CN101397644A - 一种Ti基大块非晶合金及其生产方法 - Google Patents

一种Ti基大块非晶合金及其生产方法 Download PDF

Info

Publication number
CN101397644A
CN101397644A CNA2008101170004A CN200810117000A CN101397644A CN 101397644 A CN101397644 A CN 101397644A CN A2008101170004 A CNA2008101170004 A CN A2008101170004A CN 200810117000 A CN200810117000 A CN 200810117000A CN 101397644 A CN101397644 A CN 101397644A
Authority
CN
China
Prior art keywords
alloy
equal
amorphous alloy
amorphous
bulk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008101170004A
Other languages
English (en)
Other versions
CN101397644B (zh
Inventor
林均品
郝国建
张勇
王艳丽
林志
叶丰
陈国良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN2008101170004A priority Critical patent/CN101397644B/zh
Publication of CN101397644A publication Critical patent/CN101397644A/zh
Application granted granted Critical
Publication of CN101397644B publication Critical patent/CN101397644B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本发明是一种Ti基大块非晶合金及其生产方法,其化学成分为(原子百分比):TixZryBezVu,其中36≤x≤50,28≤y≤34,16≤z≤36,0≤u≤6,且x+y+z+u=100。本发明的生产方法是先用真空电弧炉熔炼母合金,然后将母合金置于快速凝固装置的电弧炉中熔化,熔化后吸铸到铜模中形成非晶态合金棒,非晶含量50%到100%。Ti基大块非晶具有极高的强度以及良好的室温耐蚀性,并且Ti基大块非晶的玻璃转变温度较高,可作为新型高温耐蚀结构材料。本发明的优点在于舍弃掉了以前钛基非晶合金的后过渡族元素,如Ni,Cu和Sn等,使钛基非晶合金具有更低的密度和更高得比强度。

Description

一种Ti基大块非晶合金及其生产方法
技术领域
本发明涉及到一种低密度高比强、高耐腐蚀性,适用于航空航天结构材料和生物医用器件的Ti基块体非晶合金及其生产方法。
背景技术
非晶合金具有长程无序、短程有序的结构,因此与晶态合金相比,具备许多特有的性能,如高硬度、高强度、高电阻、耐蚀及耐磨等,为材料科研工作者开发高性能的功能材料和结构材料提供了巨大的潜力,因而非晶合金的制备与大块非晶材料的研制吸引了材料界越来越多的关注。40多年来,随着技术的发展与进步,一系列具有高的玻璃形成能力的合金系被开发的Fe、Co、Zr、Ni、Mg、Pd、Ti、Cu、Nd、及La系等合金系中多组元成分的大块非晶合金被发现。其中以Zr基为代表的金属玻璃以其较高的非晶形成能力,独一无二的力学性能和优良的粘滞流动能力已经得到了实际应用。
Ti基大块非晶合金由于具有极高的强度和低密度以及良好的室温耐蚀性,并且其玻璃转变温度较高,在新型高温耐蚀结构材料和生物医用器件方面有广阔的前景,因此受到广泛关注和研究。过近三十年的探索和努力,人们开发出了大量Ti基非晶合金系统,比如:Ti-Be-Zr、Ti-Ni-Si、Ti-Nb-Si、Ti-Nb-Si-B、Ti-Ni-Cu、Ti-Ni-Cu-Al、Ti-Zr-Cu-Ni、Ti-Zr-Cu-Ni-Al、Ti-Ni-Cu、Ti-Ni-Cu-Al、Ti-Zr-Ni-Cu-Al、Ti-Zr-Cu-Ni-Be等。Tao Zhang等在Ti-Ni-Cu-Sn系非晶合金中发现ΔTx为60K的合金(Ti50Ni20Cu25Sn5)。Y.C.Kim等又将其进一步推至73K(Ti50Ni15Cu32Sn3)。但是后过渡族元素Ni,Cu和Sn的加入使合金的密度升高,丧失了合金低密度的优点。因此,开发出具有高的非晶形成能力和低密度的大块非晶合金具有重要的实际应用价值。
发明内容
本发明的技术解决问题:克服现有合金的不足,开发出一种具有高的非晶形成能力、低的密度、高的比强度、高的热稳定性、高的硬度及强度的Ti基大块非晶合金及其制备方法。
本发明的内容:
本发明是一种Ti基大块非晶合金,包含TixZryBezVu,其组分(原子百分比)为:
Ti:36≤x≤50;
Be:28≤y≤34;
Zr:16≤z≤36;
V:0≤u≤6.
一种上述的Ti基大块非晶合金的生产方法,首先将所述的Ti基大块非晶合金一起置于电弧炉内,在惰性气体保护下采用电弧将其熔化至少三次,然后,将所述的母合金锭放入电弧炉吸铸坩埚内,在惰性气体保护下通过电弧加热重熔,在负压下利用机械泵将熔化的合金吸入铜模内,铜模内孔为圆柱形,直径为1-10毫米,可以获得直径为1-10毫米铸态圆棒的Ti基大块非晶合金。
本发明与现有技术相比的优点:具有更低的密度、更高的比强度、更高的热稳定性和高的非晶形成能力。
附图说明
图1是本发明提供的Ti-Be-Zr三元大块非晶合金X射线衍射谱图;
图2是本发明提供的Ti-Be-Zr三元大块非晶合金的热分析DSC曲线图;
图3是本发明提供的Ti41Be34-xZr25Vx(x=2,6 at.%)非晶合金X射线衍射图。
图4是本发明提供的Ti41Be34-xZr25Vx(x=2,6at.%)非晶合金DSC曲线图。
具体实施方式
下面结合图表说明在TiBeZr三元系Ti基非晶及在此基础上加入微量元素V,制备出较原来具有更高其非晶形成能力的合金的具体实施方式。
实施例1
将高纯度(纯度大于99%)的36%Ti,28%Be,36%Zr(原子百分比,以下同)元素在经Ti纯化的电弧炉内反复熔炼3遍以上,使合金成分均匀,得到名义成分为Ti36Be28Zr36的合金锭,再将5-10克的合金锭放入吸铸坩埚内利用机械泵将重熔后的合金吸入铜模内,获得直径为3-5毫米的圆棒。经X射线衍射分析样品为非晶相,如图1所示。通过热分析获得此非晶合金的玻璃转变温度Tg,晶化开始温度Tx,和过冷液相温度区间ΔTx。该非晶合金的DSC曲线示于图2中,显示了明显的玻璃转变和晶化过程,其Tg,Tx,ΔTx分别为320℃,425℃,105℃。该大块非晶合金的热物理参数列于表1中。
实施例2
将高纯度(纯度大于99%)的50%Ti,34%Be,16%Zr元素在经Ti纯化的电弧炉内反复熔炼3遍以上,使合金成分均匀,得到名义成分为Ti50Be34Zr16的合金锭,再将5-10克的合金锭放入吸铸坩埚内利用机械泵将重熔后的合金吸入铜模内,获得直径为3-5毫米的圆棒。经X射线衍射分析样品为非晶相,如图1所示。通过热分析获得此非晶合金的玻璃转变温度Tg,晶化开始温度Tx,和过冷液相温度区间ΔTx。该非晶合金的DSC曲线示于图2中,显示了明显的玻璃转变和晶化过程,其Tg,Tx,ΔTx分别为330℃,365℃,35℃。该大块非晶合金的热物理参数列于表1中。
实施例3
将高纯度(纯度大于99%)的41%Ti,34%Be,25%Zr元素在经Ti纯化的电弧炉内反复熔炼3遍以上,使合金成分均匀,得到名义成分为Ti41Be34Zr25的合金锭,再将5-10克的合金锭放入吸铸坩埚内利用机械泵将重熔后的合金吸入铜模内,获得直径为3-5毫米的圆棒。经X射线衍射分析样品为非晶相,如图1所示。通过热分析获得此非晶合金的玻璃转变温度Tg,晶化开始温度Tx,和过冷液相温度区间ΔTx。该非晶合金的DSC曲线示于图2中,显示了明显的玻璃转变和晶化过程,其Tg,Tx,ΔTx分别为316℃,354℃,38℃。该大块非晶合金的热物理参数列于表1中。
实施例4
将高纯度(纯度大于99%)的41%Ti,32%Be,25%Zr,2%V元素在经Ti纯化的电弧炉内反复熔炼3遍以上,使合金成分均匀,得到名义成分为Ti41Be32Zr25V2的合金锭,再将5-10克的合金锭放入吸铸坩埚内利用机械泵将重熔后的合金吸入铜模内,获得直径为3-5毫米的圆棒。经X射线衍射分析样品为非晶相,如图3所示。通过热分析获得此非晶合金的玻璃转变温度Tg,晶化开始温度Tx,和过冷液相温度区间ΔTx。该非晶合金的DSC曲线示于图4中,显示了明显的玻璃转变和晶化过程,其Tg,Tx,ΔTx分别为318℃,371℃,53℃。该大块非晶合金的热物理参数列于表1中。
实施例5
将高纯度(纯度大于99%)的41%Ti,28%Be,25%Zr,6%V元素在经Ti纯化的电弧炉内反复熔炼3遍以上,使合金成分均匀,得到名义成分为Ti41Be28Zr25V6的合金锭,再将5-10克的合金锭放入吸铸坩埚内利用机械泵将重熔后的合金吸入铜模内,获得直径为3-5毫米的圆棒。经X射线衍射分析样品为非晶相,如图3所示。通过热分析获得此非晶合金的玻璃转变温度Tg,晶化开始温度Tx,和过冷液相温度区间ΔTx。该非晶合金的DSC曲线示于图4中,显示了明显的玻璃转变和晶化过程,其Tg,Tx,ΔTx分别为310℃,368℃,58℃。该大块非晶合金的热物理参数列于表1中。该合金具有较高的非晶形成能力。
本发明的铸态材料的非晶结构可以采用X射线衍射仪进行确定。将铸态材料用线切割或低速金刚石切片机切开,切面用砂纸打磨,对剖面利用XRD进行检测,非晶合金的XRD谱展示出弥散的衍射峰,而晶体合金的XRD谱上会出现尖锐的衍射峰。
非晶合金的玻璃转变及晶化过程可以用热分析DSC进行分析,表1提供的是Ti基非晶合金的热物理性能和临界尺寸。从表中可以看出最大的非晶合金过冷液相区间达到102℃,和较高的玻璃转变温度,表明合金具有高的热稳定性和大的热加工区间。图3,4位V元素的加入对合金的形成能力和热物理性能的影响。表明在三元合金中加入V,能够极大的提高合金的非晶形成能力,并提高非晶的热稳定性,和过冷液相区宽度。本发明的创新之处在于完全去除掉了现今Ti基非晶中所存在的后过渡族重金属元素,所利用元素都是前过渡族轻合金和超轻合金,保持了Ti基非晶低密度,高比强度的特点,并具有强的非晶形成能力和高的热稳定性。
表1
 
合金 Tg Tx ΔTx=(Tx-Tg)℃ 临界尺寸,mm
Ti36Be28Zr36 320 425 105 3
Ti50Be34Zr16 330 365 35 3
Ti41Zr25Be34 316 354 38 3
Ti41Zr25Be32V2 318 371 53 6
Ti41Zr25Be28V6 310 368 58 6

Claims (2)

1.一种Ti基大块非晶合金,其特征所述的Ti基大块非晶合金包含TixZryBezVu,其组分原子百分比为:
Ti:36≤x≤50;
Be:28≤y≤34;
Zr:16≤z≤36;
V:0≤u≤6。
2.一种如权利要求1所述的Ti基大块非晶合金的生产方法,其特征:
首先将所述的Ti基大块非晶合金一起置于电弧炉内,在惰性气体保护下采用电弧将其熔化至少三次,然后,将所述的母合金锭放入电弧炉吸铸坩埚内,在惰性气体保护下通过电弧加热重熔,在负压下利用机械泵将熔化的合金吸入铜模内,铜模内孔为圆柱形,直径为1-10毫米,能获得直径为1-10毫米铸态圆棒的Ti基大块非晶合金。
CN2008101170004A 2008-07-22 2008-07-22 一种Ti基大块非晶合金及其生产方法 Active CN101397644B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008101170004A CN101397644B (zh) 2008-07-22 2008-07-22 一种Ti基大块非晶合金及其生产方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008101170004A CN101397644B (zh) 2008-07-22 2008-07-22 一种Ti基大块非晶合金及其生产方法

Publications (2)

Publication Number Publication Date
CN101397644A true CN101397644A (zh) 2009-04-01
CN101397644B CN101397644B (zh) 2011-01-19

Family

ID=40516485

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008101170004A Active CN101397644B (zh) 2008-07-22 2008-07-22 一种Ti基大块非晶合金及其生产方法

Country Status (1)

Country Link
CN (1) CN101397644B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102268618A (zh) * 2011-08-01 2011-12-07 清华大学 一种高比强度轻质钛基非晶合金
CN102296253A (zh) * 2010-06-23 2011-12-28 中国科学院金属研究所 内生韧性相增强Ti基非晶复合材料及其制备方法
CN102296254A (zh) * 2010-06-23 2011-12-28 中国科学院金属研究所 拥有极高非晶形成能力的Ti-Zr-Cu-Ni(Fe)-Be合金及制备方法
CN105695901A (zh) * 2016-04-13 2016-06-22 苏州思创源博电子科技有限公司 一种钛锆铝基金属玻璃的制备方法
CN107385365A (zh) * 2017-06-26 2017-11-24 中国科学院金属研究所 具有加工硬化能力的Ti‑Zr‑Cu‑Be四元非晶复合材料及其制备方法
CN116024507A (zh) * 2022-12-29 2023-04-28 东莞市逸昊金属材料科技有限公司 一种轻量非晶合金及其制备方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102296253A (zh) * 2010-06-23 2011-12-28 中国科学院金属研究所 内生韧性相增强Ti基非晶复合材料及其制备方法
CN102296254A (zh) * 2010-06-23 2011-12-28 中国科学院金属研究所 拥有极高非晶形成能力的Ti-Zr-Cu-Ni(Fe)-Be合金及制备方法
CN102296254B (zh) * 2010-06-23 2013-04-17 中国科学院金属研究所 拥有极高非晶形成能力的Ti-Zr-Cu-Ni(Fe)-Be合金及制备方法
CN102296253B (zh) * 2010-06-23 2016-01-06 中国科学院金属研究所 内生韧性相增强Ti基非晶复合材料及其制备方法
CN102268618A (zh) * 2011-08-01 2011-12-07 清华大学 一种高比强度轻质钛基非晶合金
CN102268618B (zh) * 2011-08-01 2012-12-19 清华大学 一种高比强度轻质钛基非晶合金
CN105695901A (zh) * 2016-04-13 2016-06-22 苏州思创源博电子科技有限公司 一种钛锆铝基金属玻璃的制备方法
CN107385365A (zh) * 2017-06-26 2017-11-24 中国科学院金属研究所 具有加工硬化能力的Ti‑Zr‑Cu‑Be四元非晶复合材料及其制备方法
CN107385365B (zh) * 2017-06-26 2020-03-31 中国科学院金属研究所 具有加工硬化能力的Ti-Zr-Cu-Be四元非晶复合材料及其制备方法
CN116024507A (zh) * 2022-12-29 2023-04-28 东莞市逸昊金属材料科技有限公司 一种轻量非晶合金及其制备方法

Also Published As

Publication number Publication date
CN101397644B (zh) 2011-01-19

Similar Documents

Publication Publication Date Title
CN101397644B (zh) 一种Ti基大块非晶合金及其生产方法
CN100457955C (zh) 铁基大块非晶合金材料
KR102539775B1 (ko) 알루미늄 합금 함유 분말체의 제조 방법 및 이의 응용과 합금 스트립
CN101760706A (zh) 一种铝基微/纳米多孔非晶合金材料及其制备方法
CN107779683B (zh) 一种Al基非晶合金及其制备方法
CN102719769B (zh) 一种高强度铝基大块非晶复合材料
CN103469119B (zh) 一种非晶复合材料及其制备方法和应用
CN105385966B (zh) 一种铝基非晶态合金及其制备方法和应用
CN105132835B (zh) (Ti‑Cu‑Ni‑Zr)‑Sn系非晶复合材料及其制备方法
CN101418423B (zh) 一种镁基非晶合金复合材料
CN101328566B (zh) 一种大块稀土钆基复合非晶材料及其制备方法
CN111636026B (zh) 一种高铌低密度难熔多主元合金及其真空滴铸方法
CN103668010A (zh) 一系列具有胞状微观结构的Zr-Al-Ni-Cu块体非晶合金
CN1403619A (zh) 可形成非晶态结构的多组元钛基合金
CN100354448C (zh) Cu基Cu-Zr-Ti系块体非晶合金
Kukuła-Kurzyniec et al. Aluminium based composites strengthened with metallic amorphous phase or ceramic (Al2O3) particles
CN104213054B (zh) 液相分离双相块体金属玻璃材料及其制备方法
CN103602930B (zh) 含高熔点元素的镁基非晶复合材料
Dyakova et al. Influence of Zr and Zn as minority alloying elements on glass forming ability and crystallization behavior of rapidly solidified alcumg ribbons
Wang et al. The oxidation behavior of a novel ni-free zr–cu-based bulk metallic glass composite in the supercooled liquid and crystallization states
Zhang et al. Microstructure of Mg-6.4 Zn-1.1 Y alloy fabricated by rapid solidification and reciprocating extrusion
CN100580127C (zh) 一种铝基Al-Cu-Zn-Sn四元体系大块非晶合金
CN104611604A (zh) 一种四方晶系结构的轻质高熵合金及其制备方法
Xu et al. Glassy Formability and Structural Variation of Zr50− xCu50Alx (x= 0∼ 25) Alloys with Respect to Icosahedral Short-Range Ordering
CN102094157A (zh) 一种钽基大块非晶合金及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant