CN101383405A - 低增湿和耐久的燃料电池隔膜 - Google Patents

低增湿和耐久的燃料电池隔膜 Download PDF

Info

Publication number
CN101383405A
CN101383405A CNA2008101657119A CN200810165711A CN101383405A CN 101383405 A CN101383405 A CN 101383405A CN A2008101657119 A CNA2008101657119 A CN A2008101657119A CN 200810165711 A CN200810165711 A CN 200810165711A CN 101383405 A CN101383405 A CN 101383405A
Authority
CN
China
Prior art keywords
membrane
zeolite
barrier film
hydrogen
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2008101657119A
Other languages
English (en)
Inventor
M·F·马赛厄斯
H·A·加斯泰格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motors Liquidation Co
Original Assignee
Motors Liquidation Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motors Liquidation Co filed Critical Motors Liquidation Co
Publication of CN101383405A publication Critical patent/CN101383405A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1051Non-ion-conducting additives, e.g. stabilisers, SiO2 or ZrO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)
  • Catalysts (AREA)
  • Conductive Materials (AREA)

Abstract

提供了一种低增湿和耐久的燃料电池隔膜,它带有嵌埋于其中的吸水材料以便在潮湿条件下吸收水,并提供了水的储器以便在干燥条件下保持润湿的隔膜5。在吸水材料中提供了氢的氧化催化剂,它可催化横穿隔膜的氢和氧的反应,用来润湿隔膜并保持吸水材料充满水。按此,在操作系统中燃料电池组的增湿需求即可降低。

Description

低增湿和耐久的燃料电池隔膜
本申请是基于申请日为2003年7月7日、申请号为03816332.2的申请所提交的分案申请
技术领域
[0001]本发明涉及从电化学反应生产电力的燃料电池体系,更具体地说,是涉及这类燃料电池体系的低增温隔膜。
背景技术
[0002]燃料电池体系常常包含由烃类燃料产生氢的燃料加工程序。燃料电池体系通常包括许多燃料电池,后者通过由还原和氧化剂(例如氢和一种氧化剂)反应产生的电化学能量转化来生产电力。
[0003]燃料电池已经在许多应用中被作为电源,并且能提供比其它电能来源更好的效率、可靠性、耐久性、成本以及环境方面的益处。作为这些燃料电池超过其它能源改进的运作的结果,特别是降低了有害物排放(即,实际是没有有害物排放),把燃料电池驱动的电发动机用于汽车和其它运载工具以代替内燃机是很有吸引力的。
[0004]一种普通类型的燃料电池是质子交换隔膜(PEM)型燃料电池,它使用一种很薄的聚合物隔膜,后者可以让质子渗透,但是不让电子渗透。在PEM型燃料电池中的这种隔膜是隔膜电极装置(MEA)的一部份,该电极装置的阳极在隔膜的一面,而阴极在隔膜的相反一面。这种隔膜典型地是由离子交换树脂诸如全氟化的磺酸制成的。这种MEA被夹在一对电导性元件之间,后者是作为阳极和阴极的电流收集器用的,并含有适当的为把燃料电池的气态反应物分布到相应的阳极和阴极催化剂表面上的通道和开口。
[0005]在PEM型燃料电池中,氢(H2)是阳极反应物(即燃料)而氧是阴极反应物(即氧化剂)。这种氧气可以是纯净的形态(即O2),也可以是空气(即O2和N2的混合物),或者O2与其它气体的结合。阳极和阴极通常包含装载在碳颗粒上的粉细催化剂颗粒,并与质子传导性树脂掺和。这种催化剂颗粒典型地是贵金属颗粒,诸如,例如铂。
[0006]这些MEAs也需要受控制的操作条件,以便改进操作效率并防止隔膜和催化剂的降解。这些操作条件包括合适的水控制和增湿。具体地说,如果电解质隔膜的合适湿度水平不能维持,电池性能就会受到影响(即质子传导性降低并且电池产生的电流也下降)。不能控制隔膜的水浓度将可能妨碍隔膜适当地传导氢离子,从而导致由燃料电池产生的电功率下降。例如,如果电池太干燥,质子的传导性就会降低。相反,如果液体水在燃料电池中保留在阴极上,氧就不能穿过保留的水层而到达阴极催化剂,从而也降低了燃料电池性能。
[0007]先有技术中燃料电池体系,典型地是利用极为湿化的空气流来维持EMA隔膜的适当湿气水平。然而,从系统观点来看,往电池组这样提供水是昂贵的,并且为使系统的复杂性和成本降至最低,希望能提供尽可能小量的水。
发明内容
[0008]按此,本发明提供一种嵌埋在隔膜中的吸收剂颗粒,它在潮湿条件下吸收水,并且提供水的储器,以便在干燥条件下使隔膜保持湿润。这样,吸水颗粒允许燃料电池在“进气流汲湿”的期间存活并且不会过度失去其传导性。一种氢氧化催化剂被装载在吸水材料中,以催化横穿隔膜的氢和氧的反应。这一反应将生成水并用来湿润提供于隔膜中的吸水颗粒。利用本发明,在操作体系中燃料电池组对於增湿的需要将会降低。这将导致减少或取消增湿设备,并且减少或取消电池组下游的冷凝设备的需要。系统复杂性和成本也明显降低。燃料电池组对于低进气流湿度周期的应答将大为改善,同时也改进了隔膜的耐久性。
[0009]从后面提供的详尽描述,本发明进一步应用的领域将变得十分明显。应该理解,这些详尽描述和具体实施例在指出本发明优选的实施方案的同时,只是打算用于说明的目的,而不是想限制本发明的范围。
附图说明
[0010]由详尽描述和所附的图,本发明将变得更易于充分理解,在这些图中:
[0011]图1是按照本发明原理制成的低增湿燃料电池隔膜的示意性横截面图;
[0012]图2是按照本发明原理制成的另一可选择的低增湿燃料电池隔膜的示意性横截面图;以及
[0013]图3是说明按照本发明原理制作低增湿燃料电池隔膜的方法步骤的流程图。
具体实施方式
[0014]以下的优选实施方案的描述在性质上仅仅是示例说明性的,不想以任何方式限制本发明、它的应用或用途。
[0015]PEM(质子交换隔膜,也被称为聚合物电解质隔膜)燃料电池使用一个简单的化学过程把氢和氧结合成水,同时在过程中产生电流。在阳极上,氢分子给出电子并形成氢离子,这一过程是通过催化剂才使其能够实现的。电子通过外电路流向阴极并产生电流。这一电流可通过驱动电子装置而完成有用功。质子交换隔膜只允许质子流过,但不让电子通过它。结果,在电子流经外电路的同时,氢离子直接流经质子交换隔膜而到达阴极,在那里它和氧分子以及电子相结合而形成水。这样,氢燃料被氧化并形成水的自然倾向就被用来产生电力,后者然后被用来做功。没有污染产生,维一产生的产物是水和热。
[0016]如图1所示,提供了按照本发明原理做成的低增湿燃料电池隔膜10的示意性横截面图。隔膜10可以用,例如,全氟化碳磺酸、聚砜、全氟化碳羧酸和苯乙烯-二乙烯基苯磺酸来制造。吸水材料12被嵌埋在隔膜10中。按照一个优选的实施方案,硅石/氧化铝颗粒被用作吸水材料。一种理想的硅石/氧化铝来自具有很高吸水能力的沸石族材料。沸石材料的实例包括沸石A[Advera 401(PQ Corporation)],沸石X(Aldrich 28-359-2),和沸石Y(Aldrich 33-441-3)。一种氢氧化催化剂14被装载在吸水材料12中。这种氢氧化催化剂可被装载在吸水材料12结构的上面或里面。
[0017]吸水材料12在潮湿条件下将吸收水,并提供水的储器,以保持隔膜10在干燥条件下受到润湿。这样,吸水材料12允许燃料电池在“进气流汲湿”的期间存活而不会过度损失其传导性。最好是,吸水颗料12的尺寸小于隔膜的厚度,从而使反应气体不致从阳极室沿经颗粒的细线泄漏到阴极。一种用于汽车应用中的优化的隔膜厚度,大约在10-50微米范围内,而吸水颗粒12的尺寸则优选小于5微米。典型地,颗粒直径应比隔膜厚度小大约十倍(注:在图1和图2中的颗粒为了说明的目的没有按比例描绘)。
[0018]氢氧化催化剂14可包括铂、金、钯、铑、铱、和钌,它们可以单独使用或结合起来使用。最好是使用很高分散度的铂(分散度指Pt表面积/每克Pt这比率)。在隔膜里的氢氧化催化剂将催化横穿过隔膜10的氢和氧的反应。这一反应形成水并将用来湿润隔膜10并使吸水材料12充满水。进一步,在隔膜10中包含一种氧化催化剂14,也将关闭这类燃料电池的一种众所周知的衰变机制,后者涉及阳极上穿过的氧反应形成过氧化物,它随后进攻并降解聚合物隔膜的主链。为使氢氧化催化剂的效益达到最高,后者应以很高的分散度(即催化剂表面积/每克催化剂这比率)存在,并且高分散度应在隔膜的整个生存期间被保持。当沸石被用作吸水材料时,这种氢氧化催化剂可被安置在沸石的笼内。催化剂沉积在高表面积的笼内,将为催化剂提供良好的分散度并防止催化剂生长成颗粒,后者的尺寸将大于沸石笼的尺寸(在3-10帧之间)。
[0019]例如,当在高温和高压条件下运行的燃料电池转向低温和低压的操作点时,低压可能会很快达到。然而由于燃料电池的热容量,要建立起较低的温度条件则将需要较长时间。这样,燃料电池在温度降低到较低的稳态值的同时将倾向于干涸,而按照本发明做成的隔膜将能缓和这一效应。
[0020]本发明的隔膜10最好通过铸塑工艺来形成,并把在其上载有氢氧化催化剂14的吸水材料12分散在隔膜10内。铸塑工艺可以生产出比挤出工艺更薄的隔膜,并且它可提供方便的方法来把氢氧化催化剂/吸水材料(14/12)分散到整个隔膜10中。如图3所示,步骤S1包括把催化剂14分散在吸水颗粒12上。随后,吸水颗粒12被分散在隔膜材料中(步骤S2),并且带有吸水颗粒12的隔膜材料被铸塑形成隔膜薄膜10(步骤S3)。使用本发明工艺,如示意性地显示于图1中那样,其上载有氢氧化催化剂14的吸水材料12可被嵌埋在遍及整个隔膜结构10中。
[0021]按照一种优选的实施方案,铂是通过离子交换过程被沉积在沸石笼中。在这一过程中,含铂的阳离子(即以盐的形态存在的四胺Pt,例如由硝酸盐或氯化物盐)与沸石在水溶液浆液中实施接触。铂阳离子进入沸石笼中并固着在离子交换中心上,后者也被称为酸中心。这些离子交换中心是基于沸石骨架结构中的负电荷中心,它们需要在所有时间存在阳离子以符合电中性的物理定律。为最大限度地吸收铂,对于沸石离子交换中心来说,重要的是在试图进行并入铂的步骤时先用质子来中和。这是因为铂阳离子与中心的相互作用比与质子的相互作用更强,于是更容易进行交换而进入沸石上的一个固着点。
[0022]沸石通常是以钠型式获得的(即,离子交换中心和沸石用钠离子中和)。在加入铂之前,这些中心必须通过铵交换过程以便将其转化为氢型式,该交换过程导致钠离子被铵离子置换。接着进行空气焙烧,其间释出氨气,留下质子来中和离子交换中心。然后进行铂离子交换以使铂阳离子物种交换到沸石中。最后,进行热处理以还原含铂离子成为铂金属,后者是催化氢氧化反应的活性形式。在铂沉积在沸石中以后,这些粉末状物质可用诸如铸塑或挤出这类工艺并入隔膜中。
[0023]本发明另一种供选择的设计是,把吸水颗粒12析离出来,成为图2中所示那样的在隔膜20中的一层中心层。这可以通过把两层均匀的不含吸水材料的铸塑隔膜22、24层压在一层如图1显示和描述的隔膜10上来完成。这种构造可以保证穿越隔膜结构的气体量保持在可以接受的水平。
[0024]利用本发明,运行体系中的燃料电池组的增湿需要即可降低。这将导致增湿需要的降低或取消,以及电池组下游冷凝需要的降低或取消。体系的复杂性和成本于是大为降低。燃料电池组对于低进气流温度期间的应答大为改进。此外,隔膜的耐久性也得以改进。通过把吸水材料和催化剂结合成颗粒,然后并入隔膜中,使产生的水最初与吸水材料接触并尽可能地充份维持其吸收水的能力。这样,催化剂14就使吸水材料12的储器效应达到最大。孔径大小可以这样选择,即使得氢氧化催化剂既可被装载在吸水材料晶体的外面,也可被装载在晶体内部,只要使它能最有效地接触氢和氧就好。
[0025]本发明的描述在性质上仅仅是示例说明性的,因此,打算把那些并不偏离本发明要旨的变化都包括在本发明范围之内。这些变化不被认为偏离了本发明的精神和范围。

Claims (18)

1.一种用于燃料电池的质子交换隔膜,它包含:
隔膜薄膜;
嵌埋在所述隔膜薄膜中的沸石颗粒;以及
在所述沸石颗粒嵌埋在所述隔膜薄膜之前装载在所述沸石的笼内的氢的氧化催化剂。
2.权利要求1的隔膜,其中所述沸石颗粒包括离子交换的沸石,所述沸石在多个离子交换中心具有所述催化剂。
3.权利要求1的隔膜,其中所述沸石颗粒的尺寸小于所述隔膜薄膜的厚度。
4.权利要求1的隔膜,其中所述氢的氧化催化剂是铂。
5.权利要求1的隔膜,其中所述氢的氧化催化剂选自铂、金、钯、铑、铱、钌以及它们的混合物。
6.权利要求1的隔膜,其中所述隔膜薄膜选自全氟化碳磺酸、聚砜、全氟化碳羧酸以及苯乙烯—二乙烯基苯磺酸。
7.权利要求1的隔膜,它进一步包含位于所说隔膜薄膜至少一面上的不含吸水剂的隔膜层。
8.权利要求1的隔膜,它进一步包含位于所说隔膜薄膜每一面上的不含吸水剂的隔膜层。
9.权利要求1的隔膜,其中所述沸石颗粒的尺寸最大为3微米。
10.一种制造质子交换隔膜的方法,它包括以下步骤:
将氢的氧化催化剂分散在沸石颗粒的笼内;和
将所述沸石颗粒在所述分散后铸塑进隔膜薄膜中。
11.权利要求10的方法,它进一步包括将不含吸水剂的隔膜层层压在所说隔膜薄膜的每一面上。
12.权利要求10的方法,其中所述沸石是离子交换的沸石,所述催化剂占据所述沸石的多个离子交换中心。
13.权利要求12的方法,其中,通过使多个所述的离子交换中心转化为氢形式,接着使多个所述的氢形式从所述中心转化为所述催化剂形式,来制备所述离子交换沸石。
14.权利要求10的方法,其中所述沸石颗粒的尺寸小于所述隔膜薄膜的厚度。
15.权利要求10的方法,其中所述氢的氧化催化剂是铂。
16.权利要求10的方法,其中所述氢的氧化催化剂选自铂、金、钯、铑、铱和钌。
17.权利要求10的方法,其中所述隔膜薄膜选自全氟化碳磺酸、聚砜、全氟化碳羧酸以及苯乙烯-二乙烯基苯磺酸。
18.权利要求10的方法,其中所述沸石颗粒的尺寸最大为3微米。
CNA2008101657119A 2002-07-09 2003-07-07 低增湿和耐久的燃料电池隔膜 Pending CN101383405A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/191919 2002-07-09
US10/191,919 US6824909B2 (en) 2002-07-09 2002-07-09 Low-humidification and durable fuel cell membrane

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNA038163322A Division CN1669168A (zh) 2002-07-09 2003-07-07 低增湿和耐久的燃料电池隔膜

Publications (1)

Publication Number Publication Date
CN101383405A true CN101383405A (zh) 2009-03-11

Family

ID=30114247

Family Applications (2)

Application Number Title Priority Date Filing Date
CNA2008101657119A Pending CN101383405A (zh) 2002-07-09 2003-07-07 低增湿和耐久的燃料电池隔膜
CNA038163322A Pending CN1669168A (zh) 2002-07-09 2003-07-07 低增湿和耐久的燃料电池隔膜

Family Applications After (1)

Application Number Title Priority Date Filing Date
CNA038163322A Pending CN1669168A (zh) 2002-07-09 2003-07-07 低增湿和耐久的燃料电池隔膜

Country Status (7)

Country Link
US (1) US6824909B2 (zh)
JP (1) JP2005532665A (zh)
CN (2) CN101383405A (zh)
AU (1) AU2003267983A1 (zh)
CA (1) CA2489154A1 (zh)
DE (1) DE10392896B4 (zh)
WO (1) WO2004006357A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102759786A (zh) * 2011-04-28 2012-10-31 索尼公司 驱动单元、透镜模块、图像拾取单元和燃料电池

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1669169A (zh) * 2002-05-13 2005-09-14 复合燃料公司 离子导电嵌段共聚物
US20050014037A1 (en) * 2002-12-04 2005-01-20 Chris Boyer Fuel cell with recombination catalyst
US7030770B2 (en) * 2003-02-28 2006-04-18 Stuart Energy Systems Corporation Hydrogen storage system and power system incorporating same
JP2007519213A (ja) * 2004-01-20 2007-07-12 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 安定なプロトン交換膜およびその中に使用するための触媒を調製する方法
US20060204831A1 (en) * 2004-01-22 2006-09-14 Yan Susan G Control parameters for optimizing MEA performance
CA2455689A1 (en) * 2004-01-23 2005-07-23 Stuart Energy Systems Corporation System for controlling hydrogen network
US9346674B2 (en) * 2004-10-28 2016-05-24 Samsung Sdi Co., Ltd. Catalyst for a fuel cell, a method of preparing the same, and a fuel cell system comprising the same
US8475971B2 (en) 2004-11-24 2013-07-02 GM Global Technology Operations LLC Membrane treatment method
JP5023447B2 (ja) * 2004-12-20 2012-09-12 日産自動車株式会社 燃料電池システム
KR100684787B1 (ko) * 2005-03-31 2007-02-20 삼성에스디아이 주식회사 연료전지용 고분자 전해질막, 이의 제조 방법 및 이를포함하는 연료전지용 스택 및 연료전지 시스템
US7399549B2 (en) * 2005-04-22 2008-07-15 Gm Global Technology Operations, Inc. Altering zeta potential of dispersions for better HCD performance and dispersion stability
US20070059580A1 (en) * 2005-09-15 2007-03-15 Budinski Michael K Design strategies for corrosion mitigation
US8652705B2 (en) 2005-09-26 2014-02-18 W.L. Gore & Associates, Inc. Solid polymer electrolyte and process for making same
US7993791B2 (en) * 2005-10-26 2011-08-09 Nanotek Instruments, Inc. Self-humidifying proton exchange membrane, membrane-electrode assembly, and fuel cell
US8007943B2 (en) * 2005-11-03 2011-08-30 GM Global Technology Operations LLC Cascaded stack with gas flow recycle in the first stage
US20070178341A1 (en) * 2006-01-27 2007-08-02 Christian Wieser Gas channel coating with water-uptake related volume change for influencing gas velocity
US7955750B2 (en) 2006-02-21 2011-06-07 GM Global Technology Operations LLC Controlled electrode overlap architecture for improved MEA durability
US8343452B2 (en) * 2006-03-20 2013-01-01 GM Global Technology Operations LLC Acrylic fiber bonded carbon fiber paper as gas diffusion media for fuel cell
JP2007317516A (ja) * 2006-05-26 2007-12-06 Canon Inc 燃料電池及び燃料電池装置
US7569299B2 (en) 2006-07-25 2009-08-04 Gm Global Technology Operations, Inc. Multi-component fuel cell gasket for low temperature sealing and minimal membrane contamination
US7749632B2 (en) 2006-07-27 2010-07-06 Gm Global Technology Operations, Inc. Flow shifting coolant during freeze start-up to promote stack durability and fast start-up
US7883810B2 (en) * 2006-11-09 2011-02-08 GM Global Technology Operations LLC Slow purge for improved water removal, freeze durability, purge energy efficiency and voltage degradation due to shutdown/startup cycling
US8168340B2 (en) 2007-11-07 2012-05-01 GM Global Technology Operations LLC Water removal features for PEMfc stack manifolds
US8409769B2 (en) 2007-12-07 2013-04-02 GM Global Technology Operations LLC Gas diffusion layer for fuel cell
US7989115B2 (en) * 2007-12-14 2011-08-02 Gore Enterprise Holdings, Inc. Highly stable fuel cell membranes and methods of making them
DE102009025121B4 (de) * 2009-06-16 2011-11-10 Sfs Intec Holding Ag System zum Befestigen eines Panels
KR101142235B1 (ko) * 2010-01-28 2012-05-24 금오공과대학교 산학협력단 Dmfc용 고분자 나노복합막, 이를 이용한 막-전극 어셈블리 및 메탄올 연료전지
CN103811771B (zh) * 2014-01-20 2016-04-13 哈尔滨工业大学深圳研究生院 一种用于直接甲醇燃料电池的质子交换膜的改性方法
JP6022619B2 (ja) * 2014-02-21 2016-11-09 富士フイルム株式会社 硬化性組成物および高分子硬化物
DE102019126308A1 (de) * 2019-09-30 2021-04-01 Audi Ag Befeuchter, Brennstoffzellenvorrichtung sowie Kraftfahrzeug mit einer Brennstoffzellenvorrichtung

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3271801B2 (ja) * 1992-09-22 2002-04-08 田中貴金属工業株式会社 高分子固体電解質型燃料電池、該燃料電池の加湿方法、及び製造方法
US5523181A (en) * 1992-09-25 1996-06-04 Masahiro Watanabe Polymer solid-electrolyte composition and electrochemical cell using the composition
JP3375200B2 (ja) * 1993-06-18 2003-02-10 田中貴金属工業株式会社 高分子固体電解質組成物
US5766787A (en) * 1993-06-18 1998-06-16 Tanaka Kikinzoku Kogyo K.K. Solid polymer electrolyte composition
US5447636A (en) * 1993-12-14 1995-09-05 E. I. Du Pont De Nemours And Company Method for making reinforced ion exchange membranes
JP3035885B2 (ja) * 1996-03-15 2000-04-24 工業技術院長 固体イオン導電体
GB9708365D0 (en) * 1997-04-25 1997-06-18 Johnson Matthey Plc Proton conducting membranes
US6117581A (en) * 1999-03-15 2000-09-12 Ford Global Technologies, Inc. Fuel cell electrode comprising conductive zeolite support material
DE19917812C2 (de) * 1999-04-20 2002-11-21 Siemens Ag Membranelektrodeneinheit für eine selbstbefeuchtende Brennstoffzelle, Verfahren zu ihrer Herstellung und Brennstoffzellenbatterie mit einer solchen Membranelektrodeneinheit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102759786A (zh) * 2011-04-28 2012-10-31 索尼公司 驱动单元、透镜模块、图像拾取单元和燃料电池

Also Published As

Publication number Publication date
US6824909B2 (en) 2004-11-30
WO2004006357A2 (en) 2004-01-15
CA2489154A1 (en) 2004-01-15
DE10392896T5 (de) 2005-09-29
US20040009384A1 (en) 2004-01-15
DE10392896B4 (de) 2009-07-23
CN1669168A (zh) 2005-09-14
AU2003267983A8 (en) 2004-01-23
AU2003267983A1 (en) 2004-01-23
WO2004006357A3 (en) 2004-04-29
JP2005532665A (ja) 2005-10-27

Similar Documents

Publication Publication Date Title
CN101383405A (zh) 低增湿和耐久的燃料电池隔膜
CN102119459B (zh) 碱性膜燃料电池及其补水装置和方法
US20060099482A1 (en) Fuel cell electrode
JP4876914B2 (ja) 固体電解質型燃料電池
US20100323249A1 (en) Air electrode
JP4937755B2 (ja) 燃料電池システム
JP2014516465A (ja) 形状制御コアシェル触媒
US20090004521A1 (en) Alkaline fuel cell
US5800938A (en) Sandwich-type solid polymer electrolyte fuel cell
US20060068270A1 (en) Solid polymer electrolyte fuel battery cell and fuel battery using same
EP1338053B1 (en) A cathode layer structure for a solid polymer fuel cell and fuel cell incorporating such structure
KR100645832B1 (ko) 고분자 전해질형 연료전지용 막전극접합체, 그 제조방법 및상기 막전극접합체를 포함하는 연료전지
CN1802767A (zh) 燃料电池系统
JP2003151564A (ja) 固体高分子型燃料電池用電極
US20080057381A1 (en) Dissolved-fuel direct alcohol fuel cell
JP2005353495A (ja) セルモジュール及び燃料電池
JP3744474B2 (ja) 固体電解質型燃料電池用燃料、固体電解質型燃料電池およびその使用方法
JP2012074205A (ja) 膜電極複合体およびアルカリ形燃料電池
JP2021093348A (ja) カソード触媒層、並びに、膜電極接合体及び燃料電池
JP4392823B2 (ja) 固体電解質型燃料電池
Jiang et al. Alkaline Fuel Cells
JP4839625B2 (ja) 燃料電池
JP2004356084A (ja) 燃料電池
JP2005100780A (ja) 燃料電池用カソード及びこれを備えた固体高分子型燃料電池
JP5217129B2 (ja) 燃料電池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20090311

RJ01 Rejection of invention patent application after publication