CN101403138A - 一种氧化物纳米晶的合成 - Google Patents

一种氧化物纳米晶的合成 Download PDF

Info

Publication number
CN101403138A
CN101403138A CNA200810230636XA CN200810230636A CN101403138A CN 101403138 A CN101403138 A CN 101403138A CN A200810230636X A CNA200810230636X A CN A200810230636XA CN 200810230636 A CN200810230636 A CN 200810230636A CN 101403138 A CN101403138 A CN 101403138A
Authority
CN
China
Prior art keywords
oxide
nanocrystalline
synthetic
oxide nanocrystalline
amine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA200810230636XA
Other languages
English (en)
Other versions
CN101403138B (zh
Inventor
李林松
司红磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Zitong Nano Technology Co ltd
Original Assignee
Henan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University filed Critical Henan University
Priority to CN200810230636XA priority Critical patent/CN101403138B/zh
Publication of CN101403138A publication Critical patent/CN101403138A/zh
Application granted granted Critical
Publication of CN101403138B publication Critical patent/CN101403138B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

本发明特别涉及四氧化三锰、氧化亚锰、四氧化三铁、氧化亚钴纳米晶的合成方法:将氧化物前躯体与非配位溶剂以及活性剂混合后,惰性气氛下混合溶液加热至210-330℃并保持2-5min,然后相应降温20-40℃,并保持50-80min,反应液分离提纯后即得所述氧化物纳米晶。本发明方法步骤简单,可操作性强,重复性好;成本低,产率高,能合成不同粒径纳米晶,同时合成的纳米晶单分散性好、稳定性强;通过简单改变试验条件就能控制生成不同尺寸大小的颗粒,无论是在实验室合成还是工业化生产方面都具有巨大的应用价值。

Description

一种氧化物纳米晶的合成
(一)技术领域
本发明涉及一种氧化物纳米晶的合成,特别涉及四氧化三锰、氧化亚锰、四氧化三铁、氧化亚钴纳米晶的合成方法。
(二)背景技术
四氧化三锰、氧化亚锰、四氧化三铁、氧化亚钴等氧化物纳米晶在众多领域展现出巨大的潜在应用价值,如催化、高密度磁储存、太阳能电池、变阻器、磁流体、磁分离、磁成象等领域,是当今科技和工业的研究热点。
基于上述发展前景,合成单分散好的四氧化三锰、氧化亚锰、四氧化三铁、氧化亚钴纳米晶是学术和工业界的研究热点。以前报道的方法主要有:(1)用醋酸锰、醋酸铁或醋酸钴与三正辛胺和油酸合成,但此方法合成颗粒比较单一。(2)用羰基锰(羰基铁、羰基钴)、油胺和三辛基磷合成。这种方法可以合成多种尺寸颗粒,但是试验条件苛刻,只能停留在实验室阶段。(3)用乙醛丙酮锰(乙醛丙酮铁、乙醛丙酮钴)、油胺、油酸、1,2-十六烷醇在十八烯中合成。这种方法成本比较高。各种合成方法,都受到自身条件的限制,很难进入工业化大规模生产,且分别存在制得的纳米晶单分散性差、稳定性弱、成本较高、试验条件要求苛刻等问题。
(三)发明内容
本发明的目的在于提供一种氧化物纳米晶的合成方法,特别是四氧化三锰、氧化亚锰、四氧化三铁、氧化亚钴纳米晶的合成方法,以克服制得的纳米晶单分散性差、稳定性弱、成本较高、试验条件要求苛刻等问题。
本发明采用的技术方案如下:
一种氧化物纳米晶的合成,所述氧化物纳米晶为四氧化三锰、氧化亚锰、四氧化三铁或氧化亚钴,将氧化物前躯体与非配位溶剂以及活性剂混合后,惰性气氛下混合溶液加热至210-330℃并保持2-5min,然后相应降温20-40℃,并保持50-80min,反应液分离提纯后即得所述氧化物纳米晶,其中所述活性剂为酸A、胺B与含碳数10-18的烷醇的混合物,所述酸A为油酸或十八酸,所述胺B为油胺或十八胺,活性剂中酸∶胺∶烷醇的物质的量比为1∶0.5-6∶0-6。
所述的氧化物前躯体为锰、铁或钴的乙醛丙酮盐。
所述的非配位溶剂为下列之一或几种的混合物:十八烯、1-二十烯、二十四烷、液体石蜡、矿物油。溶剂对反应没有任何辅助作用。另外所述混合溶液通过加入非配位溶剂的方法进行降温,以提供纳米晶成核生长的条件。
所述活性剂中酸、胺与烷醇的物质的量比优选为1∶0.5-6∶0.5-6。活性剂中加入烷醇对合成不同尺寸特别是小粒径的四氧化三锰、氧化亚锰、四氧化三铁、氧化亚钴以及产品的产率起着关键作用,特别是对形成8nm以下的颗粒起决定性作用。所述烷醇优选十二烷醇,十二烷醇尤其对能否生成5nm左右的小颗粒起决定性作用,可以降低工业生产成本30%。
所述的酸优选油酸,胺优选油胺。
氧化物前躯体与活性剂的物质的量比优选为1∶3-12。
本发明中高温成核低温生长,是获得单分散性好、稳定性强的纳米晶的关键,同时可以提高合成纳米晶的产率。高温成核低温生长的方法是先把溶液加热到一个高的反应温度,然后再注入非配位溶剂,温度会迅速降低20-40℃,优选降低30℃,反应在低温条件下保持一段时间以使得成核纳米晶进行生长。相对高的温度可以形成更多晶核,而相对较低的温度可以使纳米晶更加稳定的生长。这种分离成核生长方法对生成尺寸单一的颗粒有非常重要的作用。通过采用控制成核生长的办法可以得到单分散性好,并且有自组装行为的纳米晶,甚至有部分颗粒能够组装成3维立体结构排列。
最初混合溶液中非配位溶剂的体积比例为70%-90%。再次加入非配位溶剂的量以混合溶液温度降至合适范围为准。加入非配位溶剂时,加入溶液的速度对纳米晶的形成也是有影响的。如果迅速注入溶液,温度会迅速下降到一个较低温度,这样纳米晶在相对较高温度大量成核以后,在相对较低温度生长就比较均一,很容易就形成单分散性纳米晶。如果缓慢注入溶液,温度下降比较慢,对于本来就不容易结晶的材料来说,就容易形成多种形貌。
所述的分离提纯操作为:将反应液冷却至室温,然后加入正己烷和甲醇的混合液中,60-80℃加热有沉淀物析出,收集所述沉淀物即为所述氧化物纳米晶,其中正己烷和甲醇的体积比为1∶9-20。
本发明所述的氧化物纳米晶具有一定磁性,其中Fe3O4和Mn3O4具有亚铁磁性,MnO和CoO具有反铁磁性。
本方法利用金属的氧化物前驱体与多种活性剂配体按一定比例混合并在高沸点溶剂中(即非配位溶剂)高温分解得到氧化物纳米晶。通过反应条件如温度、时间、前驱体与活性剂的比例的调节来达到纳米晶尺寸和形貌的可控性。调节不同的成核温度可以得到不同尺寸大小的纳米晶,在温度低的时候合成纳米晶尺寸比较小,温度高的时候合成纳米晶尺寸比较大。另外调节前驱体和活性剂的比例使它们达到最佳比值,通过控制反应速度可以得到不同颗粒大小,达到纳米晶的可控生长。利用不同的取样时间也可以得到不同尺寸大小的纳米晶,随反应时间的推移,纳米晶逐渐变大,但是不线形增加。
本发明相对于现有技术,有以下优点:
本发明方法步骤简单,可操作性强,重复性好;成本低,产率高,能合成不同粒径纳米晶,同时合成的纳米晶单分散性好、稳定性强,在合适的溶剂中能够产生自组装行为,甚至有部分颗粒能够组装成三维立体结构;通过简单改变试验条件就能控制不同尺寸大小的颗粒。本方法无论是在实验室合成还是工业化生产方面都具有巨大的应用价值。
(四)附图说明
图1为四氧化三锰、氧化亚锰X射线衍射图谱:
(a)注入温度220℃、生长温度190℃;
(b)注入温度240℃、生长温度210℃;
(c)注入温度280℃、生长温度250℃;
(d)注入温度330℃、生长温度300℃。
图2为四氧化三锰、氧化亚锰透射电镜图:
(a)注入温度220℃、生长温度190℃,产物Mn3O4
(b)注入温度240℃、生长温度210℃,产物Mn3O4和MnO;
(c)注入温度280℃、生长温度250℃,产物MnO;
(d)注入温度300℃、生长温度270℃,产物MnO;
(e)注入温度330℃、生长温度300℃,产物MnO;
(f)注入温度330℃、生长温度300℃,产物三维立体结构排列的MnO。
图3为四氧化三铁的X射线衍射图谱:
(a)注入温度270℃、生长温度240℃;
(b)注入温度330℃、生长温度300℃。
图4为四氧化三铁的透射电镜图:
(a)注入温度270℃、生长温度240℃;
(b)注入温度330℃、生长温度300℃。
图5为氧化亚钴的X射线衍射图谱:
(a)缓慢注入温度210℃、生长温度180℃;
(b)缓慢注入温度270℃、生长温度240℃;
(c)迅速注入温度240℃、生长温度210℃;
(d)迅速注入温度300℃、生长温度270℃;
(e)迅速注入温度330℃、生长温度300℃。
图6为氧化亚钴的透射电镜图:
(a)缓慢注入温度210℃、生长温度180℃;
(b)缓慢注入温度270℃、生长温度240℃。
图7为氧化亚钴的透射电镜图:
(a)迅速注入温度210℃、生长温度180℃;
(b)迅速注入温度270℃、生长温度240℃;
(c)迅速注入温度330℃、生长温度300℃。
图8为实施例6中不同反应时间取样的氧化亚锰的电镜图或电子衍射图。
(a)为反应10分钟取样氧化亚锰的透射电镜图;
(b)为反应30分钟取样氧化亚锰的透射电镜图;
(c)为反应60分钟取样氧化亚锰的透射电镜图;
(d)是(c)中样品的电子衍射图。
图9为实施例7得到的四氧化三铁纳米晶的透射电镜图:
图10为实施例8得到的氧化亚锰的透射电镜图:
图11为实施例9制得的四氧化三铁的透射电镜图:
图12(a)为实施例10制得的氧化亚锰的透射电镜图;
图12(b)为实施例11制得的氧化亚锰的透射电镜图;
图13为实施例12制得的四氧化三铁纳米晶的透射电镜图:
图14为实施例13制得的氧化亚锰纳米晶的透射电镜图:
图15为实施例14制得的氧化亚钴纳米晶的透射电镜图:
图16为实施例15制得的四氧化三铁纳米晶的透射电镜图。
(五)具体实施方式:
以下以具体实施例来说明本发明的技术方案,但本发明的保护范围不限于此:
实施例1
乙醛丙酮亚锰(0.506g,2.0mmol),液体石蜡(10mL),油酸(0.285g,1.0mmol),油胺(0.803g,3.0mmol),十二烷醇(0.559g,3.0mmol)混合在50mL的三颈瓶中;在氮气保护下,混合溶液被加热到220℃保持2-3分钟;然后液体石蜡(5mL)被迅速注入上述溶液反应温度迅速下降20-40℃;同时温度被设定190℃保持60分钟。最后形成黑色澄清溶液慢慢冷却到室温。把上述黑色溶液倒入装有正己烷(10mL)和甲醇(100mL)混合溶液的分液漏斗中。混合均匀稍微加热(60-80℃)有沉淀物析出。上述提纯进行5次,最终可以制得5nm左右的Mn3O4纳米晶。上述纳米晶沉淀可以很容易溶于有机溶剂如正己烷、辛烷、甲苯。其X射线衍射图谱、透射电镜图分别见图1、图2。
实施例2
乙醛丙酮亚锰(0.506g,2.0mmol),液体石蜡(10mL),油酸(0.285g,1.0mmo l),油胺(0.803g,3.0mmol),十二烷醇(0.559g,3.0mmol)混合在50mL的三颈瓶中;在氮气保护下,混合溶液被加热到280℃保持2-3分钟;然后液体石蜡5mL被迅速注入上述溶液反应温度迅速下降;同时温度被设定250℃保持60分钟,最后形成黑色澄清溶液慢慢冷却到室温。提纯方法同实施例1。最终可以制得15nm左右的MnO纳米晶。通过调节注入温度(240-330℃)我们可以得到不同大小纳米晶。所对应的X射线衍射图谱、透射电镜图分别见图1、图2。
实施例3
乙醛丙酮铁(0.353g,1.0mmol),液体石蜡(10mL),油酸(0.285g,1.0mmol),油胺(0.803g,3.0mmol),十二烷醇(0.559g,3.0mmol)混合在50mL的三颈瓶中.在氮气保护下,混合溶液被加热到270℃保持2-3分钟;然后液体石蜡5mL被迅速注入上述溶液反应温度迅速下降;同时温度被设定240℃保持60分钟,最后形成黑色澄清溶液慢慢冷却到室温。提纯方法同实施例1,最终可以制得4nm左右的Fe3O4纳米晶。通过调节注入温度(270-330℃)我们可以得到不同大小纳米晶。其X射线衍射图谱、透射电镜图分别见图3、图4。
实施例4
乙醛丙酮亚钴(0.505g,2.0mmol),液体石蜡(10mL),油酸(0.285g,1.0mmol),油胺(0.803g,3.0mmol),十二烷醇(0.559g,3.0mmol)混合在50mL的三颈瓶中,在氮气保护下,混合溶液被加热到270℃保持2-3分钟;然后液体石蜡5mL被缓慢注入上述溶液反应温度缓慢下降;同时温度被设定240℃保持60分钟,最后形成黑色澄清溶液慢慢冷却到室温,提纯方法同实施例1,最终可以制得花瓣颗粒,大小约40nm,每个花瓣大颗粒都是由3-5个10nm左右的小颗粒组成。通过调节注入温度(210-270℃)我们可以得到不同大小花瓣状纳米晶。其X射线衍射图谱、透射电镜图见图5、图6。
实施例5
乙醛丙酮亚钴(0.505g,2.0mmol),液体石蜡(10mL),油酸(0.285g,1.0mmol),油胺(0.803g,3.0mmol),十二烷醇(0.559g,3.0mmol)混合在50mL的三颈瓶中,在氮气保护下,混合溶液被加热到270℃保持2-3分钟;然后液体石蜡5mL被迅速注入上述溶液反应温度迅速下降;同时温度被设定240℃保持60分钟,最后形成黑色澄清溶液慢慢冷却到室温,提纯方法同实施例1,最终可以制得30nm左右的CoO纳米晶。通过调节注入温度(210-330℃)我们可以得到不同大小的纳米晶。其X射线衍射图谱、透射电镜图见图5、图7。
实施例6
乙醛丙酮亚锰(0.506g,2.0mmol),液体石蜡(10mL),油酸(0.148g,0.5mmol),油胺(0.803g,3.0mmol),十二烷醇(0.559g,3.0mmol)混合在50mL的三颈瓶中;在氮气保护下,混合溶液被加热到250℃保持2-3分钟;然后液体石蜡5mL被迅速注入上述溶液反应温度迅速下降;同时温度被设定220℃保持60分钟,最后形成黑色澄清溶液慢慢冷却到室温。提纯方法同实施例1。最终可以制得随时间不同颗粒大小不同的MnO纳米晶。所对应的透射电镜图、电子衍射图分别见图8。
实施例7
乙醛丙酮铁(0.353g,1.0mmol),液体石蜡和十八烯体积比为1∶1的混合溶液(10mL),油酸(0.285g,1.0mmol),油胺(0.803g,3.0mmol),十二烷醇(0.559g,3.0mmol)混合在50mL的三颈瓶中.在氮气保护下,混合溶液被加热到300℃保持2-3分钟;然后液体石蜡5mL被迅速注入上述溶液,反应温度迅速下降;同时温度被设定270℃保持60分钟,最后形成黑色澄清溶液慢慢冷却到室温。提纯方法同实施例1,最终可以制得8nm左右的Fe304纳米晶。透射电镜图见图9。
实施例8
乙醛丙酮亚锰(0.506g,2.0mmol),液体石蜡(10mL),油酸(3.39g,6mmol),油胺(0.803g,3.0mmol),十六醇(0.653g,3.0mmol)混合在50mL的三颈瓶中;在氮气保护下,混合溶液被加热到300℃保持2-3分钟;然后液体石蜡5mL被迅速注入上述溶液反应温度迅速下降;同时温度被设定270℃保持60分钟,最后形成黑色澄清溶液慢慢冷却到室温。提纯方法同实施例1。最终可以制得MnO纳米晶。所对应的透射电镜图电子衍射图分别见图10。
实施例9
羟基铁(0.178g,2.0mmol),液体石蜡溶液(10mL),油酸(0.285g,1.0mmol),油胺(0.803g,3.0mmol),十二烷醇(0.559g,3.0mmol)混合在50mL的三颈瓶中.在氮气保护下,混合溶液被加热到330℃保持2-3分钟;然后液体石蜡5mL被迅速注入上述溶液反应温度迅速下降;同时温度被设定300℃保持60分钟,最后形成黑色澄清溶液慢慢冷却到室温。提纯方法同实施例1,最终可以制得25nm左右的Fe3O4纳米晶。其透射电镜图见图11。
实施例10-11
乙醛丙酮亚锰(0.506g,2.0mmol),液体石蜡(10mL),油酸(0.285g,1.0mmol),油胺(0.803g,3.0mmol),十二烷醇(0.559g,3.0mmol)混合在50mL的三颈瓶中;在氮气保护下,混合溶液分别被直接加热到240℃保持60分钟(例10)或直接加热到300℃保持60分钟(例11),最后形成黑色澄清溶液慢慢冷却到室温。提纯方法同实施例1。透射电镜图分别见图12的(a)和(b)。
实施例12
乙醛丙酮铁(0.353g,1.0mmol),液体石蜡溶液(10mL),油酸(0.285g,1.0mmol),油胺(0.803g,3.0mmol),混合在50mL的三颈瓶中.在氮气保护下,混合溶液被加热到330℃保持2-3分钟;然后液体石蜡5mL被迅速注入上述溶液反应温度迅速下降;同时温度被设定300℃保持60分钟,最后形成黑色澄清溶液慢慢冷却到室温。提纯方法同实施例1,最终可以制得15nm左右的Fe3O4纳米晶。透射电镜图分别见图13。
实施例13
乙醛丙酮亚锰(0.506g,2.0mmol),液体石蜡(10mL),油酸(3.39g,6mmol),油胺(0.803g,3.0mmol),混合在50mL的三颈瓶中;在氮气保护下,混合溶液被加热到350℃保持2-3分钟;然后液体石蜡5mL被迅速注入上述溶液反应温度迅速下降;同时温度被设定320℃保持30分钟,最后形成黑色澄清溶液慢慢冷却到室温。提纯方法同实施例1。最终可以制得40nm左右的MnO纳米晶。所对应的透射电镜图见图14。
实施例14
乙醛丙酮亚钴(0.505g,2.0mmol),液体石蜡(10mL),油酸(3.39g,6mmol),油胺(0.803g,3.0mmol),混合在50mL的三颈瓶中;在氮气保护下,混合溶液被加热到270℃保持2-3分钟;然后液体石蜡5mL被迅速注入上述溶液反应温度迅速下降;同时温度被设定240℃保持60分钟,最后形成黑色澄清溶液慢慢冷却到室温。提纯方法同实施例1。得到20nm的CoO纳米晶。所对应的透射电镜图见图15。
实施例15
乙醛丙酮铁(0.353g,1.0mmol),液体石蜡和十八烯体积比为1∶4的混合溶液(10mL),油酸(3.39g,6mmol),油胺(0.803g,3.0mmol),十二烷醇(0.559g,3.0mmol)混合在50mL的三颈瓶中;在氮气保护下,混合溶液被加热到330℃保持2-3分钟;然后液体石蜡5mL被迅速注入上述溶液反应温度迅速下降;同时温度被设定300℃保持60分钟,最后形成黑色澄清溶液慢慢冷却到室温。提纯方法同实施例1,得到Fe3O4纳米晶,所对应的透射电镜图见图16。

Claims (10)

1.一种氧化物纳米晶的合成,所述氧化物纳米晶为四氧化三锰、氧化亚锰、四氧化三铁或氧化亚钴,其特征在于将氧化物前躯体与非配位溶剂以及活性剂混合后,惰性气氛下混合溶液加热至210-330℃并保持2-5min,然后相应降温20-40℃,并保持50-80min,反应液分离提纯后即得所述氧化物纳米晶,其中所述活性剂为酸A、胺B与含碳数10-18的烷醇的混合物,所述酸A为油酸或十八酸,所述胺B为油胺或十八胺,活性剂中酸∶胺∶烷醇的物质的量比为1∶0.5-6∶0-6。
2.如权利要求1所述的氧化物纳米晶的合成,其特征在于所述活性剂中酸∶胺∶烷醇的物质的量比为1∶0.5-6∶0.5-6。
3.如权利要求1所述的氧化物纳米晶的合成,其特征在于氧化物前躯体与活性剂的物质的量比为1∶3-12。
4.如权利要求1所述的氧化物纳米晶的合成,其特征在于所述混合溶液通过加入非配位溶剂进行降温。
5.如权利要求1-4之一所述的氧化物纳米晶的合成,其特征在于所述烷醇为十二烷醇,所述酸为油酸,所述胺为油胺。
6.如权利要求1所述的氧化物纳米晶的合成,其特征在于所述非配位溶剂为下列之一或几种的混合物:十八烯、1-二十烯、二十四烷、液体石蜡、矿物油。
7.如权利要求1所述的氧化物纳米晶的合成,其特征在于所述氧化物前躯体为锰、铁或钴的乙醛丙酮盐。
8.如权利要求1所述的氧化物纳米晶的合成,其特征在于所述降温的幅度为30℃。
9.如权利要求1所述的氧化物纳米晶的合成,其特征在于混合溶液中非配位溶剂的体积比例为70-90%。
10.如权利要求1所述的氧化物纳米晶的合成,其特征在于所述的分离提纯操作为:将反应液冷却至室温,然后加入正己烷和甲醇的混合液中,60-80℃加热有沉淀物析出,收集所述沉淀物即为所述氧化物纳米晶,其中正己烷与甲醇的体积比为1∶9-20。
CN200810230636XA 2008-10-29 2008-10-29 一种氧化物纳米晶的合成方法 Expired - Fee Related CN101403138B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200810230636XA CN101403138B (zh) 2008-10-29 2008-10-29 一种氧化物纳米晶的合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200810230636XA CN101403138B (zh) 2008-10-29 2008-10-29 一种氧化物纳米晶的合成方法

Publications (2)

Publication Number Publication Date
CN101403138A true CN101403138A (zh) 2009-04-08
CN101403138B CN101403138B (zh) 2011-04-27

Family

ID=40537292

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200810230636XA Expired - Fee Related CN101403138B (zh) 2008-10-29 2008-10-29 一种氧化物纳米晶的合成方法

Country Status (1)

Country Link
CN (1) CN101403138B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101549888B (zh) * 2009-05-08 2011-07-20 中南大学 一种制备单分散铁酸盐纳米晶的方法
CN102051687B (zh) * 2009-11-03 2012-07-25 中国科学院化学研究所 应用表面活性剂分子c18n3制备金晶体的方法
CN103374752A (zh) * 2012-04-23 2013-10-30 比亚迪股份有限公司 一种单晶四氧化三锰的制备方法
CN104310458A (zh) * 2014-10-10 2015-01-28 九江学院 一种制备氧化锌纳米棒的方法
CN104925871A (zh) * 2015-06-12 2015-09-23 中南民族大学 一种单分散氧化亚钴纳米晶的合成方法
CN108975415A (zh) * 2018-08-31 2018-12-11 肇庆市华师大光电产业研究院 一种氧化亚钴纳米晶的制备方法及其制备的氧化亚钴纳米晶

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101549888B (zh) * 2009-05-08 2011-07-20 中南大学 一种制备单分散铁酸盐纳米晶的方法
CN102051687B (zh) * 2009-11-03 2012-07-25 中国科学院化学研究所 应用表面活性剂分子c18n3制备金晶体的方法
CN103374752A (zh) * 2012-04-23 2013-10-30 比亚迪股份有限公司 一种单晶四氧化三锰的制备方法
CN103374752B (zh) * 2012-04-23 2016-08-03 比亚迪股份有限公司 一种单晶四氧化三锰的制备方法
CN104310458A (zh) * 2014-10-10 2015-01-28 九江学院 一种制备氧化锌纳米棒的方法
CN104310458B (zh) * 2014-10-10 2015-10-14 九江学院 一种制备氧化锌纳米棒的方法
CN104925871A (zh) * 2015-06-12 2015-09-23 中南民族大学 一种单分散氧化亚钴纳米晶的合成方法
CN108975415A (zh) * 2018-08-31 2018-12-11 肇庆市华师大光电产业研究院 一种氧化亚钴纳米晶的制备方法及其制备的氧化亚钴纳米晶

Also Published As

Publication number Publication date
CN101403138B (zh) 2011-04-27

Similar Documents

Publication Publication Date Title
CN101403138B (zh) 一种氧化物纳米晶的合成方法
Dantas et al. Magnetic nanocatalysts of Ni0. 5Zn0. 5Fe2O4 doped with Cu and performance evaluation in transesterification reaction for biodiesel production
Manikandan et al. Hibiscus rosa-sinensis leaf extracted green methods, magneto-optical and catalytic properties of spinel CuFe 2 O 4 nano-and microstructures
CN103785859B (zh) 一种纳米介孔材料的制备方法
US20210276883A1 (en) Hierarchical porous honeycombed nickel oxide microsphere and preparation method thereof
Mahmood et al. Nanobiotechnology for the production of biofuels from spent tea
CN100545090C (zh) 一种x型沸石分子筛的制备方法
CN103101980A (zh) 一种多孔铁氧体的制备方法
CN101274771B (zh) 金属氧化物纳米晶的制备方法
Xu et al. Hydrogen production by catalytic cracking of rice husk over Fe2O3/γ-Al2O3 catalyst
CN113786856A (zh) 一种负载金属单原子和纳米颗粒竹节状氮掺杂碳纳米管的制备方法
US20090047206A1 (en) Catalyst particle for production of carbon nanocoil, process for producing the same, and process for producing carbon nanocoil
CN109574839A (zh) 一种合成气直接生产乙酸甲酯和/或乙酸的方法
CN105152226A (zh) 磁性纳米环微波吸收剂的制备与应用
CN104925871A (zh) 一种单分散氧化亚钴纳米晶的合成方法
CN102274977A (zh) 一种合成钴金双金属合金纳米粒子的制备方法
CN101830518A (zh) 一种具有核壳结构的球形四氧化三钴及其制备方法
CN109502653A (zh) 一种具有花状核壳结构纳米颗粒及其制备方法
Naghavi et al. Microwave combustion vs. conventional fabrication of high active and reusable magnesium ferrite nanostructure for transformation of sunflower oil to green fuel
CN101109102B (zh) 一种合成有机-无机复合的氧化锗单晶纳米线的方法
CN106430324A (zh) 一种花状α‑FeOOH多孔微纳米球及其制备方法
Rostami-Vartooni et al. Biosynthesis and catalytic activity of Pd/NiFe2O4 nanocomposite for the reduction of wastewater pollutants
CN102259932A (zh) 一种一维金属氧化物纳米材料的制备方法
CN105597762A (zh) 用于乙酸乙酯加氢脱氧的负载型介孔Ni催化剂及其制备方法
CN1335257A (zh) 一种制备碳纳米管的催化剂

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20210507

Address after: 211514 building 10, Nanjing Siqiao economic Park, Donggou, Longpao street, Liuhe District, Nanjing City, Jiangsu Province

Patentee after: NANJING ZITONG NANO TECHNOLOGY Co.,Ltd.

Address before: 475001 Henan province city Minglun Street No. 85

Patentee before: Henan University

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110427

Termination date: 20211029

CF01 Termination of patent right due to non-payment of annual fee