如果在旁路电容器24a与传送线路24b的连接点上,连接耦合器25b的传送线路的话,从晶体管电路21看电源线电路24侧的阻抗可能会变动,从晶体管电路21泄漏到电源线电路24侧的泄漏信号N′可能会增加。但是,本实施方式中,在旁路电容器24a与直流电压源Vcc之间连接耦合器25b,同时,通过由旁路电容器24a及1/4波长的线路长的传送线路24b构成的电源线电路24,维持抑制对电源线电路24的泄漏信号N的泄漏的机制,同时能进一步抵销泄漏信号N。
另外,通过在旁路电容器24a与直流电压源Vcc之间连接耦合器25b,不用考虑从旁路电容器24a看晶体管电路21侧的阻抗,就能决定抵销信号加法电路25的耦合器25b、25a等的结构。也就是说,抵销信号加法电路25中,只着眼于泄漏信号N的相位、振幅等就能决定其电路结构,能用极高的自由度设计抵销信号加法电路25。
这样,能用高自由度设计的结构,对于不断小型化的便携电话机10来说尤为重要。也就是说,因为便携电话机10内的基板等是小型的,因此在决定抵销信号加法电路25以外的部件后变更其配置等,并不容易。但是,如果抵销信号加法电路25的设计自由度高的话,不用对该抵销信号加法电路25以外的部件进行变更,容易构成抵销信号加法电路25。因此,即使是小型的电子设备也能很容易地应用本发明。
第2实施方式
本发明的实施方式中,只要能够通过获得放大后的发送无线信号S的一部分并使其衰减,来生成抵销噪音的信号并进行相加即可,除上述的实施方式以外还可以采用其他各种结构。图3是表示本发明的第2实施方式的噪音降低电路18a的详细构成的方框图。图3的噪音降低电路18a与图2的噪音降低电路18相比较,其特征在于取代图2的抵销信号加法电路25,具备抵销信号加法电路26。图3中,抵销信号加法电路26,具有电容器27;耦合器26a、26b;和信号线路26c。也就是说,采用的是使用包含去往发送级别检测电路70的传送线路的耦合器26a,来获得发送无线信号S的一部分的构成。以下,对于图3的构成,只详述与图2的不同点。
图3中,阻抗匹配电路23的输出端子,通过电容器27极耦合器26a连接发送级别检测电路70,从阻抗匹配电路23输出的发送无线信号S的一部分被提供给发送级别检测电路70内的检波器,被在发送无线信号S的级别检测中利用。
因此,本实施方式中,通过无源电路构成抵销信号加法电路26。抵销信号加法电路26的耦合器26a,具备:电容器27与发送级别检测电路70之间的传送线路;以对其电磁耦合的方式邻近配置的传送线路,后者的传送线路通过信号线路26c连接耦合器26b。因此,通过耦合器26a获得从电容器27向发送级别检测电路70传送的发送无线信号S的一部分后,通过信号线路26c传递给耦合器26b。
另外,抵销信号加法电路26的耦合器26b,具备:旁路电容器24a与直流电压源Vcc之间的传送线路;以对其电磁耦合的方式邻近配置的传送线路,耦合器26b,通过对泄漏信号N加上由耦合器26a获得的发送无线信号S的一部分,来以将泄漏信号N降低的方式进行抵销。也就是说,以相对于从电源线电路24在耦合器26b被输入的泄漏信号N,从耦合器26a通过信号线路26c输入到耦合器26b的发送无线信号S的一部分的信号为近似逆相位且近似同振幅的方式,预先调整电源线电路24的线路长及特性阻抗,和阻抗匹配电路23、耦合器26a及信号线路26c的线路长及特性阻抗。因此,抵销信号加法电路26的耦合器26b,通过对从电源线电路24输入到耦合器26b的泄漏信号N,加上由耦合器26a获得的发送无线信号S的一部分的信号,泄漏信号N被抑制而不会被传递给直流电压源Vcc侧。
本实施方式中,也与上述的实施方式同样,能够通过作为无源电路的抵销信号加法电路26,容易地对泄漏信号N加上进行抵销的信号。另外,不需要为了抵销泄漏信号N而花费放大电路等的新的功耗,通过无源电路能极简单地实现。
再有,维持通过由电容器24a及1/4波长地传送线路24b构成的电源线电路24,抑制发送无线信号S泄漏到电源线电路24的功率的机制,同时,能提供抵消泄漏信号N的功率。伴随着该结构,能用极高自由度设计抵销信号加法电路26。另外,因为抵销信号加法电路的设计自由度高,能通过各种的电路构成抵销信号加法电路,能采用图2、图3表示的各种结构。
第3实施方式
图4是表示本发明的第3实施方式的噪音降低电路18b的详细构成的方框图。图4的噪音降低电路18b,与图1的噪音降低电路18相比较,其特征在于取代抵销信号加法电路25,具备抵销信号加法电路28。本实施方式中,抵销信号加法电路28具备信号线路28a、28b、28c、28d,通过改变旁路电容器24a与直流电压源Vcc之间的传送线路28c、28b,以及阻抗匹配电路23与天线11之间的传送线路28a、28d的线路长、布线间距离(另外,优选,还有特性阻抗),来进行对发送无线信号S的衰减以及相位的调整。
图4中,传送线路24b与电容器24a的连接点,通过传送线路28c及传送线路28b连接于直流电压源Vcc,另一方面,阻抗匹配电路23的输出端子,通过传送线路28d及传送线路28a连接于去往天线11的输出端子T2。这里,耦合器28A,具备以彼此电磁耦合的方式邻近配置的1对传送线路28a、28b,主要是通过布线间距离、平行长度,来调整发送信号S的衰减量。另外,传送线路28c是相位调整用传送线路,被以彼此抵销的方式,调整传送线路28c的线路长及特性阻抗。也就是说,本实施方式中,使用阻抗匹配电路23与天线11之间的传送线路28a、28d,不设置获得发送无线信号S的一部分的独立电路,与阻抗匹配电路23和传送线路28b、28c一起构成抵销信号加法电路28。
在以上那样构成的抵销信号加法电路28中,泄漏信号N被与发送无线信号S的一部分抵销,不会向直流电压源Vcc侧传递。另外,与上述的实施方式同样,能够通过无源电路,容易地将抵消泄漏信号N的信号,加到电源线电路24侧的传送线路28b。另外,不需要为了抵销泄漏信号N而花费放大电路等的新的功耗,通过无源电路能极简单地实现。再有,通过电源线电路24,维持抑制发送无线信号S泄漏到电源线电路24的泄漏信号N的功率的机制,同时,能供给将泄漏信号N用发送无线信号S的一部分抵销的功率。伴随该结构,能以极高的自由度设计抵销信号加法电路28。
第4实施方式
图5是表示本发明的第4实施方式相关的噪音降低电路18c的详细构成的方框图。图5的噪音降低电路18c,与图1的噪音降低电路18相比较,其特征在于取代图1的抵销信号加法电路25,具备抵销信号加法电路29。本实施方式中,抵销信号加法电路29,具备:以彼此电磁耦合的方式邻近配置的1对传送线路29a、29c所构成的耦合器29A;相位调整用传送线路29d;以彼此电磁耦合的方式邻近配置的1对传送线路29b、29e所构成的耦合器29B,通过调整旁路电容器24a与直流电压源Vcc之间的传送线路29b、阻抗匹配电路23与天线11之间的传送线路29a、以及它们之间形成的传送线路29c、29d、29e的线路长、布线间距离(另外,优选还有特性阻抗),来进行对发送无线信号S的衰减以及相位的调整。
图5中,通过耦合器29A的传送线路29c获得发送无线信号S的一部分,将该一部分的信号通过相位调整用传送线路29d传递至耦合器29B的传送线路29e,通过调整其相位及振幅,与电源线电路24连接的传送传送线路29b上传送的泄漏信号N,通过上述获得的发送无线信号S的一部分的信号被抵销,不会传递给直流电压源Vcc。
本实施方式中,与上述的实施方式同样的,能通过无源电路,容易地对电源线电路24流动的泄漏信号N加上抵销泄漏信号N的信号。另外,不需要为了抵销泄漏信号N花费放大电路等的新的功耗,能通过无源电路极简单地实现。再有,通过由旁路电容器24a及1/4波长的传送线路24b构成的电源线电路24,维持抑制发送无线信号S泄漏到电源线电路24的功率的机制,同时,能供给抵销泄漏信号N的功率。再有,伴随该结构,能以极高的自由度设计抵销信号加法电路29。
图6是表示图4的相位调整用传送线路28c、28d的一个例子的详细构成的电路图。相位调整用传送线路28c、28d,例如图6所示,是电容器C1和电感器L1的L型电路,通过调整电容器C1和电感器L1的各值,能调整包含移位相的线路长、振幅及特性阻抗。另外,该相位调整用传送线路28c、28d的电特性的方针结果,在后面详述。另外,传送线路29d中,可以是电容器C1和电感器L1的串联电路,也可以是包含电阻的电路。
对印刷布线基板的应用例
象以上那样,本发明的各实施方式,可通过上述的各种电路实现,抵销信号加法电路26-29,也可以在安装有放大器IC125的印刷布线基板(电介质基板)上实现,也可以在信号放大器IC125的内部实现,能采用各种的方式,在以下详述。
图7是表示将图4的噪音降低电路18c在印刷布线基板120上应用时的第1应用例的平面图。也就是说,图7是表示在印刷布线基板110所安装的信号放大器IC125和其周边的电路的例图,图7中,表示了信号放大器IC125的电源端子125a和输出端子125b上连接的布线基板110上的条形导体121、122。这里,通过条形导体121和在印刷布线基板110的背面形成的接地导体111(参照图9),构成微条形(microstripe)线路121A,通过条形导体122、和在印刷布线基板110的背面形成的接地导体111(参照图9),构成微条形线路122A。
图7所示的信号放大器IC125,是在图4所示的噪音降低电路18中内置有阻抗匹配电路22、23和晶体管电路21的电路部件,电源端子125a,连接在晶体管电路21和阻抗匹配电路23之间,输出端子125b,连接在阻抗匹配电路23的输出侧。因此,图7中,条形导体121包含图4的电源线电路24的传送线路24b,条形导体122相当于连接在天线11和阻抗匹配电路23之间的线路导体。在条形导体121的一部分连接旁路电容器24a,该旁路电容器24a和晶体管电路21的输出端子之间的条形导体121、信号放大器IC125内的布线导体及电源端子125a,相当于传送线路24b。另外,旁路电容器24a的另一端,通过在厚度方向上贯通印刷布线基板110的贯通孔中所填充的贯通孔导体80,与接地导体111连接而接地。因此,图7表示的第1应用例中,通过调整与输出端子125b连接的条形导体122的线路长、形状等,同时,以在其一部分上与条形导体121电磁耦合的方式邻近配置来构成耦合器28A,来由该耦合器28A,用条形导体122上传送的发送无线信号S的一部分的信号抵销条形导体121上传送的泄漏信号N。
根据如上构成的第1应用例,在安装有任意的信号放大器IC125的印刷布线基板110中,即使是从信号放大器IC125向电源线电路24侧泄漏的泄漏信号N不能忽视的情况下,也能容易地抵销该泄漏信号N。
图8是表示将图4的噪音降低电路18c在信号放大器IC125上应用时的第2应用例的平面图。如图8所示,也可以在信号放大器IC125内抵销泄漏信号N,使得不会从信号放大器IC125泄漏噪音。也就是说,信号放大器IC125,具有电源端子125a和输出端子125b,信号放大器IC125,内置有相当于图4的噪音降低电路18所示的阻抗匹配电路22、23,晶体管电路21,旁路电容器24a,传送线路24b以及抵销信号加法电路25的电路。
图8的信号放大器IC125的半导体基板上,在晶体管电路21与电源端子125a之间,形成包含传送线路24b及耦合器28A的传送线路的条形导体123,在晶体管电路21和电源端子125b之间,形成包含阻抗匹配电路23及耦合器28A的传送线路的条形导体124。这里,通过条形导体123和在半导体基板110A的背面形成的接地导体(没有图示。对应图9等的接地导体110。),构成微条形线路123A,通过条形导体124和在半导体基板110A的背面形成的接地导体(没有图示。对应图9等的接地导体110。),构成微条形线路124A。另外,条形导体123的一部分连接着旁路电容器24a的一端,其另一端,通过在厚度方向上贯通半导体基板110A的贯通孔所填充的贯通孔导体80,与接地导体连接而接地。阻抗匹配电路23,通过以下部分构成:条形导体124的一部分;和各一端通过贯通孔导体80接地的电容器126、127。这里,通过以下部分构成抵销信号加法电路28:阻抗匹配电路23;条形导体124;条形导体123;和2个的条形导体123、124以彼此电磁耦合的方式邻近配置而成的耦合器28A。
另外,图8中,省略了阻抗匹配电路22的图示。这里,通过调整条形导体124的线路长、形状等,并通过用耦合器28A对泄漏信号N加上发送无线信号S的一部分,来实质抵销泄漏信号N。根据以上的构成,使得不会由信号放大器IC125的电源端子125a往外部电路泄漏出泄漏信号。
另外,也可以通过与上述的各实施方式所说明的电路元素不同的元素来构成本发明相关的噪音降低电路。例如,上述的传送线路24b,也可以通过条形导体121、122构成,也可以通过在晶体管电路21的输出端子连接由扼流圈和旁路电容器构成的电路,来构成对发送无线信号S的频率为高阻抗的电路。再有,上述的无源电路,除了条形导体121-124等的布线图案以外,还能用各种的电路元素构成,能采用线圈、电容器、电阻的各种元素的组合。
另外,在图7及图8的应用例中,使用了信号放大器IC125,但本发明并不限于此,也可不在IC内形成信号放大器,使用电场效应晶体管来构成信号放大器。
再有,上述的例子中,虽然说明了电源线电路24与抵销信号加法电路25位于印刷布线基板110或半导体基板110A上的同一层的例子,但这些电路也可以在不同的层形成。也就是说,只要通过抵销信号加法电路25,能够从阻抗匹配电路23与天线11之间的条形导体121或123,往旁路电容器24a与直流电压源Vcc之间的条形导体等的布线传递电力即可,电源线电路24和抵销信号加法电路25也可以在不同的层上形成,能采用各种的结构。当然,电源线电路24和抵销信号加法电路25的任何一个或双方,也可以通过贯通孔导体80形成在多个层上。以下特别详述耦合器28A的实施例。
图9是表示将图4的耦合器28A应用在印刷布线基板120上时的图7的实施方式例的纵截面图。图9中,在背面形成有接地导体111的印刷布线基板110上,以彼此电磁耦合的方式邻近并列配置形成耦合器28A的1对传送线路的条形导体28as、28bs。通过以上的结构,构成耦合器28A。
图10是表示将图4的耦合器28A应用在在印刷布线基板120上时的第1变形例的纵截面图。图10中,在背面形成有接地导体111的印刷布线基板110上,以彼此电磁耦合的方式邻近形成有耦合器28A的1对传送线路的条形导体28as、28bs,而在印刷布线基板110的表面上形成条形导体28as,在其上形成电介质层112,在其上在条形导体28as的正上方的位置上形成条形导体28bs。通过以上的结构,构成耦合器28A。
图11是表示将图4的耦合器28A应用在印刷布线基板120上时的第2变形例的纵截面图。图11的第2变形例,与图10的第1变形例相比较,在电介质层112上在从条形导体28as的正上方的位置错开的位置上,形成条形导体28bs。通过以上的结构,构成耦合器28A。
图12是表示将图4的耦合器28A应用在印刷布线基板120上时的第3变形例的纵截面图。图12的第3变形例与图10的第1变形例相比较,耦合器28A的1对条形导体28as、28bs,以彼此正交的方式形成。通过以上的结构,构成耦合器28A。
在图9至图12的例子中,表示了2层结构,本发明并不限于此,也可以用3层以上的结构在任意层上形成条形导体28as、28bs。另外,1对条形导体28as、28bs不必彼此平行,另外,也可以不为同一线路宽度。
再有,以下探讨给图2的噪音降低电路18的输入信号为矩形波的时钟信号的情况。图13是表示作为图2的噪音降低电路18的输入信号是矩形波的时钟信号的时间波形的图,图14是表示图13的矩形波的时钟信号的频率成分的频率特性的图。在给图2的噪音降低电路18的输入信号,是如图13所示的那种矩形波的时钟信号的情况下,该时钟信号就象图14表示的那样,包含高次谐波成分且在较宽的频带中具有频率成分,在通信系统的频带与上述时钟信号的高次谐波成分相重叠的位置中,可能会对通信系统的电路(特别是,接收电路),在无线信号的频带、以及被低频变换后的中间频率的中间频率信号的频带、基带信号的频带等与上述无线信号的频带相关联的频带中,发生造成干扰等影响。特别是,接收频带与上述时钟信号的高次谐波成分重叠的情况下,无法正确复原微小的接收信号电力,例如在便携电话机的情况下就无法进行通话。虽然在放大时钟信号的情况下,在偏置电路侧所有的高次谐波成分发生泄漏,但通过使用本实施方式相关的噪音降低电路18、18a、18b、18c,具有的独特的作用效果是,唯独在会影响通信系统的频带(由于电源线电路24如上所述,作为除去给定的频带或者只让给定的另外的频带通过的电路来工作),能大幅降低泄漏信号N。另外,这种情况下,例如,晶体管电路21,是一种设置在无线通信装置的无线接收电路13内的混合器等的电路。再有,对于如以上所述参照图13及图1说明的应用例,例如,也能应用于数字电路。
实施例
图15是由本发明的发明者在仿真中使用的、与图5的噪音降低电路18c实质对应的仿真电路的电路图。图15中,该仿真电路,使用安捷伦(Agilent)公司生产的仿真器ADS(Advance Design System),通过谐波平衡解析法来实现,其具备以下部分构成:包含内部输出电阻Rr的基准高频信号发生器30;传送线路31-38、39a、39b、40-43;电场效应晶体管TR1、TR2;电阻R11、R21;电容器C11-C13、C21;电感器L11、L21;直流电压源51、52;和负载电阻R。这里,通过1对传送线路39a、39b构成耦合器39,通过传送线路38、电容器C13和耦合器39构成抵销信号加法电路60。如上所述构成的仿真电路中,在作为传送线路42、43的连接点的监控点Tm测定偏置电压的电压波形。
图16是图15的仿真结果,是表示用于确认噪音降低效果的有没有噪音降低电路60时的偏置电压的时间波形的波形图。从图16可知,在没有噪音降低电路60的情况下,偏置电压中有泄漏信号N的重叠,在有噪音降低电路60的情况下,泄漏信号N被大幅降低了。
图17是表示图6的相位调整用传送线路中的通过系数的相对电力的频率特性的图表,图18是表示图6的相位调整用传送线路中的通过系数的相位的频率特性的图表。从图17及图18可知,能够根据频率改变通过电力,也能改变移相量。
本发明的实施方式的总结
根据本发明,在信号放大机构中放大的输出信号泄漏到电源线电路中时,使该输出信号的一部分衰减,通过对上述泄漏的输出信号加上近似逆相位且近似同振幅的信号,来抑制噪音。也就是说,要抑制的噪音,是由信号放大器放大的输出信号泄漏到电源线电路中的信号,是一种微弱的信号。另一方面,由信号加法机构生成的信号,是根据由信号放大机构放大之后的输出信号的一部分生成的,并且该放大后的输出信号是具有较大功率的信号。
因此,本发明的信号加法机构中,完全不需要为了生成上述近似逆相位且近似同振幅的信号而使用放大电路,能通过使输出信号衰减来生成。其结果是,能提供一种在不花费功耗的情况下,抵销泄漏到电源线电路上的输出信号的电路。另外,在生成上述近似逆相位且近似同振幅的信号时,完全不需要用于形成放大电路等的部件,能在不妨碍电路的小型化的情况下实现信号加法机构。
这里,作为信号放大机构,只要是放大输入信号来获得输出信号的电路即可,利用通过电源线电路供给的电力放大输入信号。当然,在对该信号放大机构所连接的各种线路中适当进行阻抗匹配时,可以插入滤波器。
另外,在本发明中,是抑制在放大输入信号获得输出信号时泄漏到电源线电路的信号。因此,如果将信号泄漏到电源线电路这种信号放大机构作为本发明的应用对象的话,其效果显著体现,高频率信号(例如,30MHz以上的信号)的放大机构,为本发明的应用对象例。因此,利用800MHz~2GHz频带的现有的便携电话机,利用2GHz、5GHz频带的现有的无线LAN等,都是本发明的适合的应用对象。
另外,上述信号加法机构中,获得来自上述信号放大机构的输出信号的一部分。也就是说,本发明中,使用由信号放大机构放大的输出信号,来抵销从放大机构泄漏的输出信号,信号放大机构中,前者是要通过放大获得的输出信号,后者因为是不需要的噪音,因此一般来说前者比后者大得多。因此,上述信号加法机构中,只需获得来自上述信号放大机构的输出信号的一部分,就能获得能充分抵销上述泄漏信号的信号。
另外,为了获得输出信号的一部分可以采用各种的结构,不是必须为传送输出信号的布线和导通的布线。也就是说,如果输出信号是高频率信号的话,如果对在传送该输出信号的传送线路的附近对成为信号加法机构的一部分的电路进行布线的话,输出信号就会泄漏到成为该信号加法机构的一部分的电路中。因此,也可采用的结构是,通过未被确保与上述信号放大机构的输出线的导通的布线,获得输出信号的一部分。根据该结构,能在不会过度损失上述信号放大机构的输出功率的前提下,生成对泄漏到上述电源线电路的输出信号进行抵消的信号。
另外,上述信号加法机构中,只要能使来自上述信号放大机构的输出信号衰减即可,也可以是通过如上所述获得输出信号的一部分,来同时使信号衰减的结构,也可以是获得输出信号的一部分后将功率衰减后的信号进一步使其衰减的结构。因为象这样的信号的衰减,不用从电源接受的电力供给就能实施,因此能通过极简单的构成实现该衰减。
再有,通过上述信号加法机构生成的信号,只要是相对于泄漏到上述电源线电路的输出信号为近似逆相位且近似同振幅的信号即可。也就是说,只要能生成抵销泄漏到该电源线电路上的输出信号的信号即可。当然,只要是生成相对于泄漏到电源线电路的输出信号,准确地为逆相位且同振幅的信号,就能抵销该泄漏的信号。但是,如果准确确定泄漏的信号的相位、振幅比较困难的话,只要信号加法机构中加上的信号,至少能使上述泄漏的信号衰减即可。
这个意思就是,只要在信号加法机构中,能生成相对于泄漏到上述电源线电路的输出信号近似逆相位且近似同振幅的信号即可。例如,只要通过实际上可选择的布线、部件等,构成为能生成相对于泄漏到上述电源线电路中的输出信号为近似逆相位且近似同振幅的信号即可。
另外,由于有时上述输出信号具有给定的频带,因此信号加法机构中,也可以选择泄漏到上述电源线电路中的输出信号中的频带内振幅最大的信号、传递效率最大的信号等最想抑制的频率的信号,对该信号加上近似逆相位且近似同振幅的信号。
另外,本发明中,泄漏到上述电源线电路中的输出信号,是通过信号放大机构被放大的信号的一部分,与被放大的信号的频带近似一致。因此,通过由放大的信号的一部分对泄漏到电源线电路的输出信号进行抵消,就能极为容易地对泄漏到上述电源线电路中的输出信号的全频带使泄漏信号衰减。
再有,也可以通过无源电路构成本发明中的信号加法机构。即,无源电路,是电阻、电容器、线圈等不带放大作用的电路的构成元素。虽然这些构成元素,在对信号施加衰减和相位的变动的同时传送信号,但本发明中,因为只要使具有较大功率的输出信号的一部分衰减,来生成泄漏上述电源线电路中的信号即可,因此能通过无源电路容易地生成该信号。另外,因为是无源电路,所以在生成该信号时,完全不需要来自电源的电力供给。再有,因为通过简单的构成元素就能实现信号加法机构,因此能容易地将设备小型化。
这样,作为用无源电路构成信号加法机构的例子,也可以采用只用布线来构成信号加法机构的例子。也就是说,因为通过调整布线的长度和形状、邻近配置了的布线间的距离、并行布线长等,就能调整输出信号的相位和振幅,所以能通过该布线获得来自上述信号放大机构的输出信号的一部分,并加到电源线电路上来抵销上述泄漏的输出信号。根据该结构,就能极简单地形成信号加法机构。
另外,本发明也可以应用于采用了用于抑制泄漏到电源线电路中的输出信号的结构的信号放大机构。也就是说,通过在电源线电路中,相对于输出信号的频率来调整阻抗,能抑制该输出信号的泄漏。例如,上述电源线电路中,形成:在上述泄漏的输出信号的频率下接地被近似短路的低阻抗部分;和将该低阻抗部分与上述信号放大机构之间的电源线电路,相对于上述泄漏的输出信号的频率设成近似开路的高阻抗部分。
根据该结构,通过高阻抗部分和低阻抗部分,能抑制泄漏到上述电源线电路中的输出信号。不过,即使用实际的电路部件构成了这样的电路,也不能将泄漏的输出信号完全变成“0”,其功率的一部分会泄漏到电源侧。这样的泄漏,在小型化、低功耗化不断进步的近年来的电子设备中,也越来越不能忽视其影响。
因此,电源线电路中,如果对于如上所述通过阻抗抑制输出信号的泄漏的结构应用本发明的话,能抑制对电源线电路的输出信号的极小程度的泄漏。这时,将通过上述信号加法机构生成的信号,加到比上述低阻抗部分更靠电源一侧。也就是说,上述电源线电路中,由于通过低阻抗部分和高阻抗部分的组合来防止信号的泄漏,因此如果将信号加法机构得到的信号加到比低阻抗部分更靠电源一侧的话,就能够在维持通过低阻抗部分和高阻抗部分的组合防止信号的泄漏的机制的同时,进一步抑制从低阻抗部分泄漏到电源侧的信号。
另外,上述低阻抗部分和高阻抗部分,只要构成为可以通过两者组合,抑制泄漏到电源线电路中的信号即可。但是,即使通过实际的电路部件等构成了该低阻抗部分和高阻抗部分,也不能让低阻抗部分中的阻抗为“0”,不能让高阻抗部分中的阻抗为无限大。这意味着,只要能够通过在低阻抗部分中,将输出信号的频率下的信号相对于地近似短路,在高阻抗部分中,相对于上述泄漏的输出信号的频率下的信号为近似开路,来抑制泄漏的信号即可。
作为这样的结构,例如,用使上述泄漏的输出信号的频率的信号通过的电容器来构成低阻抗部分,将该低阻抗部分与信号放大机构之间用上述泄漏的输出信号的1/4波长的长度的传送线路构成,就能形成上述高阻抗部分。根据该结构,通过极简单的电路就能构成低阻抗部分和高阻抗部分。
另外,如上所述通过低阻抗部分和高阻抗部分的组合,维持防止信号的泄漏的机制的同时,通过用信号加法机构将信号相加,能极高地提高信号加法机构中的设计的自由度。也就是说,在采用对信号放大机构的电源线电路进行信号加法运算的结构的情况下,一般来说,因为从信号放大机构看电源线电路的阻抗会变动,因此必须在信号放大机构中进行与该变动相适合的设计。
但是,如上所述,只要是将由信号加法机构生成的信号加到比上述低阻抗部分更靠电源一侧的结构的话,因为在比从信号放大机构来看对地近似短路的低阻抗部分更靠电源一侧进行基于信号加法机构的加法运算,因此从信号放大机构看到的阻抗几乎没有变化。因此,只要通过低阻抗部分在电源侧加上信号,就能自由地决定信号加法机构中的电路结构,能进行自由度极高的设计。
再有,虽然通过上述低阻抗部分上述泄漏的输出信号的频率下接地被近似短路,但由于通过信号加法机构加上的信号,是获得上述输出信号的一部分后使之衰减得到的,因此在该被相加了的信号的频率下也通过低阻抗部分接地被近似短路。因此,不会使由信号加法机构加上的信号泄漏到信号放大机构一侧,能进行信号的抵消。
再有,本发明中的噪音降低装置,能应用于各种的信号放大机构。例如,在上述信号放大机构被作为一个部件提供,且该部件被安装在基板上的情况下,若对该基板形成信号加法机构的话,就能抑制从该部件泄漏的信号。因此,即使是使用会使噪音泄漏的部件,也能容易地抑制其噪音。
再有,通过本发明,还能提供不使噪音泄漏的部件。作为该目的的例子,可在具备本发明中的信号放大机构和信号加法机构的同时,还具备:连接在上述电源线电路上的电源端子、和输出上述输出信号的输出端子。也就是说,在该部件的内部泄漏到电源线电路的输出信号被抵消,不会从上述电源端子泄漏输出信号。因此,该部件的利用者,不用考虑泄漏信号,能从电源端子提供给定的电力,从输出端子获得输出信号。
再有,作为本方面的应用对象的例子,可采用移动通信设备等的无线通信装置。也就是说,移动通信设备中,通过信号放大机构获得发送信号,该发送信号大多要该设备内形成很大功率。另外,移动通信设备近年来在不断小型化、低功耗化,有时不能忽视由上述信号放大机构放大的输出信号带来影响。因此,如果构成具备本发明的信号放大机构和信号加法机构的移动通信设备的话,就能在不受噪音影响的情况下,提供小型、低功耗的移动通信设备。
以上,虽然说明了本发明作为装置被实现的情况,但在实现相关装置的方法中也能应用本发明。当然,其实质的动作与上述的装置的情况相同。另外,如上所述的噪音降低装置有时也被单独实现,有时也被应用于某一方法,或在该方法被嵌入其它的设备的状态下使用等情况,作为发明的思想并不限于此,可以包含各种方式。
产业上的利用的可能性
如上所述,根据本发明的噪音降低电路及方法,从电源通过电源线电路接受电力的供给,对输入信号进行放大后将输出信号输出,并通过获得上述输出信号的一部分并使其衰减,来生成相对于泄漏到上述电源线电路中的泄漏信号为近似逆相位且近似同振幅的抵销信号,通过对上述泄漏信号加上上述抵销信号,来实质抵销上述泄漏信号。这样,能在不损害小型化、低功耗化的情况下,通过简单的构成大幅且有效地降低噪音。因此,能在便携电话机、GPS接收装置等的无线通信装置中广泛应用。
权利要求书(按照条约第19条的修改)
1.(修改)一种噪音降低电路,其特征是,
具备:信号放大机构,从电源通过电源线电路接受电力的供给,对输入信号进行放大后将输出信号输出;和,
信号加法机构,通过获得来自上述信号放大机构的输出信号的一部分并使其衰减,来生成相对于泄漏到上述电源线电路中的泄漏信号为近似逆相位且近似同振幅的抵销信号,通过对上述泄漏信号加上上述抵销信号,来实质抵销上述泄漏信号,
上述电源线电路,具有:低阻抗部分,在上述泄漏信号的频率下,使上述的该泄漏信号近似短路接地;和,
高阻抗部分,将上述低阻抗部分与上述信号放大机构之间的连接点,在上述泄漏信号的频率下设为近似开路状态,
上述信号加法机构,在比上述低阻抗部分更靠上述电源侧的位置,对上述泄漏信号加上上述泄漏信号。
2.如权利要求1所述的噪音降低电路,其特征是,
上述信号加法机构,是由多个无源元件构成的无源电路。
3.如权利要求1或2所述的噪音降低电路,其特征是,
上述信号加法机构,使用以彼此电磁耦合的方式临近配置的由1对传送线路所构成的耦合器,将上述抵销信号加到上述泄漏信号。
4.(删除)
5.(修改)如权利要求1所述的噪音降低电路,其特征是,
上述高阻抗部分,是上述泄漏信号的1/4波长的长度的传送线路,
上述低阻抗部分,是使上述泄漏信号的频率的信号通过的电容器。
6.(修改)如权利要求1至3以及5的任一项所述的噪音降低电路,其特征是,
上述信号加法机构,形成在安装有上述信号放大机构的基板上。
7.(修改)一种信号放大器,其特征是,
具备权利要求1至3以及5、6的任一项所述的噪音降低电路,
具备:与上述电源线电路连接的电源端子;和,
输出上述输出信号的输出端子。
8.(修改)一种无线通信装置,其特征是,
具备权利要求1至3以及5、6的任一项所述的噪音降低电路,
具备:对由上述信号放大机构放大的信号进行发送的发送机构。
9.(修改)一种无线通信装置,其特征是,
具备接收具有给定频率的无线信号的接收机构,
具备权利要求5所述的噪音降低电路,
上述输入信号是矩形波信号,
上述电源线电路,在上述无线通信装置使用的无线信号的频率或与其关联的中间频率或者基带信号的频率下,使作为上述矩形波信号的频率成分的一部分的泄漏信号衰减。
10.(修改)一种噪音降低方法,其特征是,
包含:从电源通过电源线电路接受电力的供给,对输入信号进行放大后将输出信号输出的步骤;和,
通过获得上述输出信号的一部分并使其衰减,生成相对于泄漏到上述电源线电路中的泄漏信号为近似逆相位且近似同振幅的抵销信号,通过对上述泄漏信号加上上述抵销信号,来实质抵销上述泄漏信号的步骤,
上述电源线电路,具有:低阻抗部分,在上述泄漏信号的频率下,使上述的该泄漏信号近似短路接地;和,
高阻抗部分,将上述低阻抗部分与上述信号放大机构之间的连接点,在上述泄漏信号的频率下设为近似开路状态,
上述信号加法机构,在比上述低阻抗部分更靠上述电源侧的位置,对上述泄漏信号加上上述泄漏信号。

Claims (10)

1.一种噪音降低电路,其特征是,
具备:信号放大机构,从电源通过电源线电路接受电力的供给,对输入信号进行放大后将输出信号输出;和,
信号加法机构,通过获得来自上述信号放大机构的输出信号的一部分并使其衰减,来生成相对于泄漏到上述电源线电路中的泄漏信号为近似逆相位且近似同振幅的抵销信号,通过对上述泄漏信号加上上述抵销信号,来实质抵销上述泄漏信号。
2.如权利要求1所述的噪音降低电路,其特征是,
上述信号加法机构,是由多个无源元件构成的无源电路。
3.如权利要求1或2所述的噪音降低电路,其特征是,
上述信号加法机构,使用以彼此电磁耦合的方式临近配置的由1对传送线路所构成的耦合器,将上述抵销信号加到上述泄漏信号。
4.如权利要求1至3的任一项所述的噪音降低电路,其特征是,
上述电源线电路,具有:低阻抗部分,在上述泄漏信号的频率下,使上述的该泄漏信号近似短路接地;和,
高阻抗部分,将上述低阻抗部分与上述信号放大机构之间的连接点,在上述泄漏信号的频率下设为近似开路状态,
上述信号加法机构,在比上述低阻抗部分更靠上述电源侧的位置,对上述泄漏信号加上上述泄漏信号。
5.如权利要求4所述的噪音降低电路,其特征是,
上述高阻抗部分,是上述泄漏信号的1/4波长的长度的传送线路,
上述低阻抗部分,是使上述泄漏信号的频率的信号通过的电容器。
6.如权利要求1至5的任一项所述的噪音降低电路,其特征是,
上述信号加法机构,形成在安装有上述信号放大机构的基板上。
7.一种信号放大器,其特征是,
具备权利要求1至6的任一项所述的噪音降低电路,
具备:与上述电源线电路连接的电源端子;和,
输出上述输出信号的输出端子。
8.一种无线通信装置,其特征是,
具备权利要求1至6的任一项所述的噪音降低电路,
具备:对由上述信号放大机构放大的信号进行发送的发送机构。
9.一种无线通信装置,其特征是,
具备接收具有给定频率的无线信号的接收机构,
具备权利要求4或5所述的噪音降低电路,
上述输入信号是矩形波信号,
上述电源线电路,在上述无线通信装置使用的无线信号的频率或与其关联的中间频率或者基带信号的频率下,使作为上述矩形波信号的频率成分的一部分的泄漏信号衰减。
10.一种噪音降低方法,其特征是,包含:
从电源通过电源线电路接受电力的供给,对输入信号进行放大后将输出信号输出的步骤;和,
通过获得上述输出信号的一部分并使其衰减,生成相对于泄漏到上述电源线电路中的泄漏信号为近似逆相位且近似同振幅的抵销信号,通过对上述泄漏信号加上上述抵销信号,来实质抵销上述泄漏信号的步骤。
CN2007800114265A 2006-03-31 2007-03-28 噪音降低电路及方法 Expired - Fee Related CN101411057B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006098811 2006-03-31
JP098811/2006 2006-03-31
PCT/JP2007/056545 WO2007114126A1 (ja) 2006-03-31 2007-03-28 ノイズ低減回路及び方法

Publications (2)

Publication Number Publication Date
CN101411057A true CN101411057A (zh) 2009-04-15
CN101411057B CN101411057B (zh) 2010-12-22

Family

ID=38563395

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800114265A Expired - Fee Related CN101411057B (zh) 2006-03-31 2007-03-28 噪音降低电路及方法

Country Status (6)

Country Link
US (1) US8290451B2 (zh)
EP (1) EP2007008B1 (zh)
JP (1) JP4785916B2 (zh)
CN (1) CN101411057B (zh)
DE (1) DE602007009955D1 (zh)
WO (1) WO2007114126A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102668355A (zh) * 2009-12-25 2012-09-12 日立汽车系统株式会社 电力变换装置
CN108111145A (zh) * 2018-02-10 2018-06-01 北京工业大学 一种衰减器
CN108141242A (zh) * 2015-09-28 2018-06-08 株式会社村田制作所 高频前端电路和阻抗匹配方法
CN111212364A (zh) * 2020-03-19 2020-05-29 锐迪科微电子(上海)有限公司 音频输出设备及其漏音消除方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1879377A3 (en) * 2006-07-13 2010-06-16 Panasonic Corporation Portable Device
JP5359610B2 (ja) * 2009-06-29 2013-12-04 富士通セミコンダクター株式会社 送受信装置及び電源線通信方法
US8837332B2 (en) * 2010-12-13 2014-09-16 Nec Laboratories America, Inc. Method for a canceling self interference signal using passive noise cancellation for full-duplex simultaneous (in time) and overlapping (in space) wireless transmission and reception on the same frequency band
JP2013090037A (ja) * 2011-10-14 2013-05-13 Mitsubishi Electric Corp 高周波信号増幅器
WO2020115978A1 (ja) * 2018-12-06 2020-06-11 ソニーセミコンダクタソリューションズ株式会社 伝送装置、印刷配線基板、並びに情報機器
CN109743750B (zh) * 2018-12-20 2022-12-16 中国电子科技集团公司电子科学研究院 一种视频泄漏信号去噪算法及装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3969637A (en) * 1973-01-10 1976-07-13 Hitachi, Ltd. Transistor circuit
US3825815A (en) * 1973-06-12 1974-07-23 Westinghouse Electric Corp Electrical power system
JPS59107615A (ja) * 1982-12-13 1984-06-21 Hitachi Ltd 信号漏洩低減回路
EP0506091B1 (en) * 1991-03-29 1996-10-23 Hitachi Kokusai Electric Inc. CM type directional coupler destined for use as power detector in portable telephone
EP0596562B1 (fr) * 1992-11-04 1999-01-07 Laboratoires D'electronique Philips S.A.S. Dispositif comprenant un circuit pour traiter un signal alternatif
JPH0888936A (ja) * 1994-09-14 1996-04-02 Mitsubishi Electric Corp 電気機器の漏洩電圧補償装置
FR2737065A1 (fr) * 1995-07-21 1997-01-24 Philips Electronique Lab Dispositif semiconducteur incluant un amplificateur de puissance et appareil de telecommunication mobile incluant un tel dispositif semiconducteur
CN2254253Y (zh) * 1995-09-01 1997-05-14 天津津科通讯有限公司 微波通信机
US6124767A (en) * 1998-05-21 2000-09-26 Delphi Components, Inc. RF/Microwave oscillator
US6567649B2 (en) * 2000-08-22 2003-05-20 Novatel Wireless, Inc. Method and apparatus for transmitter noise cancellation in an RF communications system
JP2003158238A (ja) 2001-11-20 2003-05-30 Hitachi Ltd 半導体集積回路装置
JP4260456B2 (ja) * 2002-10-18 2009-04-30 株式会社ルネサステクノロジ システム
US7521890B2 (en) * 2005-12-27 2009-04-21 Power Science Inc. System and method for selective transfer of radio frequency power

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102668355A (zh) * 2009-12-25 2012-09-12 日立汽车系统株式会社 电力变换装置
CN102668355B (zh) * 2009-12-25 2015-04-29 日立汽车系统株式会社 电力变换装置
US9112402B2 (en) 2009-12-25 2015-08-18 Hitachi Automotive Systems, Ltd. Power conversion apparatus
CN108141242A (zh) * 2015-09-28 2018-06-08 株式会社村田制作所 高频前端电路和阻抗匹配方法
CN108111145A (zh) * 2018-02-10 2018-06-01 北京工业大学 一种衰减器
CN111212364A (zh) * 2020-03-19 2020-05-29 锐迪科微电子(上海)有限公司 音频输出设备及其漏音消除方法

Also Published As

Publication number Publication date
EP2007008B1 (en) 2010-10-20
US8290451B2 (en) 2012-10-16
EP2007008A2 (en) 2008-12-24
DE602007009955D1 (de) 2010-12-02
JPWO2007114126A1 (ja) 2009-08-13
CN101411057B (zh) 2010-12-22
EP2007008A4 (en) 2009-12-23
US20090174476A1 (en) 2009-07-09
WO2007114126A1 (ja) 2007-10-11
JP4785916B2 (ja) 2011-10-05
EP2007008A9 (en) 2009-07-22

Similar Documents

Publication Publication Date Title
CN101411057B (zh) 噪音降低电路及方法
Vizmuller RF design guide: systems, circuits, and equations
US10447207B2 (en) Switch with envelope injection
US8373517B2 (en) Power supply cable for power line communication equipment
ES2197020A1 (es) Procedimiento y dispositivo de compensacion de campo magnetico de baja frecuencia en una unidad de acoplamiento de señal inductiva.
US20020117318A1 (en) Method and apparatus for reducing radiant noise energy
KR20050078537A (ko) 전도성 전자파 억제 필터
JP6611999B1 (ja) 空気調和機
CN205082056U (zh) 高频线路及普通线路一体型子板
Zhao et al. An inductive-coupling blocker rejection technique for miniature RFID tag
JP2003283390A (ja) 電力線搬送通信用インダクタ装荷器
KR20100048219A (ko) 트랜스포머
JP4373414B2 (ja) 発振器結合システム
KR20020044885A (ko) 광대역 이엠아이 필터
JP4729455B2 (ja) フィルタ回路
EP2503699A1 (en) Electronic device with VCO pulling compensation circuit for an input baseband signal and associated methods
Stiri et al. Realization of a low-cost impedance matching circuit for stable power line communications: From testbeds to practical implementation
EP1099301A1 (en) High gain, impedance matching low noise rf amplifier circuit
Nguimbis et al. Coupling unit topology for optimal signaling through the low-voltage powerline communication network
Hwang et al. Wideband noise measurement technique in duplex systems for RF interference
JP4904319B2 (ja) 高スペクトル純度ワイヤレスシステム
Lu et al. The System for the reduction of conducted electromagnetic interference emission from switching power supply
KR102481224B1 (ko) 무선 송수신 장치 및 그 동작 방법
JPH0918209A (ja) 高周波電力分配合成器
CN211406016U (zh) 一种射频电路及电子设备

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20101222

CF01 Termination of patent right due to non-payment of annual fee