CN101365786B - Plants having improved growth characteristics and methods for making same - Google Patents

Plants having improved growth characteristics and methods for making same Download PDF

Info

Publication number
CN101365786B
CN101365786B CN200680052158.7A CN200680052158A CN101365786B CN 101365786 B CN101365786 B CN 101365786B CN 200680052158 A CN200680052158 A CN 200680052158A CN 101365786 B CN101365786 B CN 101365786B
Authority
CN
China
Prior art keywords
plant
nucleic acid
seq
sequence
polypeptide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200680052158.7A
Other languages
Chinese (zh)
Other versions
CN101365786A (en
Inventor
V·弗兰卡德
C·勒佐
A·I·桑兹莫林纳罗
C·达曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CropDesign NV
Original Assignee
CropDesign NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CropDesign NV filed Critical CropDesign NV
Priority claimed from PCT/US2006/045721 external-priority patent/WO2007064724A2/en
Publication of CN101365786A publication Critical patent/CN101365786A/en
Application granted granted Critical
Publication of CN101365786B publication Critical patent/CN101365786B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8262Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield involving plant development
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Abstract

The present invention relates generally to the field of molecular biology and concerns a method for improving various plant growth characteristics by modulating expression in a plant of a nucleic acid encoding a GRP (Growth-Related Protein). The present invention also concerns plants having modulated expression of a nucleic acid encoding a GRP, which plants have improved growth characteristics relative to corresponding wild type plants or other control plants. The invention also provides constructs useful in the methods of the invention. The GRP may be one of the following: Seed Yield Regulator (SYR), FG-GAP1 CYP90B, CDC27, AT-hook transcription factors, DOF transcription factors and Cyclin Dependent Kinase Inhibitors (CKIs).

Description

Plant and the production method thereof with the growth characteristics of improvement
Technical field
Relate generally to biology field of the present invention and relating to by regulating the expression of the nucleic acid of coding GRP (growth associated protein) to improve the method for various plants growth characteristics in plant.The plant that the invention still further relates to the GRP coding nucleic acid expression with adjusting, this plant is compared the growth characteristics with improvement with corresponding wild-type plant or other control plants.The present invention also provides the construct for method of the present invention.
Background technology
In view of world population constantly increases, obtainablely for agriculture land area, constantly reduce, the diversity that improves farm efficiency and increase gardening plant remains the major objective of research.Ordinary method utilization for farm crop and gardening plant improvement selects breeding technique to identify the plant with desired characteristic.Yet, this type of selects breeding technique to have several shortcomings, be that these technology are normally labor-intensive and cause producing the plant conventionally comprise heterogeneous hereditary fill-in, described heterogeneous hereditary fill-in may always not cause transmitting from mother plant the proterties of expectation.Molecular biological progress has made the mankind can operate the idioplasm (germplasm) of animal and plant.The genetically engineered of plant needs separated and operates genetic material (form with DNA or RNA exists conventionally) and subsequently genetic material imported to plant.Such technology has caused producing the plant of economy, agronomy or the Horticultural Characters with various improvement.The proterties with special economic implications is for example high yield of growth characteristics.Output is normally defined the production of measurable tool economic worth from farm crop.This can define aspect quantity and/or quality.Output directly depends on several factors, for example the number of organ and size, plant structure (for example, the number of branch), seed production etc.The growth of root, dietetic alimentation and stress tolerance/resistance (stresstolerance/resistance) can be also the important factors of determine output.
Seed production is the proterties of particularly important, because the seed of many plants is very important for the nutrition of humans and animals.No matter consumption by direct seed itself or by being based upon the consumption of the meat product on the seed of processing, farm crop for example corn, rice, wheat, canola and soybean have occupied the over half of total people's energy intake.They are the source of the meta-bolites for industrial processes of sugar, oil and numerous species still.Seed comprise embryo (new bud and the source of root) and endosperm (sprout and the early growth of seedling in for the source of nutrition of embryonic development).The growth of seed involves many genes, and meta-bolites need to be transferred to the seed of growth from root, leaf and stem.Endosperm, the metabolic precursor thereof that can assimilate especially carbohydrate, oil and protein, is synthesized storage macromole filling seed.
Another important character of many farm crop is early growth gesture (early vigour).In temperate zone and tropical rice growing kind, improve the free-revving engine that early growth gesture is the modern rice procedure of breeding.It is very important that long root for the suitable soil anchor of water direct seeding rice.When rice directly being sowed into flood field (flooded field) and when plant must be emerged the water surface fast, longer stem will be associated with growth potential.When carrying out bar sowing time, longer mesocotyl and coleoptile are particularly importants for good coming up.Early growth gesture also can be caused by the plant adaptability increasing, and the increase of described plant adaptability can be owing to plant for example to the better adaptation of its environment (more can tackle various abiotic or biological Stress Factors).The plant with early growth gesture also shows the neat seedling of better crop (establishment of the crop), and (farm crop grow in the mode of homogeneous more, be that majority of plant reaches each stage of growth in the substantially the same time), and show better growth and common higher output.
An important character is the abiotic stress patience improving again.Abiotic stress is the major cause of world wide crop loss, and it makes the mean yield of most of staple crops plant subtract (people such as Wang, Planta (2003) 218:1-14) more than 50%.Abiotic stress can be caused by arid, salinity, extreme temperature, chemical toxicity and oxidative stress.For worldwide peasant, the ability that improves Plant Tolerance abiotic stress has huge economic advantages, and it makes can be under disadvantageous condition and regional culture farm crop that originally may not crop culture.
Therefore can be by one in the above-mentioned factor of optimization because usually increasing crop yield.
Depend on end-use, the improvement of some yield traits may be better than the improvement of other proterties.Such as for application such as feed or timber production or biofuel source, may expect to increase the leaf part of plant, for application such as flour, starch or oil production, the increase of planting subparameter may be special expectation.Even, in kind of subparameter, depend on purposes, some parameters can be better than other parameters.Different mechanism can be facilitated the seed production of increase---and no matter its form for the seed size of increase is still the form of the number seeds of increase.
A method that increases (seed) output in plant can be the intrinsic growth mechanism that changes plant.Such mechanism is the cell cycle.
Have now found that can be by regulating the GRP (growth associated protein) in coded plant the expression of nucleic acid in plant improve the various growth characteristics of plant.GRP can be one of following: seed production conditioning agent (Seed Yield Regulator) (SYR), FG-GAP, CYP90B, CDC27, AT hook transcription factor (AT-hook transcription factars), DOF transcription factor and cell cycle protein dependent kinase inhibitor (CKI).
Background
seed production conditioning agent (SYR)
Existence increases the lasting needs of gene to finding new seed production, used so far for example except other strategies, by controlling hormone levels (WO 03/050287), by manipulation cell cycle (WO 2005/061702), the several method being undertaken by controlling the gene (WO2004/058980) of participation salt stress reaction.
SYR is the new albumen not characterized yet so far.SYR shows certain homology (sequence identity of about 48% on DNA level to being called Arabidopsis plant (Arabidopsis) albumen of ARGOS, about 45% sequence identity on protein level) (the people such as Hu, Plant Cell15,1951-1961,2003; US 2005/0108793).The people such as Hu infer ARGOS to be the albumen of tool unique function and to be encoded by individual gene.In Arabidopsis, to cross the main phenotype of expression be blooming of the Leaf biomass that increases and delay to ARGOS.
FG-GAP
FG-GAP albumen is the transmembrane protein of supposition.It is characterized in that the existence of the existence of one or more FG-GAP structural domain (Pfam accession number PF01839) and the N-terminal signal peptide of protein and the membrane spaning domain in C-terminal half part.
Such protein D EX1 separation is from Arabidopsis plant and work during pollen development according to reports (the people Plant Physiol.127 such as Paxson-Sowders, 1739-1749,2001).Dex1 mutant plant is presented in pollen wall pattern formation (pattern formation) has defect.DEX1 genes encoding is positioned to 896 amino acid whose albumen of plasma membrane through prediction, wherein residue 1 to 860 is positioned at cell outside, and residue 880 to 895 is positioned at the tenuigenin side of film, and residue 861 to 879 is potential membrane spaning domain.12 potential N glycosylation sites are present in DEX1.Therefore, this protein have by severe, modified and with the various ingredients of cell walls is interactional may.DEX1 shows the maximal sequence similarity to the hemolysin sample albumen from vibrio cholerae (V.cholerae), yet about 200 amino acid whose fragments (amino acid 439-643) of DEX1 also show the limited similarity to the calcium binding domains of alpha-6 integrin.In this region, have the calcium binding partner of at least 2 group supposition, it is also present in the Arabidopsis calmodulin (AC009853) of prediction.Therefore, to seem may be calcium binding protein to DEX1.DEX1 is the vegetable-protein of uniqueness seemingly; In bacterium, fungi or animal, there is not homologue.
By the structure of the DEX1 of the change of observing and prediction, formed several suppositions (people such as Paxson-Sowders, 2001) of the effect in pollen wall forms about this albumen in dex1 plant:
(a) DEX1 may be linker albumen.It can be combined with sporule film and participate in prototheca (primexine) or sporopollenin (sporopollenin) are attached to plasma membrane.Sporule surface lacks the structural modification that this albumen can cause prototheca.Many potential N glycosylation sites were consistent with DEX1 and callose wall, intine or both adhering to.
(b) DEX1 may be the component of prototheca matrix and may in the initial polymerization of prototheca, work.Ca + 2the change of ionic concn seems synthetic extremely important to pollen wall; Beta-glucan synthase is subject to the Ca of micro-molar concentration in callose wall forming process + 2activation.
(c) DEX1 may be the part of asperities ER and the processing that participates in prototheca precursor and/or to the transportation of film.Conforming to the overall shortage of prototheca precursor with overall change appears in the delay of prototheca.Prototheca matrix is comprised of polysaccharide, protein and Mierocrystalline cellulose at first, is then incorporated to the material that has more resistance.Therefore, DEX1 may participate in formation or the transportation of many different componentss.
CYP90R
Brassinosteroids (BR) is that a class is for the very important plant hormone of Promoting plant growth, division and growth.Term BR totally refers to the polyhydroxylated steroid derivatives of the natural generation of kind more than 40, and it has the structural similarity with animal steroid hormone.In these plant hormones, brassinolide shows tool biologic activity (about summary, Clouse (2002) Brassinosteroids.TheArabidopsis Book:1-23).
Used biological chemistry and mutation analysis to illustrate BR biosynthetic pathway.BR is by least two branch's bio-chemical pathways that start from identical initial precursor campesterol synthetic people (1997) Physiol Plant 100:710-715 such as () Fujioka.Found the most of Codocyte pigment of found BR biosynthesis gene p450 monooxygenases (CYP) (Bishop and Yokota (2001) Plant CellPhysiol 42:114-120).The oxidation of the many chemical substances of CYP enzyme superfamily catalysis, herein, the essential oxidizing reaction in catalysis BR biosynthesizing more specifically.The intermediate product campestanol that a step in the important step of having identified is hydroxylation BR and the steroid side chain of 6-oxo campestanol, thus 6-deoxidation formed respectively for cathasterone and cathasterone.These two parallel oxidation steps are always also referred to as early stage steroid C-22 α-hydroxylation step people (1998) Plant Cell 10:231-243 such as () Choe.In Arabidopsis, specific CYP enzyme CYP90B1 or DWF4 carry out this step (the general reference about plant CYP nomenclature is shown in, the people such as Nelson (2004) PlantPhys 135:756-772).
Owing to inserting T-DNA in DWF4 locus and lack the arabidopsis mutant type plant of steroid 22 α hydroxylase activities, show owing to lacking the dwarfing phenotype that cell elongation causes people (1998) Plant Cell 10:231-243 such as () Choe.The biological chemistry of using BR biosynthesizing intermediate product to carry out is fed and be studies show that, all downstreams compound has all been saved this phenotype, and known precursor can not.
Using cauliflower mosaic virus 35 S promoter to produce dystopy crosses and expresses the transgenic arabidopsis of Arabidopis thaliana DWF4 genomic fragment and tobacco plant (being both dicotyledons) (people (2001) the Plant J 26 (6) such as Choe: 573-582).Plant height, the sum of branch and the sum of seed when the phenotypic characteristic of plant shows hypocotyl length, maturation are compared with control plant, in transgenic plant, are increased.The people such as Choe find that the seed production increasing has the more seed of more number owing to every strain plant, in the scope that is increased in standard deviation of seed size.In WO00/47715, further describe these experiments.
Patent US 6,545, and 200 relate to the nucleic acid fragment of coding sterol biosynthesis gene, and more specifically claimed coding has C-8, the nucleotide sequence of the polypeptide of 7 sterol isomerase activities.The partial nucleotide sequence of encoding D WF4 is disclosed.
US 2004/0060079 relates to the monocotyledonous method of improvement with anticipant character that produces.Provide and wherein the nucleotide sequence (being called OsDWF4 or CYP90B2) of coding rice DWF4 has been placed in to the example under constitutive promoter (rice actin promoter) control.In the transgenosis rice of 36 strains expression chimeric construct bodies, there are 14 strains to show, compare every fringe Number of kernels of increase with non-transformed control plant.Described in contriver, the output increase of comparing transgenic plant with wild-type is that the overall number increase due to seed causes, because do not find significant difference on " 10 weights ".
CDC27
Depend on final purposes, the improvement of some yield traits can be better than other proterties.For example for application examples, produce as feed or timber, or biofuel source, the increase of leaf part may expect, and for application examples, as the production of flour, starch or oil, the increase of planting subparameter may be to expect especially.Even, in kind of subparameter, depend on purposes, some parameters can be better than other parameters.Different mechanism can promote to increase seed production---its form with the seed size that increases or with the form of the number seeds that increases no matter.Such mechanism is the cell cycle.
By the cell cycle develop g and D for all multicellular organisms be essence and for cell proliferation, be vital.The main ingredient of cell cycle is high conservative in yeast, Mammals and plant.Cell cycle is divided into following period in succession: G0-G1-S-G2-M conventionally.DNA replication dna or synthetic conventionally in S phase (" S " represents that DNA is synthetic) generation, chromosomal mitotic division is separated in M phase (" M " represents mitotic division) generation, be inserted with interval (gap phase) therebetween, G1 (phase of cell growth before DNA replication dna) and G2 (after DNA replication dna, cell is prepared the period of division).After division of cytoplasm (final step of M phase), complete cell fission.Exited the cell cycle and become static cell and be regarded as the phase in G0.Can stimulate cell in this phase to reenter the cell cycle in the G1 phase." G " representative " interval " in G1, G2 and G0.Completing of cell cycle progression makes daughter cell can accept the complete copy of parental gene group in fission process.
Cell fission is subject to two main cell cycle events, and the synthetic initial sum of DNA is mitotic initial, control.To the conversion of each event in these critical events, be subject to each time the control of the specified protein mixture (participating in DNA replication dna and division) as restriction point (checkpoint).In Mammals and vegetable cell, on G1/S border, the expression of the synthetic necessary gene of DNA is subject to regulation and control (La Thangue, 1994 of transcription factor E2F family; The people such as Muller, 2001; The people such as De Veylder, 2002).Cell cycle enter by E2F/Rb mixture to regulate and control/trigger, described E2F/Rb mixture integrated signal also makes it possible to transcribing of activating cells cycle genes.Conversion between the different times of cell cycle, and the development of passing through thus the cell cycle, forming and activating and drive by different different dimerization serine/threonine protein kitase (being commonly referred to cell cycle protein dependent kinase (CDK)).The precondition of these kinase whose activity is and the physical bond of specific cells cyclin, activates the expression that the time occurring depends primarily on cyclin.The combination of cyclin is held the conformational change of leaf by the N of the CDK of induction combination and is promoted location and the substrate specificity of mixture.As monomer CDK, it is activated when cyclin is combined, thereby has kinase activity.The level of cyclin fluctuates in the cell cycle, from but determine that CDK activates the principal element of time of origin.In cell cycle process, the periodicity of these mixtures that comprise cyclin and CDK activates the Timing that has mediated cell cycle conversion (restriction point).
Existence guarantees that mechanism once only occurs DNA replication dna in the cell cycle.For example, CDC16, CDC23 and CDC27 albumen be called anaphase-promoting complex (anaphase promotingcomplex) (APC) or the part of the high molecular weight component of cell cycle body (referring to Romanowski and Madine, Trends in Cell Biology 6,184-188,1996, with Wuarin and Nurse, Cell 85,785-787 (1996).This mixture in yeast is comprised of at least 8 albumen, PROTEIN C DC16, the CDC23 that comprises TPR-(three tetradecapeptide repeating units) and CDC27 and 5 other subunits (people 1996 such as Peters that are called APC1, APC2, APC4, APC5 and APC7, Science274,1199-1201).Its substrate of APC target, is connected to carry out proteolytic degradation by catalysis ubiqutin molecule and these substrates.APC dependence protein matter hydrolysis be while change in mid-term to the later stage sister strand separated with finally from mitotic division, exit necessary.Later stage inhibitor protein Pds1p and mitotic cell cyclin such as cell periodic protein B be APC substrate (people 1998 such as Ciosk, Cell 93,1067-1076; The people such as Cohen-Fix 1996, Genes Dev 10,3081-3093; The people such as Sudakin 1995, Mol Biol Cell 6,185-198; The people such as Jorgensen 1998, Mol Cell Biol 18,468-476; Townsley and Ruderman 1998, Trends CellBiol 8,238-244).In order to produce the activity of ubiqutin ligase enzyme, at least CDC16, CDC23 and CDC27 need to be phosphorylated in the M phase (Ollendorf and Donoghue 1997, J Biol Chem272,32011-32018).The APC activating is at the whole G1 phase sustainable existence of cell cycle subsequently, thereby prevent the too early appearance of type B cell cyclin, described too early appearance can cause entering uncontrollably the S phase (Irniger and Nasmyth 1997, J Cell Sci 110,1523-1531).In yeast, proved the sudden change of any at least 2 component CDC16 of APC and CDC27 in the middle of all can causing the DNA over-replicate by the M phase (Heichman and Roberts 1996, Cell 85,39-48).Nothing mitotic division and fissional this core DNA replication dna process is subsequently called DNA endoreduplication, and it causes the cell size increasing.
CDC16, CDC23 and CDC27 comprise the (TPR of 34Tai repeating unit; 34 amino acid longs) albumen.The minimum consensus sequence of the suggestion of TPR primitive (motif) is as follows: X 3-W-X 2-L-G-X 2-Y-X 8-A-X 3-F-X 2-A-X 4-P-X 2, wherein X be any amino acid (people 1994 such as Lamb, EMBO J 13,4321-4328).Consensus sequence can be shown significant degeneracy, and in non-total residue, has minimum homology or without homology.The hydrophobicity of important seemingly total residue and size but not its identity.In yeast and higher eucaryote, in mitotic division (comprising AC protein ingredient CDC16, CDC23 and CDC27), transcribe, the input of montage, protein and neural (Goebl and the Yanagida 1991 of occurring, Trends Biochem Sci 16, all there is TPR primitive in the multiple protein working in 173-177) therein.TPR forms αhelix; Series connection repeating unit be organized into the superhelix that is ideally suited as protein identification interface (Groves and Barford1999, Curr Opin Struct Biol 9,383-389).In α spiral, conventionally there are 2 amphipathic structural domains, one is positioned at NH 2end regions, near COOH end regions, (people 1990 such as Sikorski, Cell 60,307-317) for another.
From different bioseparation CDC27 (also referred to as Hobbit; Other titles comprise CDC27, BimA, Nuc2 or makos), described biology comprises Aspergillus nidulans (Aspergillus nidulans), yeast, fruit bat, people and each kind of plant (for example Arabidopis thaliana (Arabidopsis thaliana) and rice (Oryzasativa)).The gene of coding CDC27 is present in most of genomes with single copy, but can for example in Arabidopis thaliana, find 2 copies in identical genome exceptionally.These 2 genes of coding CDC27 albumen are called after CDC27A and CDC27B (being respectively MIPS call number At3g16320 and At2g20000).
Disclosed International Patent Application WO 01/02430 has been described CDC27A (CDC27A1 and CDC27A2) and CDC27B sequence.Also in the document, described wherein from NH 2end regions has lacked the CDC27B aminoacid sequence of 161 amino acid whose brachymemmas.About being coded in NH 2the CDC27B gene of the CDC27B polypeptide of end regions brachymemma has been quoted GenBank accession number AC006081 in the document.Reported in literature NH 2end regions is guarded in the CDC27 of different sources homologue.The CDC27 sequence of mentioning in WO01/02430 is described to can be used for changing endoreduplication.
DNA endoreduplication betides in flowering plant natively, for example, during seed development.DNA endoreduplication causes having the nucleus of expansion of the DNA content of raising.Someone thinks that the DNA content increasing during endoreduplication may provide the genetic expression of increase during endosperm development and Grain Filling, because it conforms to protein accumulation with the upper enzymic activity increasing of this time people such as (, (1992) Genet.Eng.14:65-88) Kowles.In cereal species, cell endosperm by endoreduplication sign period stored seeds reserve.The magnitude of DNA endoreduplication and endosperm fresh weight height correlation, this is implying the vital role of DNA endoreduplication in determining endosperm quality people (2000) Plant Cell Environ.23:657-663 such as () Engelen-Eigles.In corn for example, endosperm accounts for 70 to 90% of seed quality (kernel mass); Therefore, the factor of mediation endosperm development, the mode weighing by simple grain also can be determined the seed production of corn to a great extent.Thereby the endoreduplication of increase is indicated the seed biomass of increase conventionally, but never relevant to the number seeds increasing.
aT hook transcription factor
In belonging to the polypeptide of the transcription factor family relevant to Chromatin Remodeling (Chromatin remodeling), there is AT hook structure territory.AT hook primitive is comprised of about 13 (about 9 sometimes) amino acid, and these amino acid participate in DNA combination and have being rich in the preference in the region of A/T.In Arabidopis thaliana, there are at least 34 albumen that comprise AT hook structure territory.These albumen are enjoyed homology in the major part of sequence, and wherein AT hook structure territory is special high conservative region.
International Patent Application WO 2005/030966 has been described the plant transcription factor in the several AT of comprising hook structures territory and this type of transcription factor for generation of the purposes with the plant of the biomass of increase and the stress tolerance of increase.This application relates to the member of transcription factor G1073 clade, and point out: " use of tissue specificity or inducible promoter can relax and may cross and express relevant less desirable morphology effect (for example, when the size of increase be less desirable time) to G1073 clade member's composing type ".The data that provide in this application relate to dicotyledons.
Contrary with these instructions, have now found that no matter to express by constitutive promoter and drive or drive in tissue specificity mode, containing the polynucleotide of the AT hook transcription factor (it comprises the member of clade G1073) of DUF296 structural domain, the expression in monocotyledons all causes encoded packets, compare with suitable control plant, do not there is hardly or completely the plant that biomass increases.This shows that the relevant instruction of expressing this type of transcription factor in dicotyledons may not be so easily for monocotyledons.Now also find that any of seed production who obtains is increased in degree or depends in nature used tissue-specific promoter.
dOF transcription factor
Dof domain protein is that the DNA binding domains with high conservative (has single C 2-C 2zinc refers to) plant idiosyncratic transcription factor.In the past ten years, in unifacial leaf and dicotyledons (comprising corn, barley, wheat, rice, tobacco, Arabidopis thaliana, summer squash, potato and pea), many Dof domain proteins have been identified.Shown that Dof domain protein is used as transcriptional activator in various plants specific biological process or thing is met in resistance.
cell cycle protein dependent kinase inhibitor (CKI)
Increase the ability of plant seed output (no matter being by number seeds, seed biomass, seed development, seed plumpness or any other seed correlated character) in agricultural for example, is produced as the biotechnology of material (medicine, antibody or vaccine) with even many non-agricultural application examples, all there are many purposes.The change that increases the intrinsic growth mechanism that a method of seed production in plant can be by plant realizes.
The intrinsic growth mechanism of plant is to be referred to as the continuous events of the high-sequential of ' cell cycle '.Develop the basis of the g and D that is all multicellular organisms and be vital for the propagation of cell by the cell cycle.The main ingredient of cell cycle is high conservative in yeast, Mammals and plant.Cell cycle is divided into following period in succession: G0-G1-S-G2-M conventionally.DNA replication dna or synthetic conventionally in S phase (" S " represents that DNA is synthetic) generation, chromosomal mitotic division is separated in M phase (" M " represents mitotic division) generation, interval is with interval therebetween, G1 (phase of cell growth before DNA replication dna) and G2 (after DNA replication dna, cell is prepared the period of division).After division of cytoplasm (final step of M phase), complete cell fission.Exit the cell cycle and become static cell and be regarded as the phase in G0.Can stimulate cell in this phase to make it reentering the cell cycle in the G1 phase." G " representative " interval " in G1, G2 and G0.Cell cycle process complete the complete copy that makes each daughter cell can accept parental gene group between cell division phase.
Cell fission is subject to two main cell periodic events, and the synthetic initial sum of DNA is mitotic initial, control.The restriction point (checkpoint) consisting of specified protein mixture (participate in DNA replication dna and division) is being controlled to each conversion of each event in these critical events.In Mammals and vegetable cell, on G1/S border, the expression of the synthetic necessary gene of DNA is subject to regulation and control (La Thangue, 1994 of transcription factor E2F family; The people such as Muller, 2001; The people such as DeVeylder, 2002).Cell cycle enter by E2F/Rb mixture to regulate and control/trigger, described E2F/Rb mixture integrated signal also can be activated transcribing of cell cycle gene.Conversion between the different times of cell cycle, and thus by the progress of cell cycle, forming and activating and drive by different different dimerization serine/threonine protein kitase (being commonly referred to cell cycle protein dependent kinase (CDK)).The precondition of these kinase whose activity is and the physical bond of specific cells cyclin that the time of origin of activation depends primarily on the expression of cyclin.The combination of cyclin is the conformational change of N petiolarea of the CDK of induction combination, thereby facilitates location and the substrate specificity of mixture.As monomer CDK, it is activated when cyclin is combined, thereby has kinase activity.The level of cyclin fluctuates in the cell cycle, from but determine the principal element of the time of origin that CDK activates.The periodicity that comprises these mixtures of cyclin and CDK in cell cycle process activates the Timing that has mediated cell cycle conversion (restriction point).Other factors of regulation and control CDK activity comprise that cell cycle protein dependent kinase inhibitor (CKI or ICK, KIP, CIP, INK), CDK activate kinases (CAK), CDK Phosphoric acid esterase (Cdc25) and CDK subunit (the CKS) (people 1999 such as Mironov; Reed 1996).
According to the experiment of using the endosperm of corn seed infer exist mitotic division CDK inhibitor (Grafi and Larkins (1995) Science 269,1262-1264).After this, at different plant species such as Arabidopis thaliana (people (1997) Nature 386 (6624): the 451-2 such as Wang; People (2001) the Plant Cell 13:1653-1668 such as De Veylder; The people such as Lui (2000) Plant J 21:379-385), tobacco (people (2002) the Plant Physiol 2,002 130 (4) such as Jasinski: 871-82), identified several CKI in red autumnal leaves lamb's-quarters (Chenopodium rubrum) (people (1999) the Plant Phys 120:339 such as Fountain) or corn (corn) (people (2005) the Plant Physiol 138:2323-2336 such as Coelho).The albumen of coding is characterised in that, shows and p21 cip1/ p27 kip1/ p57 kip2aminoterminal cyclin/Cdk binding domains of the animal CKI of type has about 45 carboxyl terminal amino acid fragments of homology.Outside this carboxyl terminal region, plant CKI shows extremely low homology.
In Monsanto Technology LLC disclosed International Patent Application WO 2005/007829 under one's name, the nucleic acid molecule of multiple separation that coding has the polypeptide of cell cycle protein dependent kinase inhibitor activity has been described.
Disclosed International Patent Application WO 02/28893 and WO 99/14331 (both at CropDesign N.V. under one's name) have described different plant cell cycle protein dependent kinase inhibitors.In these applications, mentioned the purposes of these inhibitor for increasing output.
Summary of the invention
The expression that now has been surprisingly found that the nucleic acid that increases the active of SYR albumen and/or coding SYR albumen in plant is compared the plant with the seed production of increase and/or the growth velocity of increase by causing with corresponding wild-type plant.Now also find surprisingly, SYR crossing in rice expressed the main seed production that increases, and Leaf biomass and flowering time are not subject to obvious impact, (the main phenotype of crossing expression with ARGOS in Arabidopis thaliana is contrary, described main phenotype shows the blooming of the Leaf biomass that increases and the delay (people such as Hu, Plant Cell 15,1951-1961,2003; US2005/0108793)).
According to one embodiment of the invention, provide for increasing the seed production of plant and/or the method for growth velocity, the method is included in the expression that increases the nucleic acid of the active of SYR polypeptide or its homologue and/or this proteinoid of increase coding in plant; Optionally selection has the plant of the growth characteristics of improvement.
Advantageously, within relating to the scope of SYR, implement method of the present invention and cause producing such plant, described plant has the growth characteristics of multiple improvement, the seed production for example improving and do not affect the biomass (when comparing with corresponding control plant) of trophicity plant part and the life cycle suitable with corresponding control plant and without the delay of flowering time.More advantageously, the enforcement of the inventive method causes having the plant to the patience of abiotic stress of comparing raising with corresponding wild-type (or other contrast) plant.
The expression that now has been surprisingly found that the nucleic acid that regulates the active of FG-GAP albumen and/or coding FG-GAP albumen in plant can cause generation to compare the growth characteristics with improvement with corresponding wild-type plant, the plant of the output particularly increasing.
According to another embodiment of the invention, provide for improveing the method for the growth characteristics of plant, it is included in the expression of the nucleic acid that regulates the active of FG-GAP polypeptide or its homologue and/or adjusting coding FG-GAP polypeptide or its homologue in plant and optionally selects to have the plant of the growth characteristics of improvement.
Advantageously, within relating to the scope of FG-GAP polypeptide or its homologue, the enforcement of the inventive method causes having the growth characteristics of multiple improvement, the plant of growth, the output of raising, the structure of the biomass of raising, improvement or the cell fission of raising for example improving (each all with wild-type plant accordingly Comparatively speaking).Preferably, the growth characteristics of improvement at least comprises the output of comparing increase with corresponding wild-type plant.
Now have been surprisingly found that the non-constitutive expression that increases the nucleic acid of coding CYP90B polypeptide or its homologue in plant can produce the plant of comparing the output with increase with suitable control plant.
According to an embodiment more of the present invention, the method for increasing plant biomass is provided, the method comprises increases the non-constitutive expression of the nucleic acid of coding CYP90B polypeptide or its homologue in plant.
The expression that has now found that the nucleic acid that preferentially increases coding CDC27 polypeptide in plant shoot apical meristem can produce the plant of comparing the number seeds with increase with suitable control plant, and described CDC27 polypeptide is at the NH of polypeptide 2end regions has the TPR structural domain of at least one inactivation.
Therefore the method that the invention provides number seeds for increasing plant (comparing with the number seeds of suitable control plant), the method comprises preferentially increases the NH that is coded in polypeptide in plant shoot apical meristem 2end regions has the expression of nucleic acid of CDC27 polypeptide of the TPR structural domain of at least one inactivation.
Have now found that, preferentially in monocotyledonous endosperm tissue, increase encoded packets and can produce with suitable control plant and compare containing the expression of AT hook structure territory and the nucleic acid of the polypeptide of DUF296 structural domain, there is the plant of the seed production of increase.
Therefore an embodiment more of the present invention provides the method that increases monocotyledonous seed production for comparing with suitable control plant, and the method comprises preferentially increases encoded packets containing the expression of the nucleic acid of the polypeptide of AT hook structure territory and DUF296 structural domain in monocotyledonous endosperm tissue.
Have now found that increasing the expression of the nucleic acid of encoding D OF transcription factor polypeptide in plant can produce the plant of comparing the output with increase with suitable control plant.
According to an embodiment more of the present invention, the method for increasing plant biomass is provided, the method comprises increases the expression of the nucleic acid of encoding D OF transcription factor polypeptide in plant.
Have now found that the preferential expression of endogenous CKI gene in albumen tissue reduces and can produce, the seed production that the plant of preferential minimizing does not occur with the expression of endogenous CKI gene in albumen tissue is wherein compared, and has the plant of higher seed production.Thereby the invention provides for compare the method for the seed production that increases plant with suitable control plant, the method comprises the expression that preferentially reduces endogenous CKI gene in the endosperm tissue of plant.
Detailed Description Of The Invention
The term " output of increase " of definition refers to corresponding wild-type or other control plants and compares herein, the increase of the biomass (weight) of one or more parts of plant (particularly can gather in the crops part), the increase of this biomass can be ground or underground.The increase of underground biomass is attributable to the increase of the biomass of plant part such as stem tuber, rhizome, bulb etc.Particularly preferably be following any one or multinomial increase: the length of the biomass of the root of increase, the volume of the root of increase, the number of the root of increase, the diameter of the root of increase and the root of increase.The output that term increases also comprises the increase of seed production.
The term " seed production of increase " of definition is compared following any one or multinomial increase for representing with corresponding wild-type plant herein: the seed ultimate production (i) increasing, and it comprises that the increase of seed biomass (seed weight) and its can be the increases of every strain plant or the seed weight on single seed basis; (ii) number of the every paniculiform flower (" little Hua ") increasing; (iii) number of the full seed increasing; (iv) seed size increasing; (v) the seed volume increasing; (vi) the single seed area (seed area) increasing; (vii) the single seeded length and/or the width that increase; (viii) harvest index increasing, this exponential representation is for gathering in the crops for example output of the seed ratio to total biomass of part; (ix) the full rate (fill rate) increasing, (its number that is full seed, divided by the overall number of seed, is then multiplied by 100); (x) thousand seed weight (TKW) increasing, wherein calculates described thousand seed weight from number and its gross weight of the full seed of counting.The TKW increasing can be produced by the seed size increasing and/or seed weight.The TKW increasing can be produced by the increase of embryo size and/or endosperm size.
Take corn as example, and the increase of output can show as one or more in following: the increase of the length/diameter of the increase of the number of the fringe of every strain plant, tassel row number, a row grain number, grain weight, TKW, fringe, etc.Take rice as example, and output increase can show as following one or more increase: the number of the paniculiform number of every strain plant, every paniculiform small ear, the number of every paniculiform flower, the increase of the full rate of seed, the increase of TKW, etc.The increase of output also can cause the structure changing, or can occur because of the structure changing.
By implementing the growth characteristics of the improvement that method of the present invention obtains, in the scope of use that relates to CDC27, cause having the plant of the number seeds of increase.The number seeds increasing comprises with suitable control plant to be compared, the increase of the full rate of the increase of the increase of seed overall number and/or full seed number and/or seed (its be multiplied by again 100 divided by the overall number of seed for full seed number), this increase can be the increase of every strain plant and/or the increase of per hectare or acre.Take corn as example, and the increase of number seeds is usually expressed as increase, tassel row number, the row grain increase of number, the increase of the full rate of seed of the spike number of every strain plant, etc.Take rice as example, and the increase of number seeds is usually expressed as the number of the paniculiform number of every strain plant, every paniculiform small ear, the increase of the number of every paniculiform flower (little Hua) (it is expressed as the ratio of full seed number to the number of main panicle (primary panicles)), the increase of the full rate of seed.
Therefore the invention provides the method for comparing the number seeds that increases plant for the number seeds of the control plant with suitable, the method comprises the expression of the nucleic acid that preferentially increases coding CDC27 polypeptide in plant shoot apical meristem, and described polypeptide is at the NH of polypeptide 2end regions has the TPR structural domain of at least one inactivation.
Within method of the present invention relates to the scope of SYR, preferably implement the plant that described method causes producing the seed production with increase.More preferably, the seed production of increase comprise one or more aspects in (full) number seeds, seed gross weight, seed size, thousand seed weight, full rate and harvest index separately with control plant increase Comparatively speaking.Therefore, according to the present invention, provide the method for increasing plant seed output, the method is included in the expression of the nucleic acid of active and/or coding SYR polypeptide or its homologue that increase SYR polypeptide in plant.
Within method of the present invention relates to the scope of FG-GAP, preferably carry out described method and cause producing the output with increase, the plant of the biomass more particularly increasing and/or the seed production of increase.Preferably, the seed production of increase comprise in (full) number seeds, seed gross weight, seed size, thousand seed weight and harvest index one or more separately with control plant increase Comparatively speaking.Therefore, according to the present invention, provide for increasing plant biomass, increased especially the method for biomass and/or increase seed production, the method is included in the expression of the nucleic acid of active and/or coding FG-GAP polypeptide or its homologue that regulate FG-GAP polypeptide in plant.
Within method of the present invention relates to the scope of CYP90B, the output preferably increasing comprises one or more aspects (each aspect is all for suitable control plant) of following aspect: the seed area of the HI of increase, the TKW of increase, increase and the seed length of increase.Therefore, according to the present invention, provide for comparing with suitable control plant, increased the method for plant biomass, particularly seed production, the method is included in the non-constitutive expression that increases the nucleic acid of coding CYP90B polypeptide or its homologue in plant.
Within method of the present invention relates to the scope of AT hook transcription factor, increase the seed production in monocotyledons.Therefore provide for, compare with suitable control plant, increase the method for monocotyledonous seed production, the method comprises preferentially increases encoded packets containing the expression of the nucleic acid of the polypeptide of AT hook structure territory and DUF296 structural domain in monocotyledonous endosperm tissue.
Within method of the present invention relates to the scope of DOF transcription factor, the output preferably increasing is the seed production increasing.According to a preferred feature of the present invention, provide for, compare with the seed production of suitable control plant, increase the method for plant seed output, the method is included in the expression that increases the nucleic acid of encoding D OF transcription factor polypeptide in plant.
Within method of the present invention relates to the scope of CKI, the growth characteristics of improvement is the seed production increasing.Therefore the invention provides for, compare with suitable control plant, increase the method for the seed production of plant, the method comprises the expression that preferentially reduces endogenous CKI gene in the endosperm tissue of plant.
Because the plant of improvement of the present invention has the output (seed production) of increase, therefore these plants may show in (at least part of period of its life cycle), compare the growth velocity of increase with the growth velocity of the corresponding wild-type plant of respective stage in life cycle.The growth velocity increasing can be specific to one or more parts or the cell type (comprising seed) of plant, or can substantially spread all over whole plant.The plant with the growth velocity of increase can have shorter life cycle.The life cycle of plant is used in reference to: from dry mature seed, grow to the needed time in stage that plant produces the dry mature seed that is similar to parent material.This life cycle can be subject to the impact of for example early growth gesture of factor, growth velocity, flowering time and seed maturity speed.The increase of growth velocity can occur in life cycle in one or more stages of life cycle of plant or whole plant substantially.The growth velocity increasing in the plant commitment of life cycle can be reflected as the growth potential of enhancing.The increase of growth velocity can change the harvest cycle of plant, thereby permission plant ratio originally can late sowing kind and/or early harvest.If growth velocity obtains enough increases, it may allow to sow the seed (for example completely sow again after rice plant and gather in the crops rice plant in sowing and results within a conventional vegetative period) of identical plant species again.Similarly, if growth velocity obtains enough increases, it may allow to sow different plant species (for example after sowing and results rice, for example, sow again and optionally gather in the crops soybean, potato or any other suitable plant) again.The in the situation that of some plants, the results of carrying out additional times from identical stock also may be fine.The harvest cycle that changes plant can cause every acre year biomass yield increase (increase of the number of times (in a year) that this can Growth and yield owing to any specific plant).The increase of growth velocity also can allow transgenic plant to cultivate in than the wider geographic area of its wild type counterparts, because the regional limits of crop culture is normally by the adverse environment conditional decision of implantation time (early season) or harvest time (season in evening).If shorten harvest cycle, can avoid these disadvantageous conditions.Can be by determining growth velocity from growth curve (mapping obtains to growth experiment) the various parameters of derivation, this type of parameter can be: T-Mid (plant reaches its maximum sized 50% time spent) and T-90 (plant reaches its maximum sized 90% time spent), etc.Term used herein " flowering time " should refer to that seed germination started to the time period of blooming between starting.
The enforcement of the inventive method has produced the plant of the growth velocity with increase.
Therefore, according to the present invention, provide the method for increasing the growth velocity of plant, the method is included in the expression that increases the nucleic acid of the active of SYR polypeptide or its homologue and/or this albumen of increase coding in plant.
According to the present invention, the method for increasing the growth velocity of plant is provided, the method is included in plant the expression that regulates the active of (preferably increasing) FG-GAP polypeptide or its homologue and/or regulate the nucleic acid of (preferably increasing) this albumen of encoding.
According to the present invention, the method for increasing the growth velocity of plant is provided, the method is included in the non-constitutive expression that increases the nucleic acid of coding CYP90B polypeptide or its homologue in plant.
According to the present invention, the method for increasing the growth velocity of plant is provided, the method is included in the expression that increases the nucleic acid of encoding D OF transcription factor polypeptide in plant.
According to the present invention, provide for, with respect to suitable control plant, increase the method for the growth velocity of plant, the method comprises the expression that preferentially reduces endogenous cell cyclin-dependent kinase inhibitor (CKI) gene in the endosperm tissue of plant.
No matter plant is still exposed to different coercing under non-stress condition, all generation is compared to the increase of output and/or seed production and/or growth velocity with control plant.Plant is conventionally by growing and react to being exposed to coerce more lentamente.Under serious stress conditions, plant even may stop growing completely.On the other hand, slight coerce be defined as herein plant and be exposed to this and coerce after, do not cause plant to stop growing and lose any of ability who regrows and coerce.In the sense of the present invention, slightly coerce and cause the plant of being coerced to be compared with the control plant under non-stress condition, growth reduces less than 40%, 35% or 30%, preferably less than 25%, 20% or 15%, more preferably less than 14%, 13%, 12%, 11% or 10% or lower.Due to the progress of agricultural practice (irrigation, fertilising, pesticide-treated), in the crop plants of cultivation, conventionally can not run into serious coercing.Therefore, by the growth weakening of the slight stress-inducing upper less desirable feature of agricultural normally.Slightly coercing can be that the typical case that plant may touch coerces.These are coerced can be plant contact to biological and/or abiotic (environment) of every day coerce.Typical abiotic or environment-stress comprises that the temperature stress, salt stress, the water that by atypical heat or cold/freezing temperature, are caused coerce that (arid or too much water), anoxic are coerced, chemical toxicity and oxidative stress.Abiotic stress can be by water, to coerce (especially due to arid), salt stress, oxidative stress or ion to coerce the osmotic stress causing.Chemical substance also can cause abiotic stress (for example mineral substance of too high or too low concentration or nutrition).Biology is coerced normally by pathogenic agent coercing of causing of bacterium, virus, fungi and insect for example.Term used herein " non-stress condition " refers to that these envrionment conditionss exceed plant weather condition every day that can run into and permission plant optimum growh and other abiotic conditions indistinctively.Those skilled in the art will understand normal edaphic condition and the weather condition in given geographical position.
Within method of the present invention relates to the scope of SYR, the enforcement of described method causes producing the plant of the abiotic stress resistance with increase.As reported in the people such as Wang (Planta (2003) 218:1-14), abiotic stress causes adversely affecting the growth of plant and a series of morphology of productivity, physiology, biological chemistry and molecule change.Known arid, salinity, extreme temperature and oxidative stress connect each other, and can the infringement to growth and cell by similar mechanism induction.For example, arid and/or salinification main manifestations are osmotic stress, thereby cause the destruction of homeostasis and ion distribution in cell.Oxidative stress is often accompanied by high temperature or low temperature, salinity or drought stress, and it can cause functional and sex change structural protein.As a result of, these different environment-stress activate similar cellular signal transduction pathways and cell response conventionally, and for example the generation of stress protein is, the accumulation of the rise of antioxidant, miscible solute and cessation of growth cessation.
Because different environment-stress can activate similar approach, so the present invention carries out with drought stress illustrates, (using in the scope of SYR polypeptide and its coding nucleic acid the present invention relates to) should do not regarded as and only be confined to drought stress, and more should regard as, reflects that in general manner SYR polypeptide or its homologue participate in a kind of performance of abiotic stress.In addition, also can under non-stress condition or under slight drought condition, implement the inventive method, thereby produce the plant of comparing the growth characteristics (output of increase especially) with improvement with corresponding wild-type or other control plants.
Between drought stress and high-salt stress, there is according to reports " dialogue (crosstalk) " people (2003) Plant Physiol 133:1755-1767 such as () Rabbani of special high level.Therefore, clearly SYR polypeptide or its homologue with and purposes in giving plant arid resistance, can avoid for the protection of plant the infringement of multiple other abiotic stress too.Similarly, clearly SYR albumen (as defined here) and its are given the purposes of salt tolerance in plant, also can avoid for the protection of plant the infringement of multiple other abiotic stress.In addition, the people such as Rabbani (2003, Plant Physiol 133:1755-1767) are reported in and between dicotyledons and monocotyledons, have similar stress resistance and the molecular mechanism of replying.Therefore, method of the present invention advantageously can be used for any plant.
Herein the term " abiotic stress " of definition be used in reference to that water coerces that (because arid or too much water cause), anoxic are coerced, salt stress, temperature stress (because hot, cold or ice-cold temperature causes), chemical toxicity is coerced with oxidative stress in any one or more coerce.According to an aspect of the present invention, abiotic stress is osmotic stress, is selected from that water is coerced, salt stress, oxidative stress and ion coerce.Preferably, to coerce be drought stress to water.Term salt stress is not limited to common salt (NaCl), can also be NaCl, KCl, LiCl, MgCl 2, CaCl 2etc. in any one or more salt.
The resistance to abiotic stress increasing finds expression in the plant biomass increasing under abiotic stress condition.In the scope of purposes that the present invention relates to SYR polypeptide and its coding nucleic acid, the output of such increase can comprise one or more following aspects (every aspect all with corresponding wild-type plant Comparatively speaking): the number of every paniculiform flower of the full seed number of increase, the seed ultimate production of increase, increase is, the root of the full rate of the seed of increase, the harvest index of increase, the thousand seed weight of increase, increase is grown or the root diameter of increase.
The enforcement of the inventive method produces the plant of the abiotic stress resistance with increase.When the enforcement of the inventive method has caused growing under non-stress condition or under slight drought condition, compare with the corresponding wild-type plant of growing under comparable condition or other control plants, there is the plant of the growth characteristics (output particularly increasing and/or the gesture of emerging (or early growth gesture) of increase) of improvement.
According to the present invention, the method for increasing the abiotic stress resistance of plant is provided, the method is included in the expression that regulates the nucleic acid of coding SYR polypeptide or its homologue in plant.According to an aspect of the present invention, abiotic stress be selected from that water is coerced, salt stress, oxidative stress and ion one or more the osmotic stress in coercing.Preferably, to coerce be drought stress to water.
The present invention also provides for improving the method for the abiotic stress resistance of plant, and the method is included in the activity that increases SYR albumen or its homologue in plant.
Within method of the present invention relates to the scope of DOF transcription factor, can under slight drought condition, implement present method, to produce the plant of comparing the output with increase with suitable control plant.As reported in the people such as Wang (Planta (2003) 218:1-14), abiotic stress causes adversely affecting a series of morphology, physiology, biological chemistry and the molecule of plant-growth and productivity to change.Known arid, salinity, extreme temperature and oxidative stress be connect each other and can the infringement to growth and cell by the induction of similar mechanism.The people such as Rabbani (Plant Physiol (2003) 133:1755-1767) have described " dialogue " that between drought stress and high-salt stress, there be special high level.For example, arid and/or salinification main manifestations are osmotic stress, thereby cause homeostasis in cell and the destruction of ion distribution.Oxidative stress (being conventionally accompanied by high temperature or low temperature, salinity or drought stress) can cause functional and sex change structural protein.Therefore, these different environment-stress activate similar cellular signal transduction pathways and cell response conventionally, and for example the generation of stress protein is, the accumulation of the rise of antioxidant, miscible solute and cessation of growth cessation.
When the enforcement of the inventive method causes growing under slight drought condition, compare with the suitable control plant of growing under comparable condition, there is the plant of the output of increase.Therefore, according to the present invention, provide the method for increasing the output of growing plants under slight drought condition, the method is included in the expression that increases the nucleic acid of encoding D OF transcription factor polypeptide in plant.
Advantageously can in any plant, improve the growth characteristics of above-mentioned improvement.Within method of the present invention relates to the scope of purposes of AT hook transcription factor, described method can be used for monocotyledons.
Term used herein " plant " comprises the ancestors of complete plant, plant and the part of offspring and plant, comprise seed, branch, stem, leaf, root (comprising stem tuber), flower and tissue and organ, wherein aforementioned each all comprise goal gene/nucleic acid or the genetic modification in goal gene/nucleic acid.Term " plant " also comprises vegetable cell, suspension culture, callus ,Pei, meristem zone, gametophyte, sporophyte, pollen and sporule, same, wherein above-mentioned each all comprise goal gene/nucleic acid.
The plant that is particularly useful for method of the present invention comprises all plants, particularly monocotyledons and the dicotyledons that belongs to vegitabilia (Viridiplantae) superfamily, comprises the feed or the leguminous forage that are selected from following plants, ornamental plant, alimentary crop, tree or shrub: Acer (Acer spp.), Actinidia (Actinidia spp.), Abelmoschus (Abelmoschus spp.), Agropyron (Agropyronspp.), allium (Allium spp.), Amaranthus (Amaranthus spp.), pineapple (Ananascomosus), Anona (Annona spp.), celery (Apium graveolens), Arachis (Arachis spp), Jack-fruit belongs to (Artocarpus spp.), officinalis (Asparagusofficinalis), Avena (Avena spp.) (oat (Avena sativa) for example, wild swallow grass (Avenafatua), than praising oat (Avena byzantina), Avena fatua var.sativa, hybrid oat (Avena hybrida)), carambola (Averrhoa carambola), wax gourd (Benincasahispida), Brazil's chestnut (Bertholletia excelsea), beet (Beta vulgaris), Btassica (Brassica spp) (colea (Brassica napus) for example, overgrown with weeds blue or green (Brassica rapassp.) [canola, oilseed rape (oilseed rape), rape (turnip rape)]), Cadabafarinosa, tea (Camellia sinensis), Canna generalis Bailey (Canna indica), Capsicum (Capsicum spp.), Carex elata, papaya (Carica papaya), Carissa macrocarpa (Carissa macrocarpa), hickory (Carya spp.), safflower (Carthamustinctorius), Castanea (Castanea spp.), cultivation witloof (Cichorium endivia), Cinnamomum (Cinnamomum spp.), watermelon (Citrullus lanatus), Citrus (Citrus spp.), cocoanut (Cocos spp.), Coffea (Coffea spp.), taro (Colocasia esculenta), Cola spp, coriander (Coriandrum sativum), Corylus (Corylus spp.), hawthorn (Crataegus spp.), Stigma Croci (Crocus sativus), Cucurbita (Cucurbita spp.), Cucumis (Cucumis spp.), Lay Cirsium (Cynara spp.), Daucus carota L. (Daucus carota), beggar-ticks (Desmodium spp.), longan (Dimocarpus longan), Wild yam (Dioscorea spp.), Diospyros (Diospyros spp.), Echinochloa (Echinochloa spp.), oil palm belongs to (Elaeis) (oil palm (Elaeis guineensis) for example, America oil palm (Elaeis oleifera)), Finger-millet (Eleusine coracana), loquat (Eriobotrya japonica), haw young (Eugeniauniflora), Fagopyrum (Fagopyrum spp.), Fagus (Fagus spp.), Fructus Fici (Ficus carica), Fortunella (Fortunella spp.), Fragaria (Fragaria spp.), ginkgo (Ginkgo biloba), Glycine (Glycine spp.) (soybean (Glycine max for example, Soja hispida or Soja max)), upland cotton (Gossypium hirsutum), Helianthus (Helianthus spp) (for example Sunflower Receptacle (Helianthus annuus)), tawny daylily (Hemerocallisfulva), hibiscus (Hibiscus spp.), Hordeum (Hordeum spp.) (for example barley (Hordeum vulgare)), sweet potato (Ipomoea batatas), white walnut (Juglans spp.), lettuce ((Lactuca sativa), Lathyrus (Lathyrus spp.), Lens culinaris (Lens culinaris), flax (Linum usitatissimum), lichee (Litchi chinensis), Lotus (Lotusspp.), Guangdong sponge gourd (Luffa acutangula), lupinus (Lupinus spp.), Luzulasylvatica, tomato belongs to (Lycopersicon spp.) (tomato (Lycopersiconesculentum) for example, tomato (Lycopersicon lycopersicum), Lycopersicon pyriforme), sclerderm Macroptilium (Macrotyloma spp.), Malus (Malus spp.), recessed edge Malpighia coccigera (Malpighia emarginata), horse rice apple (Mammea americana), Mango fruit (Mangifera indica), cassava (Manihot spp.), sapota (Manilkara zapota), alfalfa (Medicago sativa), Melilotus sweetclover (Melilotus spp.), Mentha (Menthaspp.), Momordica (Momordica spp.), black mulberry (Morus nigra), Musa (Musaspp.), Nicotiana (Nicotiana spp.), Olea (Olea spp.), Opuntia (Opuntiaspp.), bird foot Macroptilium (Ornithopus spp.), Oryza (Oryza spp.) (rice (Oryzasativa) for example, broad-leaved rice (Oryza latifolia)), millet (Panicum miliaceum), Purple Granadilla (Passiflora edulis), Selinum pastinaca (Pastinaca sativa), Persea (Persea spp.), parsley (Petroselinum crispum), Phaseolus (Phaseolus spp.), thorn certain herbaceous plants with big flowers belongs to ((Phoenixspp.), Physalis (Physalis spp.), Pinus (Pinus spp.), Pistacia vera (Pistaciavera), Pisum (Pisum spp.), Poa L. (Poa spp.), Populus (Populus spp.), Prosopis (Prosopis spp.), Prunus (Prunus spp.), Psidium (Psidium spp.), pomegranate (Punica granatum), Ussurian pear (Pyrus communis), oak belongs to (Quercusspp.), radish (Raphanus sativus), rheum rhabarbarum (Rheum rhabarbarum), currant belongs to (Ribes spp.), castor-oil plant (Ricinus communis), rubus (Rubusspp.), saccharum (Saccharum spp.), Sambucus (Sambucus spp.), rye (Secale cereale), flax belongs to (Sesamum spp.), sinapsis alba belongs to (Sinapis sp.), Solanum (Solanum spp.) (potato (Solanum tuberosum) for example, red eggplant (Solanumintegrifolium) or tomato (Solanum lycopersicum)), Chinese sorghum (Sorghum bicolor), spinach belongs to (Spinacia spp.), Syzygium (Syzygium spp.), Tagetes (Tagetesspp.), tamarind (Tamarindus indica), cocoa (Theobroma cacao), Clover (Trifolium spp.), Triticosecale rimpaui, Triticum (Triticum spp.) (common wheat (Triticum aestivum) for example, durum wheat (Triticum durum), duckbill wheat (Triticum turgidum), Triticum hybernum, Macha wheat (Triticum macha) (Triticummacha), common wheat (Triticum sativum or Triticum vulgare)), little Flower of Chinese Globeflower (Tropaeolum minus), nasturtium (Tropaeolum majus), genus vaccinium (Vacciniumspp.), Vetch (Vicia spp.), Vigna (Vigna spp.), Viola odorata (Violaodorata), Vitis (Vitis spp.), Zea mays (Zea mays), the raw wild rice in natural pond (Zizaniapalustris), zizyphus (Ziziphus spp.), etc.
Preferably, plant is for example soybean, Sunflower Receptacle, Canola, alfalfa, Semen Brassicae campestris, cotton, tomato, potato or tobacco of crop plants.In addition preferred, plant is monocotyledons, for example sugarcane.More preferably plant is cereal, for example rice, corn, wheat, barley, grain (millet), rye, Chinese sorghum or oat.
When method of the present invention relates to the purposes of AT hook transcription factor, monocotyledons is cereal, for example rice, corn, sugarcane, wheat, barley, grain, rye, Chinese sorghum, grass or oat.
Definition
polypeptide
Term " polypeptide " and " protein " are used interchangeably herein, refer to the amino acid that the polymer form with any length exists.Term " polynucleotide ", " nucleotide sequence ", " nucleotide sequence " are used interchangeably herein, refer to the Nucleotide that the polymer form with any length exists, ribonucleotide or deoxyribonucleotide or both combinations.
control plant
The selection of suitable control plant is the conventional part of experimental program, and it can comprise corresponding wild-type plant or the corresponding plant without goal gene.Common and the to be assessed plant of control plant is identical plant species or even identical kind.Control plant can also be the invalid zygote (nullizygote) of plant to be assessed." control plant " used herein not only refers to complete plant, but also refers to plant part, comprises the part of seed and seed.
increase, improve
Term " increase ", " improvement " or " raising " are used interchangeably herein, for representing, compare with corresponding wild-type or other control plants as definition herein, height at least 5%, 6%, 7%, 8%, 9% or 10%, preferably at least 15% or 20%, more preferably 25%, 30%, 35% or 40% output and/or growth.
hybridization
The term " hybridization " of definition is the process of the nucleotide sequence of homologous complementary annealing each other substantially wherein herein.Can be completely in solution (two complementary nucleic acids are all in solution) carry out crossover process.Can also be fixed to matrix at one of complementary nucleic acid for example hybridizes magnetic bead, sepharose 4B or any other resin in the situation that.Crossover process can also be in the situation that a nucleic acid in complementary nucleic acid be fixed to solid support for example Nitrocellulose or nylon membrane or be fixed to for example siliceous glass support (the latter is called nucleic acid array or microarray or nucleic acid chip) by for example light version typography and occur.In order to allow hybridization to occur, conventionally nucleic acid molecule is carried out to thermally denature or chemical modification, thereby two strands is unwind and is 2 strands and/or eliminates hairpin structure or from other secondary structures of single-chain nucleic acid.The stringency of hybridization is subject to the condition impact that for example temperature, salt concn, ionic strength and hybridization buffer form.
Nucleic acid hybridization experimental example as the situation of Southern and Northern hybridization in, " tight hybridization conditions " and " tight hybridization wash conditions " be sequence-dependent and under varying environment parameter difference.Those skilled in the art will know that can in hybridization and washing process, change and will keep or the various parameters of change stringency condition.
T munder definite ionic strength and pH, the temperature of 50% target sequence during with the probe hybridization mating completely.T mthe based composition and the length that depend on solution condition and probe.For example, longer sequence specific hybrid at higher temperature.Lower than T mabout 16 ℃ to 32 ℃ obtain maximum hybridization speed.In hybridization solution, the existence of monovalent cation has reduced the Coulomb repulsion between 2 nucleic acid chains, thereby promotes crossbred to form; This effect is visible for the na concn that reaches 0.4M.Methane amide reduces the melting temperature(Tm) of DNA-DNA and DNA-RNA duplex, and every 1% methane amide reduces by 0.6 to 0.7 ℃, and adding of 50% methane amide allows to hybridize at 30 to 45 ℃, although hybridization speed will reduce.Base-pair mismatch reduces the thermostability of hybridization speed and duplex.Fifty-fifty with for large probe, every 1% base mispairing, T mreduce about 1 ℃.The type that depends on crossbred, can be used following formula to calculate T m:
DNA-DNA crossbred (Meinkoth and Wahl, Anal.Biochem., 138:267-284,1984):
T m=81.5 ℃+16.6xlog[Na +] a+ 0.41x%[G/C b]-500x[L c] -1-0.61x% methane amide
DNA-RNA or RNA-RNA crossbred:
T m=79.8+18.5(log 10[Na +] a)+0.58(%G/C b)+11.8(%G/C b) 2-820/L c
Few DNA or few RNA dcrossbred:
For 20 Nucleotide: T of < m=2 (l n)
For 20-35 Nucleotide: T m=22+1.46 (l n)
aor for other monovalent cations, but within the scope of 0.01-0.4M, be only accurately.
bto the %GC in the scope 30% to 75%, be only accurately.
cthe length of the duplex in L=base pair
doligo, oligonucleotide; l n, the useful length of primer=(number of G/C)+(number of A/T).
Attention: for every 1% methane amide, T mreduce about 0.6 to 0.7 ℃, yet the existence of 6M urea reduces T mabout 30 ℃.
The specificity of hybridization is the function of post-hybridization washing normally.For eliminating the background being caused by non-specific hybridization, by the salts solution washing sample of dilution.The key factor of such washing comprises ionic strength and the temperature of whole washing soln: salt concn is lower and wash temperature is higher, and the stringency of washing is higher.Be generally equal to or implement wash conditions lower than hybridization stringency.Conventionally, as implied above for the suitable stringent condition of nucleic acid hybridization test or gene amplification detection method.Also can select more tight or not too tight condition.Usually, low stringency condition is chosen as under definite ionic strength and pH than the pyrolysis chain point (T of particular sequence m) low about 50 ℃.Medium stringency condition is that temperature compares T mlow 20 ℃, high stringency condition is that temperature compares T mlow 10 ℃.For example, stringency condition is at least equally tight with condition A-L for example stringent condition; The stringency condition reducing is at least equally tight with condition M-R for example stringency condition.Can use the arbitrary technology in many known technology (for example, with wrapping proteinaceous solution closing membrane, adding allos RNA, DNA and SDS and process with RNA enzyme in hybridization buffer) to control non-specific binding.
The example of hybridization and wash conditions is listed in table 1:
Table 1:
Figure S2006800521587D00271
Figure S2006800521587D00281
Figure S2006800521587D00282
" crossbred length " is the expection length that the nucleic acid of hybridization occurs.When making the nucleic acid hybridization of known array, can determine crossbred length by aligned sequences and evaluation conserved regions described herein.
Figure S2006800521587D00283
(1 * SSPE is 0.15M NaCl, 10mM NaH to SSPE 2pO 4, and 1.25mM EDTA, pH7.4) SSC (1 * SSC is 0.15M NaCl and 15mM Trisodium Citrate) in alternative hybridization and lavation buffer solution; After completing, hybridization washs 15 minutes.Hybridization and washing can comprise extraly 5 * Denhardt ' s reagent, 0.5-1.0%SDS, 100 μ g/ml salmon sperm DNA sex change, fragmentation, 0.5% trisodium phosphate and be no more than 50% methane amide.
*tb-Tr: should be than the melting temperature(Tm) T of crossbred for expecting that length is less than the hybridization temperature of the crossbred of 50 base pairs mlow 5-10 ℃; According to above-mentioned formula, determine T m.
±the present invention also comprises with any one or more DNA of replacement nucleic acid of PNA or modification or RNA hybridization mating partner.
In order to define the level of stringency, can be easily with reference to the people such as Sambrook (2001) Molecular Cloning:a laboratory manual, the 3rd edition, Cold Spring HarborLaboratory Press, CSH, New York or with reference to Current Protocols in MolecularBiology, Joh n Wiley & Sons, N.Y. (1989).
t-DNA activates label (Activation Tagging)
T-DNA activates label people Science (1992) 1350-1353 such as () Hayashi and relates to and T-DNA (conventionally comprising promotor (can be also translational enhancer or intron)) being inserted with such configuration in the upstream or downstream 10kb of the genome area of goal gene or the coding region of gene, and described configuration makes promotor can instruct this by the expression of the gene of target.Conventionally, interrupt the regulation and control to its expression by the natural promoter of the gene of target, gene is attributed under the control of promotor of new importing.Conventionally promotor is embedded to T-DNA.This T-DN is for example infected and inserted Plant Genome by Agrobacterium (Agrobacterium) at random, thus near the gene overexpression T-DNA that causes inserting.The transgenic plant of gained are because the expression of crossing of the gene of the promotor near importing shows dominant phenotype.The promotor being imported into can be any promotor that can instruct gene to express in the biology (being plant in this situation) of expectation.For example, composing type, organize preference type promotor, cell type preference type and inducible promoter to be all suitable for T-DNA to activate.
the local mutating technology (TILLING) of directional induction genome
TILLING (directional induction genome local mutating technology) be for generation of and/or the induced-mutation technique of the variant nucleic acid of evaluation and/or final separated mutagenesis.TILING also allows to select the plant with this mutation variants.The variant of these sudden changes even can show the activity higher than the gene of its natural form.TILLING combines high-density mutagenesis and high-throughput screening method.The step of conventionally carrying out in TILLING is: (a) EMS mutagenesis (Redei GP and Koncz C (1992) InMethods in Arabidopsis Research, Koncz C, Chua NH, Schell J, eds.Singapore, World Scientific Publishing Co, pp.16-82; The people such as Feldmann, (1994) In Meyerowitz EM, Somerville CR, eds, Arabidopsis.Cold SpringHarbor Laboratory Press, Cold Spring Harbor, NY, pp137-172; LightnerJ and Caspar T (1998) In J Martinez-Zapater, J Salinas, eds, Methods onMolecular Biology, the 82nd volume .Humana Press, Totowa, NJ, pp 91-104); (b) individual DNA preparation and merging (pooling); (c) pcr amplification in object region; (d) sex change and annealing so that heteroduplex can form; (e) DHPLC, wherein in consolidated material, the existence of heteroduplex detects as extra peak in color atlas; (f) evaluation of mutated individual; (g) order-checking of sudden change PCR product.For the method for TILLING, in this area, be well-known (people such as McCallum, (2000) Nat Biotechnol 18:455-457; By Stemple (2004) Nat Rev Genet 5 (2): 145-50 summarizes).
directed mutagenesis
Can use directed mutagenesis to produce the variant of SYR nucleic acid.Can obtain several method and carry out directed mutagenesis; That the most frequently used is method (the Current Protocols in Molecular Biology.Wiley Eds. of PCR-based http:// www.4ulr.com/products/currentprotocols/index.html).
transposon mutagenesis
Transposon mutagenesis is the induced-mutation technique of the insertion in gene based on transposon, and this mutagenesis often causes gene knockout.This technology is for several plant species, comprise rice (people such as Greco, PlantPhysiol, 125,1175-1177,2001), corn (people such as McCarty, Plant J.44,52-61,2005) and Arabidopsis (Parinov and Sundaresan, Curr.Opin.Biotechnol.11,157-161,2000).
orthogenesis
Orthogenesis or gene shuffling (gene shuffling) (thereby produce variant nucleic acid or its part by DNA reorganization repeatedly with then suitable screening and/or selection, or there is polypeptide or its homologue of the biologic activity of change) form (people such as Castle, (2004) Science 304 (5674): 1151-4; United States Patent (USP) 5,811,238 and 6,395,547).
Homologous recombination
Homologous recombination allows at definite select location selected nucleic acid quiding gene group.Homologous recombination is conventional for the unicellular lower eukaryote standard technique of yeast or liver moss sword-like leave Rhodobryum (Physcomitrella) for example in bio-science.Not only for model plant (people (1990) the EMBO J 9 (10) such as Offringa: 3077-84) but also for crop plants such as rice (people (2002) Nat Biotech 20 (10): the 1030-4 such as Terada; Iida and Terada (2004) Curr Opin Biotech15 (2): 132-8) described for carry out the method for homologous recombination plant.Target nucleic acid (it can be any nucleic acid or the variant herein defining) needs the directed specific locus that arrives.Target nucleic acid can be can be maybe the extra importing outside native gene for replacing the allelotrope of the improvement of native gene.
homologue
" homologue " of protein comprise compare with the protein of described unmodified there is amino-acid substitution, disappearance and/or insertion and there is the similar biologic activity of the protein of the unmodified of originating to them and peptide, oligopeptides, polypeptide, protein and the enzyme of functionally active.In order to produce such homologue, the available amino acid for example, with other amino-acid substitution protein of similar quality (tendency of similar hydrophobicity, wetting ability, antigenicity, formation or destruction αhelix or β-pleated sheet structure structure).Preservative replacement table in this area, be well-known (referring to for example Creighton (1984) Proteins.W.H.Freeman and Company and below table 2).
ortholog thing and paralog thing
Term " homologue " comprises direct line (orthologous) homologous sequence and collateral line (paralogous) homologous sequence, that is, comprise for describing the homologue of two kinds of special shapes of evolution concept of the ancestral relationship of gene.
The gene that term " paralog thing " relates in the species gene group that causes paralog gene doubles.Can carry out BLAST analysis by one group of sequence of the species for from identical with search sequence, easily identify paralog thing.
Term " ortholog thing " relates to because species form the homologous gene in the difference biology causing.Can easily find the ortholog thing in dicotyledons species for example by carrying out so-called mutual blast research.This can for example, be undertaken by a blast (BLAST that comprises the obtainable ncbi database enforcement search sequence of the public (, SEQ ID NO:1 or SEQ ID NO:2) that for example can find at http://www.ncbi.nlm.nih.gov. for any sequence library analyzes).When starting from nucleotide sequence, can use BLASTN or TBLASTX (use standard default), when starting from protein sequence, can use BLASTP or TBLASTN (use standard default).Optionally filter BLAST result.Then the full length sequence of the result of filtration or unfiltered result is returned to BLAST for the biological sequence deriving from from search sequence and analyze (the 2nd BLAST) (when search sequence is SEQ ID NO:1 or SEQ ID NO:2, the 2nd blast will carry out for rice sequence).Then compare the result of the first and second BLAST.If from the high-level hit event of the 2nd blast with search sequence from identical species, be accredited as so paralog thing; If high-level hit event from different species, is accredited as ortholog thing from search sequence so.High-level hit event is the hit event with low E value.E value is lower, mark more remarkable (or in other words, the probability that chances on this hit event is lower).The calculating of E value is known in this area.The in the situation that of extended familys, can use ClustalW, then build in abutting connection with tree (neighbourjoining tree), to help to show cluster and evaluation ortholog thing and the paralog thing of genes involved.
Homologue can be the form of " the displacement variant " of protein, and wherein at least one residue of aminoacid sequence has been removed and has inserted different residues in its position.The normally single residue form of amino-acid substitution, but depend on that the limit of functions being placed on polypeptide also can occur by cluster; Insert the rank of normally about 1 to 10 amino-acid residue.Preferably, amino-acid substitution comprises conservative amino acid replacement.Can not the displacement of more not guarding in very vital situation in above-mentioned amino acid character.Conservative substitution table can easily obtain in this area.Following table has provided the example of conservative amino acid replacement.
Table 2: the example of conservative amino acid replacement
Residue Conservative substitution Residue Conservative substitution
Ala Ser Leu Ile;Val
Arg Lys Lys Arg;Gln
Asn Gln;His Met Leu;Ile
Asp Glu Phe Met;Leu;Tyr
Gln Asn Ser Thr;Gly
Cys Ser Thr Ser;Val
Glu Asp TPR Tyr
Gly Pro Tyr TPR;Phe
His Asn;Gln Val Ile;Leu
Ile Leu,Val
Homologue can also be the form of " the insertion variant " of protein, wherein one or more amino-acid residues is imported to predetermined position in protein.Insertion can comprise in N end and/or C end fusions and single or multiple amino acid whose sequence inserts.Conventionally, the insertion in aminoacid sequence will be less than N or the fusion of C end, be the rank of about 1 to 10 residue.The example of N or C end fusion rotein or peptide comprises for the binding domains of the activating transcription factor of yeast two-hybrid system or activation structure territory, bacteriophage coat protein, (Histidine)-6-label, glutathione S-transferring enzyme-label, A albumen, maltose binding protein, Tetrahydrofolate dehydrogenase, Tag.100 epi-position, c-myc epi-position, FLAG
Figure S2006800521587D00331
-peptide, lacZ, CMP (calmodulin binding peptide), HA epi-position, C albumen epi-position and VSV epi-position.
For the homologue of " disappearance variant " form of protein is characterised in that, one or more amino acid is removed from protein.
Can use peptide synthetic technology such as the solid-phase peptide known in this area synthetic wait or by recombinant DNA processing ease prepare the amino acid variant of protein.For operating DNA sequence dna, to produce the method for protedogenous displacement, insertion or disappearance variant, in this area, know.For example, for produce the technology of replacement mutation on the predetermined position of DNA, know to those skilled in the art, it comprises M13 mutagenesis, T7-Gen vitro mutagenesis (USB, Cleveland, OH), QuickChange directed mutagenesis (Stratagene, San Diego, CA), directed mutagenesis or other directed mutagenesis schemes of PCR mediation.
derivative
" derivative " is for example, to compare and can comprise polypeptide or protein that modify natively and/or the amino-acid residue that non-natural is modified with the aminoacid sequence of the form (not experiencing posttranslational modification) of the natural generation of protein (, the protein as shown in SEQ ID NO:2)." derivative " of protein comprises compares polypeptide or the protein change, glycosylated, acidylate, prenylation or the amino-acid residue that non-natural occurs that can comprise natural generation with the aminoacid sequence of the form of the natural generation of polypeptide.The aminoacid sequence that derivative is originated with it is compared also can comprise one or more non-aminoacid replacement bases, for example be bonded to reporter molecules or other parts of aminoacid sequence covalency or non-valency, for example, in conjunction with to help the reporter molecules of the detection of aminoacid sequence, and the amino-acid residue occurring with respect to the non-natural of the aminoacid sequence of the protein of natural generation.
alternative splicing variant
Term used herein " alternative splicing variant " comprises wherein and excises, replaces or add selected intron and/or exon or wherein shortened or increased the variant of the nucleotide sequence of intron.This type of variant is that the biologic activity of wherein protein obtains the variant retaining, and can obtain by the function fragment of selective retention protein such variant.Can find or can manually prepare this type of splice variant at occurring in nature.Method for generation of this type of splice variant is known in this area.
allele variant
The natural existence of allele variant, method of the present invention comprises this type of natural allelic application.Allele variant comprises single nucleotide polymorphism (SNP) and little insertion/deletion (SmallInsertion/Deletion Polymorphism) (INDEL).The size of INDEL is less than 100bp conventionally.SNP and INDEL have formed one group of maximum sequence variants in the polymorphism strain of the natural generation of most of biologies.
promotor
Term " controlling element ", " control sequence " and " promotor " are all used interchangeably at this, and it broadly refers to realize the regulation and control nucleotide sequence of the expression of the sequence being connected with them.Above-mentioned term comprises that the transcription regulating nucleotide sequence that derives from classical eukaryotic gene group gene (comprises the necessary TATA box of transcription initiation accurately, there is or do not have CCAAT box sequence) and response growth and/or outside stimulus or change the extra controlling element (that is, upstream activating sequence, enhanser and silencer) of genetic expression in tissue-specific mode.This term also comprises the transcription regulating nucleotide sequence of classical prokaryotic gene, and it can comprise-35 box sequences and/or-10 box transcription regulating nucleotide sequences in this case.Term " controlling element " also comprises synthetic fusion molecule or the derivative of giving, activating or strengthen the expression of nucleic acid molecule in cell, tissue or organ.Term used herein " effectively connect " refers to the functional connection between promoter sequence and goal gene, and what promoter sequence just can initial goal gene like this transcribes.
Promotor can be inducible promoter, i.e. response is grown, chemistry, environment or physical stimulation and induce or increase transcription initiation.
Tissue preference Xing Huo tissue-specific promoter be can be preferentially in some such as leaf, root, seed tissue etc. of tissue or initial promotor of transcribing in specific cell even.
The term " composing type " of definition refers to main at least one tissue or organ and the promotor of mainly expressing at any life stage of plant herein.Preferred described promotor is mainly expressed in whole plant.
The example of other constitutive promoters is shown in table 3 below.
Table 3: the example of constitutive promoter
Gene source Reference
Actin muscle McElroy etc., Plant Cell, 2:163-171,1990
CAMV?35S Odell etc., Nature, 313:810-812,1985
CaMV?19S Nilsson etc., Physiol.Plant.100:456-462,1997
GOS2 De Pater etc., Plant J Nov; 2 (6): 837-44,1992, WO 2004/065596
Ubiquitin Christensen etc., Plant Mol.Biol.18:675-689,1992
Rice cyclophilin Buchholz etc., Plant Mol Biol.25 (5): 837-43,1994
Corn H3 histone Lepetit etc., Mol.Gen.Genet.231:276-285,1992
Clover H3 histone The Plant Mol.Biol.11:641-649 such as Wu, 1988
Actin muscle 2 An etc., Plant is (1) J.10; 107-121,1996
34S?FMV Sanger?et?al.,Plant.Mol.Biol.,14,1990:433-443
Rubisco small subunit US?4,962,028
OCS Leisner(1988)Proc?Natl?Acad?Sci?USA?85(5):2553
SAD1 Jain etc., Crop Science, 39 (6), 1999:1696
SAD2 Jain etc., Crop Science, 39 (6), 1999:1696
Nos Shaw etc. (1984) Nucleic Acids Res.12 (20): 7831-7846
V-ATPase WO?01/14572
Super promotor WO?95/14098
G box protein matter WO?94/12015
Table 4: the example of non-constitutive promoter
Gene source and title Expression pattern Reference
Rice RP6 Endosperm-specific The people such as Wen (1993) Plant Physiol 101 (3): 1115-6
The kafirin of Chinese sorghum Endosperm-specific The people such as DeRose (1996) Plant Molec Biol 32:1029-35
The zein of corn Endosperm-specific The people such as Matzke (1990) Plant Mol Biol 14 (3): 323-32
Rice oleosin 18kDa Embryo (and aleuron) is specific The people such as Chuang (1996) J Biochem 120 (1): 74-81
Rice oleosin 16kDa Embryo (and aleuron) is specific The people such as Chuang (1996) J Biochem 120 (1): 74-81
Soybean β-conglycinin Embryo The people such as Chiera (2005) Plant Molec Biol 56 (6): 895-904
Rice Wsi18 Whole seed The people such as Joshee (1998) Plant Cell Physiol 39 (1): 64-72.
Rice Whole seed The people such as Sasaki (2002) NCBI accession number BAA85411
Rice OSH1 Early stage shoot apical meristem The people such as Sato (1996) Proc Natl Acad Sci 93 (15): 8117-8122
Rice Rcc2 Root-specific The people such as Xu (1995) Plant Mol Biol 27 (2): 237-48
Rice Rcc3 Root-specific The people such as Xu (1995) Plant Mol Biol 27 (2): 237-48
Arabidopsis Pyk10 Root-specific The people such as Nitz (2001) Plant Sci 161 (2): 337-346
Table 5: the example of early stage shoot apical meristem promotor
Gene source Gene family Plant origin Reference
OSH1 KNOX family 1 class homeobox Rice The people such as-Matsuoka, the people such as (1993) Plant Cell 5:1039-1048-Sato, (1996) PNAS 93:8117-8122
Knotted?1 KNOX family 1 class homeobox Corn The people such as Hake, (1989) EMBO Journal 8:15-22
KNAT1 KNOX family 1 class homeobox Arabidopis thaliana The people such as Lincoln, (1994) Plant Cell 6:1859-1876
Oskn2 KNOX family 1 class homeobox Rice The people such as Postma-Haarsma, (1999) Plant Mol Biol 39 (2): 257-71
Oskn3 KNOX family 1 class homeobox Rice The people such as Postma-Haarsma, (1999) Plant Mol Biol 39 (2): 257-71
Table 6: for the example of endosperm specificity promoter of the present invention
Gene source Expression pattern Reference
Wheat LMW and HMW glutenin 1 Endosperm Mol?Gen?Genet?216:81-90,1989; NAR?17:461-2,1989.
Wheat α, beta, gamma-gliadine Endosperm EMBO?3:1409-15,1984.
Barley Itr1 promotor Endosperm
Barley B1, C, D, hordein Endosperm Theor?Appl?Gen?98:1253-62,1999; Plant?J?4:343-55,1993;Mol?Gen Genet?250:750-60,1996.
Barley DOF Endosperm The people such as Mena, The Plant Journal, 116 (1): 53-62,1998.
?blz2 Endosperm EP99106056.7
Synthetic promotor Endosperm The people such as Vicente-Carbajosa, Plant J.13:629-640,1998.
Paddy prolamine NRP33 Endosperm The people such as Wu, Plant Cell Physiology 39 (8) 885-889,1998.
Rice alpha-globulin Glb-1 Endosperm The people such as Wu, Plant Cell Physiology 39 (8) 885-889,1998.
Rice alpha-globulin REB/OHP-1 Endosperm The people such as Nakase, Plant Mol.Biol.33:513-522,1997.
Rice ADP-glucose PP Endosperm Trans?Res?6:157-68,1997.
Corn ESR gene family Endosperm Plant?J?12:235-46,1997.
Chinese sorghum γ-kafirin Endosperm PMB?32:1029-35,1996.
Table 7: for the example of seed specific promoters of the present invention
Gene source Expression pattern Reference
Seed-specific gene Seed Simon, waits people, Plant Mol.Biol.5:191,1985; Scofield, waits people, J.Biol.Chem. 262:12202,1987; Baszczynski, waits people, Plant Mol.Biol.14:633,1990.
Bertholletia excelsa albumin Seed Pearson, waits people, Plant Mol.Biol.18:235-245,1992.
Legumin Seed Ellis, waits people, Plant Mol.Biol.10:203-214,1988.
Gluten (rice) Seed Takaiwa, waits people, Mol.Gen.Genet.208:15-22,1986; Takaiwa, waits people, FEBS Letts.221:43-47,1987.
Zein Seed The people such as Matzke, Plant Mol Biol, 14 (3): 323-32,1990.
napA Seed Stalberg, waits people, Planta 199:515-519,1996.
Wheat LMW and HMW glutenin-1 Endosperm ?Mol?Gen?Genet?216:81-90,1989;?NAR?17:461-2,1989.
Wheat SPA Seed The people such as Albani, Plant Cell, 9:171-184,1997.
Wheat α, beta, gamma-gliadine Endosperm ?EMBO?3:1409-15,1984.
Barley Itr1 promotor Endosperm
Barley B1, C, D, hordein Endosperm ?Theor?Appl?Gen?98:1253-62,1999;?Plant?J?4:343-55,1993;Mol?Gen?Genet?250:750-60,1996.
Barley DOF Endosperm The people such as Mena, The Plant Journal, 116 (1): 53-62,1998.
blz2 Endosperm ?EP99106056.7
Synthetic promotor Endosperm The people such as Vicente-Carbajosa, Plant J.13:629-640,1998.
Paddy prolamine NRP33 Endosperm The people such as Wu, Plant Cell Physiology 39 (8) 885-889,1998.
Rice alpha-globulin Glb-1 Endosperm The people such as Wu, Plant Cell Physiology 39 (8) 885-889,1998.
Rice OSH1 Embryo The people such as Sato, Proc.Natl.Acad.Sci. USA, 93:8117-8122,1996.
Rice alpha-globulin REB/OHP-1 Endosperm The people such as Nakase, Plant Mol.Biol.33:513-522,1997.
Rice ADP-glucose PP Endosperm ?Trans?Res?6:157-68,1997.
Corn ESR gene family Endosperm ?Plant?J?12:235-46,1997.
Chinese sorghum γ-kafirin Endosperm ?PMB?32:1029-35,1996.
KNOX Embryo The people such as Postma-Haarsma, Plant Mol. Biol.39:257-71,1999.
Rice oleosin Embryo and aleuron The people such as Wu, J.Biochem., 123:386,1998.
Sunflower Receptacle oil albumen Seed (embryo and dry seeds) The people such as Cummins, Plant Mol.Biol.19:873-876,1992.
terminator sequence
Term " terminator " comprises control sequence, and the 3 ' processing that the end of described control sequence Shi transcription unit is primary transcript and polyadenylation and the termination of transcribing provide the DNA sequence dna of signal.Other controlling element can comprise transcriptional enhancer and translational enhancer.Those skilled in the art will know that and can be suitable for carrying out terminator of the present invention and enhancer sequence.This type of sequence is known or can easily by those skilled in the art, obtains.
selective marker
The term of herein mentioning " selectable marker gene " comprises any following gene, and described gene pairs is expressed its cell and given phenotype, thereby helps to identify and/or select the cell with nucleic acid construct transfection of the present invention or conversion.Suitable mark can be selected from gives microbiotic or Herbicid resistant, the mark that imports new metabolism proterties or allow range estimation to select.The example of selectable marker gene comprises giving for example, (for example to be provided Basta microbiotic (hpt of the nptII of phosphorylation Liu Suanyan NEOMYCIN SULPHATE and kantlex, or phosphorylation Totomycin), weedicide tMthe bar of resistance; AroA or the gox of the resistance of resistance glyphosate are provided) resistance gene or the gene (for example allowing plant to use seminose as the manA of sole carbon source) of metabolism proterties is provided.Visual marking gene cause color (β-glucuronidase for example, GUS), the formation of luminous (for example luciferase) or fluorescence (green fluorescent protein, GFP and its derivative).
transform
The term of herein mentioning " conversion " comprises exogenous polynucleotide is transferred to host cell, and regardless of the method for shifting.Available genetic constructs of the present invention transforms the plant tissue that can carry out subsequently clonal propagation (occurring or embryo occurs by organ), then from its complete plant that regenerates.The specific tissue of selecting can change, this depend on can obtain for be best suited for the clonal propagation system of the specific species that are converted.Example organization target (for example comprises leaf dish, pollen, embryo, cotyledon, hypocotyl, megagametophyte (megagametophyte), callus, existing meristematic tissue, apical meristem, axillalry bud and root meristematic tissue) and induction meristematic tissue (for example, cotyledon meristematic tissue and hypocotyl meristematic tissue).Can be by polynucleotide instantaneous or stably import host cell, it can keep nonconformity state for example as plasmid.Selectively, can be integrated into host genome.Then with method known to those skilled in the art, the vegetable cell of the conversion of gained is used for to the plant that regenerates and transform.
The conversion of plant species is quite conventional technology now.Advantageously, can use the either method in several method for transformation that goal gene is imported to suitable ancester cell.Method for transformation comprises use, the electroporation of liposome, the chemical substance of increase dissociative DNA picked-up, DNA to direct injection, the particle gun bombardment (particle gun bombardment) of plant, use conversion and the microinjection of virus or pollen.Method is optional from calcium/polyoxyethylene glycol method (Krens, the people such as F.A., (1982) Nature 296,72-74 for protoplastis; The people such as Negrutiu I (1987) Plant Mol Biol 8:363-373), the electroporation of protoplastis (people (1985) Bio/Technol 3 such as Shillito R.D., 1099-1102), to the microinjection (people such as Crossway A, (1986) Mol.GenGenet 202:179-185) in vegetable material; The microparticle bombardment (people such as Klein TM, (1987) Nature 327:70) that DNA or RNA are coated; Use the infection of (nonconformable) virus etc.Preferably by agriculture bacillus mediated conversion, use any method transforming for rice of knowing, the method of for example describing in one of following documents and materials: disclosed European patent application EP 1198985A1, Aldemita and Hodges (Planta 199:612-617,1996); The people such as Chan (Plant Mol Biol 22 (3): 491-506,1993), the people such as Hiei (Plant J 6 (2): 271-282,1994) (its disclosure is intactly incorporated herein by reference), produce transgenosis rice plant.In the situation that corn transforms, preferred method is that (Nat.Biotechnol 14 (6): 745-50 as people such as Ishida, 1996) or the method for describing in people's (PlantPhysiol 129 (1): 13-22,2002) (its disclosure is intactly incorporated herein by reference) such as Frame.
Conventionally after conversion, just, by the existence of one or more marks of the expressive gene of plant coding moving with goal gene corotation, select vegetable cell or cell cohort, afterwards the material regeneration of conversion is become to complete plant.
After DNA shifts and regenerates, can for example use Southern to analyze the conversion of plant of existence, copy number and/or genomic tissue assessment supposition with regard to goal gene.Selectively or in addition, can use Northern and/or Western to analyze the expression level of the new DNA importing of (two kinds of technology are known to those skilled in the art) monitoring.
Can be by several different methods for example by clonal propagation or classical breeding technique, the plant of the conversion that breeding produces.For example, the plant selfing that can make the first-generation (or T1) transform, the s-generation (or T2) transformant that then selection is isozygotied, then can further breed T2 plant by classical breeding technique.
The inverting biological producing can be taked various ways.For example, they can be the mosaics of transformant and no transformed cells; Clone's property transformant (for example, all cells comprises expression cassette through being converted); That transform and grafting unconverted tissue (for example,, in plant, grafting is to the stock of the conversion in unconverted scion).
the detailed description of seed production conditioning agent (SYR)
Can increase by increasing the level of SYR polypeptide the activity of SYR albumen.Selectively, when the level of SYR does not change, or even when the level of SYR albumen reduces, activity also can increase.This can occur in when for example when producing mutant or selecting to have more activated variant and change the inwardness of polypeptide than wild-type.
The term " SYR albumen or its homologue " of definition refers to that about 65 to about 200 amino acid whose polypeptide herein, this polypeptide (i) is held and in half part, is comprised the be rich in leucic structural domain similar to leucine zipper at the C of protein, (ii) this (guards primitive 1a for having sequence YFS before being rich in leucic structural domain, SEQ ID NO:6) or YFT (conservative primitive 1b, SEQ ID NO:7) or YFG (conservative primitive 1c, SEQ ID NO:8) or YLG (conservative primitive 1d, SEQ ID NO:9) tripeptides, (iii) this is conservative primitive 2 ((V/A/I) LAFMP (T/S) after being rich in leucic structural domain, SEQID NO:10).Preferably, conservative primitive 2 is (A/V) LAFMP (T/S), and most preferably this conservative primitive is VLAFMPT." SYR albumen or its homologue " preferably also has the conservative C-terminal peptide of the primitive of guarding 3 (SYL or PYL, SEQ ID NO:11) ending.The length that is rich in leucic structural domain of SYR albumen or its homologue is about 38 to 48 amino acid (after just in time starting from conservative primitive 1 and before just ending at conservative primitive 2), and it comprises at least 30% leucine.The structural domain that is rich in Leu preferably has and leucine zipper primitive (L-X 6-L-X 6-L-X 6-L, wherein X 6the sequence of 6 continuous amino acids) similar primitive.The preferred embodiment of SYR albumen is represented by SEQ ID NO:2, has provided the general introduction of its structural domain in Fig. 1.It should be pointed out that term " SYR albumen or its homologue " does not comprise the ARGOS albumen (SEQ ID NO:26) from Arabidopis thaliana.
More preferably, SYR albumen has 2 membrane spaning domains, and wherein the N end of albumen is divided with C end and divided and be positioned at inside, and the part between two membrane spaning domains is positioned at outside.
Selectively, the homologue of SYR albumen has and the amino acid at least 27% shown in SEQ ID NO:2 by the preferred sequence increasing progressively, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% complete sequence identity, condition is that homologous protein comprises above-mentioned conservative primitive 1 (a, b, c or d), 2 and 3 and be rich in leucic structural domain.Use for example Needleman Wunsch algorithm (preferably using default parameter) in program GAP (GCG WisconsinPackage, Accelrys) of overall comparison algorithm, can determine complete sequence identity.
Can use special database to identify the various structural domains in SYR albumen, described database is such as SMART (people (1998) Proc.Natl.Acad.Sci.USA 95 such as Schultz, 5857-5864; The people such as Letunic (2002) Nucleic Acids Res 30,242-244; Http:// smart.embl-heidelberg.de/), InterPro (people such as Mulder, (2003) Nucl.Acids.Res.31,315-318; Http:// www.ebi.ac.uk/interpro/), Prosite (Bucher and Bairoch (1994), A generalized profile syntax for biomolecular sequences motifs and itsfunction in automatic sequence interpretation. (In) ISMB-94; The 2nd international conference minutes Altman R. of molecular biology intelligent system, Brutlag D., Karp P., Lathrop R., Searls D., Eds., pp53-61, AAAIPress, Menlo Park; The people such as Hulo, Nucl.Acids.Res.32:D134-D137, (2004), http://www.expasy.org/prosite/) or the Pfam (people such as Bateman, Nucleic Acids Research 30 (1): 276-280 (2002), http://www.sanger.ac.uk/Software/Pfam/).
Be used for the search of SYR homologue and the method for evaluation completely within those skilled in the art's limit of power.These class methods comprise uses the algorithm for sequence alignment or comparison of knowing in this area, the sequences that the SEQ ID NO:1 of computer-reader form or 2 is represented with can public database for example MIPS (http://mips.gsf.de/), GenBank really in good (http://www.ncbi.nlm.nih.gov/Genbank/index.html) or EMBL nucleotide sequence database (http://www.ebi.ac.uk/embl/index.html) sequence of acquisition compare, described algorithm is GAP (Needleman and Wunsch, J.Mol.Biol.48 for example; 443-453 (1970)), BESTFIT (is used local homology's algorithm (Advances inApplied Mathematics 2 of Smith and Waterman; 482-489 (1981))), BLAST (Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J., J.Mol.Biol.215:403-410 (1990)), FASTA and TFASTA (W.R.Pearson and D.J.Lipman Proc.Natl.Acad.Sci.USA 85:2444-2448 (1988)).For carrying out the software of BLAST analysis, can pass through the public acquisition of American National biotechnology information center (NCBI).
Membrane spaning domain length is about 15 to 30 amino acid, and conventionally the hydrophobic residue that forms α spiral, consists of.Conventionally based on hydrophobicity predict they (such as people such as Klein, Biochim.Biophys.Acta 815,468,1985; Or the people such as Sonnhammer, J.Glasgow, T.Littlejohn, F.Major, R.Lathrop, D.Sankoff, and C.Sensen volume, Proceedingsof the Sixth International Conference on Intelligent Systems for MolecularBiology, 175-182 page, Menlo Park, CA, 1998.AAAI Press.).
Drop on the example of the protein under the definition of " SYR polypeptide or its homologue " and list in the Table A of embodiment 1, it comprises from different monocotyledonss for example rice (SEQ ID NO:2, SEQ ID NO:12 and SEQ ID NO:13), corn (SEQ ID NO:14 and SEQ ID NO:44), wheat (SEQID NO:15), barley (SEQ ID NO:16), sugarcane (SEQ ID NO:17 and SEQ ID NO:18), Chinese sorghum SEQ ID NO:19) sequence; With from the dicotyledons sequence of Arabidopsis (SEQID NO:20 and SEQ ID NO:21), grape (SEQ ID NO:22), oranges and tangerines (SEQ ID NO:23) or tomato (SEQ ID NO:24 and SEQ ID NO:25) for example.Can predict, the structural domain that is rich in Leu is very important for the function of protein, therefore has and is rich in the structural domain of Leu but can be used for equally method of the present invention without the albumen of conservative primitive 1 or 2; The example of such protein is shown in SEQ ID NO:34 and 35.
Be appreciated that term " SYR polypeptide or its homologue " is not limited to sequence or the listed homologue of SEQ ID NO:12 to SEQ ID NO:25 that SEQ ID NO:2 represents, but meet, comprise the standard that is rich in as defined above leucic structural domain; Or have and all can be suitable for method of the present invention to any about 65 of the sequence identity of the sequence at least 38% of SEQ ID NO:2 to about 200 amino acid whose polypeptide, before wherein said structural domain, being conservative tripeptides primitive 1 (a, b, c or d), is to guard primitive 2 and preferably also have conservative primitive 3 afterwards.
In another embodiment, the invention provides and be selected from following separated SYR albumen:
(a) polypeptide representing in SEQ ID NO 44,
(b) there is the polypeptide of following aminoacid sequence, described aminoacid sequence by the preferred sequence increasing progressively have with SEQ ID NO 44 in the aminoacid sequence at least 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% sequence identity that represent
(c) (a) or (b) in the derivative of albumen of definition.
The sequence being represented by SEQ ID NO:43 is still unknown so far as the gene of coding SYR.Therefore the invention provides separated nucleotide sequence, this sequence comprises
(i) nucleotide sequence being represented by SEQ ID NO:43, or its complementary strand;
(ii) nucleotide sequence of the aminoacid sequence that coding SEQ ID NO:44 represents;
(iii) can (preferably under stringent condition) with above (i) or the nucleotide sequence of nucleic acid array hybridizing (ii), this hybridization sequences optimized encoding SYR albumen;
(iv) nucleic acid of the allele variant of conduct (i) or nucleotide sequence (ii);
(v) nucleic acid of the splice variant of conduct (i) or nucleotide sequence (ii);
(vi) have (i) or the nucleotide sequence of the sequence identity of the sequence 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% of definition (ii) or 99%.
The activity that can measure SYR albumen or its homologue by express SYR albumen under GOS2 promotor is controlled or its homologue in rice, this causes when comparing with corresponding wild-type plant, has the seed production of increase and the plant that postpones without flowering time.Can measure in several ways the increase of this seed production, for example, with the form of the increase of seed gross weight, full seed number or harvest index.
SYR albumen or its homologue are by SYR nucleic acid/genes encoding.Therefore the term " SYR nucleic acid/gene " of definition is any nucleic acid/gene of SYR albumen as defined above or its homologue of encoding herein.
The example of SYR nucleic acid includes but not limited to the nucleic acid of any expression in SEQ ID NO:1, SEQ ID NO:27 to SEQ ID NO:32, SEQ ID NO:36 to 42 and SEQ ID NO:44.Also the list of mentioned nucleic acid in the Table A referring to embodiment 1.
SYR nucleic acid/gene and its variant can be suitable for putting into practice method of the present invention.Variant SYR nucleic acid/gene comprise SYR nucleic acid/gene part and/or can with the nucleic acid of SYR nucleic acid/gene recombination.
The term " part " of definition refers to the fragment of coding about 65 DNA to about 200 amino acid whose polypeptide herein, wherein said polypeptide comprises and is rich in as defined above leucic structural domain, before this structural domain, being conservative tripeptides primitive 1 (a, b, c or d), is to guard primitive 2 and preferably also have conservative primitive 3 afterwards.Preferably, part comprises one or more conservative primitives as defined above.Can for example by produce one or more disappearances in SYR nucleic acid, prepare this part.Can use this part maybe they can be merged to other coding (or non-coding) sequences for example to produce the albumen of several activity of combination with separated form.When merging to other encoding sequences, the polypeptide that the translation of gained produces afterwards can be larger than the size of predicting for this SYR fragment.Preferably, part is the part of the nucleic acid of any expression in SEQ IDNO:1, SEQ ID NO:27 to SEQ ID NO:32, SEQ ID NO:36 to SEQ ID NO:42 and SEQ ID NO:44.Most preferably the part of nucleic acid is as shown in SEQ ID NO:1.
The another kind of variant of SYR nucleic acid/gene be can be under the stringency condition reducing (preferably under stringent condition) and the nucleic acid of the SYR nucleic acid/gene recombination of definition above, this hybridization sequences encodes about 65 to about 200 amino acid whose polypeptide, this polypeptide comprises and is rich in as defined above leucic structural domain or has the sequence identity to the sequence at least 38% of SEQ ID NO:2, before wherein said structural domain, be conservative primitive 1 (a, b, c or d), and be to guard primitive 2 and preferably also have conservative primitive 3 afterwards.
Preferably, hybridization sequences be can with the nucleic acid being represented by SEQ ID NO:1, SEQ ID NO:27 to SEQ IDNO:32, SEQ ID NO:36 to SEQ ID NO:42 and SEQ ID NO:44 or with the sequence of the part hybridization of arbitrary sequence of above-mentioned sequence.Most preferably hybridization sequences can be hybridized SEQID NO:1.Term " hybridization " is hybridization defined herein.
SYR nucleic acid or its variant can derive from any natural or artificial source.Can be from microbe-derived for example yeast or fungi or from plant, algae or animal (comprising people) source isolating nucleic acid/gene or its variant.Can in composition and/or genome environment, from its natural form, modify this nucleic acid by the manual operation of having a mind to.Nucleic acid is plant origin preferably, and it can derive from identical plant species (for example the plant to be imported from it is identical) or from different plant species.Can be from unifacial leaf species, preferably from Gramineae (Poaceae), more preferably from rice isolating nucleic acid.More preferably, SYR separate nucleic acid represents from rice and by SEQ ID NO:1, and SYR aminoacid sequence is represented by SEQ ID NO:2.
Can regulate by importing genetic modification (preferably in the locus of SYR gene) expression of the nucleic acid of coding SYR polypeptide or its homologue.The locus of the gene of definition is used for representing genome area herein, and this region comprises 10kb upstream or the downstream of goal gene and coding region.
Can for example by any (or a plurality of) method in following method or by import and express the nucleic acid of coding SYR polypeptide or its homologue in plant, import genetic modification, described method is: T-DNA activation, TILLING, directed mutagenesis,, transposon mutagenesis, orthogenesis and homologous recombination.In the part that is " definition " at title, defined aforesaid method herein.After importing genetic modification, the expression of the nucleic acid of just encode SYR polypeptide or its homologue changes, and selects step, and wherein the change in this expression causes having the plant of the seed production of increase.
T-DNA activation, TILLING, directed mutagenesis, transposon mutagenesis and orthogenesis are the examples that can produce the technology of new allelotrope and SYR variant.
A preferred method that is used for importing genetic modification (described modification does not need to be arranged in the locus of SYR gene in this case) is to import and express the coding SYR polypeptide of definition herein or the nucleic acid of its homologue plant.The nucleic acid of plant to be imported can be total length nucleic acid can be maybe as defined above part or hybridization sequences.
The part that is " definition " at title has in this manual defined " homologue " of protein.SYR polypeptide or its homologue can be derivatives.About the definition of term " derivative ", referring to the acceptance of the bid of this specification sheets, be entitled as the part of " definition ".
SYR polypeptide or its homologue can be encoded by the alternative splicing variant of SYR nucleic acid/gene.In " definition " part, defined term " alternative splicing variant ".Preferably splice variant is the splice variant of coding about 65 nucleic acid to about 200 amino acid whose polypeptide, described polypeptide comprises and is rich in as defined above leucic structural domain or has the sequence identity to the sequence at least 38% of SEQ ID NO:2, before wherein said structural domain, be conservative tripeptides primitive 1 (a, b, c or d), and be to guard primitive 2 and preferably also have conservative primitive 3 afterwards.The splice variant being represented by SEQ ID NO:1, SEQ ID NO:27 to SEQ ID NO:32, SEQ ID NO:36 to SEQ ID NO:42 and SEQ ID NO:44 is further preferred.The splice variant that SEQ ID NO:1 represents is most preferred.
Homologue also can be by the allele variant of the nucleic acid of coding SYR polypeptide or its homologue, the allele variant coding of optimized encoding about 65 nucleic acid to about 200 amino acid whose polypeptide, described polypeptide comprises and is rich in as defined above leucic structural domain or has the sequence identity to the sequence at least 38% of SEQ ID NO:2, before wherein said structural domain, be conservative tripeptides primitive 1 (a, b, c or d), and be to guard primitive 2 and preferably also have conservative primitive 3 afterwards.More preferably, the allele variant of the coding SYR polypeptide of any expression in SEQ IDNO:1 or SEQ ID NO:12 to SEQ ID NO:25.Most preferably, the allele variant of coding SYR polypeptide is the variant being represented by SEQ IDNO:1.In " definition " part, defined term " allele variant ".
According to a preferred aspect of the present invention, can expect the expression of the increase of SYR nucleic acid or its variant.Method existing lot of documents instruction in this area for increasing the expression of gene or gene product.It comprises, for example, by the use of crossing expression, transcriptional enhancer or translational enhancer of suitable promoters driven.Can import in the suitable position (conventionally in upstream) of the polynucleotide of non-allos form separated nucleic acid as promotor or enhancer element to raise the expression of SYR nucleic acid or its variant.For example, can by sudden change, disappearance and/or displacement change in vivo endogenesis promoter (referring to, Kmiec, United States Patent (USP) 5,565,350; The people such as Zarling, PCT/US93/03868), or can import vegetable cell with distance (with respect to gene of the present invention) by separated promotor with appropriate direction, with the expression of controlling gene.For reducing the method for the expression of gene or gene product, in this area, know.
If expectation expression of polypeptides, the 3 ' end that is conventionally desirably in polynucleotide encoding district comprises polyadenylation region.Polyadenylation region can derive from natural gene, from multiple other plant gene or from T-DNA.3 ' the end sequence adding for example can derive from nopaline synthase or octopine synthase gene or selectively from another plant gene, or more preferably from any other eukaryotic gene.
Also can in the encoding sequence of 5 ' non-translational region or part encoding sequence, add intron sequences to be increased in the ripe courier's who accumulates in cytosol amount.Be presented in the transcription unit of plant and animal expression construct and comprised and can make the expression of gene on mRNA and protein level, increase nearly 1000 times by montage intron, Buchman and Berg, Mol.Cell biol.8:4395-4405 (1988); The people such as Callis, Genes Dev.1:1183-1200 (1987).When near the 5 ' end that is placed in transcription unit, this intron enhancement of genetic expression is conventionally maximum.The purposes of corn intron A dh1- S introne 1,2 and 6, Bronze-1 intron is known in this area.Conventionally referring to, The MaizeHandbook, 116 chapters, Freeling and Walbot, Eds., Springer, N.Y. (1994).
The present invention also provides the importing of nucleotide sequence and/or the genetic constructs of expression and the carrier contributing to for the inventive method.
Therefore, provide gene construct, it comprises:
(i) the SYR nucleic acid or its variant that define hereinbefore;
(ii) can drive one or more control sequences of the nucleotide sequence expression of (i); Optionally
(iii) transcription termination sequence;
Condition is the nucleic acid sequences to proteins that gene construct does not comprise coding SEQ ID NO:26.
Can use recombinant DNA technology well known to those skilled in the art to build the construct for method of the present invention.Gene construct can be inserted to the carrier that is suitable for being transformed into plant and is suitable for expressing goal gene in transformant, the commercially available acquisition of this carrier.
The carrier conversion of plant that use comprises aim sequence (that is, the nucleic acid of coding SYR polypeptide or its homologue).Aim sequence is effectively connected with one or more control sequences (at least with promotor).Term " controlling element ", " control sequence " and " promotor " are all used interchangeably in this article, and the part that title is " definition " is in this manual defined.
Advantageously, can use the expression of the promoters driven nucleotide sequence of any type.Preferably, SYR nucleic acid or its functional variant are effectively connected with constitutive promoter.Preferably, can be preferentially in whole plant the constitutive promoter of express nucleic acid there is the express spectra suitable with GOS2 promotor.More preferably, constitutive promoter has the express spectra identical with rice GOS2 promotor, most preferably, can be preferentially in whole plant the promotor of express nucleic acid be the GOS2 promotor (SEQ IDNO:5) from rice.
It should be understood that the scope of application of the present invention is not limited to the SYR nucleic acid being represented by SEQ ID NO:1, the scope of application of the present invention is also not limited to the expression by the SYR nucleic acid of GOS2 promoters driven.Selectable constitutive promoter for method of the present invention is high mobility group protein (high mobility group protein, HMGP) promotor (SEQ ID NO:33).Also can be used for driving the example of other constitutive promoters of SYR expression of nucleic acid to be shown in the table 3 of the part that title is " definition ".
Optionally, also one or more terminator sequences can be used for to the construct of plant to be imported.In " definition " part, defined term " terminator ".
Genetic constructs of the present invention also can comprise in order to maintain and/or copy necessary replication orgin sequence in specific cell type.An example is need to be in bacterial cell for example, with in additive type genetic elements (plasmid or clay molecule) maintenance genetic constructs.Preferred replication orgin includes but not limited to f1-ori and colE1.
Genetic constructs optionally comprises selectable marker gene, as the selectable marker gene in the definition of " definition " part.
The present invention also comprises the plant that can obtain by method of the present invention.Therefore the invention provides the plant that can obtain by method of the present invention, described plant has imported SYR nucleic acid or its variant as defined above therein.
The present invention also provides for generation of the method for transgenic plant with the seed production of increase, and the method is included in and in plant, imports and express SYR nucleic acid or its variant as defined above.
More particularly, the invention provides for generation of the method for transgenic plant with the seed production of increase, the method comprises:
(i) in plant or vegetable cell, import and express SYR nucleic acid or its variant, and
(ii) culturing plants cell under the condition of Promoting plant growth and growth;
Condition is that SYR nucleic acid or its variant are not the nucleotide sequences of the albumen of coding SEQ ID NO:26.
Nucleic acid directly can be imported to vegetable cell or import plant itself (comprising the tissue, organ or any other part that import plant).According to a preferred feature of the present invention, preferably by transforming, nucleic acid is imported to plant.In " definition " part, defined term " conversion ".
The present invention clearly extends to any vegetable cell or the plant producing by any method described herein, and its all plant parts and propagulum.The present invention further extends to the offspring who comprises by the primary conversion of any method generation in aforesaid method or cell, tissue, organ or the whole plant of transfection, and unique requirement is genotype and/or identical genotype and/or the phenotypic characteristic of phenotypic characteristic that this offspring shows with parent produces in the method for the invention.The present invention also comprises and comprises separated SYR nucleic acid or the host cell of its variant.Preferred host cell of the present invention is vegetable cell.The present invention also extends to the part gathered in the crops of plant such as, but not limited to seed, leaf, fruit, flower, stem culture, rhizome, stem tuber and bulb.The invention still further relates to the product of the part gathered in the crops that is directed to such plant, for example dry granulated feed (pellet) or dry powder, oil, fat and lipid acid, starch or protein.
The present invention also comprises the purposes of SYR nucleic acid or its variant and the purposes of SYR polypeptide or its homologue.
Such purposes relates to the growth characteristics of improveing plant, particularly aspect raising seed production.Seed production can comprise one or more following aspects: the harvest index of the seed gross weight of increase, the full seed number of increase, full rate and increase.
SYR nucleic acid or its variant, or SYR polypeptide or its homologue can be used for the procedure of breeding, in the described procedure of breeding, identify can with the DNA marker of SYR gene or its variant genetic linkage (genetically link).SYR nucleic acid/gene or its variant, or SYR polypeptide or its homologue can be used for defining molecule marker.Then this DNA or protein labeling can be had to the plant of the seed production of increase with selection for the procedure of breeding.SYR gene or its variant can be for example the nucleic acid of any expression in SEQ ID NO:1, SEQ ID NO:27 to SEQ ID NO:32, SEQ ID NO:36 to SEQ ID NO:42 and SEQ ID NO:44.
The allele variant of SYR nucleic acid/gene also can be used for the auxiliary procedure of breeding of mark.This type of procedure of breeding needs to use for example EMS mutagenesis sometimes, by plant is carried out to mutagenic treatment, imports allelic variation; Selectively, this program can start from the set of the allele variant in non-so-called " natural " source producing intentionally.Then by for example PCR, carry out the evaluation of allele variant.Carry out afterwards the selection of the good allele variant of aim sequence, described good allele variant causes the seed production increasing.The growth performance of the plant of the different allele variants that conventionally comprise aim sequence by monitoring (for example different allele variants of any in SEQ ID NO:1, SEQ ID NO:27 to SEQ ID NO:32, SEQ ID NO:36 to SEQID NO:42 and SEQ ID NO:44) is selected.Can be in greenhouse or monitor on field growth performance.Other optional step comprise and will wherein identify plant and other plant hybridization of good allele variant.This can be used for for example producing the combination of significant phenotypic characteristic.
SYR nucleic acid or its variant also can be used as gene (described SYR nucleic acid or its variant are the parts of described gene) to carry out heredity and the probe of physical mapping, and the mark of conduct and the proterties of these gene linkages.This Information Availability has the strain of the phenotype of expectation with generation in plant breeding.It is the nucleotide sequence of at least 15 Nucleotide that this purposes of SYR nucleic acid or its variant only needs length.SYR nucleic acid or its variant can be used as restriction fragment length polymorphism (RFLP) mark.Available SYR nucleic acid or its variant are surveyed the Southern trace (Sambrook J, Fritsch EF and Maniatis T (1989) Molecular Cloning, A LaboratoryManual) of the plant genome DNA of restricted enzymic digestion.Then use computer program such as MapMaker people (1987) Genomics 1:174-181 such as () Lander that the banding pattern of gained is carried out to genetic analysis to build genetic map.In addition, can use the Southern trace of the genomic dna that nuclei acid probe comprises one group of individuality that restriction endonuclease processes, wherein this group individuality represents parent and the offspring of definite genetic cross.Record the separation of DNA polymorphism, use it for and calculate position in the genetic map that uses before this colony to obtain of SYR nucleic acid or its variant people (1980) Am.J.Hum.Genet.32:314-331 such as () Botstein.
Generation and the application of the probe of originating for the plant gene of genetic mapping have been described in Bernatzky and Tanksley (GENETICS 112 (4): 887-898,1986).Many publications have been described and have been used the genetic mapping that aforesaid method is learned or its modification is carried out specific cDNA clone.For example, F2 hybrid Population, backcross population, panmictic population, near isogenic line (near isogenic line) and other group of individuals can be used for mapping.These class methods are known to those skilled in the art.
Nucleic acid probe also can be used for physical mapping (that is, the placement of sequence on physical map; Referring to people In:Non-mammalian Genomic Analysis:A Practical Guide such as Hoheisel, Academic press 1996, pp.319-346, and the reference of wherein quoting).
In another embodiment, nucleic acid probe can be used for direct fluorescence in situ hybridization (FISH) mapping (Trask (1991) Trends Genet.7:149-154).Although the existing method of FISH mapping is conducive to large clone, (number kb is to hundreds of kb; Referring to the people such as Laan (1995) Genome Res.5:13-20) use, but the raising of sensitivity can allow to use shorter probe to carry out FISH mapping.
Can use nucleic acid to carry out the multiple method based on nucleic acid amplification for heredity and physical mapping.Example comprises the polymorphism (CAPS of the fragment of allele specific amplification (Kazazian (1989) J.Lab.Clin.Med 11:95-96), pcr amplification; The people such as Sheffield (1993) Genomics16:325-332), allele-specific connects people (1988) Science241:1077-1080 such as () Landegren, Nucleotide extension (Sokolov (1990) Nucleic Acid Res.18:3671), radioactivity hybridization mapping people (1997) Nat.Genet.7:22-28 such as () Walter and Happy map (Dear and Cook (1989) Nucleic Acid Res.17:6795-6807).For these methods, the sequence of nucleic acid is used for designing and producing the primer pair for amplified reaction or primer extension reaction.The design of such primer is known to those skilled in the art.In the method for genetic mapping of using PCR-based, may must in the region corresponding to this nucleotide sequence, identify that mapping hybridizes the DNA sequence dna difference between two parents of (mapping cross).Yet this is conventionally optional for drawing method.
As described in the text, method of the present invention causes producing the plant of the seed production with increase.Also can by these favourable growth characteristics and other economic favourable proterties for example other volume increase proterties, abiotic stress resistance and other to various resistances of coercing, change various constitutional featuress (architectural feature) and/or the proterties of biological chemistry and/or physiologic character combined.
the detailed description of FG-GAP
Can be by regulating the level of FG-GAP polypeptide to regulate the activity of FG-GAP albumen.Selectively, also adjustable activity when the level of FG-GAP does not change.This for example can occur in when producing mutant or selection higher or active lower variant changes the inwardness of polypeptide with wild-type phase specific activity.
The term " FG-GAP albumen or its homologue " of definition refers to and comprises (i) N end secreting signal peptide, (ii) one or more FG-GAP structural domains herein, and the C of (iii) protein afterwards holds the polypeptide of the membrane spaning domain in half part.In Fig. 6, provided example.
Signal peptide is generally used for being directed to the albumen of Secretory Pathway.Use computerized algorithm (as SignalP 3.0, the people such as Bendtsen, J.Mol.Biol., 340:783-795,2004) easily to predict the existence of secretion signal.Common secretion signal is comprised of positively charged n-district, ensuing hydrophobicity n-district and neutrality, polarity c-district.In addition, with respect to cleavage site the amino-acid residue on position-3 and-1 normally little with neutral amino-acid residue.
Membrane spaning domain length is about 15 to 30 amino acid and conventionally the hydrophobic residue that forms α spiral, consists of.Conventionally based on hydrophobicity prediction they (such as people such as Klein, Biochim.Biophys.Acta 815,468,1985; Or the people such as Sonnhammer, In J.Glasgow, T.Littlejohn, F.Major, R.Lathrop, D.Sankoff, compile Proceedings of the SixthInternational Conference on Intelligent Systems for Molecular Biology.175-182 page, Menlo Park with C.Sensen, CA, 1998.AAAI Press.).
FG-GAP structural domain (Pfam accession number PF01839, INTERPRO entry IPR000413) is present in integrin conventionally, this its, to repeat (nearly 7 copies) form, is present in the extracellular part of this protein.Up to the present, only at large characterized the integrin from animal-origin.In SEQ ID NO:53, provided the consensus sequence of FG-GAP structural domain:
fgssvaagDlnGDGrpDlvvgaPgadggtdgsvyll,
The amino acid whose single-letter amino acid code that wherein large letter is high conservative, other letters are the amino acid whose single-letter amino acid code that conservative property is lower.This structural domain comprises Phe-Gly-X conventionally n-Gly-Ala-Pro primitive, wherein X nthe amino acid that represents variable number.Because this consensus sequence derives from animal proteinum, itself and plant FG-GAP structural domain sequence Incomplete matching.For example, six peptides " Pgadgg " may not be present in plant FG-GAP structural domain.Therefore, term used herein " FG-GAP structural domain " comprises SEQ ID NO:53 and has the sequence of the sequence similarity of SEQ ID NO:53 at least 40% (based on using Needleman & Wunsch algorithm (the open point penalty in room be 10 and to extend point penalty be 0.5 in room) the SEQ ID NO:53 carrying out and the comparison of corresponding matching sequence).
FG-GAP structural domain also can comprise Ca 2+binding site.
Preferably, FG-GAP albumen also comprises FDGYLYLI (D/E) G primitive 1 (SEQ ID NO:50).More preferably, conservative primitive 1 is FDGYLYLIDG.
Additionally and/or selectively, FG-GAP albumen can comprise one or more DGXX (D/E) primitive (conservative primitive 2, SEQ ID NO:51), and wherein X can be any amino acid.This conservative primitive can be the part of larger primitive DXDXDGXX (D/E) (conservative primitive 3, SEQ ID NO:52), and wherein X can be any amino acid.Therefore, FG-GAP albumen preferably comprises the conservative primitive 3 of one or more copies.
Selectively, the homologue of FG-GAP albumen has the amino acid 50% representing with SEQ IDNO:46 by the preferred sequence increasing progressively, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% complete sequence identity, condition is that homologous protein comprises signal peptide sequence, one or more FG-GAP structural domains, with the membrane spaning domain in C-terminal half part of protein, and preferably also comprise conservative primitive 1, one or more in 2 or 3.Use overall comparison algorithm for example the Needleman Wunsch algorithm (preferably using default parameter and full length protein sequence) in program GAP (GCG Wisconsin Package, Accelrys) determine complete sequence identity.
Can use special database such as SMART (people (1998) Proc.Natl.Acad.Sci.USA 95 such as Schultz, 5857-5864; The people such as Letunic (2002) Nucleic Acids Res 30,242-244; ), InterPro (people such as Mulder, (2003) Nucl.Acids.Res.31,315-318; ), Prosite (Bucher and Bairoch (1994), A generalized profile syntax forbiomolecular sequences motifs and its function in automatic sequenceinterpretation. (In) ISMB-94; Proceedings 2nd International Conferenceon Intelligent Systems for Molecular Biology.Altman R., Brutlag D., KarpP., Lathrop R., Searls D., Eds., pp53-61, AAAIPress, Menlo Park; The people such as Hulo, Nucl.Acids.Res.32:D134-D137, (2004),) or the Pfam (people such as Bateman, Nucleic Acids Research 30 (1): 276-280 (2002)), identify the various structural domains in FG-GAP albumen.
For search for and the method for identifying FG-GAP homologue completely in those skilled in the art's limit of power.Described method comprises the algorithm that uses comparison and comparison for sequence well known to those skilled in the art, for example GAP (Needleman and Wunsch, J.Mol.Biol.48; 443-453 (1970)), BESTFIT (is used local homology's algorithm (Advancesin Applied Mathematics 2 of Smith and Waterman; 482-489 (1981))), BLAST (Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J., J.Mol.Biol.215:403-410 (1990)), FASTA and TFASTA (W.R.Pearson and D.J.LipmanProc.Natl.Acad.Sci.USA 85:2444-2448 (1988)), will be compared by SEQ ID NO:45 or 46 sequences (form that can read with computer) that represent and the sequence that can for example obtain in MIPS, GenBank or EMBL nucleotide sequence database at public database.For carrying out the software of BLAST analysis, can pass through the public acquisition of American National biotechnology information center (NCBI).
The example that drops on the protein under the definition of " FG-GAP polypeptide or its homologue " comprises Arabidopsis albumen (SEQ ID NO:55) and two rice albumen (SEQ ID NO:57 and 59).Also in other plant species (comprising common wheat, Zea mays, potato, aquilegia (Aquilegia sp.), colea, sweet orange (Citrus sinensis), officinalis, Populus, Euphorbia esula L (Euphorbia the csula)) neutralization of Magnoliophyta (Magnoliophyta), also in other plant taxonomical group, for example proved the existence of FG-GAP albumen in fern (Ceratopteris richardii) or orchid at the age of one hundred years old (Welwitschia mirabilis).In table 8, provided the non-limiting example list of the EST of coding FG-GAP albumen:
Table 8:
Species GenBank accession number ?SEQ?ID?NO:
Common wheat ?CK207217 ?16
Zea mays ?AY111316 ?17
Potato ?BG598275 ?18
Aquilegia ?DT735817 ?19
Colea ?CX192752 ?20
Sweet orange ?CX674859 ?21
Officinalis CV288972 22
Populus CN520999 23
Populus CX176799 24
Euphorbia esula L DV130386 25
Ceratopteris?richardii CV736049 26
Orchid at the age of one hundred years old DT601669 27
The protein of the genes encoding of being originated by these EST is also for implementing method of the present invention and falling within the scope of the invention.Those skilled in the art can use the complete encoding sequence of separated these genes of standard method.
In addition the present invention also provides and has been selected from following separated FG-GAP albumen:
(a) by the albumen of the nucleic acid encoding of SEQ ID NO:72;
(b) albumen of membrane spaning domain that comprises signal sequence, one or more FG-GAP structural domain and be positioned at C end half part of protein, wherein said albumen comprises at least one in SEQ ID NO:73 to SEQID NO:72;
(c) (a) or (b) in the active fragments of aminoacid sequence of definition, the membrane spaning domain that this active fragments comprises signal sequence, one or more FG-GAP structural domain and is positioned at C end half part of protein.
Be appreciated that, term " FG-GAP polypeptide or its homologue " is not limited to the sequence being represented by SEQ ID NO:46 or classifies SEQ ID NO:55,57 and 59 homologue as, but meets the demands: comprise signal peptide, one or more FG-GAP structural domain and be arranged in the membrane spaning domain of C end half part of protein and the one or more primitives that preferably also comprise the conservative primitive of SEQ ID NO:50 to 52: or have and can be suitable for method of the present invention to any polypeptide of the sequence identity of the sequence at least 50% of SEQ ID NO:46.
Plant FG-GAP albumen work in pollen development process (people 2001 such as Paxson-Sowders).In dex1 mutant plant, prototheca deposition postpones and significantly reduces.In mutant, there is not the generation of the normal ripple formation (rippling) and gap (spacer) of the plasma membrane of observing in wild-type plant yet.FG-GAP albumen can make up this sudden change and recover normal phenotype.
Selectively, the activity that can measure FG-GAP albumen or its homologue by express FG-GAP albumen under constitutive promoter is controlled or its homologue in rice, this expression causes producing compares the plant with the ground biomass of increase and/or the seed production of increase with corresponding wild-type plant.Can measure in several ways the increase of this seed production, for example, with the form of the increase of seed gross weight, full seed number or seed overall number.
FG-GAP albumen or its homologue are by FG-GAP nucleic acid/genes encoding.Therefore the term " FG-GAP nucleic acid/gene " of definition is any nucleic acid/gene of FG-GAP albumen as defined above or its homologue of encoding herein.
The example of FG-GAP nucleic acid includes but not limited to the nucleic acid of any one expression in SEQ ID NO:45, SEQ ID NO:54, SEQ ID NO:56 or SEQ ID NO:58.In table 8, listed the example of part FG-GAP nucleic acid.
The present invention also provides the separated nucleic acid of coding FG-GAP albumen, and described nucleic acid is selected from:
(i) nucleic acid representing in SEQ ID NO:72;
(ii) nucleic acid of the albumen defining in (a) to (c) above coding;
(iii) can be with above the nucleotide sequence of (i) or nucleic acid array hybridizing (ii) (preferably under stringent condition), this hybridization sequences optimized encoding albumen, the C that described albumen comprises signal peptide, one or more FG-GAP structural domain and is arranged in albumen holds the membrane spaning domain of half part;
(iv) nucleic acid to the allele variant of the nucleotide sequence of (iii) as (i);
(v) nucleic acid to the alternative splicing variant of the nucleotide sequence of (iii) as (i);
(vi) part of the nucleotide sequence of any one in (i) to (v) above, this part optimized encoding albumen, the C that described albumen comprises signal peptide, one or more FG-GAP structural domain and is arranged in albumen holds the membrane spaning domain of half part.
FG-GAP nucleic acid/gene and its variant can be suitable for implementing method of the present invention.Variant FG-GAP nucleic acid/gene comprise FG-GAP nucleic acid/gene part, allele variant, splice variant and/or can with the nucleic acid of FG-GAP nucleic acid/gene recombination.
The term of definition partly refers to that the fragment of the DNA of coded polypeptide, described polypeptide comprise signal peptide, one or more FG-GAP structural domain and be arranged in the membrane spaning domain of C end half part of protein and conservative primitive one or more that preferably also comprise SEQ ID NO:50 to 52 herein.Preferably, this part comprises one or more conservative primitives as defined above.Can for example by being carried out to one or more disappearances, FG-GAP nucleic acid prepare part.Can use part with separated form, maybe they and other coding (or non-coding) sequences can be merged to for example produce the albumen of several activity of combination.When merging with other encoding sequences, the gained polypeptide producing after translation can be larger than the size of the FG-GAP fragment of prediction.Preferably, part is the part of the nucleic acid that represents of the arbitrary sequence in SEQ ID NO:45, SEQ ID NO:54, SEQ ID NO:56, SEQ ID NO:58 or SEQ ID NO:72.Part can also be the part of the sequence of table 8 encoding sequence of originating.Most preferably the part of nucleic acid is as shown in SEQ ID NO:45.
The another kind of variant of FG-GAP nucleic acid/gene is can be under the stringent condition reducing, preferably under stringent condition with the nucleic acid of FG-GAP nucleic acid/gene recombination of definition above, this hybridization sequences coded polypeptide, described polypeptide comprises signal peptide, one or more FG-GAP structural domain and is arranged in the membrane spaning domain of C end half part of protein and conservative primitive one or more that preferably also comprise SEQ ID NO:50 to 52.
Preferably, hybridization sequences be the nucleic acid that can represent with SEQ ID NO:45, SEQ ID NO:54, SEQ IDNO:56, SEQ ID NO:58 or SEQ ID NO:72 or with above-mentioned sequence in the sequence of part (comprising EST listed in table 8) hybridization of any sequence.Most preferably hybridization sequences can be hybridized SEQ ID NO:45.Term " hybridization " is that title is the hybridization defining in the part of " definition ".
FG-GAP nucleic acid or its variant can derive from any natural or artificial source.Can be from microbe-derived for example yeast or fungi or from plant, algae or animal (comprising people) source isolating nucleic acid/gene or its variant.Can in composition and/or genome environment, by the manual operation of having a mind to, from its natural form, modify this nucleic acid.Nucleic acid is plant origin preferably, and it can for example, from identical plant species (plant to be imported from it is identical) or can be from different plant species.Can be from dicotyledonous species, preferably from cress, more preferably from Arabidopis thaliana isolating nucleic acid.More preferably, from the separated FG-GAP nucleic acid of Arabidopis thaliana, and FG-GAP nucleic acid represents by SEQ ID NO:45, and FG-GAP aminoacid sequence is the sequence being represented by SEQ ID NO:46.
Can regulate by importing genetic modification (preferably in the locus of FG-GAP gene) expression of the nucleic acid of coding FG-GAP polypeptide or its homologue.The locus of the gene of definition is used for representing genome area herein, and this region comprises 10kb upstream or the downstream of goal gene and coding region.
Can be for example by any (or multiple) method of following method or import genetic modification by import and express the nucleic acid of coding FG-GAP polypeptide or its homologue in plant, described method is: T-DNA activation, TILLING, directed mutagenesis, transposon mutagenesis, orthogenesis and homologous recombination.In the part that is " definition " at title, this class methods have been defined.After importing genetic modification, the modified expression of the nucleic acid of just encode FG-GAP polypeptide or its homologue, selects step, and wherein the modification of this expression causes having the plant of the output of increase.
T-DNA activation, TILLING, directed mutagenesis, transposon mutagenesis and orthogenesis are the examples that can produce the technology of neomorph and FG-GAP variant.
The preferred method that is used for importing genetic modification (its in this situation needn't at the locus of FG-GAP gene) is in plant, to import and express the nucleic acid of FG-GAP polypeptide as defined above or its homologue of encoding.The nucleic acid of plant to be imported can be that total length nucleic acid can be maybe part or the hybridization sequences defining hereinbefore.Preferably, the plant of genetic modification to be imported is not dex1 mutant plant, and in this mutant plant, DEX1 gene does not have function (people 2001 such as Paxson-Sowders).
The part that is " definition " at title has defined " homologue " of protein.FG-GAP polypeptide or its homologue can be the derivatives defining in " definition " part.
FG-GAP polypeptide or its homologue can be encoded by the alternative splicing variant of FG-GAP nucleic acid/gene.Term " alternative splicing variant " as defined herein.The splice variant of nucleic acid of following polypeptide of encoding is preferred, and described polypeptide comprises signal peptide, one or more FG-GAP structural domain and is arranged in the membrane spaning domain of C end half part of protein and conservative primitive one or more that preferably also comprise SEQ ID NO:50 to 52.The splice variant of the arbitrary gene in the splice variant of the splice variant more preferably being represented by SEQ ID NO:45, SEQ ID NO:54, SEQ ID NO:56 or SEQ ID NO:58 or the nucleic acid being represented by SEQ ID NO:72 or the gene that the sequence in table 8 is originated.The splice variant shown in SEQ ID NO:45 most preferably.
Homologue also can be by the allele variant of the nucleic acid of coding FG-GAP polypeptide or its homologue, the allele variant coding of the nucleic acid of optimized encoding polypeptide (one or more of conservative primitive that the C that described polypeptide comprises signal peptide, one or more FG-GAP structural domains and is arranged in albumen holds the membrane spaning domain of half part and preferably also comprises SEQ ID NO:50 to 52).More preferably, the allele variant of coding FG-GAP polypeptide any expression in SEQ ID NO:45, SEQ ID NO:54, SEQ IDNO:56 or SEQ ID NO:58.Most preferably, the allele variant of coding FG-GAP polypeptide is represented by SEQ ID NO:45.In " definition " part, defined allele variant.
According to a preferred aspect of the present invention, can expect the modulated expression of FG-GAP nucleic acid or its variant.Preferably, modulated expression was expression.The method of expressing for crossing of gene or gene product is existing lot of documents report in this area, for example comprises the use of crossing expression, transcriptional enhancer or translational enhancer by suitable promoters driven.Can import the separated nucleic acid as promotor or enhancer element in the suitable position (conventionally in upstream) of the polynucleotide of non-allos form, to raise the expression of FG-GAP nucleic acid or its variant.For example, can by change in sudden change, disappearance and/or replacement endogenesis promoter (referring to Kmiec, United States Patent (USP) 5,565,350; The people such as Zarling, PCT/US93/03868), maybe can import vegetable cell with the expression of controlling gene with suitable direction and distance (with respect to gene of the present invention) by separated promotor.For reducing the method for the expression of gene or gene product, in this area, also know.
If expression of polypeptides expects, the 3 ' end that is conventionally desirably in polynucleotide encoding district comprises polyadenylation region.Polyadenylation region can derive from natural gene, from multiple other plant gene, or from T-DNA.3 ' the end sequence adding for example can derive from nopaline synthase or octopine synthase gene or selectively from another plant gene or more preferably from any other eukaryotic gene.
Also can to the encoding sequence of 5 ' non-translational region or part encoding sequence, add intron sequences to be increased in the ripe courier's who accumulates in cytosol amount.Be presented in the transcription unit of plant and animal expression construct, comprise can montage intron can make genetic expression on mRNA and protein level, increase nearly 1000 times, Buchman and Berg, Mol.Cell biol.8:4395-4405 (1988); The people such as Callis, Genes Dev.1:1183-1200 (1987).When near the 5 ' end that is placed in transcription unit, this type of intron enhancement of genetic expression is conventionally maximum.The purposes of corn intron A dh1- S introne 1,2 and 6, Bronze-1 intron is known in this area.Referring to, The Maize Handbook, Chapter 116, Freeling and Walbot, Eds., Springer, N.Y. (1994) in general manner.
The present invention also provides genetic constructs and carrier to contribute to importing and/or the expression for the nucleotide sequence of method of the present invention.
Therefore, the invention provides gene construct, this construct comprises:
(i) the FG-GAP nucleic acid or its variant that above define;
(ii) can drive one or more control sequences of the nucleotide sequence expression of (i); Optionally
(iii) transcription termination sequence;
Condition is that gene construct is not the pPZP type gene construct of being described by the people such as Hajdukiewicz (Plant Mol.Biol.25,989-994) and Paxson-Sowders (2001).
Can use recombinant DNA technology well known to those skilled in the art to build the construct for method of the present invention.Gene construct can be inserted to the carrier that is suitable for being transformed into plant and is suitable for expressing goal gene in transformant, the commercially available acquisition of described carrier.
With the carrier conversion of plant that comprises aim sequence (that is, the nucleic acid of coding FG-GAP polypeptide or its homologue).Aim sequence is effectively connected with one or more control sequences (at least with promotor).Term " controlling element ", " control sequence " and " promotor " are all used interchangeably herein, and the part that is " definition " at title is defined.
Advantageously, can use the expression of the promoters driven nucleotide sequence of any type.Preferably, FG-GAP nucleic acid or its functional variant are effectively connected with constitutive promoter.Term " composing type " is as definition herein.Preferably, can be preferentially in whole plant the constitutive promoter of express nucleic acid there is the express spectra suitable with GOS2 promotor.More preferably, constitutive promoter has the express spectra identical with rice GOS2 promotor, most preferably, can be preferentially in whole plant the promotor of express nucleic acid be the GOS2 promotor (Nucleotide 1 to 2193 of the sequence representing in SEQ ID NO:49) from rice.Should be understood that, suitability of the present invention is not limited to the FG-GAP nucleic acid being represented by SEQ ID NO:45, and suitability of the present invention is not limited to the expression by the FG-GAP nucleic acid of GOS2 promoters driven yet.Also can be used for driving the example of other constitutive promoters of FG-GAP expression of nucleic acid to be shown in table 3 of " definition " part.
Optionally, also one or more terminator sequences can be used for to the construct of plant to be imported.In " definition " part, defined term " terminator ".
Gene construct of the present invention also can be included in and in specific cell type, maintain and/or copy necessary replication orgin sequence.Example is need to be for example, with the form of additive type genetic elements (plasmid or clay molecule) in bacterial cell in maintainer gene construct.Preferred replication orgin includes but not limited to f1-ori and colE1.
Gene construct is optionally included in the selectable marker gene of this specification sheets " definition " part definition.
The present invention also comprises the plant that can obtain by method of the present invention.Therefore the invention provides the plant obtaining by method of the present invention, this plant has imported FG-GAP nucleic acid or its variant as defined above therein.
The present invention also provides for generation of the method for transgenic plant with the output of increase, and the method is included in and in plant, imports and express FG-GAP nucleic acid or its variant as defined above.
More particularly, the invention provides the method for the transgenic plant that produce the output with increase, the method comprises:
(i) in plant or vegetable cell, import and express FG-GAP nucleic acid or its variant; With
(ii) culturing plants cell under the condition of Promoting plant growth and growth.
Nucleic acid directly can be imported to vegetable cell or import plant itself (comprising the tissue, organ or any other part that import plant).According to preferred feature of the present invention, preferably by transforming, nucleic acid is imported to plant.
Term " conversion " is the defined conversion of " definition " part.
The present invention clearly extends to any vegetable cell or the plant producing by any method described herein, with and all plant parts and propagulum.The present invention further extends to the offspring who comprises by the primary conversion of any method generation in aforesaid method or cell, tissue, organ or the whole plant of transfection, and unique requirement is that this offspring shows genotype and/or the phenotypic characteristic identical with the genotype being produced by parent in the method for the invention and/or phenotypic characteristic.The present invention also comprises and comprises separated FG-GAP nucleic acid or the host cell of its variant.Preferred host cell of the present invention is vegetable cell.The present invention also extends to the part gathered in the crops of plant such as but not limited to seed, leaf, fruit, flower, stem culture, rhizome, stem tuber and bulb.The invention still further relates to and derive from, be preferably directed to the product of the part gathered in the crops of this type of plant, for example dry granulated feed or dry powder, oil, fat and lipid acid, starch and protein.
The present invention also comprises the purposes of FG-GAP nucleic acid or its variant and the purposes of FG-GAP polypeptide or its homologue.
Such purposes relates to the growth characteristics of improveing plant, improves especially output, particularly seed production.Seed production can comprise: one or more in the seed overall number of the seed gross weight of increase, the full seed number of increase and increase.
FG-GAP nucleic acid or its variant or FG-GAP polypeptide or its homologue can be used for the procedure of breeding, in the described procedure of breeding, identify can with the DNA marker of FG-GAP gene or its variant genetic linkage.FG-GAP nucleic acid/gene or its variant, or FG-GAP polypeptide or its homologue can be used for defining molecule marker.Then this DNA or protein labeling can be had to the plant of the output of increase with selection for the procedure of breeding.FG-GAP gene or its variant can be for example the genes that in the nucleic acid of any expression in SEQ ID NO:45, SEQID NO:54, SEQ ID NO:56, SEQ ID NO:58 and SEQ ID NO:72 or table 8, listed sequence is originated.
The allele variant of FG-GAP nucleic acid/gene also can be used for marker-assisted breeding program.This type of procedure of breeding needs the mutagenic treatment by plant sometimes, uses for example EMS mutagenesis to import allelic variation; Selectively, this program can start from the set of the allele variant in non-what is called " natural " source producing intentionally.Then for example by PCR, carry out the evaluation of allele variant.Carry out afterwards causing the selection of good allele variant of the aim sequence of the output that increases.Conventionally by monitoring the growth performance of following plant, select, the different allele variants that described plant comprises aim sequence, the different allele variants of for example, a sequence in the encoding sequence that in any or the table 8 of SEQ ID NO:45, SEQ ID NO:54, SEQ ID NO:56, SEQ ID NO:58 and SEQ ID NO:72, listed sequence is originated.Can be in greenhouse or monitor on field growth performance.Other optional step comprise and will wherein identify plant and other plant hybridization of good allele variant.This can be used for for example producing the combination of significant phenotypic characteristic.
FG-GAP nucleic acid or its variant also can be used as gene (described FG-GAP nucleic acid or its variant are the parts of described gene) to carry out heredity and the probe of physical mapping, and are used as the mark with the proterties of these gene linkages.This Information Availability has the strain of the phenotype of expectation with generation in plant breeding.It is the nucleotide sequence of at least 15 Nucleotide that this purposes of FG-GAP nucleic acid or its variant only needs length.FG-GAP nucleic acid or its variant can be used as restriction fragment length polymorphism (RFLP) mark.Available FG-GAP nucleic acid or its variant are surveyed the Southern trace (Sambrook J, Fritsch EF and Maniatis T (1989) Molecular Cloning, ALaboratory Manual) of the plant genome DNA of restrictive diges-tion.Then use computer program such as MapMaker people (1987) Genomics 1:174-181 such as () Lander that the banding pattern of gained is carried out to genetic analysis to build genetic map.In addition, can use the Southern trace of the genomic dna that nuclei acid probe comprises one group of individuality that restriction endonuclease processes, wherein this group individuality represents parent and the offspring of definite genetic cross.Record the separation of DNA polymorphism, use it for and calculate position in the genetic map that uses before this colony to obtain of FG-GAP nucleic acid or its variant people (1980) Am.J.Hum.Genet.32:314-331 such as () Botstein.
Generation and the application of the probe of originating for the plant gene of genetic mapping have been described in Bernatzky and Tanksley (Plant Mol.Biol.Reporter 4:37-41,1986).Many publications have been described the genetic mapping that uses aforesaid method or its modification to carry out specific cDNA clone.For example, F2 hybrid Population, backcross population, panmictic population, near isogenic line and other group of individuals can be used for mapping.These class methods are known to those skilled in the art.
Nucleic acid probe also can be used for physical mapping (that is, the placement of sequence on physical map; Referring to people In:Non-mammalian Genomic Analysis:A Practical Guide such as Hoheisel, Academic press 1996, pp.319-346, and the reference of wherein quoting).
In another embodiment, nucleic acid probe can be used for direct fluorescence in situ hybridization (FISH) mapping (Trask (1991) Trends Genet.7:149-154).Although the existing method of FISH mapping is conducive to large clone, (number kb is to hundreds of kb; Referring to the people such as Laan (1995) Genome Res.5:13-20) use, but the raising of sensitivity can allow to use shorter probe to carry out FISH mapping.
Can use nucleic acid to carry out the multiple method based on nucleic acid amplification for heredity and physical mapping.Example comprises the polymorphism (CAPS of allele specific amplification (Kazazian (1989) J.Lab.Clin.Med 11:95-96), pcr amplified fragment; The people such as Sheffield (1993) Genomics16:325-332), allele-specific connects people (1988) Science241:1077-1080 such as () Landegren, Nucleotide extension (Sokolov (1990) Nucleic Acid Res.18:3671), radioactivity hybridization mapping people (1997) Nat.Genet.7:22-28 such as () Walter and Happy map (Dear and Cook (1989) Nucleic Acid Res.17:6795-6807).For these methods, the sequence of nucleic acid is used for designing and producing the primer pair for amplified reaction or primer extension reaction.The design of this type of primer is known to those skilled in the art.In the method for genetic mapping of using PCR-based, may must in the region corresponding to this nucleotide sequence, identify the DNA sequence dna difference of mapping between the parent of hybridizing.Yet this is conventionally optional for drawing method.
As described above, method of the present invention causes producing the plant of the output with increase.Also can by these favourable growth characteristics and other economic favourable proterties for example other increase output proterties, to the resistance of Different stress, change various constitutional featuress (architectural feature) and/or the proterties of biological chemistry and/or physiologic character combined.
the detailed description of CYP90B
The term " CYP90B polypeptide or its homologue " of definition refers to and comprises following polypeptide herein: (a) CYP structural domain A to D; (b) N holds hydrophobic anchor structure territory; (c) translocation domain; (d), in A structural domain, allow, in any position, the consensus sequence Phe-Ala-Gly-His-Glu-Thr-Ser-Ser that an amino acid changes occurs.
In addition, CYP90B polypeptide or its homologue can also comprise (i) and have SEQ ID NO:78 is surpassed to the sequence of 50% identity and (ii) steroid 22-α hydroxylase enzymatic activity.
In the table 9a of this specification sheets, provided the above example of the CYP90B polypeptide of definition.
CYP90B polypeptide or its homologue are by CYP90B nucleic acid/genes encoding.Therefore the term " CYP90B nucleic acid/gene " of definition is encode the CYP90B polypeptide of above definition or any nucleic acid/gene of its homologue herein.
In CYP superfamily protein, be included in CYP90B polypeptide of the present invention, the various structural domains that exist are known in this area, and can use general database such as SMART (people (1998) Proc.Natl.Acad.Sci.USA 95 such as Schultz, 5857-5864; The people such as Letunic (2002) Nucleic Acids Res 30,242-244; Http:// smart.embl-heidelberg.de/), InterPro (people such as Mulder, (2003) Nucl.Acids.Res.31,315-318; Http:// www.ebi.ac.uk/interpro/), Prosite (Bucher and Bairoch (1994), A generalized profilesyntax for biomolecular sequences motifs and its function in automaticsequence interpretation, in ISMB-94; The 2nd international conference of molecular biology intelligent system recorded Altman R., Brutlag D., Karp P., Lathrop R., Searls D., Eds., pp53-61, AAAI Press, Menlo Park; The people such as Hulo, Nucl.Acids.Res.32:D134-D137, (2004), http://www.expasy.org/prosite/) or the Pfam (people such as Bateman, NucleicAcids Research 30 (1): 276-280 (2002), http://www.sanger.ac.uk/Software/Pfam/) identify.
Also can be at http://arabidopsis-P450.biotec.uiuc.edu/cgi-bin/p450.pl or more commonly on CYP homepage http://drnelson.utmem.edu/CytochromeP450.html., search for special database for Arabidopis thaliana.The typical structure territory of finding in CYP can be four structural domains by the initial A to D describing of Kalb & Loper ((1988) Proc Natl Acad Sci 85:7221-7225).A structural domain (also referred to as spiral I) comprises consensus sequence Ala/Gly-Gly-X-Asp/Glu-Thr-Thr/Ser, and thinks and be combined with dioxygen.B structural domain is steroid binding domains.D structural domain is corresponding to protoheme binding domains and comprise the most distinctive CYP amino acid consensus sequences (Phe-X-X-Gly-X-Arg-X-Cys-X-Gly) (Figure 10 and 13).
Can use the existence of identifying as mentioned above consensus sequence for sequence alignment method relatively.In some cases, capable of regulating default parameter is to change the severity of search.For example, by using BLAST, can increase for reporting the statistical significance threshold value for the coupling of database sequence (being called " expectation " value), with the coupling that shows that severity is lower.By the method, can identify short coupling almost completely.As those skilled in the art will fully recognize, the consensus sequence Phe-Ala-Gly-His-Glu-Thr-Ser-Ser (comprising consensus sequence Ala/Gly-Gly-X-Asp/Glu-Thr-Thr/Ser as defined above) in the A structural domain of the CYP90B polypeptide that can herein define with which evaluation.
At CYP P450 albumen, another structural domain of particularly identifying in CYP90B polypeptide of the present invention can be albumen n end for film target, be rich in hydrophobic residue for example the anchor structure territory of Leu, Ile, Val, Phe and Ala (anchor domain).N end anchor structure length of field is generally 20 to 40 amino acid, but can shorter (down to 10 amino acid) or longer (upper to 100 amino acid).Pass through translocation domain, N end anchor structure territory separates with the rest part (globular domain) of albumen, described translocation domain comprised (at least 2 of cluster alkaline residues before proline(Pro) bunch, Lys or Arg, be called halt-transfer signal), it forms hinge between above-mentioned anchor structure territory and the globular domain of albumen.The typical consensus sequence of translocation domain is Lys/Arg-Lys/Arg-(X) 3-9-Pro-Pro-Gly (Figure 10 and 13).Can identify as mentioned above this consensus sequence.
Can easily identify that N holds the existence in hydrophobic anchor structure territory.Can use the software program from ExPASy server, particularly ProtParam instrument people (2003) ExPASy:theproteomics server for in-depth protein knowledge and analysis.NucleicAcids Res 31:3784-3788 such as () Gasteiger E first order calculation amino acid forms (with %, representing), to determine whether polypeptide structure territory is rich in specific amino acid.Then the average amino acid in the composition of target protein and Swiss-Prot protein sequence database can be formed to (with %, representing) relatively.In this database, the adding and be 34.04% of the mean value of Leu (L), Ile (I), Val (V), Phe (F) and Ala (A).For example, the N of SEQ ID NO:78 holds hydrophobic anchor structure territory to comprise these identical hydrophobic residues of 62.5%.As defined here, N holds hydrophobic anchor structure territory to have with the average amino acid composition (representing with %) of protein in Swiss-Prot protein sequence database and compares higher hydrophobic amino acid content (representing with %).
Specific software such as ProtScale (people (2005) the ProteinIdentification and Analysis Tools on the ExPASy Server.In John M.Walker such as Gasteiger, ed:The Proteomics Protocols Handbook, Humana Press pp.571-607) can calculate and be presented on the spectrum producing by any amino acid scale (aminoacid scale) on selected protein.Amino acid scale is determined by giving all kinds of amino acid whose numerical value.The scale of the most often using is hydrophobicity or wetting ability scale and secondary structure conformation parameter scale.One of hydrophobic amino acid scale of the most often using is produced by Kyte & Doolittle ((1982) J.Mol.Biol.157:105-132), wherein gives hydrophobic amino acid positive number, gives hydrophilic amino acid negative.For example, for the hydrophobicity of CYP90B polypeptide of the present invention, ProtScale output spectra clearly illustrates that approximately front 34 N terminal amino acids are hydrophobic domains, because these amino acid are positioned at 0 top (Figure 12) that demarcates.This region is corresponding to N end anchor structure territory.Those skilled in the art will very clear this analysis.
The routine techniques of knowing in this area be can use, for example, by sequence alignment, CYP90B polypeptide or its homologue easily identified.For the sequence alignment method comparing, in this area, know, these class methods comprise GAP, BESTFIT, BLAST, FASTA and TFASTA.GAP is used the algorithm ((1970) J Mol Biol 48:443-453) of Needleman and Wunsch, with the comparison of finding to make the number maximization of coupling and making minimized two complete sequences of number in room.BLAST algorithm people (1990) J Mol Biol 215:403-10 such as () Altschul calculates per-cent sequence identity and carries out the statistical analysis of two similaritys between sequence.For carrying out the software of BLAST analysis, can obtain publicly by American National biotechnology information center.Can use the ClustalW Multiple Sequence Alignment algorithm (version 1.83) that for example can obtain at http://clustalw.genome.jp/sit-bin/nph-ClustalW, the methods of marking that uses default paired comparison parameter and represent with per-cent, easily identifies to comprise to have the CYP90B homologue that SEQ ID NO:78 is surpassed to the sequence of 50% identity.Can carry out a small amount of human-edited to optimize the comparison between conservative primitive, this it will be apparent to those skilled in the art that.
Table 9a provides the example of CYP90B polypeptide or its homologue (the polynucleotide sequence accession number in bracket is encoded).Table 9b provides the part CYP90B sequence of encoding part CYP90B open reading-frame (ORF) (ORF).
Table 9:a) example of CYP90B homologue
Title NCB or TIGR Nucleotide accession number Nucleotide SEQ ID NO The polypeptide SEQ ID NO of translation Insertion state Source
Orysa_CYP90B AB206579.1 77 78 Total length ORF Rice
Arath_CYP90B
1 NM_114926. 2 79 80 Total length ORF Arabidopis thaliana
Sacof_CYP90B ** CA092707.1 CF574030.1 CA217329.1 81 82 Total length ORF Sugarcane (saccharum officinarum)
Allce_CYP90B TC2113 83 84 Total length ORF Onion (Allium cepa)
Zinel_CYP90B AB231155 85 86 Total length ORF Youth-and-old-age (Zimnia elegans)
Medtr_CYP90 B AC147964.1 0 87 88 Total length ORF Puncture vine clover (Medicago trunculata)
Poptr_CYP90B ¨ ** CK090847.1 CV280598.1 DT503533.1 89 90 Total length ORF Comospore poplar (Populus trichocarpa)
Table 9:b) there is the example of the CYP90B of part open reading-frame (ORF) (ORF)
Title NCBI or TIGR Nucleotide accession number Nucleotide SEQ ID NO The polypeptide SEQ ID NO of translation Insertion state Source
Aqufo_CYP90 B ** DR940523. 1 DR940522. 1 91 92 Part ORF Aquilegia Formosa?x Aquilegia pubescens
Triae_CYP90 B 5 ' end BQ620306. 1 93 94 Part ORF Common wheat
Triae_CYP90 B 3 ' end ** BQ619714. 1 CA715360. 1 95 96 Part ORF Common wheat
Eupes_CYP90 B DV141872. 1 97 98 Part ORF Serum setose thistle
Goshi_CYP90 B5 ' end ** CO125422 DT568185. 1 99 100 Part ORF Upland cotton
Lyces_CYP90 B5 ' end ** BF050501 AW221826. 1 BM409833 101 102 Part ORF Tomato
Soltu_CYP90 B 5 ' end ** BQ045917 BQ114367 103 104 Part ORF Potato
Soltu_CYP90 B 3 ' end ** BQ114368 105 106 Part ORF Potato
*the artificial montage of carrying out from genomic clone
*contig (contig) from several EST accession number (showing main EST accession number) compilation; EST sequencing quality is conventionally lower, can expect minority replacement nucleic acid.
Should understand, the sequence dropping under the definition of " CYP90B polypeptide or its homologue " is not limited to the sequence being represented by SEQ ID NO:78, SEQ ID NO:80, SEQ ID NO:82, SEQ ID NO:84, SEQID NO:86, SEQ ID NO:88 or SEQ ID NO:90, but comprises: (a) CYP structural domain A to D; (b) N holds hydrophobic anchor structure territory; (c) translocation domain; (d) any polypeptide of the consensus sequence Phe-Ala-Gly-His-Glu-Thr-Ser-Ser allowing in A structural domain in an amino acid variation of any position generation all can be suitable for carrying out the present invention.
Dropping on sequence under the definition of " CYP90B polypeptide or its homologue " can also comprise (i) and have SEQ ID NO:78 is surpassed to the sequence of 50% identity and (ii) steroid 22-α hydroxylase enzymatic activity.
CYP90B polypeptide or its homologue have 22-α hydroxylase enzymatic activity, can use the plant in DWF4 with sudden change, by complementary assay, determine this hydroxylase activity.By people such as the people such as Choe ((1998) Plant Cell 10:231-243), in Arabidopis thaliana (dwf4 mutant) neutralization, by the people such as Tanaka (US2004/0060079), in rice (Tos2091 mutant), this type of mutant plant has been described.The size of these mutant plants is than the little several times of the size of their corresponding wild-types, that is, mutant plant is super dwarfing.In being suitable for the recombinant DNA carrier of Plant Transformation, isolated polypeptide is placed in and can expresses under the control of promotor of this polypeptide plant.Then use the technology of knowing in this area to transform mutant plant with this carrier.If the plant transforming is no longer shown the super phenotype of downgrading, show that isolated polypeptide can show 22-α hydroxylase enzymatic activity.Such polypeptide can be suitable for implementing method of the present invention.
The example of CYP90B nucleic acid includes but not limited to the nucleic acid of any expression in SEQ ID NO:77, SEQ IDNO:79, SEQ ID NO:81, SEQ ID NO:83, SEQ ID NO:85, SEQ ID NO:87 and SEQ ID NO:89.CYP90B nucleic acid/gene and its variant can be suitable for implementing method of the present invention.The variant of CYP90B nucleic acid/gene comprise CYP90B nucleic acid/gene part and/or can with the nucleic acid of CYP90B nucleic acid/gene recombination.
The term " part " of definition refers to the fragment of the DNA of coded polypeptide herein, and described polypeptide comprises following: (a) CYP P450 structural domain A to D; (b) N holds hydrophobic anchor structure territory; (c) translocation domain; (d), in A structural domain, allow, in any position, the consensus sequence Phe-Ala-Gly-His-Glu-Thr-Ser-Ser that an amino acid changes occurs.Can for example by being produced to one or more disappearances, CYP90B nucleic acid prepare part.Can use part maybe they and other coding (or non-coding) sequences can be merged to for example produce the albumen of several activity of combination with separated form.When merging to other encoding sequences, the polypeptide that the translation of gained produces afterwards can be larger than the size of partly predicting for this CYP90B.Preferably, part is the part of the nucleic acid of any expression in SEQ ID NO:77, SEQ ID NO:79, SEQ ID NO:81, SEQ ID NO:83, SEQ ID NO:85, SEQ ID NO:87 and SEQ ID NO:89.Most preferably part is the part of the nucleic acid that represented by SEQ ID NO:77.
The another kind of variant of CYP90B nucleic acid/gene is under the stringent condition reducing, preferably under stringent condition can with the nucleic acid of the CYP90B nucleic acid/gene recombination of definition above, this hybridization sequences encoded packets is containing following: (a) CYP structural domain A to D; (b) N holds hydrophobic anchor structure territory; (c) translocation domain; (d), in A structural domain, allow to occur in any position the polypeptide of the consensus sequence Phe-Ala-Gly-His-Glu-Thr-Ser-Ser of an amino acid variation.Preferably, hybridization sequences be can with the nucleic acid of any expression in SEQID NO:77, SEQ ID NO:79, SEQ ID NO:81, SEQ ID NO:83, SEQ ID NO:85, SEQ ID NO:87 and SEQ ID NO:89 or with the above-mentioned sequence of above definition in the sequence of part hybridization of arbitrary sequence.Most preferably hybridization sequences be can with the sequence of the nucleic acid hybridization being represented by SEQ ID NO:77.Term " hybridization " is the hybridization of " definition " part definition in this specification sheets.
CYP90B nucleic acid or its variant can derive from any natural or artificial source.Can be from microbe-derived for example yeast or fungi or from plant, algae or animal (comprising people) source isolating nucleic acid/gene or its variant.Can in composition and/or genome environment, from its natural form, modify this nucleic acid by the manual operation of having a mind to.This nucleic acid is plant origin preferably, or for example, from identical plant species (plant to be imported from it is identical) or can be from different plant species.This nucleic acid can be separated from monocotyledons species, and preferable separation is from Gramineae, more preferably separated from Oryza (Oryza), more preferably separated from rice.More preferably, from the CYP90B nucleic acid of rice separation, as shown in SEQ ID NO:77, and CYP90B aminoacid sequence is as shown in SEQ ID NO:78.
The present invention also provides separated CYP90B albumen, and it is selected from:
(a) by the protein of the nucleic acid encoding of SEQ ID NO:117;
(b) comprise: (i) CYP structural domain A to D; (ii) N holds hydrophobic anchor structure territory; (iii) translocation domain; (iv) in A structural domain, permission produces the consensus sequence Phe-Ala-Gly-His-Glu-Thr-Ser-Ser that an amino acid changes in any position, and has the protein with the aminoacid sequence at least 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% of SEQID NO:118,99% identity by the preferred sequence increasing progressively.
The present invention also provides the separated nucleic acid of coding CYP90B albumen, and it is selected from:
(i) nucleic acid that SEQ ID NO:117 represents;
(ii) above coding (a) and (b) in the nucleic acid of the albumen that defines;
(iii) by the preferred sequence increasing progressively, there is the nucleic acid at least 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% that represents with SEQ ID NO:117,99% or the nucleic acid of larger identity;
(iv) can be under stringent condition with above (i) to the nucleotide sequence of the nucleic acid array hybridizing of (iii), this hybridization sequences proteins encoded, described albumen comprises (a) CYP structural domain A to D; (b) N holds hydrophobic anchor structure territory; (c) translocation domain; (d) in A structural domain, there is the consensus sequence Phe-Ala-Gly-His-Glu-Thr-Ser-Ser that an amino acid changes in permission, and has and the aminoacid sequence at least 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% of SEQ ID NO:118,99% or larger identity by the preferred sequence increasing progressively in any position;
(v) conduct (i) is to the allele variant of the nucleotide sequence of (iv) or the nucleic acid of splice variant;
(vi) above (i) to the part of the nucleotide sequence of any one of (v), this part proteins encoded, and described albumen comprises (i) CYP structural domain A to D; (ii) N holds hydrophobic anchor structure territory; (iii) translocation domain; (iv) in A structural domain, there is in any position the consensus sequence Phe-Ala-Gly-His-Glu-Thr-Ser-Ser that an amino acid changes in permission, and has and the aminoacid sequence at least 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% of SEQ IDNO:118,99% identity by the preferred sequence increasing progressively.
In addition, CYP90B polypeptide or its homologue can also comprise (i) and have SEQ ID NO:78 is surpassed to the sequence of 50% identity and (ii) steroid 22-α hydroxylase enzymatic activity.
Can be by importing genetic modification (preferably in the locus of CYP90B gene), non-composing type ground increases the expression of the nucleic acid of coding CYP90B polypeptide or its homologue.The locus of the gene of definition is used for representing genome area herein, and this genome area comprises 10kb upstream or the downstream of goal gene and coding region.
Can for example pass through: any (or multiple) method or import genetic modification by import and express the nucleic acid of coding CYP90B polypeptide or its homologue in plant in T-DNA activation, TILLING, directed mutagenesis, orthogenesis and homologous recombination.In " definition " part, defined aforesaid method.After importing genetic modification, the non-constitutive expression of the increase of the nucleic acid of just encode CYP90B polypeptide or its homologue, selects step, and wherein the increase of this non-constitutive expression causes having the plant of the output of increase.
T-DNA activation, TILLING, directed mutagenesis and orthogenesis are the examples that makes it possible to produce the technology of neomorph and CYP90B variant.
The preferred method that is used for importing genetic modification (its in this situation needn't at the locus of CYP90B gene) is in plant, to import and express the nucleic acid of coding CYP90B polypeptide or its homologue.CYP90B polypeptide or its homologue are defined as comprising: (a) CYP structural domain A to D; (b) N holds hydrophobic anchor structure territory; (c) translocation domain; (d), in A structural domain, allow to produce in any position the polypeptide of the consensus sequence Phe-Ala-Gly-His-Glu-Thr-Ser-Ser of an amino acid variation.The nucleic acid of plant to be imported can be total length nucleic acid can be maybe as defined above part or hybridization sequences.In addition, the nucleic acid of coding CYP90B polypeptide or its homologue can also comprise (i) and has SEQ ID NO:78 is surpassed to the sequence of 50% identity and (ii) steroid 22-α hydroxylase enzymatic activity.
In " definition " part of this specification sheets, defined " homologue " of protein.CYP90B polypeptide or its homologue can be the derivatives of " definition " part definition.
CYP90B polypeptide or its homologue can be encoded by the alternative splicing variant of CYP90B nucleic acid/gene.In " definition " part, defined term " alternative splicing variant ".Preferably splice variant is the splice variant of the nucleic acid of coded polypeptide, and described polypeptide comprises following: (a) CYP structural domain A to D; (b) N holds hydrophobic anchor structure territory; (c) translocation domain; (d), in A structural domain, allow, in any position, the consensus sequence Phe-Ala-Gly-His-Glu-Thr-Ser-Ser that an amino acid changes occurs.In addition, CYP90B polypeptide or its homologue can also comprise (i) and have SEQ ID NO:78 is surpassed to the sequence of 50% identity and (ii) steroid 22-α hydroxylase enzymatic activity.The splice variant of the nucleic acid being represented by SEQ ID NO:77, SEQID NO:79, SEQ ID NO:81, SEQ ID NO:83, SEQ ID NO:85, SEQ IDNO:87 and SEQ ID NO:89 is preferred.The splice variant of the nucleotide sequence being represented by SEQ IDNO:77 is most preferred.
Homologue also can be by the allele variant of the nucleic acid of coding CYP90B polypeptide or its homologue, the allele variant coding of the nucleic acid of the following polypeptide of particularly encoding, and described polypeptide comprises following: (a) CYP structural domain A to D; (b) N holds hydrophobic anchor structure territory; (c) translocation domain; (d), in A structural domain, allow, in any position, the consensus sequence Phe-Ala-Gly-His-Glu-Thr-Ser-Ser that an amino acid changes occurs.In addition, CYP90B polypeptide or its homologue can also comprise (i) and have SEQ ID NO:78 is surpassed to the sequence of 50% identity and (ii) steroid 22-α hydroxylase enzymatic activity.The allele variant of the nucleotide sequence being represented by SEQ ID NO:77, SEQ ID NO:79, SEQ ID NO:81, SEQ ID NO:83, SEQ ID NO:85, SEQ ID NO:87 and SEQ ID NO:89 is preferred.The allele variant of the nucleotide sequence being represented by SEQ ID NO:77 is most preferred.Also in " definition " part, defined allele variant.
According to a preferred aspect of the present invention, can expect the non-constitutive expression of the increase of CYP90 nucleic acid or its variant.Method for increasing the expression of gene or gene product is known in this area, and it for example comprises the use of crossing expression, transcriptional enhancer or translational enhancer by suitable promoters driven.Can import at the correct position (conventionally in upstream) of the polynucleotide of non-allos form separated nucleic acid as promotor or enhancer element to raise the expression of CYP90B nucleic acid or its variant.For example, can by sudden change, disappearance and/or displacement change in vivo endogenesis promoter (referring to, Kmiec, United States Patent (USP) 5,565,350; The people such as Zarling, PCT/US93/03868), or can import vegetable cell with the expression of controlling gene with distance (with respect to gene of the present invention) by separated promotor with suitable direction.For reducing the method for the expression of gene or gene product, in this area, know.
If expectation expression of polypeptides, the 3 ' end that is conventionally desirably in polynucleotide encoding district comprises polyadenylation region.Polyadenylation region can derive from natural gene, derives from multiple other plant gene or derives from T-DNA.3 ' the end sequence being added into can derive from for example nopaline synthase or octopine synthase gene, or selectively derives from other plant gene, or does not more preferably derive from any other eukaryotic gene.
Also can in the encoding sequence of 5 ' non-translational region or part encoding sequence, add intron sequences to be increased in the ripe courier's who accumulates in cytosol amount.Be presented in the transcription unit of plant and animal expression construct and comprised and can make the expression of gene on mRNA and protein level, increase nearly 1000 times of (Buchman and Berg (1988) Mol.Cell biol.8:4395-4405 by montage intron; The people such as Callis (1987) Genes Dev.1:1183-1200).When near the 5 ' end that is placed in transcription unit, this intron enhancement of genetic expression is conventionally maximum.The purposes of corn intron A dh1- S introne 1,2 and 6, Bronze-1 intron is known in this area.Conventionally referring to, TheMaize Handbook, Chapter 116, Freeling and Walbot, Eds., Springer, N.Y. (1994).
The present invention also provides the importing of nucleotide sequence and/or the genetic constructs of expression and the carrier contributing to for method of the present invention.
Therefore, provide gene construct, it comprises:
(i) the CYP30B nucleic acid or its variant that above define;
(ii) can drive one or more control sequences of non-constitutive expression of the nucleotide sequence of (i); Optionally
(iii) transcription termination sequence.
Can use recombinant DNA technology well known to those skilled in the art to build the construct for method of the present invention.Gene construct can be inserted to the carrier that is suitable for being transformed into plant and is suitable for expressing goal gene in transformant, the commercially available acquisition of this carrier.Therefore the invention provides gene construct purposes in the method for the invention as defined above.
The carrier conversion of plant that use comprises aim sequence (that is, the nucleic acid of coding CYP90B polypeptide or its homologue).Aim sequence is effectively connected with one or more control sequences (at least with promotor).Term " controlling element ", " control sequence " and " promotor " are all used interchangeably herein, and are defined in " definition " part.
Advantageously, can use any non-constitutive promoter to drive the expression of nucleotide sequence.Non-group of type promotor can be inducible promoter, i.e. response is grown, chemistry, environment or physical stimulation and have the promotor of transcription initiation induction or that increase.The example of inducible promoter is stress induced promoter, the promotor being activated when plant is exposed to various stress conditions.Non-constitutive promoter can be to organize preference type promotor, can be preferentially some tissue such as leaf, root, seed tissue etc. in initial promotor of transcribing.Be merely able to initial promotor of transcribing in some tissue and be called " tissue-specific " herein.
The method according to this invention, is effectively connected CYP90B nucleic acid or its variant with non-constitutive promoter.Non-constitutive promoter only has transcriptional activity and not expresses ubiquitously in some periods of plant-growth and growth.Non-constitutive promoter can be for example seed specific promoters or root-specific promoter.Seed specific promoters can be endosperm-specific and/or embryo/aleuron specificity promoter, in seed endosperm and/or seed embryo and aleuron, has transcriptional activity respectively.Endosperm specificity promoter is seed storage protein promotor preferably, more preferably endosperm specificity promoter is prolamine promotor, more preferably endosperm specificity promoter is rice RP6 prolamine promotor, more preferably endosperm specificity promoter by SEQ ID NO:109 substantially similar nucleotide sequence represent, most preferably endosperm specificity promoter is the promotor being represented by SEQ ID NO:109.Embryo/aleuron specificity promoter is seed storage protein promotor preferably, more preferably embryo/aleuron specificity promoter is oleosin promotor, more preferably embryo/aleuron specificity promoter is rice oleosin 18kDa promotor, more preferably embryo/aleuron specificity promoter is represented by substantially similar to SEQ ID NO:110 nucleotide sequence, and most preferably embryo/aleuron specificity promoter is represented by SEQ ID NO:110.Root-specific promoter is Rcc3 promotor preferably, and root-specific promoter is rice Rcc3 promotor (people (1995) the Plant Mol Biol 27 (2) such as Xu: 237-48) preferably.
Should be understood that, suitability of the present invention is not limited to the CYP90B nucleic acid being represented by SEQ ID NO:77, and suitability of the present invention is not limited to the expression by the CYP90B nucleic acid of RP6 prolamine or 18kDa oleosin promoters driven yet.The example that also can be used for implementing other non-constitutive promoters of the inventive method is shown in table 4 of " definition " part.
Contrary with above-mentioned promotor, constitutive promoter had transcriptional activity and substantially in plant, expresses ubiquitously in most of periods of plant-growth and growth.This type of constitutive promoter will be not used in the method for the present invention of implementing.The example of this type of promotor also sees " definition " partly (referring to table 3).
Optionally, one or more terminator sequences also can be used in the construct of plant to be imported.In " definition " part, defined term " terminator ".
Gene construct of the present invention also can comprise in order to maintain and/or copy necessary replication orgin sequence in specific cell type.An example is when gene construct need to for example, maintain in bacterial cell with additive type genetic elements (plasmid or clay molecule).Preferred replication orgin includes but not limited to f1-ori or colE1.
Gene construct optionally comprises the selectable marker gene of " definition " part definition.
In preferred embodiments, provide gene construct, this construct comprises:
(i) CYP90B nucleic acid or its variant as defined above;
(ii) can drive the promotor of the non-constitutive expression of nucleotide sequence of (i); Optionally
(iii) transcription termination sequence.
Non-constitutive promoter is seed specific promoters preferably.Seed specific promoters can be endosperm-specific and/or embryo/aleuron specificity promoter, in seed endosperm and/or seed embryo and aleuron, has transcriptional activity respectively.Endosperm specificity promoter is seed storage protein promotor preferably, more preferably endosperm specificity promoter is prolamine promotor, more preferably endosperm specificity promoter is rice RP6 prolamine promotor, more preferably endosperm specificity promoter by SEQ ID NO:109 substantially similar nucleotide sequence represent, most preferably endosperm specificity promoter is the promotor being represented by SEQ ID NO:109.Embryo/aleuron specificity promoter is seed storage protein promotor preferably, more preferably embryo/aleuron specificity promoter is oleosin promotor, more preferably embryo/aleuron specificity promoter is rice oleosin 18kDa promotor, more preferably embryo/aleuron specificity promoter is represented by substantially similar to SEQID NO:110 nucleotide sequence, and most preferably embryo/aleuron specificity promoter is the promotor being represented by SEQID NO:110.The construct that the present invention also provides above definition purposes in the method for the invention.
The present invention also comprises the plant that can obtain by method of the present invention.Therefore the invention provides plant, its plant part or the vegetable cell that can obtain by method of the present invention, described plant or its part or cell comprise transgenosis CYP90B nucleic acid or its variant.
The present invention also provides for generation of compare the method for the transgenic plant of the output with increase with suitable control plant, and described method is included in plant and imports and non-constitutive expression CYP90B nucleic acid or its variant.
More preferably, the invention provides for generation of the method for transgenic plant with the output of increase, described method comprises:
(i) in plant, plant part or vegetable cell, import and non-constitutive expression CYP90B nucleic acid or its variant; With
(ii) culturing plants cell under the condition of Promoting plant growth and growth.
Nucleic acid directly can be imported to vegetable cell or import plant itself (comprising the tissue, organ or any other part that import plant).According to a preferred aspect of the present invention, preferably by transforming, nucleic acid is imported to plant.
Term " conversion " is the conversion defining in " definition " part.
The present invention clearly extends to any vegetable cell or the plant producing by any method described herein, extends to its all plant parts and its propagulum.The present invention extends further to the offspring of the cell, tissue, organ or the complete plant that comprise the primary conversion that produces by any aforesaid method or transfection, and unique requirement is that this offspring shows genotype and/or the phenotypic characteristic identical with the genotype being produced by parent in the method for the invention and/or phenotypic characteristic.
The present invention also comprises and comprises the separated CYP90B nucleic acid of non-constitutive expression or the host cell of its variant.Preferred host cell of the present invention is vegetable cell.
The present invention also extends to the part gathered in the crops of plant, such as but not limited to seed, leaf, fruit, flower, stem, rhizome, stem tuber and bulb.The invention still further relates to the product of the part gathered in the crops that is directed to such plant, for example dry particle is raised grain or dry powder, oil, fat and lipid acid, starch or protein.
The present invention also comprises the purposes of CYP90B nucleic acid or its variant and the purposes of CYP90B polypeptide or its homologue.This purposes relates to increases plant biomass as defined above in the method for the invention.
CYP90B nucleic acid or its variant, or CYP90B polypeptide or its homologue can be used for the procedure of breeding, in the described procedure of breeding, identify can with the DNA marker of CYP90B gene or its variant genetic linkage.CYP90B nucleic acid/gene or its variant, or CYP90B polypeptide or its homologue can be used for defining molecule marker.Then this DNA or protein labeling can be used for to the procedure of breeding to select in the method for the invention to have the plant of the output increasing as defined above.CYP90B gene or its variant can be for example the nucleic acid of any expression in SEQ ID NO:77, SEQ ID NO:79, SEQ ID NO:81, SEQ ID NO:83, SEQ ID NO:85, SEQ ID NO:87 and SEQ ID NO:89.
The allele variant of CYP90B nucleic acid/gene also can be used for marker-assisted breeding program.This type of procedure of breeding needs sometimes by plant is carried out to mutagenic treatment, uses for example EMS mutagenesis to import allelic variation; Selectively, this program can start from the set of the allele variant in non-so-called " natural " source producing intentionally.Then by for example PCR, carry out the evaluation of allele variant.Select afterwards step, to select to cause good allele variant output, aim sequence of increase.The growth performance of the plant of the different allele variants that conventionally comprise aim sequence by monitoring (for example different allele variants of any in SEQ IDNO:77, SEQ ID NO:79, SEQ ID NO:81, SEQ ID NO:83, SEQ ID NO:85, SEQ ID NO:87 and SEQ ID NO:89) is selected.Can be in greenhouse or monitor on field growth performance.Other optional step comprises and will wherein identify plant and other plant hybridization of good allele variant.This can be used for for example producing the combination of significant phenotypic characteristic.
CYP90B nucleic acid or its variant also can be used as gene to carry out heredity and the probe of physical mapping, and the mark of conduct and the proterties of these gene linkages, and wherein CYP90B nucleic acid or its variant are the parts of described gene.This Information Availability has the strain of the phenotype of expectation with generation in plant breeding.It is the nucleotide sequence of at least 15 Nucleotide that this purposes of CYP90B nucleic acid or its variant only needs length.CYP90B nucleic acid or its variant can be used as restriction fragment length polymorphism (RFLP) mark.Available CYP90B nucleic acid or its variant are surveyed the Southern trace (Sambrook J, Fritsch EF and Maniatis T (1989) Molecular Cloning, ALaboratory Manual) of the plant genome DNA of restrictive diges-tion.Then use computer program such as MapMaker people (1987) Genomics 1:174-181 such as () Lander that the banding pattern of gained is carried out to genetic analysis to build genetic map.In addition, can use the Southern trace of the genomic dna that nuclei acid probe comprises one group of individuality that restriction endonuclease processes, wherein this group individuality represents parental generation and the offspring of definite genetic cross.Record the separation of DNA polymorphism, use it for and calculate position in the genetic map that uses before this colony to obtain of CYP90B nucleic acid or its variant people (1980) Am.J.Hum.Genet.32:314-331 such as () Botstein.
At Bernatzky and Tanksley (1986), (GENETICS 112 (4): 887-898), described generation and application for the probe in the plant gene source of genetic mapping.Many publications have been described the genetic mapping that uses aforesaid method or its modification to carry out specific cDNA clone.For example, the individuality of F2 hybrid Population, backcross population, panmictic population, near isogenic line and other groups can be used for mapping.These class methods are known to those skilled in the art.
Nucleic acid probe also can be used for physical mapping (that is, the placement of sequence on physical map; Referring to people In:Non-mammalian Genomic Analysis:A Practical Guide such as Hoheisel, Academic press 1996, pp.319-346, and the reference of wherein quoting).
In another embodiment, nucleic acid probe can be used for direct fluorescence in situ hybridization (FISH) mapping (Trask (1991) Trends Genet.7:149-154).Although the existing method of FISH mapping is conducive to large clone, (number kb is to hundreds of kb; Referring to the people such as Laan (1995) Genome Res.5:13-20) use, but the raising of sensitivity can allow to use shorter probe to carry out FISH mapping.
Can use nucleic acid to carry out the multiple method based on nucleic acid amplification for heredity and physical mapping.Example comprises the polymorphism (CAPS of allele specific amplification (Kazazian (1989) J.Lab.Clin.Med 11:95-96), pcr amplified fragment; The people such as Sheffield (1993) Genomics16:325-332), allele-specific connects people (1988) Science241:1077-1080 such as () Landegren, Nucleotide extension (Sokolov (1990) Nucleic Acid Res.18:3671), radioactivity hybridization mapping people (1997) Nat.Genet.7:22-28 such as () Walter and Happy map (Dear and Cook (1989) Nucleic Acid Res.17:6795-6807).For these methods, the sequence of nucleic acid is used for designing and producing the primer pair for amplified reaction or primer extension reaction.The design of this type of primer is known to those skilled in the art.In the method for genetic mapping of using PCR-based, may must in the region corresponding to this nucleotide sequence, identify the DNA sequence dna difference of mapping between the parent of hybridizing.Yet this is conventionally optional for drawing method.
Method of the present invention causes producing the plant of the output as described above with increase.Also can by the output of this increase and other economic favourable proterties for example other increase output proterties, to other abiotic and biological resistances of coercing, modify different structure feature and/or biological chemistry and/or physiological characteristic proterties combined.
the detailed description of CDC27
CDC27 polypeptide in this area, be know and can be by conservative NH 2(at least one TPR structural domain is at NH for end regions (referring to Figure 16) and at least 5 TPR structural domains 2in end regions) existence easily identify.In addition, CDC27 polypeptide can also comprise and has the sequence that SEQ ID NO:130 is surpassed to 30% identity.
In yeast and higher eucaryote, in mitotic division (comprising APC protein ingredient CDC16, CDC23 and CDC27), transcribe, the input of montage, protein and neural (Goebl and the Yanagida1991 of occurring, Trends Biochem Sci 16, there is TPR primitive in the multiple protein working in 173-177).The minimum consensus sequence of the suggestion of TPR primitive is: X 3-W-X 2-L-G-X 2-Y-X 8-A-X 3-F-X 2-A-X 4-P-X 2, wherein any amino acid of X=(people 1994 such as Lamb, EMBO J 13,4321-4328).Total residue can be shown significant degeneracy, and non-total residue is shown minimum homology or without homology.The hydrophobicity of important seemingly total residue and size but not its identity.In natural CDC27 albumen, TPR forms αhelix; Its tandem repetitive sequence be organized into the superhelix that is ideally suited as the interface of protein identification (Groves and Barford 1999, Curr Opin Struct Biol 9,383-389).In α spiral, conventionally there are two amphipathic structural domains, one is positioned at NH 2end regions, near COOH end regions, (people 1990 such as Sikorski, Cell 60,307-317) for another.In addition, single TPR primitive also dispersibles in whole protein sequence.
The natural CDC27 of total length comprises at least 5 TPR conventionally, preferred 6 TPR, and more preferably 7 TPR, the major part of these TPR is positioned at COOH end regions.As shown in Figure 16, conventionally at the NH of natural CDC27 polypeptide 2there is 1 TPR structural domain in end regions, although can exist maybe, can be created in NH 2the variant CDC27 sequence that end regions comprises a plurality of TPR.
Any CDC27 polypeptide all can be by making the NH of polypeptide 2at least one TPR structural domain inactivation in end regions, and can be used in method of the present invention.For the method for inactivation in this area, be know and comprise: amino acid whose elimination or displacement, in this situation, NH 2amino acid whose elimination or the displacement of at least one TPR structural domain in end regions; Or mutating technology, for example for example, with L-Ala displacement conserved amino acid or amino acid (Serine, Threonine or tyrosine) that can phosphorylation with amino-acid substitution that can not phosphorylation or vice versa (depend on phosphorylated protein be activity or non-activity); Or for any other method of inactivation.
For the application's object, by the NH of CDC27 albumen 2end regions is considered as total length CDC27 sequence (from NH 2hold to COOH end) the first two/mono-(referring to Figure 16); Preferably by the NH of CDC27 albumen 2end regions is considered as total length CDC27 sequence (from NH 2hold to COOH end) first three/mono-; With another preferred feature according to the present invention, the N end regions of CDC27 albumen is considered as to total length CDC27 sequence (from NH 2hold to COOH end) front 166 amino acid.
At NH 2the example of CDC27 polypeptide that end regions has the TPR structural domain of at least one inactivation is the polypeptide being represented by SEQ ID NO:130, and its nucleic acid sequence encoding is represented by SEQ ID NO:129.
Table 10 has below provided some examples of CDC27 sequence; Can be by for example using any method for deactivating discussed above by the NH of polypeptide 2at least one TPR structural domain inactivation in end regions, makes these sequences can be used for method of the present invention.
The example of table 10:CDC27 polypeptide
Title NCBI Nucleotide accession number Nucleotide SEQ ID NO The polypeptide SEQ ID NO of translation Source
CDC27B AC006081
129 130 Arabidopis thaliana
CDC27B/Hobbi t AJ487669 131 132 Arabidopis thaliana
CDC27a NM_112503.2| 133 134 Arabidopis thaliana
CDC27 AP003539.3 135 136 Rice
CDC27 BG887406.1 BG590616.1 DN939130.1 CV470643.1 137 139 Potato
CDC27/nuc2+ NM_001020032.1 139 140 Schizosaccharomyces pombe (Schizosaccharo myces pombe)
CDC27/BimA X59269.1 141 142 Aspergillus niger (Aspergillus niger)
CDC27 NM_001256.2 143 144 The mankind (Homo sapiens)
CDC275’ CA102186.1 CA279358.1 145 146 Sugarcane
CDC273’ CA197669.1 CA197670.1 CA203636.1 CA232307.1 147 148 Sugarcane
*contig (showing main EST accession number) from several EST accession number compilations; EST sequencing quality is conventionally lower, can expect minority replacement nucleic acid.
Only with illustrational form, provide the sequence of describing in table 10.Other examples of coding total length or part of polypeptide (can use it to obtain full length sequence by using ordinary method) are provided in Figure 19.The NH should be understood that at polypeptide 2any CDC27 peptide sequence of TPR structural domain or the nucleic acid/gene of such polypeptide of encoding in end regions with at least one inactivation all can be suitable for implementing method of the present invention.
Can use the routine techniques of knowing in this area for example by sequence alignment, easily to identify other CDC27 polypeptide.Subsequently can be for example by using any method for deactivating discussed above, by the NH of polypeptide 2at least one TPR structural domain inactivation in end regions makes identified sequence can be used for method of the present invention.For the sequence alignment method comparing, in this area, know, these class methods comprise GAP, BESTFIT, BLAST, FASTA and TFASTA.GAP is used the algorithm ((1970) J Mol Biol 48:443-453) of Needleman and Wunsch to find to make the number maximization of mating and the comparison that makes minimized two complete sequences of number in room.BLAST algorithm people (1990) J Mol Biol 215:403-10 such as () Altschul calculates per-cent sequence identity and carries out the statistical analysis of two similaritys between sequence.Can obtain publicly for carrying out the software of BLAST analysis by American National biotechnology information center.Can use the ClustalW multiple sequence alignment algorithm (version 1.83) that for example can obtain at http://clustalw.genome.jp/sit-bin/nph-ClustalW, the methods of marking that uses default paired comparison parameter and represent with per-cent, easily identifies the homologue of CDC27.Can carry out a small amount of human-edited to optimize the comparison between conservative primitive, this it will be apparent to those skilled in the art that.
Can use special database such as SMART (people (1998) Proc.Natl.Acad.Sci.USA 95 such as Schultz, 5857-5864, the people such as Letunic (2002) Nucleic Acids Res 30,242-244, http://smart.embl-heidelberg.de/), InterPro (people such as Mulder, (2003) Nucl.Acids.Res.31,315-318, http://www.ebi.ac.uk/interpro/), Prosite (Bucher and Bairoch (1994), A generalized profile syntax for biomolecularsequences motifs and its function in automatic sequence interpretation. (In) ISMB-94, the 2nd international conference of molecular biology intelligent system recorded Altman R., Brutlag D., Karp P., Lathrop R., Searls D., Eds., pp53-61, AAAIPress, Menlo Park, the people such as Hulo, Nucl.Acids.Res.32:D134-D137, (2004), http://www.expasy.org/prosite/), Pfam (the people such as Bateman, Nucleic Acids Research 30 (1): 276-280 (2002), http://www.sanger.ac.uk/Software/Pfam/) or ProDom (Servant F, Bru C, Carrere S, Courcelle E, Gouzy J, Peyruc D, Kahn D (2002) ProDom:Automated clustering of homologous domains.Briefings in Bioinformatics. the 3rd volume, no 3:246-251), various structural domains in evaluation CDC27 albumen are TPR structural domain for example.
The sequence of mentioning in table 10 and Figure 19 can be thought the homologue of CDC27 polypeptide.In " definition " part of this specification sheets, defined " homologue " of protein.Preferably homologue is to have and the total length CDC27 albumen at least 30%, 40%, 50%, 60%, 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98% being represented by SEQ ID NO:132 or 99% or the aminoacid sequence of larger sequence identity by the preferred sequence increasing progressively.
Can be by for example using any method for deactivating discussed above, by the NH of polypeptide 2at least one TPR structural domain inactivation in end regions makes homologue, ortholog thing and paralog thing can be used for method of the present invention.
By yeast two-hybrid, analyze in vivo and by co-immunoprecipitation (people (1994) EMBO J 13 (18): the 4321-4328 such as Lam in vitro; Ollendorf & Donoghue (1997) J BiolChem 272 (51): 32011-32018), shown that two other PROTEIN C DC16 of people and yeast CDC27 polypeptide and APC mixture and CDC23 interact.Such interaction can be used for identifying CDC27 polypeptide, so that by for example using any method for deactivating discussed above by the NH of described polypeptide 2at least one TPR structural domain inactivation in end regions and can be for method of the present invention.
NH at polypeptide 2in end regions, there is the CDC27 polypeptide of TPR structural domain of at least one inactivation by so-called modified CDC27 nucleic acid/genes encoding.Therefore, the term " modified CDC27 nucleic acid/gene " of definition is the NH that is coded in polypeptide herein 2any nucleic acid/gene of CDC27 polypeptide in end regions with the TPR structural domain of at least one inactivation.
CDC27 nucleic acid or modified CDC27 nucleic acid/gene can derive from any natural or artificial source.Can be from microbe-derived, for example yeast or fungi or from plant, algae or animal-origin isolating nucleic acid/gene.Can in composition and/or genome environment, by the manual operation of having a mind to, from its natural form, modify this nucleic acid.Nucleic acid is plant origin preferably, and it can for example, from identical plant species (plant to be imported from it is identical) or can be from different plant species.Can be from dicotyledonous species, preferably from Cruciferae, more preferably from Arabidopis thaliana isolating nucleic acid.More preferably, from the modified CDC27 nucleic acid of Arabidopis thaliana separation, by SEQ ID NO:129, represented, at amino acid whose NH 2the CDC27 in end regions with the TPR of at least one inactivation is the polypeptide being represented by SEQ ID NO:130.
CDC27 nucleic acid/gene can be can be under the stringent condition reducing, preferably the nucleic acid of the CDC27 nucleic acid/gene recombination of any expression under stringent condition and in SEQ ID NO:129, SEQ ID NO:131, SEQ ID NO:133, SEQ ID NO:135, SEQ ID NO:137 or SEQ ID NO:141.Most preferably hybridization sequences be can be to the nucleic acid hybridization being represented by SEQ ID NO:129 or SEQ IDNO:131 sequence.This hybridization sequences can be by for example being used any method for deactivating discussed above by the NH of its coded polypeptide 2at least one TPR structural domain inactivation in end regions and can be used for method of the present invention.
Term " hybridization " is the hybridization of this specification sheets " definition " part definition.
CDC27 nucleic acid or modified CDC27 nucleic acid/gene can be the form of alternative splicing variant.In " definition " part, defined alternative splicing variant.The splice variant of the arbitrary sequence in above-mentioned CDC27 nucleotide sequence (being SEQ ID NO:129, SEQ ID NO:131, SEQ ID NO:133, SEQ IDNO:135, SEQ ID NO:137 or SEQ ID NO:141) is preferred.The splice variant of the nucleotide sequence being represented by SEQ ID NO:129 or SEQ ID NO:131 is most preferred.Can be by for example using any method for deactivating discussed above by the NH of the CDC27 polypeptide of coding 2at least one TPR structural domain inactivation in end regions, and make this type of splice variant can be for method of the present invention.
CDC27 nucleic acid or modified CDC27 nucleic acid/gene can be the allele variant forms of the nucleic acid of the CDC27 polypeptide (the TPR structural domain that comprises at least one inactivation at NH2 end regions) that blocks of coding.The allele variant of the nucleotide sequence being represented by SEQ ID NO:129, SEQ ID NO:131, SEQ ID NO:133, SEQ ID NO:135, SEQ ID NO:137 or SEQ ID NO:141 is preferred.The allele variant of the nucleotide sequence being represented by SEQ ID NO:129 or SEQ ID NO:131 is most preferred.The natural existence of allele variant, within these natural allelic application are included in method of the present invention.Allele variant comprises single nucleotide polymorphism (SNP) and little insertion/deletion (INDEL).The size of INDEL is less than 100bp conventionally.In the natural polymorphism strain of most of biologies, SNP and INDEL form one group of maximum sequence variants.Can be by for example using any method for deactivating discussed above by the NH of the CDC27 polypeptide of coding 2at least one TPR structural domain inactivation in end regions makes this allele variant can be used for method of the present invention.
Can produce CDC27 nucleic acid or modified CDC27 nucleic acid/gene by directed mutagenesis.Can obtain several method and realize directed mutagenesis, the most frequently used method is the method for PCR-based (Current Protocols in Molecular Biology, Wiley Eds http:// www.4ulr.com/ products/currentprotocols/index.html).
Also can produce CDC27 nucleic acid or modified CDC27 nucleic acid/gene by orthogenesis (about detailed content more referring to " definition " part).
Can be by for example using any method for deactivating discussed above by the NH of the CDC27 polypeptide of coding 2at least one TPR structural domain inactivation in end regions makes the variant producing by directed mutagenesis or orthogenesis can be used for method of the present invention.
Can increase the expression of the modified CDC27 nucleic acid/gene of the following CDC27 polypeptide of coding by importing genetic modification (preferably in the locus of CDC27 gene), described CDC27 polypeptide is at the NH of polypeptide 2end regions has the TPR structural domain of at least one inactivation.The locus of the gene of definition is used for representing genome area herein, and this region comprises 10KB upstream or the downstream of goal gene and coding region.
Preferably by import and express the nucleic acid of the following CDC27 polypeptide of coding in plant, import genetic modification, described CDC27 polypeptide is at the NH of polypeptide 2end regions has the TPR structural domain of at least one inactivation.After importing genetic modification, be just coded in the NH of polypeptide 2the expression of modified nucleic acid of CDC27 polypeptide that end regions has the TPR structural domain of at least one inactivation increases (in shoot apical meristem), carries out optional selection step, and the increase of described expression causes having the plant of the output of increase.
According to a preferred aspect of the present invention, can expect the expression of the increase of CDC27 nucleic acid or its variant.Method for increasing the expression of gene or gene product is known in this area, and it for example comprises the use of crossing expression, transcriptional enhancer or translational enhancer by suitable promoters driven.Can import at the correct position (conventionally in upstream) of the polynucleotide of non-allos form separated nucleic acid as promotor or enhancer element to raise the expression of CDC27 nucleic acid.For example, can by sudden change, disappearance and/or displacement change in vivo endogenesis promoter (referring to, Kmiec, United States Patent (USP) 5,565,350; The people such as Zarling, PCT/US93/03868), or can import vegetable cell with the expression of controlling gene with distance (with respect to gene of the present invention) by separated promotor with suitable direction.
If expectation expression of polypeptides, the 3 ' end that is conventionally desirably in polynucleotide encoding district comprises polyadenylation region.Polyadenylation region can derive from natural gene, derives from multiple other plant gene or derives from T-DNA.3 ' end sequence to be added can derive from for example nopaline synthase or octopine synthase gene, or selectively derives from other plant gene, or does not more preferably derive from any other eukaryotic gene.
Also can in the encoding sequence of 5 ' non-translational region or part encoding sequence, add intron sequences to be increased in the ripe courier's who accumulates in cytosol amount.Be presented in the transcription unit of expression construct of plant and animal and comprised and can make the expression of gene on mRNA and protein level, increase nearly 1000 times of (Buchman and Berg (1988) Mol.Cell biol.8:4395-4405 by montage intron; The people such as Callis (1987) Genes Dev.1:1183-1200).When near the 5 ' end that is placed in transcription unit, this intron enhancement of genetic expression is conventionally maximum.The purposes of corn intron A dh1- S introne 1,2 and 6, Bronze-1 intron is known in this area.Conventionally referring to, TheMaize Handbook, Chapter 116, Freeling and Walbot, Eds., Springer, N.Y. (1994).
The present invention also provides the importing of nucleotide sequence and/or the genetic constructs of expression and the carrier contributing to for method of the present invention.
Therefore, provide gene construct, it comprises:
(i) be coded in the NH of polypeptide 2end regions has the CDC27 nucleic acid of CDC27 polypeptide of the TPR structural domain of at least one inactivation;
(ii) can preferentially in shoot apical meristem, drive one or more control sequences of the nucleotide sequence expression of (i); Optionally
(iii) transcription termination sequence.
Can use recombinant DNA technology well known to those skilled in the art to build this type of gene construct.Gene construct can be inserted to the carrier that is suitable for being transformed into plant and is suitable for expressing goal gene in transformant, the commercially available acquisition of this carrier.Therefore the gene construct that the invention provides above definition purposes in the method for the invention.
Use comprises aim sequence and (that is, is coded in the NH of polypeptide 2end regions has the nucleic acid of CDC27 polypeptide of the TPR structural domain of at least one inactivation) carrier conversion of plant.Aim sequence is effectively connected with can be preferentially drive one or more control sequences (at least with promotor) of expressing in plant shoot apical meristem.Term " controlling element ", " control sequence " and " promotor " are all used interchangeably herein, and are defined in the part of " definition ".
The NH of polypeptide will be coded in 2end regions has CDC27 nucleic acid or variant and the shoot apical meristem promotor of CDC27 polypeptide of the TPR structural domain of at least one inactivation, is preferably effectively connected with early stage shoot apical meristem promotor." early stage shoot apical meristem promotor " of definition is to Seedling Stage, in shoot apical meristem, to have the promotor of transcriptional activity in embryo globular stage herein, and know these periods to those skilled in the art.That mentions preferentially increase to express herein in shoot apical meristem, and mean mainly increases and express in shoot apical meristem, and except due to the former of seepage promotor thereby any residual expression that causes, gets rid of the expression at the elsewhere of plant.Preferably, early stage shoot apical meristem promotor is that OSH1 promotor is (from rice; SEQ ID NO:151 (people such as Matsuoka, (1993) Plant Cell 5:1039-1048; The people such as Sato, (1996) ProcNatl Acad Sci U S A 93 (15): 8117-22).It should be understood that suitability of the present invention is not limited to the modified CDC27 nucleic acid being represented by SEQ ID NO:129, suitability of the present invention is not limited to the expression by the modified CDC27 nucleic acid of OSH1 promoters driven yet.The example of other early stage shoot apical meristem promotors is shown in the table 5 of " definition " part.These are the members from the KNOX family 1 class homoeosis frame of paralog or ortholog gene.Be to be understood that list is below non-exhaustive.
Optionally, also one or more terminator sequences can be used for to the construct of plant to be imported.In " definition " part, defined term " terminator " in this manual.
Gene construct of the present invention also can comprise in order to maintain and/or copy necessary replication orgin sequence in specific cell type.An example is need to be in bacterial cell in for example, form maintainer gene construct with additive type genetic elements (plasmid or clay molecule).Preferred replication orgin includes but not limited to f1-ori and colE1.
Gene construct optionally comprises the selectable marker gene of " definition " part definition.
The present invention also comprises the plant that can obtain by method of the present invention.Therefore the invention provides plant or its part that can obtain by method of the present invention, comprise vegetable cell, described plant or plant part comprise the NH that is coded in polypeptide 2end regions has the CDC27 nucleic acid of CDC27 polypeptide of the TPR structural domain of at least one inactivation, and wherein this nucleic acid is effectively connected with shoot apical meristem promotor.
The present invention also provides for generation of compare the method for the transgenic plant of the number seeds with increase with suitable control plant, and the method is included in plant and imports and to express the NH that is coded in polypeptide 2end regions has the CDC27 nucleic acid of CDC27 polypeptide of the TPR structural domain of at least one inactivation, and this CDC27 nucleic acid is under the control of shoot apical meristem promotor.
More particularly, the invention provides for generation of compare the method for the transgenic plant of the number seeds with increase with suitable control plant, the method comprises:
(i) in plant, plant part or vegetable cell, import and express the CDC27 nucleic acid of coding CDC27 polypeptide, described CDC27 polypeptide is at the NH of polypeptide 2end regions has the TPR structural domain of at least one inactivation, and described nucleic acid is under the control of shoot apical meristem promotor; With
(ii) culturing plants cell under the condition of Promoting plant growth and growth.
Nucleic acid directly can be imported to vegetable cell or import plant itself (comprising the tissue, organ or any other part that import plant).According to preferred feature of the present invention, preferably by transforming, nucleic acid is imported to plant.
In " definition " part, defined term " conversion ".
The present invention clearly extends to any vegetable cell or the plant producing by any method described herein, and extends to its all plant parts and its propagulum.The present invention extends further to the offspring who comprises by the primary conversion of any method generation in aforesaid method or cell, tissue, organ or the complete plant of transfection, and unique requirement is genotype and/or identical genotype and/or the phenotypic characteristic of phenotypic characteristic that this offspring shows with parent produces in the method for the invention.
The present invention also comprises the host cell of the separated CDC27 nucleic acid that comprises coding CDC27 polypeptide, and described CDC27 polypeptide is at the NH of polypeptide 2end regions has the TPR structural domain of at least one inactivation, and this nucleic acid is under the control of shoot apical meristem promotor.Preferred host cell of the present invention is vegetable cell.
The present invention also extends to the part gathered in the crops of plant such as, but not limited to seed, leaf, fruit, flower, stem, rhizome, stem tuber and bulb.The invention still further relates to and derive from, be preferably directed to the product of the part gathered in the crops of such plant, for example dry granulated feed or powder, oil, fat and lipid acid, starch or protein.
The present invention also comprises the purposes of the separated CDC27 nucleic acid of coding CDC27 polypeptide, and described CDC27 polypeptide is at the NH of polypeptide 2end regions has the TPR structural domain of at least one inactivation, and described nucleic acid is under the control of shoot apical meristem promotor.This purposes relates to increases plant biomass as defined above in the method for the invention.
The enforcement of the inventive method causes producing compares the plant of the number seeds with increase with suitable control plant.Also can be by the increase of this number seeds and other economic favourable proterties, for example other increase output proterties, to other abiotic and biological resistances of coercing, modify various constitutional featuress and/or biological chemistry and/or physiological characteristic proterties combined.
the detailed description of AT hook
AT hook structure territory is in the polypeptide of knowing and be conventionally present in the transcription factor family that belongs to relevant to Chromatin Remodeling in this area.AT hook primitive is comprised of about 13 left and right (about 9 sometimes) amino acid, and these amino acid participate in DNA combination and have being rich in the preference in the region of A/T.In Arabidopsis, there are at least 34 albumen that comprise AT hook structure territory.These albumen are along the total homology of most of sequence, and wherein AT hook structure territory is special high conservative region.In Figure 23 and following table 11 illustrated AT hook structure territories; Also referring to the suitable annotation of SEQ ID NO:153, SEQ ID NO:155, SEQ ID NO:157, SEQ ID NO:159, SEQ ID NO:161, SEQ ID NO:163, SEQ ID NO:165, SEQ ID NO:167, SEQ ID NO:169 and SEQ ID NO:171 (wherein the position in AT hook structure territory explicitly points out).As shown in the comparison of Figure 23, some variations in AT hook structure territory allow.Conventionally, before one or two AT hook structure territories are positioned at DUF296 structural domain.The AT hook structure territory of herein mentioning refers to by the preferred sequence increasing progressively to have the peptide sequence with the identity of the AT hook structure territory at least 70%, 75%, 80%, 85%, 90% of SEQ ID NO:153 or 95%, for convenience's sake, the AT hook structure territory of this SEQ ID NO:153 is repeated in this: RRPRGRPAGSKNK (the AT hook structure territory of SEQ ID NO:153).
DUF296 structural domain (being called IPR005175 in Interpro) is also known in this area.At Figure 23 and following table 11 illustrated DUF296 structural domains; Also referring to the suitable annotation of SEQ ID NO:153, SEQ ID NO:155, SEQ ID NO:157, SEQ ID NO:159, SEQ ID NO:161, SEQ ID NO:163, SEQ ID NO:165, SEQ ID NO:167, SEQ ID NO:169 and SEQ ID NO:171, wherein the position of DUF296 structural domain is explicitly pointed out.As shown in the comparison of Figure 23, the variation in DUF296 structural domain is admissible, and the while, it still can be easily accredited as DUF296 structural domain due to the existence of the amino-acid residue of some high conservatives.Conventionally, before DUF296 structural domain, there are one or two AT hook structure territories.
According to a preferred aspect of the present invention, the polypeptide that comprises AT hook structure territory and DUF296 structural domain comprises 1 primitive in following primitive extraly:
Primitive 1 (SEQ ID NO:190): QGQ V/I GG; Or
Primitive 2 (SEQ ID NO:191): ILSLSGSFLPPPAPP; Or
Primitive 3 (SEQ ID NO:192): NATYERLP; Or
Primitive 4 (SEQ ID NO:193): there is the SFTNVAYERLPL that 0 or 1 amino acid in any position changes; Or
Primitive 5 (SEQ ID NO:194): there is the GRFEILSLTGSFLPGPAPPGSTGLTIYLAGGQGQVVGGSVVG that 0,1 or 2 amino acid in any position changes.
According to preferred feature of the present invention, the sequence that is suitable for method of the present invention is to comprise AT hook structure territory (as hereinbefore defined) and DUF296 structural domain (as hereinbefore defined) and the polypeptide of primitive 2 (as hereinbefore defined) or the nucleic acid of this polypeptide of encoding.
Be appreciated that, the sequence of describing in table 1 and the sequence showing in the comparison of Figure 23 be just for the example of the sequence of method of the present invention, has any polypeptide of AT hook structure territory and DUF296 structural domain or any nucleic acid of coding said polypeptide all can be suitable for implementing method of the present invention.
Table 11: the description of the example of aminoacid sequence that comprises AT hook structure territory and DUF296 structural domain and the sequence of these structural domains and their corresponding position
SEQ?ID?NO Species Position, AT hook structure territory Sequence A T hook structure territory Duf296 structural domain position Sequence D UF296 structural domain
1 SEQIDNO:153 CDS3129 ORYSA 97-109 rrprgrpagsknk 124-241 lrthvmevaggcdisesitt farrrqrgvcvlsgagtvtn vtlrqpasqgavvalhgrfe ilslsgsflpppappeatgl tvylaggqgqvvggsvvgal taagpvvimaasfanavy
2 SEQIDNO:155 CDS3128 ORYSA 97-109 RRPRGRPPGSKNK 109-227 lrahilevgsgcdvfecvst yarrrqrgvcvlsgsgvvtn vtlrqpsapagavvslhgrf eilslsgsflpppappgats ltiflaggqgqvvggnvvga lyaagpviviaasfanvay
3 SEQIDNO:157 LOTCO- AP006863.1 (gi68264919) LOTUS 81-93 rrprgrpagsknk 108-225 lkthvmevadgcdivdsvsn farrrqrgvcimsgtgtvtn vtlrqpassgavvtlhgrfe ilslagsflpppappaasgl tiylaggqgqvvggsvvgal iasgpvvimaasfsnaay
4 SEQIDNO:159 NP_192942 ARATH 119-131 RRPRGRPAGSKNK 145-263 lrthvmeigdgcdivdcmat farrrqrgvcvmsgtgsvtn vtirqpgsppgsvvslhgrf eilslsgsflpppappaatg lsvylaggqgqvvggsvvgp llcsgpvvvmaasfsnaay
5 SEQIDNO:161 NP_194012 ARATH 105-117 rrprgrpagsknk 132-252 farrrqrgvcvmsgtgnvtn vtirqpgshpspgsvvslhg rfeilslsgsflpppappta tglsvylaggqgqvvggsvv gpllcagpvvvmaasfsna
6 SEQIDNO:163 NP_182067 ARATH 89-101 rrprgrpagsknk 116-237 lkshvmevangcdvmesvtv farrrqrgicvlsgngavtn vtirqpasvpgggssvvnlh grfeilslsgsflpppappa asgltiylaggqgqvvggsv vgplmasgpvvimaasfgna ay
7 SEQIDNO:165 At3g60870/At _NP_191646 ARATH 59-71 rrprgrpagsknk 86-201 frchvmeitnacdvmeslav farrrqrgvcvltgngavtn vtvrqpgggvvslhgrfeil slsgsflpppappaasglkv ylaggqgqviggsvvgplta sspvvvmaasfgnasy
8 SEQIDNO:167 CDS0185 ARATH 88-100 rrprgrppgsknk 115-233 lqshvleiatgadvaeslna farrrgrgvsvlsgsglvtn vtlrqpaasggvvslrgqfe ilsmcgaflptsgspaaaag ltiylagaqgqvvgggvagp liasgpviviaatfcnaty
9 SEQIDNO:169 PROT?encoded by?AK107405 ORYSA 111-123 rrprgrpagsknk 138-256 lrahvlevasgcdlvdsvat farrrqvgvcvlsatgavtn vsvrqpgagpgavvnltgrf dilslsgsflpppappsatg ltvyvsggqgqvvggtvagp liavgpvvimaasfgnaay
10 SEQIDNO:171 NP_912386.1 ORYSA 45-57 rrprgrppgsknk 72-190 mrshvleiasgadiveaiag fsrrrqrgvsvlsgsgavtn vtlrqpagtgaaavalrgrf eilsmsgaflpapappgatg lavylaggqgqvvggsvmge liasgpvmviaatfgnaty
11 SEQIDNO:173 Le_BT013387 LYCES 54-66 rrprgrpagsknk 81-198 lrahilevssghdvfesvat yarkrqrgicilsgsgtvnn vtirqpqaagsvvtlhgrfe ilslsgsflpppappgatsl tiylaggqgqvvggnvvgal iasgpviviassftnvay
12 SEQIDNO:175 CDS3125 ARATH 34-46 rrprgrpagsknk 61-180 lrshvlevtsgsdiseavst yatrrgcgvciisgtgavtn vtirqpaapagggvitlhgr fdilsltgtalpppappgag gltvylaggqgqvvggnvag sliasgpvvlmaasfanavy
13 SEQIDNO:177 CDS3399 ARATH 80-92 rrprgrpagsknk 107-232 lkshvmeiasgtdvietlat farrrqrgicilsgngtvan vtlrqpstaavaaapggaav lalqgrfeilsltgsflpgp
appgstgltiylaggqgqvv ggsvvgplmaagpvmliaat fsnaty
14 SEQIDNO:179 PRO?AK110263 ORYSA 35-47 rrprgrppgsknk 62-179 lrshvmevaggadvaesiah farrrqrgvcvlsgagtvtd valrqpaapsavvalrgrfe ilsltgtflpgpappgstgl tvylaggqgqvvggsvvgtl taagpvmv
15 SEQIDNO:181 At4g14465/NP _567432 ARATH 67-79 rrprgrppgsknk 94-211 lrshvleisdgsdvadtiah fsrrrqrgvcvlsgtgsvan vtlrqaaapggvvslqgrfe ilsltgaflpgpsppgstgl tvylagvqgqvvggsvvgpl laigsvmviaatfsnaty
16 SEQIDNO:183 CDS4145 ARATH 82-94 rrprgrppgsknk 109-226 lrahilevtngcdvfdcvat yarrrqrgicvlsgsgtvtn vsirqpsaagavvtlqgtfe ilslsgsflpppappgatsl tiflaggqgqvvggsvvgel taagpviviaasftnvay
17 SEQIDNO:185 XP_473716 ORYSA 82-94 rrprgrppgsknk 109-227 lrahilevgsgcdvfecvst yarrrqrgvcvlsgsgvvtn vtlrqpsapagavvslhgrf eilslsgsflpppappgats ltiflaggqgqvvggnvvga lyaagpviviaasfanvay
18 SEQIDNO:187 NP_181070 ARATH 78-90 rrprgrpagsknk 105-222 lrahilevgsgcdvfecist yarrrqrgicvlsgtgtvtn vsirqptaagavvtlrgtfe ilslsgsflpppappgatsl tiflagaqgqvvggnvvgel maagpvmvmaasftnvay
19 SEQIDNO:189 TC102931 TC102931 86-98 rrprgrpagsknk 113-230 lrshvmevangcdimesvtv farrrqrgvcilsgsgtvtn vtlrqpaspgavvtlhgrfe ilslsgsflpppappaasgl aiylaggqgqvvggsvvgpl lasgpvvimaasfgnaay
Those skilled in the art are by using technology and the instrument known in this area can easily identify the polypeptide that comprises AT hook structure territory and DUF296 structural domain.Can be by carry out carrying out this evaluation for the sequence alignment of sequence comparison with GAP, BESTFIT, BLAST, FASTA and TFASTA.GAP is used the algorithm ((1970) J Mol Biol 48:443-453) of Needleman and Wunsch to find to make the number maximization of mating and the comparison that makes minimized two complete sequences of number in room.BLAST algorithm people (1990) J Mol Biol 215:403-10 such as () Altschul calculates per-cent sequence identity and carries out the statistical analysis of two similaritys between sequence.Can obtain publicly for carrying out the software of BLAST analysis by American National biotechnology information center.Can use the ClustalW Multiple Sequence Alignment algorithm (version 1.83) that for example can obtain at http://clustalw.genome.jp/sit-bin/nph-ClustalW, the methods of marking that uses default paired comparison parameter and represent with per-cent, easily identifies the polypeptide that comprises AT hook structure territory and DUF296 structural domain.Can carry out a small amount of human-edited to optimize the comparison between conservative primitive, this it will be apparent to those skilled in the art that.
Can use specialized database such as SMART (people (1998) Proc.Natl.Acad.Sci.USA 95 such as Schultz, 5857-5864; The people such as Letunic (2002) Nucleic Acids Res 30,242-244; Http:// smart.embl-heidelberg.de/), InterPro (people such as Mulder, (2003) Nucl.Acids.Res.31,315-318; Http:// www.ebi.ac.uk/interpro/), Prosite (Bucher and Bairoch (1994), A generalized profile syntax for biomolecularsequences motifs and its function in automatic sequence interpretation, ISMB-94; The 2nd international conference of molecular biology intelligent system recorded Altman R., Brutlag D., Karp P., Lathrop R., Searls D., Eds., pp53-61, AAAI Press, Menlo Park; The people such as Hulo, Nucl.Acids.Res.32:D134-D137, (2004), http://www.expasy.org/prosite/) or the Pfam (people such as Bateman, Nucleic AcidsResearch 30 (1): 276-280 (2002), http://www.sanger.ac.uk/Software/Pfam/), identify AT hook structure territory and DUF296 structural domain.
The sequence of mentioning in table 11 or use the homologue of the polypeptide that sequence that above-mentioned technology (for example sequence alignment) is identified can think to comprise AT hook structure territory and DUF296 structural domain, described homologue also comprises AT hook structure territory and DUF structural domain, but this homologue can change at the elsewhere of sequence." definition " part has in this manual defined " homologue " of protein.Preferably homologue is that the aminoacid sequence that SEQ ID NO:153 represented by the preferred sequence increasing progressively has at least 30%, 40%, 50%, 60%, 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% or the aminoacid sequence of larger sequence identity, and this homologue comprises AT hook structure territory and DUF296 structural domain and more preferably also comprises primitive 2.
Comprising AT hook structure territory and the polypeptide of DUF296 structural domain or the homologue of this polypeptide can be the derivative of " definition " part definition in this specification sheets.
Encoded packets can be suitable for method of the present invention containing any nucleic acid of the polypeptide of AT hook structure territory and DUF296 structural domain.The example of such sequence comprises the nucleotide sequence being represented by SEQ ID NO:152, SEQ IDNO:154, SEQ ID NO:156, SEQ ID NO:158, SEQ ID NO:160, SEQ IDNO:162, SEQ ID NO:164, SEQ ID NO:166, SEQ ID NO:168 and SEQ IDNO:170..
Encoded packets also can be suitable for implementing method of the present invention containing the variant of the nucleic acid of the polypeptide of AT hook structure territory and DUF296 structural domain, and condition is that variant encoded packets is containing the polypeptide of AT hook structure territory and DUF296 structural domain.This type of nucleic acid variant can be the encoded packets polypeptide that contains AT hook structure territory and DUF296 structural domain nucleic acid part and/or can with the nucleic acid of encoded packets containing the nucleic acid hybridization of the polypeptide of AT hook structure territory and DUF296 structural domain.
Can be for example by being produced to one or more containing the nucleic acid of the polypeptide of AT hook structure territory and DUF296 structural domain, encoded packets lacks to prepare part.Can use part maybe they and other coding (or non-coding) sequences can be merged to for example produce the albumen of several activity of combination with separated form.When merging to other encoding sequences, the polypeptide that the translation of gained produces afterwards can be than large for the size of this part prediction.Preferably, part is the part of the nucleic acid of any expression in SEQ ID NO:152, SEQ ID NO:154, SEQ IDNO:156, SEQ ID NO:158, SEQ ID NO:160, SEQ ID NO:162, SEQ IDNO:164, SEQ ID NO:166, SEQ ID NO:168 and SEQ ID NO:170.Most preferably part is the part of the nucleic acid that represented by SEQ ID NO:152, and this part encoded packets is containing AT hook structure territory and DUF296 structural domain and more preferably also comprise the polypeptide of primitive 2.
Another kind of nucleic acid variant is can be under the stringent condition reducing, preferably under stringent condition with the nucleic acid of encoded packets containing the nucleic acid hybridization of the polypeptide of AT hook structure territory and DUF296 structural domain.Preferably, hybridization sequences be can with the nucleic acid of any expression in SEQ ID NO:152, SEQ ID NO:154, SEQ ID NO:156, SEQ ID NO:158, SEQ ID NO:160, SEQ ID NO:162, SEQ ID NO:164, SEQ ID NO:166, SEQ ID NO:168 and SEQ ID NO:170 or with the above-mentioned sequence of above definition in the sequence of part hybridization of arbitrary sequence.Most preferably, hybridization sequences is the sequence of the nucleic acid hybridization that can represent with SEQ ID NO:152, and this hybridization sequences encoded packets is containing AT hook structure territory and DUF296 structural domain and more preferably comprise the polypeptide of primitive 2.
Term " hybridization " is as the definition in this specification sheets " definition " part.
Another kind of nucleic acid variant is the alternative splicing variant in the definition of " definition " part.The splice variant of the nucleotide sequence being represented by SEQ IDNO:152, SEQ ID NO:154, SEQ ID NO:156, SEQ ID NO:158, SEQ IDNO:160, SEQ ID NO:162, SEQ ID NO:164, SEQ ID NO:166, SEQ IDNO:168 and SEQ ID NO:170 is preferred.The splice variant of the nucleotide sequence being represented by SEQID NO:152 is most preferred, and this splice variant encoded packets contains AT hook structure territory and DUF296 structural domain and more preferably comprises the polypeptide of primitive 2.
Another kind of nucleic acid variant is the allele variant in the definition of " definition " part.The allele variant of the nucleotide sequence being represented by SEQ IDNO:152, SEQ ID NO:154, SEQ ID NO:156, SEQ ID NO:158, SEQ IDNO:160, SEQ ID NO:162, SEQ ID NO:164, SEQ ID NO:166, SEQ IDNO:168 and SEQ ID NO:170 is preferred.The allele variant of the nucleotide sequence being represented by SEQ ID NO:152 is most preferred, and this allele variant encoded packets contains AT hook structure territory and DUF296 structural domain and more preferably comprises the polypeptide of primitive 2.
Also can pass through orthogenesis (referring to " definition " part) and obtain nucleic acid variant.
Also can use directed mutagenesis to produce encoded packets containing the variant of the nucleic acid of the polypeptide of AT hook structure territory and DUF296 structural domain.Referring to " definition " part.
Encoded packets can derive from any natural or artificial source containing the nucleic acid of the polypeptide of AT hook structure territory and DUF296 structural domain.Can be from microbe-derived for example yeast or fungi or from plant, algae or animal-origin isolating nucleic acid/gene or its variant.Can in composition and/or genome environment, from its natural form, modify this nucleic acid by the manual operation of having a mind to.Nucleic acid is plant origin preferably, can for example, from identical plant species (plant species to be imported from it is identical) or can be from different plant species.Can be from dicotyledons species, preferably from monocotyledons species separated this nucleic acid of rice for example.More preferably, encoded packets represents by SEQID NO:152 containing the rice nucleic acid of the polypeptide of AT hook structure territory and DUF296 structural domain, and the polypeptide being encoded is the polypeptide being represented by SEQ ID NO:153.
Can, by importing genetic modification (preferably in encoded packets in the locus containing the gene of the polypeptide of AT hook structure territory and DUF296 structural domain), regulate the expression of the nucleic acid of coding AT hook.The locus of the gene of definition is used for representing genome area herein, and this region comprises 10kb upstream or the downstream of goal gene and coding region.
Can be for example by following method: any (or multiple) method and import genetic modification containing the nucleic acid of the polypeptide of AT hook structure territory and DUF296 structural domain by import and express encoded packets in monocotyledons in T-DNA activation, TILLING and homologous recombination.About the details of T-DNA activation, TILLING and homologous recombination referring to " definition " part.After importing genetic modification, can select step with regard to the expression of encoded packets increase in endosperm tissue containing the nucleic acid of the polypeptide of AT hook structure territory and DUF296 structural domain, the expression of this orientation causes having the plant of the seed production of increase.
The selection that activates the promotor of label for T-DNA in situation of the present invention can be preferentially at monocotyledonous endosperm tissue, to instruct any promotor of expressing.
T-DNA activates and TILLING makes it possible to produce encoded packets containing the neomorph of nucleic acid of polypeptide and the example of the technology of variant of AT hook structure territory and DUF296 structural domain.
The preferred method that is used for importing genetic modification (its in this situation needn't in encoded packets the locus containing the nucleic acid/gene of the polypeptide of AT hook structure territory and DUF296 structural domain) is in plant, to import and express encoded packets containing the nucleic acid of the polypeptide of AT hook structure territory and DUF296 structural domain.The nucleic acid of plant to be imported can be that total length nucleic acid can be maybe part or any other variant nucleic acid, and condition is the polypeptide that variant nucleic acid encoding comprises AT hook structure territory and DUF296 structural domain.
Method of the present invention depends on preferentially increases encoded packets containing the expression of the nucleic acid of the polypeptide of AT hook structure territory and DUF296 structural domain in monocotyledonous endosperm tissue.This can be by the promoters driven by suitable cross the making for realizing of expression, transcriptional enhancer or translational enhancer.Can import the separated nucleic acid as promotor or enhancer element, the above tone coded gene/nucleic acid of polypeptide that comprises AT hook structure territory and DUF296 structural domain or the expression of its variant at the correct position (conventionally in upstream) of the polynucleotide of non-allos form.For example, can by sudden change, disappearance and/or displacement change in vivo endogenesis promoter (referring to, Kmiec, United States Patent (USP) 5,565,350; The people such as Zarling, PCT/US93/03868), or can import vegetable cell with the expression of controlling gene with distance (with respect to gene of the present invention) by separated promotor with suitable direction.
If expectation express polypeptide, the 3 ' end that is conventionally desirably in polynucleotide encoding district comprises polyadenylation region.Polyadenylation region can derive from natural gene, derives from multiple other plant gene or derives from T-DNA.3 ' the end sequence being added into can derive from for example nopaline synthase or octopine synthase gene, or selectively derives from another kind of plant gene, or does not more preferably derive from any other eukaryotic gene.
Also can in the encoding sequence of 5 ' non-translational region or part encoding sequence, add intron sequences to be increased in the ripe courier's who accumulates in cytosol amount.Be presented in the transcription unit of plant and animal expression construct and comprised and can make the expression of gene on mRNA and protein level, increase nearly 1000 times of (Buchman and Berg (1988) Mol.Cell biol.8:4395-4405 by montage intron; The people such as Callis (1987) Genes Dev.1:1183-1200).When near the 5 ' end that is placed in transcription unit, this intron enhancement of genetic expression is conventionally maximum.The purposes of corn intron A dh1- S introne 1,2 and 6, Bronze-1 intron is known in this area.Conventionally referring to, TheMaize Handbook, Chapter 116, Freeling and Walbot, Eds., Springer, N.Y. (1994).
The present invention also provides the importing of nucleotide sequence and/or the genetic constructs of expression and the carrier contributing to for method of the present invention.
Therefore, provide gene construct, it comprises:
(i) encoded packets is containing the nucleic acid of the polypeptide of AT hook structure territory and DUF296 structural domain;
(ii) can in monocotyledonous endosperm tissue, drive one or more control sequences of the nucleotide sequence expression of (i); Optionally
(iii) transcription termination sequence.
The purposes of the construct that the present invention also provides above definition in the method for increasing monocotyledonous seed production.
Can use recombinant DNA technology well known to those skilled in the art to build the construct for method of the present invention.Gene construct can be inserted to the carrier that is suitable for being transformed into plant and is suitable for expressing goal gene in transformant, the commercially available acquisition of this carrier.The construct that the present invention also provides above definition is for increasing the purposes in the method for seed production in monocotyledons.
The carrier transforming monocots that use comprises aim sequence (that is, encoded packets is containing the nucleic acid of the polypeptide of AT hook structure territory and DUF296 structural domain).Aim sequence is effectively connected with one or more control sequences (at least with promotor) that can preferentially increase expression in monocotyledonous endosperm tissue.Term " controlling element ", " control sequence " and " promotor " are all used interchangeably herein, and are defined in " definition " part.
Endosperm specificity promoter refers to any promotor that can preferentially drive destination gene expression in endosperm tissue.That mentions preferentially increase to express herein in endosperm tissue, refers to mainly and increases and express in endosperm tissue, and except due to the former of seepage promotor thereby any residual expression that causes, get rid of the expression of elsewhere in plant.For example, prolamine promotor shows strongly expressed in endosperm, at meristematic tissue, more particularly in the discriminationcentre in stem meristematic tissue and/or meristematic tissue, has leakage expression.
Preferably, endosperm specificity promoter is the promotor from prolamine gene isolation, such as the paddy prolamine RP6 being represented by SEQ ID NO:195 (people such as Wen, (1993) Plant Physiol101 (3): the 1115-6) promotor of promotor or similar intensity and/or there is the promotor of the expression pattern similar to paddy Prolamin promoter.Can be for example by promotor be analyzed to similar intensity and/or similar expression pattern to reporter gene coupling with the function of examining report gene in the tissue of plant.A well-known reporter gene is β-glucuronidase and dyes for manifesting the colorimetric GUS of the β-glucuronidase activity of plant tissue.Should be understood that, suitability of the present invention is not limited to the nucleic acid being represented by SEQ ID NO:152, and suitability of the present invention is not limited to the expression by the coding AT hook structure territory of prolamine promoters driven and the nucleic acid of DUF296 structural domain yet.The example that also can be used for implementing other endosperm specificity promoters of method of the present invention is shown in table 6 of " definition " part.
Optionally, one or more terminator sequences also can be used in the construct of plant to be imported.In " definition " part, defined term " terminator ".
Gene construct of the present invention also can comprise in order to maintain and/or copy necessary replication orgin sequence in specific cell type.An example is when gene construct need to for example, maintain in bacterial cell with additive type genetic elements (plasmid or clay molecule).Preferred replication orgin includes but not limited to f1-ori or colE1.
Gene construct optionally comprises selectable marker gene defined herein.
In preferred embodiments, provide gene construct, it comprises:
(i) encoded packets is containing the nucleic acid of the polypeptide of AT hook structure territory and DUF296 structural domain;
(ii) can preferentially in monocotyledonous endosperm tissue, drive the prolamine promotor of the nucleotide sequence expression of (i); Optionally
(iii) transcription termination sequence.
The present invention also comprises the monocotyledons that can obtain by method of the present invention.Therefore the invention provides monocotyledons, its plant part (comprising vegetable cell) that can obtain by method of the present invention, described plant or its part comprise the transgenosis of polypeptide that coding contains AT hook structure territory and DUF296 structural domain, described transgenosis and endosperm specificity promoter, preferably prolamine promotor effectively connects.
The present invention also provides for generation of the monocotyledonous method of transgenosis of comparing the seed production with increase with suitable control plant, described method is included in monocotyledons and imports and express encoded packets containing the nucleic acid of the polypeptide of AT hook structure territory and DUF296 structural domain, and wherein said expression is preferentially increased in monocotyledonous endosperm tissue.
More particularly, the invention provides for generation of the monocotyledonous method of transgenosis with the seed production of increase, described method comprises:
(i) in monocotyledonous endosperm tissue, import and preferentially increase therein encoded packets containing the expression of the nucleic acid of the polypeptide of AT hook structure territory and DUF296 structural domain; With
(ii) culturing plants cell under the condition of Promoting plant growth and growth.
Nucleic acid directly can be imported to monocotyledonous vegetable cell or import plant itself (comprising the tissue, organ or any other part that import plant).According to a preferred aspect of the present invention, preferably by transforming, nucleic acid is imported to plant.
" definition " part at this specification sheets has defined term " conversion ".
The present invention clearly extends to any vegetable cell or the plant producing by any method described herein, and extends to its all plant parts and its propagulum.The present invention extends further to the offspring of the cell, tissue, organ or the complete plant that comprise the primary conversion that produces by any aforesaid method or transfection, and unique requirement is genotype and/or identical genotype and/or the phenotypic characteristic of phenotypic characteristic that this offspring shows with parent produces in the method for the invention.
The present invention also comprises the host cell of the nucleic acid of the polypeptide that comprising encodes contains AT hook structure territory and DUF296 structural domain, and wherein this nucleic acid is effectively connected with endosperm specificity promoter.Preferred host cell of the present invention is monocot plant cell.
The present invention also extends to the monocotyledonous part of gathering in the crops such as but not limited to seed, leaf, fruit, flower, stem, rhizome, stem tuber and bulb.The invention still further relates to and derive from, be preferably directed to the product of the part gathered in the crops of such plant, for example granulated feed grain or dry powder, oil, fat and lipid acid, starch or protein.
The present invention also comprises that the nucleic acid that encoded packets contains the polypeptide of AT hook structure territory and DUF296 structural domain is being used method of the present invention to increase the purposes in monocotyledonous seed production.
the detailed description of DOF transcription factor
The term " DOF transcription factor polypeptide " of definition refers to and comprises following feature (i) and as follows feature (ii) or any polypeptide (iii) extraly herein:
(i) by the preferred sequence increasing progressively, the DOF structural domain being represented by SEQ ID NO:200 or SEQ ID NO:228 is had at least 60%, 65%, 70%, 75%, 80%, 85%, 90% or 95% sequence identity; With
(ii) by the preferred sequence increasing progressively, the DOF structural domain being represented by SEQ ID NO:200 there is at least 70%, 75%, 80%, 85%, 90% or 95% sequence identity; Or
(iii) primitive I: unconverted or have that one or more conservative propertys in any position change or there are, two or three KALKKPDKILP (SEQ ID NO:229) that the non-conservation in any position changes; And/or
Primitive II: unconverted or have that one or more conservative propertys in any position change or there are one, two or three DDPGIKLFGKTIPF (SEQ ID NO:230) that the non-conservation in any position changes.
In addition the polypeptide that, comprises above-mentioned feature (i) and feature (iii) can comprise any one in following primitive, any two or all three primitives:
-primitive III: unconverted or have that one or more conservative propertys in any position change or there are one, two or three SPTLGKHSRDE in the non-conservative variation of any position (SEQ ID NO:231); And/or
-primitive IV: unconverted or have that one or more conservative propertys in any position change or there are one, two or three LQANPAALSRSQNFQE (SEQ ID NO:232) that the non-conservation in any position changes; And/or
-primitive V: unconverted or have that one or more conservative propertys in any position change or there are one, two, three, four or five KGEGCLWVPKTLRIDDPDEAAKSSIWTTLGIK (SEQ ID NO:233) that the non-conservation in any position changes.
A preferred polypeptide that comprises above-mentioned feature (i) and feature (iii) comprises primitive I and II simultaneously.
In addition, DOF transcription factor polypeptide (at least with its natural form) conventionally has DNA binding activity and has activation structure territory.Can use routine techniques and method easily to determine the existence of activation structure territory and DNA binding activity by those skilled in the art.
SEQ ID NO:199 (being encoded by SEQ ID NO:198) comprises above the feature (i) of definition and the example of DOF transcription factor polypeptide (ii), that is, there is at least 60% sequence identity with the DOF structural domain being represented by SEQ ID NO:200 or SEQ IDNO:228; There is at least 70% sequence identity with the DOF structural domain with being represented by SEQ IDNO:200.SEQ ID NO:202 (being encoded by SEQ ID NO:201), SEQ ID NO:204 (being encoded by SEQ ID NO:203), SEQ ID NO:206 (being encoded by SEQ ID NO:205), SEQ ID NO:208 (being encoded by SEQID NO:207), SEQ ID NO:210 (being encoded by SEQ ID NO:209), SEQ ID NO:212 (being encoded by SEQ ID NO:211), SEQ ID NO:214 (being encoded by SEQ ID NO:213), SEQ ID NO:216 (being encoded by SEQ ID NO:215), SEQ ID NO:218 (being encoded by SEQID NO:217), SEQ ID NO:220 (being encoded by SEQ ID NO:219), in SEQ ID NO:222 (being encoded by SEQ ID NO:221), provided and comprised above the feature (i) of definition and other examples of DOF transcription factor polypeptide (ii)..
SEQ ID NO:227 (being encoded by SEQ ID NO:226) comprises above the feature (i) of definition and (iii) (that is, has at least 60% sequence identity with the DOF structural domain being represented by SEQ ID NO:200 or SEQ ID NO:228; Above primitive I and/or the primitive II of definition) the example of DOF transcription factor polypeptide.SEQ ID NO:235 (being encoded by SEQ ID NO:234), SEQ ID NO:237 (being encoded by SEQ ID NO:236), SEQ ID NO:239 (being encoded by SEQ IDNO:238), SEQ ID NO:241 (being encoded by SEQ ID NO:240), SEQ ID NO:243 (being encoded by SEQ ID NO:242), SEQ ID NO:245 (being encoded by SEQ ID NO:244), SEQ ID NO:247 (being encoded by SEQ ID NO:246), SEQ ID NO:249 (being encoded by SEQID NO:248), SEQ ID NO:251 (being encoded by SEQ ID NO:250), SEQ ID NO:253 (being encoded by SEQ ID NO:252), in SEQ ID NO:255 (being encoded by SEQ ID NO:254), provided and comprised above the feature (i) of definition and other examples of DOF transcription factor polypeptide (iii).
Other examples that represented by SEQ ID NO:202, SEQ ID NO:204, SEQ ID NO:206, SEQ ID NO:208, SEQ ID NO:210, SEQ ID NO:212, SEQ ID NO:214, SEQ ID NO:216, SEQ ID NO:218, SEQ ID NO:220, SEQ ID NO:222 are the examples of " homologue " of the DOF transcription factor polypeptide that represented by SEQ ID NO:199.
Other examples that represented by SEQ ID NO:235, SEQ ID NO:237, SEQ ID NO:239, SEQ ID NO:241, SEQ ID NO:243, SEQ ID NO:245, SEQ ID NO:247, SEQ ID NO:249, SEQ ID NO:251, SEQ ID NO:253, SEQ ID NO:255 are the examples of " homologue " of the DOF transcription factor polypeptide that represented by SEQ ID NO:227..
" definition " part has in this manual defined " homologue " of protein.
DOF transcription factor polypeptide or its homologue can be derivatives.In " definition " part, defined " derivative " in this manual.
Can use special database such as SMART (people (1998) Proc.Natl.Acad.Sci.USA 95 such as Schultz, 5857-5864; The people such as Letunic (2002) Nucleic Acids Res 30,242-244; Http:// smart.embl-heidelberg.de/), InterPro (people such as Mulder, (2003) Nucl.Acids.Res.31,315-318; Http:// WWW.ebi.ac.uk/interpro/), Prosite (Bucher and Bairoch (1994), A generalized profile syntax for biomolecularsequences motifs and its function in automatic sequence interpretation. (In) ISMB-94; The 2nd international conference of molecular biology intelligent system recorded Altman R., Brutlag D., Karp P., Lathrop R., Searls D., Eds., pp53-61, AAAIPress, Menlo Park; The people such as Hulo, Nucl.Acids.Res.32:D134-D137, (2004), http://www.expasy.org/prosite/) or the Pfam (people such as Bateman, Nucleic Acids Research 30 (1): 276-280 (2002), http://www.sanger.ac.uk/Software/Pfam/), identify for example DOF structural domain of various structural domains in DOF transcription factor protein.
The example of the nucleic acid of encoding D OF transcription factor polypeptide (with its homologue) comprises by SEQ IDNO:198, SEQ ID NO:201, SEQ ID NO:203, SEQ ID NO:205, SEQ IDNO:207, SEQ ID NO:209, SEQ ID NO:211, SEQ ID NO:213, SEQ IDNO:215, SEQ ID NO:217, SEQ ID NO:219, SEQ ID NO:221, SEQ IDNO:226, SEQ ID NO:234, SEQ ID NO:236, SEQ ID NO:238, SEQ IDNO:240, SEQ ID NO:242, SEQ ID NO:244, SEQ ID NO:246, SEQ IDNO:248, SEQ ID NO:250, the nucleic acid of any expression in SEQ ID NO:252 and SEQ ID NO:254.The variant of the nucleic acid of encoding D OF transcription factor polypeptide can be suitable for method of the present invention.Suitable variant comprise encoding D OF transcription factor polypeptide nucleic acid part and/or can with the nucleic acid of the nucleic acid/gene recombination of encoding D OF transcription factor polypeptide.Other variants comprise splice variant and the allele variant of the nucleic acid of encoding D OF transcription factor polypeptide (with its homologue).
The term " part " of definition refers to that encoded packets contains following feature (i) and the following fragment of the DNA of feature (ii) or polypeptide (iii) extraly herein:
(i) by the preferred sequence increasing progressively, the DOF structural domain being represented by SEQ ID NO:200 or SEQ ID NO:228 is had at least 60%, 65%, 70%, 75%, 80%, 85%, 90% or 95% sequence identity; With
(ii) by the preferred sequence increasing progressively, the DOF structural domain being represented by SEQ ID NO:200 there is at least 70%, 75%, 80%, 85%, 90% or 95% sequence identity; Or
(iii) primitive I: unconverted or have that one or more conservative propertys in any position change or there are, two or three KALKKPDKILP (SEQ ID NO:229) that the non-conservation in any position changes; And/or
Primitive II: unconverted or have that one or more conservative propertys in any position change or there are one, two or three DDPGIKLFGKTIPF (SEQ ID NO:230) that the non-conservation in any position changes.
In addition, above-mentioned feature (iii) can comprise any one in following primitive, any two or all three primitives:
-primitive III: unconverted or have that one or more conservative propertys in any position change or there are one, two or three SPTLGKHSRDE in the non-conservative variation of any position (SEQ ID NO:231); And/or
-primitive IV: unconverted or have that one or more conservative propertys in any position change or there are one, two or three LQANPAALSRSQNFQE (SEQ ID NO:232) that the non-conservation in any position changes; And/or
-primitive V: unconverted or have that one or more conservative propertys in any position change or there are one, two, three, four or five KGEGCLWVPKTLRIDDPDEAAKSSIWTTLGIK (SEQ ID NO:233) that the non-conservation in any position changes.
Can for example by being produced to one or more disappearances, the nucleic acid of encoding D OF transcription factor polypeptide prepare part.Can use part maybe they and other coding (or non-coding) sequences can be merged to for example produce the albumen of several activity of combination with separated form.When merging to other encoding sequences, the polypeptide that the translation of gained produces afterwards can be larger than the size of partly predicting for this DOF transcription factor.
Encoded packets containing the above feature (i) of definition and the part of the nucleic acid of DOF transcription factor polypeptide (ii) preferably by the part of the nucleic acid of any one expression in SEQ ID NO:198, SEQ ID NO:201, SEQ ID NO:203, SEQID NO:205, SEQ ID NO:207, SEQ ID NO:209, SEQ ID NO:211, SEQID NO:213, SEQ ID NO:215, SEQ ID NO:217, SEQ ID NO:219 and SEQID NO:221.
Encoded packets containing the above feature (i) of definition and the part of the nucleic acid of DOF transcription factor polypeptide (iii) preferably by the part of the nucleic acid of any one expression in SEQ ID NO:226, SEQ ID NO:234, SEQ ID NO:236, SEQID NO:238, SEQ ID NO:240, SEQ ID NO:242, SEQ ID NO:244, SEQID NO:246, SEQ ID NO:248, SEQ ID NO:250, SEQ ID NO:252 and SEQID NO:254.
The another kind of variant of DOF transcription factor nucleic acid/gene is can be under the stringent condition reducing, preferably under stringent condition with the nucleic acid of the DOF transcription factor nucleic acid/gene recombination of definition above, this hybridization sequences encoded packets is containing following feature (i) and feature (ii) or polypeptide (iii) as follows extraly:
(i) by the preferred sequence increasing progressively, the DOF structural domain being represented by SEQ ID NO:200 or SEQ ID NO:228 is had at least 60%, 65%, 70%, 75%, 80%, 85%, 90% or 95% sequence identity; With
(ii) by the preferred sequence increasing progressively, the DOF structural domain being represented by SEQ ID NO:200 there is at least 70%, 75%, 80%, 85%, 90% or 95% sequence identity; Or
(iii) primitive I: unconverted or have that one or more conservative propertys in any position change or there are, two or three KALKKPDKILP (SEQ ID NO:229) that the non-conservation in any position changes; And/or
Primitive II: unconverted or have that one or more conservative propertys in any position change or there are one, two or three DDPGIKLFGKTIPF (SEQ ID NO:230) that the non-conservation in any position changes.
In addition, above-mentioned feature (iii) can comprise any one in following primitive, any two or all three primitives:
-primitive III: unconverted or have that one or more conservative propertys in any position change or there are one, two or three SPTLGKHSRDE in the non-conservative variation of any position (SEQ ID NO:231); And/or
-primitive IV: unconverted or have that one or more conservative propertys in any position change or there are one, two or three LQANPAALSRSQNFQE (SEQ ID NO:232) that the non-conservation in any position changes; And/or
-primitive V: unconverted or have that one or more conservative propertys in any position change or there are one, two, three, four or five KGEGCLWVPKTLRIDDPDEAAKSSIWTTLGIK (SEQ ID NO:233) that the non-conservation in any position changes.
Preferably, encoded packets containing the feature (i) of above definition and the hybridization sequences of DOF transcription factor polypeptide (ii) be can with by the sequence of the nucleic acid hybridization of any expression in SEQ ID NO:201, SEQ ID NO:203, SEQ ID NO:205, SEQ ID NO:207, SEQ ID NO:209, SEQ ID NO:211, SEQ ID NO:213, SEQ ID NO:215, SEQ ID NO:217, SEQ ID NO:219 and SEQ ID NO:221.
Preferably, encoded packets containing the feature (i) of above definition and the hybridization sequences of DOF transcription factor polypeptide (iii) be can with by the sequence of the nucleic acid hybridization of any expression in SEQ ID NO:234, SEQ ID NO:236, SEQ ID NO:238, SEQ ID NO:240, SEQ ID NO:242, SEQ ID NO:244, SEQ ID NO:246, SEQ ID NO:248, SEQ ID NO:250, SEQ ID NO:252 and SEQ ID NO:254.
Term " hybridization " is the hybridization of this specification sheets " definition " part definition.
DOF transcription factor polypeptide can be encoded by alternative splicing variant.Term " alternative splicing variant " is " the alternative splicing variant " defining in " definition " part in this specification sheets.
Preferably splice variant is that encoded packets contains following feature (i) and the splice variant of the nucleic acid of feature (ii) or polypeptide (iii) as follows extraly:
(i) by the preferred sequence increasing progressively, the DOF structural domain being represented by SEQ ID NO:200 or SEQ ID NO:228 is had at least 60%, 65%, 70%, 75%, 80%, 85%, 90% or 95% sequence identity; With
(ii) by the preferred sequence increasing progressively, the DOF structural domain being represented by SEQ ID NO:200 there is at least 70%, 75%, 80%, 85%, 90% or 95% sequence identity; Or
(iii) primitive I: unconverted or have that one or more conservative propertys in any position change or there are, two or three KALKKPDKILP (SEQ ID NO:229) that the non-conservation in any position changes; And/or
Primitive II: unconverted or have that one or more conservative propertys in any position change or there are one, two or three DDPGIKLFGKTIPF (SEQ ID NO:230) that the non-conservation in any position changes.
Encoded packets is by the splice variant of the nucleic acid of any one expression in SEQ ID NO:201, SEQ ID NO:203, SEQ ID NO:205, SEQ ID NO:207, SEQ ID NO:209, SEQ ID NO:211, SEQ ID NO:213, SEQ ID NO:215, SEQ ID NO:217, SEQ ID NO:219 and SEQ ID NO:221 containing the above feature (i) of definition and the preferred splice variant of the nucleic acid of DOF transcription factor polypeptide (ii).
Encoded packets containing the above feature (i) of definition and the preferred splice variant of the nucleic acid of DOF transcription factor polypeptide (iii) preferably by the splice variant of the nucleic acid of any one expression in SEQ ID NO:234, SEQ ID NO:236, SEQ ID NO:238, SEQ ID NO:240, SEQ ID NO:242, SEQ ID NO:244, SEQ ID NO:246, SEQ ID NO:248, SEQ ID NO:250, SEQ ID NO:252 and SEQ ID NO:254.
DOF transcription factor polypeptide also can be encoded by allele variant, and described allelotrope body is also defined in " definition " part of this specification sheets.
Preferably allele variant is that encoded packets contains following feature (i) and the allele variant of the nucleic acid of feature (ii) or polypeptide (iii) as follows extraly:
(i) by the preferred sequence increasing progressively, the DOF structural domain being represented by SEQ ID NO:200 or SEQ ID NO:228 is had at least 60%, 65%, 70%, 75%, 80%, 85%, 90% or 95% sequence identity; With
(ii) by the preferred sequence increasing progressively, the DOF structural domain being represented by SEQ ID NO:200 there is at least 70%, 75%, 80%, 85%, 90% or 95% sequence identity; Or
(iii) primitive I: unconverted or have that one or more conservative propertys in any position change or there are, two or three KALKKPDKILP (SEQ ID NO:229) that the non-conservation in any position changes; And/or
Primitive II: unconverted or have that one or more conservative propertys in any position change or there are one, two or three DDPGIKLFGKTIPF (SEQ ID NO:230) that the non-conservation in any position changes.
Encoded packets is by the splice variant of the nucleic acid of any one expression in SEQ ID NO:201, SEQ ID NO:203, SEQ ID NO:205, SEQ ID NO:207, SEQ ID NO:209, SEQ ID NO:211, SEQ ID NO:213, SEQ ID NO:215, SEQ ID NO:217, SEQ ID NO:219 and SEQ ID NO:221 containing the above feature (i) of definition and the preferred allele variant of the nucleic acid of DOF transcription factor polypeptide (ii).
Encoded packets containing the above feature (i) of definition and the preferred allele variant of the nucleic acid of DOF transcription factor polypeptide (iii) preferably by the part of the nucleic acid of any one expression in SEQ ID NO:234, SEQ ID NO:236, SEQ ID NO:238, SEQ ID NO:240, SEQ ID NO:242, SEQ ID NO:244, SEQ ID NO:246, SEQ ID NO:248, SEQ ID NO:250, SEQ ID NO:252 and SEQ ID NO:254.
Can use the directed mutagenesis defining in this specification sheets " definition " part for example, produce above other variants of the nucleic acid of the DOF transcription factor polypeptide of definition of coding.
Also can use orthogenesis (or gene shuffling) to produce the variant of the nucleic acid of encoding D OF transcription factor polypeptide.Referring to " definition " part.
DOF transcription factor polypeptide is that plant is specific.The nucleic acid of coding said polypeptide can derive from any natural or artificial source.Can in composition and/or genome environment, from its natural form, modify this nucleic acid by the manual operation of having a mind to.Preferably DOF transcription factor nucleic acid or its variant are from dicotyledons, and more preferably from Cruciferae, more preferably nucleic acid is from Arabidopis thaliana.
Can increase by importing genetic modification (preferably in the locus of DOF transcription factor gene) expression of the nucleic acid of encoding D OF transcription factor polypeptide.The locus of the gene of definition is used for representing genome area herein, and this genome area comprises 10kb upstream or the downstream of goal gene and coding region.
Can be for example by following method: any (or multiple) method or import genetic modification by import and express the nucleic acid of encoding D OF transcription factor polypeptide in plant in T-DNA activation, TILLING and homologous recombination.The method of T-DNA activation, TILLING and homologous recombination is as the definition in " definition " part of this specification sheets.After importing genetic modification, with regard to the expression of the increase of the nucleic acid of encoding D OF transcription factor polypeptide, carry out optional selection step, wherein the expression of this increase causes having the plant of the output of increase.
T-DNA activates and TILLING is the example that makes it possible to produce the technology of neomorph and DOF transcription factor variant.
The preferred method that is used for importing genetic modification (its in this situation needn't at the locus of DOF transcription factor gene) is in plant, to import and express the above nucleic acid of the DOF transcription factor polypeptide of definition of coding.The nucleic acid of plant to be imported can be total length nucleic acid can be maybe as defined above part or hybridization sequences or other nucleic acid variant.
Method of the present invention depends on the expression of increase of the nucleic acid of encoding D OF transcription factor polypeptide.Method existing lot of documents report in this area for increasing the expression of gene or gene product, for example comprises, uses the use of crossing expression, transcriptional enhancer or translational enhancer of suitable promoters driven.Can import the separated nucleic acid as promotor or enhancer element, the expression of the nucleic acid of above tone coded DOF transcription factor polypeptide at the correct position (conventionally in upstream) of the polynucleotide of non-allos form.For example, can by sudden change, disappearance and/or displacement change in vivo endogenesis promoter (referring to, Kmiec, United States Patent (USP) 5,565,350; The people such as Zarling, PCT/US93/03868), or can import vegetable cell with the expression of controlling gene with distance (with respect to gene of the present invention) by separated promotor with suitable direction.
If expectation express polypeptide, the 3 ' end that is conventionally desirably in polynucleotide encoding district comprises polyadenylation region.Polyadenylation region can derive from natural gene, derives from multiple other plant gene or derives from T-DNA.3 ' the end sequence being added into can derive from for example nopaline synthase or octopine synthase gene, or selectively derives from another kind of plant gene, or does not more preferably derive from any other eukaryotic gene.
Also can in the encoding sequence of 5 ' non-translational region or part encoding sequence, add intron sequences to be increased in the ripe courier's who accumulates in cytosol amount.Be presented in the transcription unit of plant and animal expression construct and comprised and can make the expression of gene on mRNA and protein level, increase nearly 1000 times of (Buchman and Berg (1988) Mol.Cell biol.8:4395-4405 by montage intron; The people such as Callis (1987) Genes Dev.1:1183-1200).When near the 5 ' end that is placed in transcription unit, this intron enhancement of genetic expression is conventionally maximum.The purposes of corn intron A dh1- S introne 1,2 and 6, Bronze-1 intron is known in this area.About general information, referring to, The Maize Handbook, Chapter 116, Freeling and Walbot, Eds., Springer, N.Y. (1994).
The present invention also provides the importing of nucleotide sequence and/or the genetic constructs of expression and the carrier contributing to for method of the present invention.
Therefore, provide gene construct, it comprises:
(i) nucleic acid or its variant of the DOF transcription factor polypeptide that coding above defines;
(ii) can drive one or more control sequences of the nucleotide sequence expression of (i); Optionally
(iii) transcription termination sequence.
Can use recombinant DNA technology well known to those skilled in the art to build the construct for method of the present invention.Can be by gene construct insertion vector, the commercially available acquisition of this carrier, be suitable for being transformed into plant and be suitable for expressing goal gene in transformant.Therefore the gene construct that the invention provides above definition purposes in the method for the invention.
The carrier conversion of plant that use comprises aim sequence (that is, the nucleic acid of encoding D OF transcription factor polypeptide).Aim sequence is effectively connected with one or more control sequences (at least with promotor).Term " controlling element ", " control sequence " and " promotor " are all used interchangeably herein, and are defined in " definition " part of this specification sheets.
Advantageously, can use the expression of promotor (no matter being natural or synthetic) the driving nucleotide sequence of any type.
According to a preferred feature of the present invention, the constitutive promoter defining in " definition " part of DOF transcription factor nucleic acid or its variant and this specification sheets is effectively connected.Constitutive promoter is GOS2 promotor preferably, more preferably constitutive promoter is rice GOS2 promotor, more preferably constitutive promoter by SEQ ID NO:225 substantially similar nucleotide sequence represent, most preferably constitutive promoter is the promotor being represented by SEQ ID NO:225.Preferably constitutive promoter is for driving the expression of nucleic acid, described nucleic acid encoding comprises above the feature (i) of definition and (ii) (that is, the DOF structural domain being represented by SEQ IDNO:200 or SEQ ID NO:228 is had at least 60% sequence identity; With the sequence identity DOF structural domain being represented by SEQ ID NO:200 to at least 70%) DOF transcription factor polypeptide.
Should be understood that, suitability of the present invention is not limited to the DOF transcription factor nucleic acid being represented by SEQ ID NO:198, and suitability of the present invention is not limited to the expression by the DOF transcription factor nucleic acid of GOS2 promoters driven yet.The example that also can be used for implementing other constitutive promoters of method of the present invention is shown in the table 3 of " definition " part of this specification sheets.
According to another preferred aspect of the present invention, by the nucleic acid of encoding D OF transcription factor polypeptide and seed specific promoters (, mainly in seed tissue, express, but can thereby at other positions of plant, there is the promotor of residual expression due to the former of seepage promoter expression) effectively connect.More preferably, from coding seed storage protein gene isolation seed specific promoters, particularly endosperm specificity promoter.Most preferably, from prolamine gene isolation endosperm specificity promoter, such as the paddy prolamine RP6 being represented by the SEQID NO:258 (people such as Wen, (1993) Plant Physiol101 (3): 1115-6) promotor, or have to the promotor of the similar intensity of this paddy Prolamin promoter and/or there is the promotor of the expression pattern similar to this paddy Prolamin promoter.Can be for example by promotor be analyzed to similar intensity and/or similar expression pattern to reporter gene coupling with the function of examining report gene in the tissue of plant.A well-known reporter gene is β-glucuronidase and dyes for manifesting the colorimetric GUS of the β-glucuronidase activity of plant tissue.Prolamine promotor shows strongly expressed in endosperm, in meristematic tissue, more particularly in stem meristematic tissue and/or merismatic discrimination centre, shows leakage expression.
According to the present invention, preferably use seed specific promoters, particularly endosperm specificity promoter, drives encoded packets (the DOF structural domain being represented by SEQ ID NO:200 or SEQID NO:228 to be had at least 60% sequence identity containing the feature (i) of above definition with (iii); With primitive I and primitive II) the expression of nucleic acid of DOF transcription factor polypeptide.
Should be understood that, suitability of the present invention is not limited to the DOF transcription factor nucleic acid being represented by SEQ ID NO:226, and suitability of the present invention is not limited to the expression by the DOF transcription factor nucleic acid of prolamine promoters driven yet.
The example of seed specific promoters is shown in the table 7 of this specification sheets " definition " part, and described promotor or derivatives thereof can be used for implementing method of the present invention.
Optionally, can also be by one or more terminator sequences for importing the construct of plant." definition " part at this specification sheets has defined term " terminator ".
Gene construct of the present invention also can comprise in order to maintain and/or copy necessary replication orgin sequence in specific cell type.Example is that gene construct is when need to for example, remain in bacterial cell as additive type genetic elements (plasmid or clay molecule).Preferred replication orgin includes but not limited to f1-ori or colE1.
Gene construct optionally comprises the selectable marker gene of this specification sheets " definition " part definition.
The present invention also comprises the plant that can obtain by method of the present invention.Therefore the invention provides plant, its plant part or the vegetable cell that can obtain by method of the present invention, the nucleic acid transgenosis that described plant or its part or cell comprise encoding D OF transcription factor polypeptide (or as defined above its variant).
The present invention also provides for generation of compare the method for the transgenic plant of the output with increase with suitable control plant, and described method is included in nucleic acid or its variant that imports and express encoding D OF transcription factor polypeptide in plant.
More preferably, the invention provides for generation of the method for transgenic plant with the output of increase, described method comprises:
(i) in plant, plant part or vegetable cell, import and express nucleic acid or its variant of DOF transcription factor polypeptide; With
(ii) culturing plants cell under the condition of Promoting plant growth and growth.
Nucleic acid directly can be imported to vegetable cell or import plant itself (comprising the tissue, organ or any other part that import plant).According to preferred feature of the present invention, preferably by transforming, nucleic acid is imported to plant.
Term " conversion " is the conversion of " definition " part definition in this specification sheets.
The present invention clearly extends to any vegetable cell or the plant producing by any method described herein, and extends to its all plant parts and its propagulum.The present invention extends further to the offspring of the cell, tissue, organ or the complete plant that comprise the primary conversion that produces by any aforesaid method or transfection, and unique requirement is genotype and/or identical genotype and/or the phenotypic characteristic of phenotypic characteristic that this offspring shows with parent produces in the method for the invention.
The present invention also comprises the separated nucleic acid that comprises encoding D OF transcription factor polypeptide or the host cell of its variant.Preferred host cell of the present invention is vegetable cell.
The present invention also extends to the part gathered in the crops of plant such as but not limited to seed, leaf, fruit, flower, stem, rhizome, stem tuber and bulb.The invention still further relates to and derive from, be preferably directed to the product of the part gathered in the crops of such plant, for example dry granulated feed or dry powder, oil, fat and lipid acid, starch or protein.
The present invention also comprises that the nucleic acid of encoding D OF transcription factor polypeptide or its variant and DOF transcription factor polypeptide increase the above purposes of the plant biomass of definition in the method for the invention.
The nucleic acid of encoding D OF transcription factor polypeptide or its variant, or DOF transcription factor polypeptide can be used for the procedure of breeding, in the described procedure of breeding, identify can with the DNA marker of DOF transcription factor gene or its variant genetic linkage.This nucleic acid/gene or its variant, or DOF transcription factor polypeptide can be used for defining molecule marker.Then this DNA or protein labeling can be used for to the procedure of breeding to select in the method for the invention to have the plant of the output increasing as defined above.
The allele variant of DOF transcription factor nucleic acid/gene also can be used for marker-assisted breeding program.This type of procedure of breeding needs sometimes by plant is carried out to mutagenic treatment, uses for example EMS mutagenesis to import allelic variation; Selectively, this program can start from the set of the allele variant in non-so-called " natural " source producing intentionally.Then by for example PCR, carry out the evaluation of allele variant.Select afterwards step, to select to cause good allele variant output, goal gene of increase.The growth performance of the plant of the different allele variants that conventionally comprise aim sequence by monitoring is selected.Can be in greenhouse or monitor on field growth performance.Other optional step comprises and will wherein identify plant and other plant hybridization of good allele variant.This can be used for for example producing the combination of significant phenotypic characteristic.
The nucleic acid of encoding D OF transcription factor polypeptide or its variant also can be used as gene (described nucleic acid or its variant are the parts of described gene) to carry out heredity and the probe of physical mapping, and the mark of conduct and the proterties of these gene linkages.This Information Availability has the strain of the phenotype of expectation with generation in plant breeding.It is the nucleotide sequence of at least 15 Nucleotide that this purposes of DOF transcription factor nucleic acid or its variant only needs length.DOF transcription factor nucleic acid or its variant can be used as restriction fragment length polymorphism (RFLP) mark.Available DOF transcription factor nucleic acid or its variant are surveyed Southern trace (the Sambrook J of the plant genome DNA of restrictive diges-tion, Fritsch EF and Maniatis T (1989) Molecular Cloning, A Laboratory Manual).Then use computer program such as MapMaker people (1987) Genomics 1:174-181 such as () Lander that the banding pattern of gained is carried out to genetic analysis to build genetic map.In addition, can use the Southern trace of the genomic dna that nuclei acid probe comprises one group of individuality that restriction endonuclease processes, wherein this group individuality represents parent and the offspring of definite genetic cross.Record the separation of DNA polymorphism, use it for and calculate position in the genetic map that uses before this colony to obtain of DOF transcription factor nucleic acid or its variant people (1980) Am.J.Hum.Genet.32:314-331 such as () Botstein.
Generation and the application of the probe of originating for the plant gene of genetic mapping have been described in Bernatzky and Tanksley (1986) (Plant Mol.Biol.Report 4:37-41).Many publications have been described the genetic mapping that uses aforesaid method or its modification to carry out specific cDNA clone.For example, the individuality of F2 hybrid Population, backcross population, panmictic population, near isogenic line and other groups can be used for mapping.These class methods are known to those skilled in the art.
Nucleic acid probe also can be used for physical mapping (that is, the placement of sequence on physical map; Referring to people In:Non-mammalian Genomic Analysis:A Practical Guide such as Hoheisel, Academic press 1996, pp.319-346, and the reference of wherein quoting).
In another embodiment, nucleic acid probe can be used for direct fluorescence in situ hybridization (FISH) mapping (Trask (1991) Trends Genet.7:149-154).Although the existing method of FISH mapping is conducive to large clone, (number kb is to hundreds of kb; Referring to the people such as Laan (1995) Genome Res.5:13-20) use, but the raising of sensitivity can allow to use shorter probe to carry out FISH mapping.
Can use nucleic acid to carry out the multiple method based on nucleic acid amplification for heredity and physical mapping.Example comprises the polymorphism (CAPS of the fragment of allele specific amplification (Kazazian (1989) J.Lab.Clin.Med 11:95-96), pcr amplification; The people such as Sheffield (1993) Genomics16:325-332), allele-specific connects people (1988) Science241:1077-1080 such as () Landegren, Nucleotide extension (Sokolov (1990) Nucleic Acid Res.18:3671), radioactivity hybridization mapping people (1997) Nat.Genet.7:22-28 such as () Walter and Happy map (Dear and Cook (1989) Nucleic Acid Res.17:6795-6807).For these methods, the sequence of nucleic acid is used for designing and producing the primer pair for amplified reaction or primer extension reaction.The design of this type of primer is known to those skilled in the art.In the method for genetic mapping of using PCR-based, may must in the region corresponding to this nucleotide sequence, identify the DNA sequence dna difference of mapping between the parent of hybridizing.Yet this is conventionally optional for drawing method.
Method of the present invention causes producing the plant of the above described output with increase.Also can be by the output of this increase and other economic favourable proterties, for example other increase output proterties, to other abiotic and biological resistances of coercing, modify different structure feature and/or biological chemistry and/or physiological characteristic proterties combined.
the detailed description of CKI
The preferentially expression of " minimizing " endogenous CKI gene in albumen tissue of herein mentioning, be used in reference to the endogenous CKI gene expression dose of finding in the endosperm tissue of wild-type plant and compare, reduce or substantially eliminate the expression of endogenous CKI gene (in endosperm tissue).This minimizing of endogenous CKI genetic expression or basically eliminate can cause CKI protein level and/or active minimizing or elimination substantially in albumen tissue.
" endogenous " CKI gene of herein mentioning not only refers to the CKI gene of finding in plant with its natural form (that is, without any artificial intervention), but also refers to import subsequently the separated CKI gene of plant.For example, comprise minimizing or the basically eliminate (in endosperm tissue) that the genetically modified transgenic plant of CKI may run into the genetically modified minimizing of CKI or basically eliminate and/or endogenous CKI gene.
Can use one or more methods in several gene silencing methods of knowing, realize this minimizing (or basically eliminate) of endogenous CKI genetic expression." gene silencing " or expression " downward ", as used herein, refer to minimizing or the basically eliminate of CKI genetic expression and/or CKI polypeptide level and/or CKI polypeptide active.
For reducing or such method of the endogenous CKI genetic expression of basically eliminate is the downward (RNA is reticent) of the genetic expression of RNA mediation.In this case by substantially triggering reticent in plant with the double stranded rna molecule (dsRNA) of target CKI DNA homolog.This dsRNA can by plant be further processed into be called short interfering rna (siRAN) about 21 to about 26 Nucleotide.SiRNA is integrated into the silencing complex (RISC) of RNA induction, the mRNA of this complex body cutting CKI target gene, thus reduce or substantially eliminate the number of the CKI mRNA that needs to be translated into CKI albumen.
An example of RNA silencing methods relates to sense orientation encoding sequence or its part importing plant." sense orientation " refers to the DNA with its mRNA transcript homology.Import the DNA of plant thereby will be at least one additional copy (completely or partially) that has been present in the CKI gene in host plant.This extra gene or its part will cause the silence of endogenous CKI gene, produce the phenomenon that is called co-suppression.If several additional copies are imported to plant, the minimizing of CKI genetic expression will be more obvious, and this is because there is positive correlation between high transcriptional level and the triggering of co-suppression.
Another example of RNA silencing methods relates to use antisense CKI nucleotide sequence." antisense " and nucleic acid comprises with " having justice " nucleic acid of proteins encoded complementary, for example complementary or complementary with mRNA sequence with the coding strand of double-stranded cDNA molecule, nucleotide sequence.Therefore, antisense nucleic acid can form hydrogen bond with there being phosphorothioate odn.Antisense nucleic acid can with whole CKI coding strand or only complementary with its part.Antisense nucleic acid molecule can be to the nucleotide sequence of coding CKI " ”Huo“ non-coding region, coding region " antisense of coding strand.Term " coding region " refers to the region of the nucleotide sequence that comprises the codon of translating into amino-acid residue.Term " non-coding region " refer to be positioned at not translating into of coding region flank amino acid whose 5 ' and 3 ' sequence (that is, also referred to as 5 ' and 3 ' non-translational region).
Can be according to Watson and Crick base pairing rules design antisense nucleic acid.Antisense nucleic acid molecule can be complementary with the whole coding region of CKI mRNA, but its oligonucleotide to a part of antisense of the coding of CKI mRNA or non-coding region only preferably.For example, antisense oligonucleotide can with the regional complementarity of translation initiation position around CKImRNA.The length of suitable antisense oligonucleotide is known and can starts from the length of about 20 Nucleotide or shorter in this area.Can use chemosynthesis and use the method known in the art to carry out enzyme ligation, build antisense nucleic acid of the present invention.For example, chemosynthesis antisense nucleic acid (for example can to use the Nucleotide of natural generation or various modified Nucleotide (described modified Nucleotide through design can in order to increase the biological stability of molecule or to increase antisense and have the physical stability of the duplex forming between phosphorothioate odn), antisense oligonucleotide), the Nucleotide that for example, can use phosphorothioate derivative and acridine to replace.The example that can be used for producing the modified Nucleotide of antisense nucleic acid is known in this area.
Other known nucleotide modifications comprise methylate, cyclisation and ' adding cap ' and with for example displacement of inosine to the Nucleotide of one or more natural generations of analogue.Other modifications of Nucleotide are known to those skilled in the art.
Selectively, can use with antisense orientation (that is, be antisense orientation from the RNA of the transcribed nucleic acid that inserts for object target nucleic acid, further describe in trifle below) subclone the expression vector of nucleic acid, by biological method, produce antisense nucleic acid.Preferably, the transgenosis by stable integration (described transgenosis comprises effective promotor, antisense oligonucleotide and terminator for the expression in the endosperm tissue of plant preferentially) produces antisense nucleic acid in plant.
For the preferred method reducing by RNA silence or substantially eliminate endogenous CKI genetic expression, be to use expression vector, in this carrier, the form with the inverted repeats (partially or completely) separated by transcribed spacer (noncoding DNA) has been cloned CKI gene or its fragment.After inverted repeats is transcribed, form the chimeric CKI RNA that (partially or completely) has self complementary structure.This double-stranded RNA structure is called hairpin RNA (hpRNA).HpRNA is processed into the siRNA that is integrated into RISC by plant.RISC further cuts the mRNA of CKI target gene, thereby reduces or substantially eliminate the number of the CKI mRNA of one-tenth CKI albumen to be translated.Referring to for example, the people such as Grierson (1998) WO 98/53083; The people such as Waterhouse (1999) WO 99/53050).
In the method for the invention for reticent nucleic acid molecule (be no matter import plant or original position produces) can with cell mRNA and/or genomic dna hybridization or the combination of coding CKI albumen, thereby for example by inhibition, transcribe and/or translate to suppress this protein expression.Can form stable duplex and realize described hybridization by conventional Nucleotide is complementary, or for example, in the situation that in conjunction with the antisense nucleic acid of DNA duplex, interact and hybridize by the specificity in double-helical major groove.Can import antisense nucleic acid molecule by transforming the direct injection at Huo particular organization position.Selectively, can modify antisense nucleic acid molecule with the selected cell of target, then carry out systemic administration.For example, for systemic administration, can modify antisense molecule so that acceptor or the antigen that they can specific binding express on selected cell surface, for example by by antisense nucleic acid molecule with can be connected to realize described modification in conjunction with peptide or the antibody of cell surface receptor or antigen.Also can use carrier described herein that antisense nucleic acid molecule is delivered to cell.
According to more on the one hand, antisense nucleic acid is α-different nucleic acid molecule.α-different nucleic acid molecule and complementary RNA form special double-stranded crossbred, in described crossbred, different from common β unit, the trend of chain is parallel (people (1987) the Nucleic Acids.Res.15:6625-6641 such as Gaultier) each other.Antisense nucleic acid molecule also can comprise 2 '-o-methyl ribonucleotides (people (1987) the Nucleic Acids Res.15:6131-6148 such as Inoue) or mosaic type RNA-DNA analogue (people (1987) the FEBS Lett.215:327-330 such as Inoue).
In another embodiment, antisense nucleic acid of the present invention is ribozyme.Ribozyme is the catalysis RNA molecule for example, with the ribonuclease activity that can cut the single-chain nucleic acid (mRNA) with it with complementary district.Therefore, ribozyme (for example, hammerhead ribozyme (being described in Haselhoff and Gerlach (1988) Nature 334:585-591)) can be used for catalyze cleavage CKI mRNA transcript, thereby suppresses the translation of CKImRNA.Can the nucleotide sequence design based on CKI cDNA there is specific ribozyme to the nucleic acid of coding CKI.For example, can build the derivative of thermophilas (Tetrahymena) L-19IVS RNA, wherein nucleotide sequence complementation to be cut in the mRNA of the nucleotide sequence of avtive spot and coding CKI.Referring to, such as people's United States Patent (USP)s such as Cech 4,987,071; With people's United States Patent (USP)s 5,116,742 such as Cech.Selectively, can use CKI mRNA from RNA library of molecules, to select to have the catalysis RNA of specific rna enzymic activity.Referring to, for example, Bartel, D. and Szostak, J.W. (1993) Science 261:1411-1418.Ribozyme is known (for example, people (1994) WO 94/00012 such as Atkins for the purposes of carrying out gene silencing plant in this area; The people such as Lenne (1995) WO 95/03404; The people such as Lutziger (2000) WO 00/00619; People (1997) WO 97/38116 such as the people such as Prinsen (1997) WO 97/13865 and Scott).
Also can be for example, by insertion mutagenesis (, T-DNA inserts or transposon inserts) or by Angell and Baulcombe 1998 (Amplicon VIGS WO 98/36083); The gene silencing strategy that the people such as Baulcombe (WO99/15682) describe obtains gene silencing.
If there is sudden change and/or importing subsequently existence sudden change on the separated CKI gene of plant on endogenous CKI gene, so also can producer silence.Minimizing or the basically eliminate that can cause CKI to express by non-functional CKI.CKI is in conjunction with CDK and cyclin (people such as Verkest, (2005) Plant Cell 17:1723-1736).For example the sudden change of the cyclin binding site in CKI can be in conjunction with CDK but can not suppress the CKI of active CDK-cyclin mixture by providing still.
Another gene silencing methods is to use the nucleotide sequence for example, with the control region (, CKI promotor and/or enhanser) of CKI complementary to practice shooting, and to form, stops CKI gene at the triple-helix structure of target cell transcription.Referring to Helene, C. (1991) Anticancer Drug Des.6 (6): 569-84; Helene, the people such as C. (1992) Ann.N.Y.Acad.Sci.660:27-36; And Maher, L.J. (1992) Bioassays 14 (12): 807-15.
Example for the different methods of gene silencing (to reduce or the endogenous CKI genetic expression of basically eliminate) has been described above.Method of the present invention depends on the preferentially minimizing of the expression in the endosperm tissue of plant of endogenous CKI gene.Those skilled in the art are by easily for example above-mentioned for reticent method by the suitable promoter engineering of use, to obtain preferential gene silencing in endosperm tissue.
Should be understood that, key point of the present invention is the favourable and astonishing result that is reduced or finds during basically eliminate when the expression of endogenous CKI gene in albumen tissue, and is not limited to for this minimizing of endogenous CKI genetic expression or any ad hoc approach of basically eliminate.Other these class methods are known to those skilled in the art.
For optimum operation, for reduce or the gene silent technology of the endogenous CKI genetic expression of basically eliminate require will be from monocotyledonous CKI nucleotide sequence for transforming monocots.Preferably, the CKI nucleic acid from any given plant species is imported to identical species.For example, the CKI nucleic acid from rice (no matter it is total length CKI sequence or fragment) is transformed into rice plant.Will not import identical plant variety by CKI nucleic acid.
" the CKI gene " herein mentioned or " CKI nucleic acid " are for representing deoxyribonucleotide polymkeric substance or ribonucleoside acid polymer any length, two strands or strand, or its analogue, wherein said analogue has the essential characteristic of natural ribonucleotide, because mode and nucleic acid hybridization that they can be similar with the polynucleotide to natural generation." CKI gene " or " CKI nucleic acid " refers to that length is enough to carry out the continuous Nucleotide substantially in the CKI encoding gene of gene silencing; This length may be as few as 20 or Nucleotide still less.The gene of coding (functional) albumen for above-mentioned for reduce or the whole bag of tricks of the expression of the endogenous CKI gene of basically eliminate optional.
(it can be comprised of 20 or Nucleotide still less can to use the continuous Nucleotide substantially of sufficient length in CKI gene/nucleic acid, it can be from any part of CKI gene/nucleic acid, for example 3 ' end of very conservative coding region in CKI gene family) implement the inventive method.
CKI gene is known in this area, continuous Nucleotide substantially at open International Patent Application WO 2005/007829 under one's name of Monsanto Technology LLC and any plant CKI gene/nucleic acid of describing in disclosed International Patent Application WO 02/28893 under one's name of CropDesign N.V and WO 99/14331 all can be used for method of the present invention, during these CKI gene/nucleotide sequences are intactly incorporated herein.
Other CKI gene/nucleotide sequences also can be used for method of the present invention, and can easily be identified by those skilled in the art.Can identify CKI polypeptide by the one or more existence in several features of knowing (referring to below).After identifying CKI polypeptide, those skilled in the art can use routine techniques easily to obtain corresponding nucleic acid sequence encoding, and use the continuous nucleotide of the sufficient length of described sequence to carry out any one or more said gene silencing methods (with the expression of minimizing or the endogenous CKI gene of basically eliminate in endosperm).
A unique feature of CKI polypeptide is to comprise the about 40 amino acid whose C end regions to about 55 high conservatives.As guiding, by the preferred sequence increasing progressively, comprise the C end regions at least 50% with the CKI being represented by SEQ ID NO:262, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, the polypeptide of 99% identity can be considered the homologue of CKI.Those skilled in the art can easily derive the corresponding nucleic of the described homologue of coding, and use the continuous nucleotide of the sufficient length of described nucleic acid to carry out any one or more said gene silencing methods (to reduce or the expression of the endogenous CKI gene of basically eliminate).
Those skilled in the art are by the implication of " the C end " of very clear protein; For the application's object, the C end regions of CKI can be considered as total length CKI polypeptide (holding to C end from N) 1/2nd.
Can use the routine techniques known in this area for example by sequence alignment, easily identify homologue as defined above, comprise the polypeptide with C end regions at least 50% identity of the CKI being represented by SEQ ID NO:262.For carrying out the sequence alignment method of sequence comparison, in this area, know, these class methods comprise GAP, BESTFIT, BLAST, FASTA and TFASTA.GAP is used the algorithm ((1970) J Mol Biol 48:443-453) of Needleman and Wunsch to find to make the number maximization of mating and the comparison that makes minimized two complete sequences of number in room.BLAST algorithm people (1990) J Mol Biol 215:403-10 such as () Altschul calculates per-cent sequence identity and carries out the statistical analysis of two similaritys between sequence.For carrying out the software of BLAST analysis, can obtain publicly by American National biotechnology information center.Can use the ClustalW Multiple Sequence Alignment algorithm (version 1.83) that for example can obtain at http://clustalw.genome.jp/sit-bin/nph-ClustalW, the methods of marking that uses default paired comparison parameter and represent with per-cent, easily identifies homologous sequence.Can carry out a small amount of human-edited to optimize the comparison between conservative primitive (referring to below), this it will be apparent to those skilled in the art that.
Also can carry out plant identification CKI polypeptide by the existence of some conservative primitive (referring to table 12 below).Can use as described above for the comparison method of sequence comparison, identify the existence of these conservative primitives.In some cases, capable of regulating default parameter is to change the severity of search.For example, when using BLAST, can increase for reporting that the statistical significance threshold value (being called " expectation " value) for the coupling of database sequence shows the coupling that severity is lower.By the method, can identify short coupling almost completely.According to the existence of these primitives, identifying after CKI polypeptide, those skilled in the art can easily derive encoded packets containing the corresponding nucleic of the polypeptide of relevant primitive, and use the continuous nucleotide of the sufficient length of described nucleic acid to carry out above-mentioned any or several genes silencing methods (to reduce or the expression of the endogenous CKI gene of basically eliminate).
Conventionally, in primitive 1 to 5, exist (for example primitive 2 is especially very conservative) of at least one should be enough to any search sequence to be accredited as CKI, yet in order to increase determinacy, at least primitive 1,2 and 3 existence are preferred.The sequence of the consensus sequence providing based on showing in table 12 below.Those skilled in the art will be very clear, if use other or different sequences to compare, consensus sequence may slightly change.
Primitive 1:FXXKYNFD (SEQ ID NO:261), wherein X is any amino acid
Primitive 2:[P/L] LXGRYEW (SEQ ID NO:262), wherein X is any amino acid, position shown in [P/L] expression proline(Pro) or leucine appear at.
Primitive 3:EXE[D/E] FFXXXE (SEQ ID NO:263), wherein X is any amino acid, and [D/E] represent aspartic acid or L-glutamic acid appear at shown in position.
Primitive 4:YXQLRSRR (SEQ ID NO:264), wherein X is any amino acid,
Primitive 5:MGKY[M/I] [K/R] KX[K/R] (SEQ ID NO:265), wherein X is any amino acid, position shown in [M/I] expression methionine(Met) or Isoleucine appear at, position shown in [K/R] expression Methionin or arginine appear at.
Primitive 6:SXGVRTRA (SEQ ID NO:266), wherein X is any amino acid.
Conventionally at the carboxyl terminal area discover primitive 1,2 and 3 of plant CKI albumen.This region it is believed that interaction (people (1996) the Mol.Cell Biol 16 such as Chen that participates in CKI and CDK and cyclin, 4673-4682, the people such as Matsuoka (1995) Genes Dev.9,650-662, with Nakayama and Nakayama (1998) Bioessays 20,1020-1029).Conventionally at the aminoterminal area discover primitive 4,5 and 6 of the CKI of plant albumen.
From the CKI of monocotyledonous CKI albumen, particularly rice, it is characterized in that the extensively α spiral fragment of existence, particularly between primitive 5 and 6 and between primitive 6 and 4.
Conservative primitive in table 12. plant CKI albumen.CKI1 to CKI7 represents Arabidopis thaliana CKI.Os: rice, Zm: corn, Sb: Chinese sorghum.
Figure S2006800521587D01241
Figure S2006800521587D01251
Figure S2006800521587D01261
Except above-mentioned feature, CKI albumen also can comprise with lower any one or more: Cy frame (Cy-box), nuclear localization sequence and PEST sequence.
Term " Cy frame " refers to that the length with consensus sequence RXHuF is the aminoacid sequence of about 5 amino-acid residues, and wherein X is any amino acid, and Hu is the uncharged amino acid of hydrophobicity, for example M, I, L or V.Cy frame participates in the interaction of CKI and cyclin conventionally.
" nuclear localization sequence " refers to that length is the aminoacid sequence of about 4 to 20 amino-acid residues, and this sequence is used for instructing protein to arrive nucleus.Conventionally, nuclear localization sequence is rich in basic aminoacids, for example arginine (R) and Methionin (K).For example in Gorlich D. (1998) EMBO 5.17:2721-7, nuclear localization sequence is being described.Os CKI4 albumen comprises a plurality of nuclear localization sequences.
" PEST sequence " refers to and is rich in amino-acid residue proline(Pro) (P), L-glutamic acid (E), Serine (S) and Threonine (T) and is present in the aminoacid sequence in the protein with high protein hydrolysis turnover rate.Such as the people such as Rogers (1986) Science 234, PEST sequence is disclosed in 364-368.
Can use special database such as SMART (people (1998) Proc.Natl.Acad.Sci.USA 95 such as Schultz, 5857-5864; The people such as Letunic (2002) Nucleic Acids Res 30,242-244; http:// smart.embl-heidelberg.de/), InterPro (people such as Mulder, (2003) Nucl.Acids.Res.31,315-318; http:// www.ebi.ac.uk/interpro/), Prosite (Bucher and Bairoch (1994), A generalized profile syntax for biomolecularsequences motifs and its function in automatic sequence interpretation. (In) ISMB-94; The 2nd international conference of molecular biology intelligent system recorded Altman R., Brutlag D., Karp P., Lathrop R., Searls D., Eds., pp53-61, AAAIPress, Menlo Park; The people such as Hulo, Nucl.Acids.Res.32:D134-D137, (2004), http://www.expasy.org/prosite/) or Pfam (people such as Bateman, Nucleic AcidsResearch 30 (1): 276-280 (2002), http:// www.sanger.ac.uk/Software/Pfam/), identify the various structural domains in CKI albumen.
In addition, also can by suppress cell cycle protein dependent kinase (CDK) for example the active ability of plant CDK identify CKI albumen.CDK regulates for example one group of serine/threonine kinase of cell cycle progression in plant of eukaryote.CDK is common and cyclin is compound, thereby forms enzyme complex, and wherein CDK is catalytic subunit, and cyclin is adjusting subunit (Wang, H. (1997) the The Plant Journal 15 (4): 501-510) of enzyme complex.
Therefore after using one or several above-mentioned characterized CKI polypeptide, those skilled in the art can easily derive the corresponding nucleic of this polypeptide of coding, and use the continuous Nucleotide substantially of the sufficient length of described nucleic acid to carry out any or multiple said gene silencing methods (to reduce or the expression of the endogenous CKI gene of basically eliminate).
For method of the present invention, preferably use the continuous Nucleotide substantially of the sufficient length of SEQ ID NO:267 (OsCKI4), or use the sufficiently long continuous nucleotide substantially of the ortholog thing of coding OsCKI4 (SEQ ID NO:267) or the nucleotide sequence of paralog thing.Below table 13 this type of ortholog thing of OsCKI4 and the example of paralog thing are provided.
Ortholog thing and paralog thing are to comprise for describing the homologue of evolution concept of the ancestral relationship of gene.Paralog thing be in same species by the gene that doubles to originate from of ancestral gene, ortholog thing is biological by species, to form the gene originating from from different.
Can study by carrying out so-called mutual blast, easily find the ortholog thing in monocotyledons species for example.This can by a blast (relate to for any sequence library, for example can be the public obtainable NCBI that http://www.ncbi.nlm.nih.gov. findsdatabase, for example, carries out blast analysis to search sequence (, SEQ ID NO:267 or SEQ ID NO:268)) carry out.When starting from nucleotide sequence, can use BLASTN or TBLASTX (use standard default), when starting from protein sequence, can use BLASTP or TBLASTN (use standard default).Optionally filter BLAST result.Then the full length sequence in the result of filtration or unfiltered result is carried out to reverse BLAST analysis (the 2nd BLAST) (when search sequence is SEQ ID NO:267 or SEQ ID NO:268, therefore the 2nd blast will carry out for rice sequence) to the biological sequence of originating from search sequence.Then compare the result of the first and second BLAST.If the high-level hit event from the 2nd blast comes from identical species with search sequence, be accredited as so paralog thing; If high-level hit event comes from not identical species with search sequence and is accredited as so ortholog thing.High-level hit event is the hit event with low E value.E value is lower, score more remarkable (or in other words, the probability that chances on this hit event is lower).The calculating of E value is known in this area.The in the situation that of extended familys, can use ClustalW, then build in abutting connection with tree, to help to manifest cluster and evaluation ortholog thing and the paralog thing of genes involved.
Ortholog thing and the paralog thing (SEQ ID NO:267 and 268) of table 13:OsCKI4
Title NCBI SEQ ID nucleotide sequence SEQ ID peptide sequence Source
Zeama_CKI4 sample AY986792 269 270 Corn
Triae_CKI4 sample The contig of BG908519.1 and CA640135.1 271 272 Common wheat
Orysa_CKI3 AK064723.1 273 274 Rice
Zeama_CKI3 sample DV174570.1 275 276 Corn
Sorbi_CKI3 sample The contig of CN152732.1 and CD224882.1 277 278 Chinese sorghum
Sacof_CKi4 sample CO373621.1 279 280 Sugarcane
The source of the continuous nucleotide substantially of CKI gene/nucleic acid can be any plant origin or artificial source.For optimum operation, for reducing or the gene silent technology of the endogenous CKI genetic expression of basically eliminate need to be used from monocotyledonous CKI sequence to be transformed into monocotyledons.Preferably, will be transformed into plant gramineous from CKI sequence gramineous.More preferably, the CKI nucleic acid from rice (no matter it is total length CKI sequence or fragment) is transformed into rice plant.Will not import identical plant variety by CKI nucleic acid.More preferably, the CKI nucleic acid from rice is the continuous nucleotide substantially of sufficient length of SEQ ID NO:267 (OsCKI4) or the continuous nucleotide substantially of the sufficient length of the ortholog thing of coding OsCKI4 (SEQ ID NO:267) or the nucleotide sequence of paralog thing.As mentioned above, those skilled in the art will be very clear, in order to carry out above-mentioned any gene silencing methods, what will form the continuous Nucleotide substantially of sufficient length, and this sequence can be little of 20 or continuous Nucleotide substantially still less in some cases.
The present invention also provides the importing of nucleotide sequence and/or the genetic constructs of expression and the carrier contributing to for the inventive method.
Therefore, gene construct is provided, described gene construct comprises one or more control sequences and transcription termination sequence optionally, and described control sequence can preferentially drive and have the expression of justice and/or antisense CKI nucleotide sequence with reticent endogenous CKI gene in the endosperm tissue of plant in albumen tissue.
For an inverted repeats that preferred construct comprises CKI gene or its fragment of gene silencing, preferably can form the inverted repeats of hairpin structure, this inverted repeats is under the control of endosperm specificity promoter.
Can use recombinant DNA technology well known to those skilled in the art to build the construct for method of the present invention.Can be by gene construct insertion vector, the commercially available acquisition of this carrier, be suitable for being transformed into plant and be suitable for expressing goal gene in transformant.Therefore the gene construct that the invention provides above definition purposes in the method for the invention.
Aim sequence is effectively connected with one or more control sequences (at least with promotor) that can preferentially increase expression in the endosperm tissue of plant.Term " controlling element ", " control sequence " and " promotor " are all used interchangeably herein, and are defined in " definition " part.
Endosperm specificity promoter refers to any promotor that can preferentially drive destination gene expression in endosperm tissue." preferentially " herein mentioned drives expression in endosperm tissue, for representing the expression with its any sequence being effectively connected in endosperm tissue driving substantially, and except any residual expression causing due to seepage promoter expression, the elsewhere of getting rid of plant drives expression.For example, prolamine promotor shows strongly expressed in endosperm, and at meristematic tissue, more preferably in stem meristematic tissue and/or merismatic discrimination centre, has leakage expression.
Preferably, endosperm specificity promoter is the promotor from prolamine gene isolation, such as the paddy prolamine RP6 being represented by SEQ ID NO:281 (people such as Wen, (1993) Plant Physiol101 (3): 1115-6) promotor or there is the promotor to the similar intensity of this paddy Prolamin promoter and/or similar expression pattern.Can for example pass through promotor and reporter gene coupling, then in the tissue of plant, the function of examining report gene is analyzed similar intensity and/or similar expression pattern.A well-known reporter gene is β-glucuronidase and dyes for manifesting the colorimetric GUS of the β-glucuronidase activity of plant tissue.The example that also can be used for implementing other endosperm specificity promoters of method of the present invention is shown in table 6 of " definition " part.
Optionally, also one or more terminator sequences can be used for to the construct of plant to be imported.Term " terminator " is as the definition of " definition " part in this specification sheets.
Gene construct of the present invention also can comprise in order to maintain and/or copy necessary replication orgin sequence in specific cell type.An example is need to be in bacterial cell for example, with in additive type genetic elements (plasmid or clay molecule) maintainer gene construct.Preferred replication orgin includes but not limited to f1-ori and colE1.
Gene construct can optionally comprise the selectable marker gene of " definition " part definition in this specification sheets.
The present invention also comprises the plant that can obtain by method of the present invention, comprise plant part, described plant is compared the expression that has the seed production of increase and have endogenous CKI gene minimizing or that substantially eliminate in albumen tissue with suitable control plant.
The present invention also provides for generation of compare the transgenic plant of the seed production with increase with suitable control plant, and described transgenic plant have the expression of the endogenous CKI gene that reduces or substantially eliminate in albumen tissue.
More particularly, the invention provides for generation of the method for transgenic plant with the seed production of increase, the method comprises:
(i) in plant, plant part or vegetable cell, import and express the gene construct that comprises one or more control sequences, described control sequence can be preferentially drives in albumen tissue has justice and/or antisense CKI nucleotide sequence to express, thus in the endosperm tissue of plant reticent endogenous CKI gene; With
(ii) under the condition of Promoting plant growth and development of plants, cultivate this plant, plant part or vegetable cell.
Preferably, import the inverted repeats (partially or completely) that the construct of plant comprises CKI gene or its fragment, preferably can form the inverted repeats of hairpin structure.
According to preferred feature of the present invention, by transforming, construct is imported to plant.
Term " conversion " is the conversion defining in " definitional part " of this specification sheets.
The present invention clearly extends to any vegetable cell or the plant producing by any method in method described herein, and extends to its all plant parts and its propagulum.The present invention extends further to the offspring of the cell, tissue, organ or the complete plant that comprise the primary conversion that produces by any method in aforesaid method or transfection, and unique requirement is genotype and/or identical genotype and/or the phenotypic characteristic of phenotypic characteristic that this offspring shows with parent produces in the method for the invention.
The part gathered in the crops that the present invention also extends to plant is seed for example, and derives from, and is preferably directed to the product of the part gathered in the crops of such plant, for example dry granulated feed or dry powder, oil, fat and lipid acid, starch or protein.
The present invention also comprise CKI nucleic acid for reduce or the endogenous CKI gene of basically eliminate in the expression of albumen tissue to increase the above purposes of the plant seed output of definition.
Accompanying drawing is described
With reference to following accompanying drawing, the present invention is described, wherein:
Fig. 1 provides the general introduction that is present in the conservative primitive on SEQ ID NO:2.Be rich in leucic structural domain and indicate with underscore, conservative primitive 1,2 and 3 shows with runic, the protein kinase C phosphorylation site that the sequence representative representing with italic is inferred and the N glycosylation site of inferring.
Fig. 2 shows the multiple ratio pair of multiple SYR albumen.Asterisk represents identical amino-acid residue, and colon represents the displacement of high conservative, and point represents displacement not too cautious.According to the information from Fig. 1, can easily in other SYR albumen, identify various structural domains and the conservative primitive in SEQ ID NO:2.
Fig. 3 shows for transform and express the binary vector of rice SYR nucleic acid rice.In pGOS2::SYR, SYR encoding sequence is under the control of rice GOS2 promotor.
Fig. 4 shows for transform and express the binary vector of rice SYR nucleic acid rice.In pHMGP::SYR, SYR encoding sequence is under the control of rice HMGP promotor (the SEQ ID NO:18 of WO 2004/070039, this SEQ ID NO:18 in WO 2004/070039 is intactly incorporated to herein).
Fig. 5 has described the example of the sequence that can be used for implementing method of the present invention.SEQ ID NO:1 and SEQ ID NO:2 represent Nucleotide and the protein sequence for the SYR of embodiment.Initial sum terminator codon in SEQ IDNO:1 shows with runic.SEQ ID NO:3 and SEQ ID NO:4 are the primer sequences for separating of this SYR nucleic acid.SEQ ID NO:5 is the sequence of GOS2 promotor, and SEQ ID NO:33 is the sequence of the PRO0170 promotor used in embodiment, and SEQ IDNO:6 to SEQ ID NO:11 represents the consensus sequence of conservative part in SYR albumen.SEQ IDNO:12 to 25,27 to 32 and 36 to 42 is Nucleotide (total length or part) and protein sequences of the homologue of the SYR gene that provides in SEQ ID NO:1 and SEQ ID NO:2 and protein.SEQ ID NO:26 represents ARGOS protein sequence (GenBank accession number AY305869).
Fig. 6 has provided the general introduction of FG-GAP protein structure domain.The albumen of SEQ ID NO:46 comprises secretion signal (the N end showing by collimation mark is divided), start from P73 and terminate in the FG-GAP structural domain and the membrane spaning domain (showing with runic and collimation mark) that with runic and underscore, indicate of L98.Conservative primitive DXDXDGXX (D/E) indicates with frame and underscore, and wherein primitive DGXX (D/E) indicates with italic.Conservative FDGYLYLID structural domain indicates with underscore.
Fig. 7 shows the multiple ratio pair of total length FG-GAP albumen (SEQ ID NO:46, SEQ ID NO:55, SEQ IDNO:57 and SEQ ID NO:59), asterisk represents identical amino acid, colon represents the displacement of high conservative, and point represents displacement not too cautious.The partial sequence of listing in embodiment 12 table G can be for this multiple ratio to identify other primitive.
Fig. 8 shows for transform and express the binary vector of the nucleic acid of the coding Arabidopis thaliana FG-GAP under rice GOS2 promotor is controlled rice.
Fig. 9 describes the example of the sequence can be used for implementing method of the present invention.SEQ ID NO:45 and SEQ ID NO:46 represent Nucleotide and the protein sequence for the FG-GAP of embodiment; Initial sum terminator codon in SEQ IDNO:45 indicates with runic.SEQ ID NO:47 and SEQ ID NO:48 are the primer sequences for separating of FG-GAP nucleic acid.SEQ ID NO:49 is the sequence for promotor-assortment of genes of embodiment, and SEQ ID NO:50 to SEQ ID NO:53 represents the consensus sequence of the conservative part in FG-GAP protein.SEQ ID NO:54 to 71 is Nucleotide (total length or part) and protein sequences of the homologue of the FG-GAP gene that provides in SEQ ID NO:45 and SEQ ID NO:46 and protein.SEQ ID NO:72 is the genome sequence of coding alfalfa (Medicagosativa) FG-GAP albumen, and this albumen comprises the peptide sequence by SEQ ID NO:72 to 76 expression.
Figure 10 is presented at the key character of finding in CYP90B polypeptide or its homologue: N end hydrophobic domains, translocation domain (having K/R-K/R-X3-9-P-G-G), A to D structural domain.In A structural domain, identified consensus sequence Ala/Gly-Gly-X-Asp/Glu-Thr-Thr/Ser.The consensus sequence Phe-Ala-Gly-His-Glu-Thr-Ser-Ser of CYP90B polypeptide comprises this consensus sequence Ala/Gly-Gly-X-Asp/Glu-Thr-Thr/Ser.
Figure 11 shows the biosynthetic pathway of the rape sterol of branch.In Arabidopsis, CYP90B1/DWF4 polypeptide comprises steroid 22-α hydroxylase enzymatic activity.
Figure 12 shows the hydrophobicity ProtScale output spectra of CYP90B polypeptide of the present invention.Front 34 N terminal amino acids (collimation mark of take is shown) are hydrophobic domains, because these amino acid are positioned on 0 boundary line.This region is corresponding to N end anchor structure territory.
Figure 13 show use based on improved ClustalW algorithm (InforMax, Bethesda, MD, http:// www.informaxinc.com) VNTI AlignX multiple ratio to program (use default setting: the open point penalty in room be 10 and to extend point penalty be 0.05 in room), the multiple ratio pair that several plant CYP90B polypeptide is carried out.Having indicated N holds hydrophobic domains, translocation domain (to have K/R-K/R-X 3-9-P-G-G) and A to D structural domain.In A structural domain, by collimation mark, show consensus sequence Phe-Ala-Gly-His-Glu-Thr-Ser-Ser.The accession number of CYP90B polypeptide is found in table 9a and 9b.Arabidopis thaliana Arath_CYP90A1_CPD (At5g05690), Arath_CYP90C1_ROT3 (At4g36380) and Arath_CYP90D1 (At3g13730) are shown as non-CYP90B polypeptide.
Figure 14 shows that described plant promoter can be non-constitutive promoter (for example endosperm or embryo/aleuron are specific) or constitutive promoter (for example GOS2 and HMGB1) for express the plant conversion carrier of the rice CYP90B nucleic acid under plant promoter is controlled rice.
Figure 15 has described for implementing the example of the sequence of method of the present invention.Several sequence generations splice (EST assembly) (referring to table 9a) from public EST, and it has low-qualityer sequencing.Therefore, can expect and have minority replacement nucleic acid.When sequence is total length, initial (ATG) and terminator codon define this nucleotide sequence.
Figure 16 represents the schematic diagram of total length CDC27 polypeptide (more specifically Arabidopis thaliana CDC27B hobbit polypeptide).34Tai repeating unit (TPR) shows by the collimation mark of black.The NH of polypeptide 2end regions indicates with black bar.
Figure 17 show based on improved ClustalW algorithm (InforMax, Bethesda, MD, http:// www.informaxinc.com) use VNTI AlignX multiple ratio to program (use default setting: the open point penalty in room be 10 and to extend point penalty be 0.05 in room) multiple ratio pair of the CDC27 polypeptide from different sources that carries out.Across this, compare region with collimation mark Shi34 peptide repeating unit (TPR).Conservative NH 2structural domain PD011373 (as at ProDom, http:// ribosome.toulouse.inra.fr/ prodom/current/cgi-bin/ProDomBlast3.plmiddle definition) with double underline, indicate.
Figure 18 shows for express the binary vector pOSH1::CDC27 of the modified Arabidopis thaliana CDC27 nucleic acid under plant promoter (described promotor is shoot apical meristem promotor) is controlled rice.
Figure 19 shows by the part from different sources of TIGR (Institute for Genomic Research at http://www.tigr.org) generation and the list of total length CDC27 ortholog thing and paralog thing.TC895803 is found in http: // www.tigr.org/tigr-scripts/tgi/ ego/ego report.pl? ego=895803.
Figure 20 describes the example that can be used for implementing the sequence of method of the present invention or can be used for the sequence of separated this sequence.Several sequence generations splice (referring to table 10) from public EST, and described sequence has low-qualityer sequencing.Therefore, can expect and have minority replacement nucleic acid.When sequence encoding total length CDC27 polypeptide, initiator codon (ATG) and terminator codon define this nucleotide sequence.
Figure 21 shows the genealogical tree of the different peptide sequences that comprise AT hook structure territory and DUF296 structural domain.Based on improved ClustalW algorithm (InforMax, Bethesda, MD, http://www.informaxinc.com) use VNTI AlignX multiple ratio to program (use default setting: the open point penalty in room be 10 and to extend point penalty be 0.05 in room) produce genealogical tree.
Figure 22 shows for expressing encoded packets under prolamine promotor is controlled rice containing the binary vector pPROLAMIN::AT hook of the rice nucleic acid of the polypeptide of AT hook structure territory and DUF296 structural domain and primitive 2.
Figure 23 show based on improved ClustalW algorithm (InforMax, Bethesda, MD, http:// www.informaxinc.com) use VNTI AlignX multiple ratio to program (use default setting: the open point penalty in room be 10 and to extend point penalty be 0.05 in room) multiple ratio pair of the polypeptide that comprises AT hook structure territory and DUF296 structural domain that carries out.In comparison with runic, italic and underscoreshow AT hook structure territory and DUF296 structural domain and primitive 2.
Figure 24 has described for implementing the example of the sequence of method of the present invention.
Figure 25 shows the genealogical tree of DOF transcription factor.The frame at close top shows with SEQ IDNO:227 to have homology (the sequence identity of the DOF structural domain at least 60% with the feature (i) that comprises above definition and (iii), SEQ ID NO:200 or SEQ ID NO:228 being represented; Above primitive I and/or the primitive II of definition) the main cluster (major clustering) of sequence.The frame of close bottom shows with SEQ ID NO:199 to have homology (the sequence identity of the DOF structural domain at least 60% with the feature (i) that comprises above definition and (ii), SEQ ID NO:200 or SEQ ID NO:228 being represented; The main cluster of the sequence sequence identity with the DOF structural domain at least 70% that SEQ ID NO:200 is represented).
Figure 26 shows for express the binary vector pGOS2::DOF of the Arabidopis thaliana DOF transcription factor under the control of GOS2 promotor rice.
Figure 27 shows for express the binary vector pPROLAMIN::DOF of the Arabidopis thaliana DOF transcription factor under prolamine promotor is controlled rice.
Figure 28 has described for implementing the example of the sequence of method of the present invention.
Figure 29 is the schematic diagram of total length plant CKI polypeptide.For the identification of the typical primitive 1 to 5 (SEQ ID NO:261 to SEQ ID NO:265) of CKI, by collimation mark, show and be correspondingly numbered (primitive 6 does not show).
Figure 30 shows from the multiple ratio of the CKI polypeptide of different sources with use can be the ClustalW that http://clustalw.genome.ip obtainscommon software (use default setting) produce in abutting connection with tree.The subclass of braces identifying sheet list cotyledon and dicotyledons CKI4.In this subclass, unifacial leaf CKI gathers together, as bracket indicates.Round bracket identifying sheet list cotyledon plant CKI4 branch.
Figure 31 be based on improved ClustalW algorithm (InforMax, Bethesda, MD, http:// www.informaxinc.com) use VNTI AlignX multiple ratio to program (use default setting: the open point penalty in room be 10 and to extend point penalty be 0.05 in room) multiple ratio pair of the CKI polypeptide from different plant origins that produces.The conservative C end end of CKI and show (primitive 6 does not show) with collimation mark for the identification of the primitive 1 to 5 (SEQ ID NO:261 to SEQ ID NO:265) of plant CKI.
Figure 32 is presented at the binary vector that carries out CKI RNA silence in rice, wherein uses the hair clip construct under endosperm specificity promoter is controlled and under stem specificity promoter is controlled.
Figure 33 has described for implementing the sequence of method of the present invention or for separating of the example of the sequence of described sequence.Several sequences are produced by public EST splicing, and it has low-qualityer sequencing.Therefore, can expect and have minority replacement nucleic acid.When nucleic acid sequence encoding total length CKI polypeptide, initial (ATG) and terminator codon define this nucleotide sequence.Yet 5 ' and 3 ' UTR also can be used for implementing method of the present invention.
Embodiment
Only refer now to and describe the present invention for illustrating object the following example.The following example is not intended to determine completely or otherwise limit scope of the present invention.
DNA operation
Unless otherwise noted, according to (Sambrook (2001) Molecular Cloning:alaboratory manual, the 3rd edition, Cold Spring Harbor Laboratory Press, CSH, New York) or the people (1994) such as Ausubel, Current Protocols in Molecular Biology, Current Protocols ( http:// www.4ulr.com/products/currentprotocols / index.html) the 1st and 2recombinant DNA technology is carried out in the standard method of describing in volume.In the Plant Molecular Biology Labfax (1993) writing at the R.D.D.Croy being published by BIOSScientific Publications Ltd (UK) and Blackwell Scientific Publications (UK), standard material and the method for plant molecular operation described.
Statistical analysis
The two-way ANOVA (variance analysis) of proofreading and correct with regard to imbalance design is as the statistical models of net assessment plant phenotype feature.The parameter of all measurements of all plants of all events with this gene transformation is carried out to F check.Carry out F check to check the effect of all transformation events of gene pairs and the population effect of checking gene (herein also referred to as " overall genetic effect (global gene effect) ").If the value display data of F check is significant, draw the conclusion that has " gene " effect, that is, mean to be not only that existence or the position of gene causes effect.For this F check, the significance threshold setting of real overall genetic effect is on 5% probability level.
For the genetic effect in inspection event, that is, strain specificity effect, is used the data set from transgenic plant and corresponding invalid plant (null plant), carries out t check in each event." invalid plant " or " invalid segregant " or " invalid zygote " are the plants of processing in the mode identical with transgenic plant, but transgenosis is separated from this plant.The negative conversion of plant that invalid plant also can be described to isozygoty.The significance threshold setting of T check is on 10% probability level.The result of some events can be higher or lower than this threshold value.This is based on hypothesis: gene may only have effect on genomic some position, and this position dependence effect is not rare.The genetic effect of the type is herein also referred to as " the strain effect of gene ".By by t value and t-distribution compares or selectively by F value and F-distribution are compared, obtain p value.Then to provide null hypothesis (not having genetically modified effect) be correct probability to p value.
Embodiment A: SYR
Embodiment 1: the evaluation of the sequence relevant with SEQ ID NO:2 to SEQ ID NO:1
Usage data library searching instrument such as basic Local Alignment instrument (Basic Local AlignmentTool) is (people (1990) J.Mol.Biol.215:403-410 such as Altschul (BLAST); With people (1997) Nucleic Acids Res.25:3389-3402 such as Altschul), in the sequence of safeguarding at the Entrez of American National biotechnology information center (NCBI) RiboaptDB, identify the sequence (full-length cDNA, EST or genome sequence) relevant to SEQ IDNO:1 and/or the protein sequence relevant with SEQ ID NO:2.Conventionally blast program is by nucleic acid or peptide sequence and sequence library are compared, and the significance,statistical mating by calculating, for finding the region between sequence with local similarity.The polypeptide coded to nucleic acid SEQ ID NO:1 uses TBLASTN algorithm, uses default setting, and opening filter, to ignore Sequences of Low Complexity.The output form of analyzing is for comparing between two, and according to probability score (E value) sequence, wherein score value reflects the occurrent probability of specific comparison (E value is lower, and the significance of hit event is higher).Except E value, also to relatively carrying out identity per-cent, score.Identity per-cent refers to that two compare the number of the identical Nucleotide (or amino acid) on length-specific between nucleic acid (or polypeptide) sequence.In some cases, can adjust default parameter with the stringency of change search.
Except the public obtainable nucleotide sequence that can obtain, also can search for other sequence libraries according to method same as the above-mentioned method on NCBI.
Relevant nucleic acid and the protein sequence of protein sequence that Table A provides the nucleotide sequence that represents to SEQ ID NO:1 and represented with SEQ ID NO:2..
Table A: can be used for nucleotide sequence the inventive method, relevant to nucleotide sequence (SEQ ID NO:1), and the corresponding polypeptide of deriving.
Title Source is biological Nucleic acid SEQ ID NO: Polypeptide SEQ ID NO: Database login number State
?OsSYR Rice 1 ?2 / Total length or part
Rice SYR homologue 1 Rice 12 ?27 XP_472637 Total length
Rice SYR homologue 2 Rice 13 AP008218 Total length
Corn SYR homologue Zea mays 14 ?28 AY110705 Part
Wheat SYR homologue Common wheat 15 / Total length
Barley SYR homologue Barley 16 ?36 CB871444 Total length
Sugarcane SYR homologue 1 Sugarcane 17 ?37 CA165713 Part
Sugarcane SYR homologue 2 Sugarcane 18 ?38 CA242805 Total length
Chinese sorghum SYR homologue Chinese sorghum 19 ?39 CX611532 Total length
AtSYR homologue 1 Arabidopis thaliana 20 40 NM_115853 Total length
AtSYR homologue
2 Arabidopis thaliana 21 41 NM_180078 Total length
Grape SYR homologue Grape (Vitis vinifera) 22 29 CF404276 Total length
Oranges and tangerines SYR homologue Tangerine (Citrus reticulata) 23 30 CF830612 Part
Tomato SYR homologue 1 Tomato 24 32 AI774560 Total length
Tomato SYR homologue 2 Tomato 25 31 BG125370 Total length
Embodiment 2: the comparison of related polypeptide sequence
The clustering algorithm (Clustal algorithm) of the progressive comparison from the AlignX of Vector NTI (Invitrogen) based on generally using (people (1997) the Nucleic Acids Res25:4876-4882 such as Thompson; The people such as Chenna (2003) .Nucleic Acids Res 31.3497-3500).Can use in abutting connection with clustering algorithm constructing system and set.The default value of the open point penalty in room is 10, and the default value that point penalty is extended in room is 0.1, and the weight matrix of selection is Blosum 62 (if comparison polypeptide).
In evaluation, can be used for implementing in the polypeptide of the inventive method, the Multiple Sequence Alignment that uses related polypeptide to obtain the results are shown in table 2.Can in these different sequences, easily pick out and be rich in leucic tumor-necrosis factor glycoproteins and conservative primitive.
Embodiment 3: calculate the overall per-cent identity (global percentage identity) between the peptide sequence can be used for implementing the inventive method
A method MatGAT in the method that use can obtain in this area (matrix overall comparison instrument (Matrix Global Alignment Tool)) software (BMC Bioinformatics.20034:29.MatGAT:an application that generates similarity/identity matricesusing protein or DNA sequences.Campanella JJ, Bitincka L, Smalley J; Software by Ledion Bitincka trustship), determining can be for implementing overall similarity and the identity per-cent between the full-length polypeptide sequence of method of the present invention.MatGAT software, without data are compared in advance, can produce similarity/identity matrix of DNA or protein sequence.This program is utilized Myers and Miller overall comparison algorithm, and (the open point penalty in room is 12, and to extend point penalty be 2 in room) carry out a series of comparison between two, utilize for example Blosum 62 (for polypeptide) to calculate similarity and identity, then result is arranged in to distance matrix.Sequence similarity is shown in diagonal lines Lower Half, and sequence identity is shown in the diagonal lines first half.
Parameter more used has:
Matrix: Blosum 62 scores
First room: 12
Extend room: 2
The overall similarity of peptide sequence length range (part of polypeptide sequence is foreclosed) and the software analysis of identity the results are shown in table B.Diagonal lines top provides identity per-cent, and diagonal lines below provides similarity per-cent.
Compare with SEQ ID NO:2, the per-cent identity that can be used for implementing between the peptide sequence of the inventive method can be for being low to moderate 27% amino acid identity.
Figure S2006800521587D01411
Embodiment 4: the Topological Prognostics that can be used for implementing the peptide sequence of the inventive method
Utilize the Subcellular Localization of TargetP 1.1 prediction eukaryotic proteins.According to this program, the predictability based on following arbitrary N-end presequence exists, and positions definite: chloroplast transit peptides (cTP), Mitochondrially targeted peptide (mTP) or Secretory Pathway signal peptide (SP).Final prediction institute based on score value be not real probability, and to add up also needn't be 1.But, according to TargetP, the location that score is the highest is most probable, and the relation between score value (reliability class) can be used as the index of described forecasting reliability.Reliability class (RC) scope from 1 to 5, wherein 1 represents the strongest prediction.TargetP is by the server maintenance of Technical University Of Denmark (Technical University of Denmark).
, also may there is potential cleavage site in the sequence for containing N-end presequence through prediction.
Selected many kinds of parameters, the prediction and calculation of biological example body type (non-plant or plant), cutoff value setting (without, the cutoff value setting predetermined or the cutoff value setting of user's appointment) and cleavage site (be or no).
TargetP 1.1 analytical resultss of peptide sequence shown in SEQ ID NO:2 are shown in following table C.What select is " plant " organism type, does not stipulate cutoff value, and requires the prediction length of transit peptides.According to this result, shown in SEQ ID NO:2, the Subcellular Localization of peptide sequence may be plastosome; Yet should consider 5 reliability class (that is, minimum reliability class).
Shown in table C:SEQ ID NO:2, the TargetP 1.1 of peptide sequence analyzes
Length (AA) 105
Chloroplast transit peptides 0.025
Mitochondrial transport peptide 0.552
Secretory Pathway signal peptide 0.009
Other ubcellular targets 0.416
The location of prediction Plastosome
Reliability class
5
TMHMM program by trustship on the server at Technical University Of Denmark's biological sequence analysis center identifies two membrane spaning domains.Result below shows that it is 0.997 that N holds the probability inside being positioned at.In table D below, provided further describing about this orientation.
The result of table D:TMHMM 2.0
Orientation Initial-termination residue
Inner side 1 42
Transbilayer helix (TMhelix) 43 65
Outside 66 74
Transbilayer helix 75 92
Inner side 93 105
Can utilize many other algorithms to carry out such analysis, comprise:
● the trust server of ChloroP 1.1,You Technical University Of Denmark;
● protein is sought Subcellular Localization forecasting software (Protein Prowler SubcellularLocalisation Predictor), 1.2 version, by (the Institute for Molecular Bioscience of molecular biosciences institute of Brisbane ,Australia University of Queensland, University ofQueensland, Brisbane, Australia) trust server;
● PENCE Proteome Analyst PA-GOSUB 2.5, by the trust server of Canada large Alberta Edmonton Alberta university (University of Alberta, Edmonton, Alberta, Canada);
Embodiment 5: gene clone
Use rice seedling cDNA library (Invitrogen, Paisley, UK) to pass through pcr amplification rice SYR gene as template.The RNA extracting from seedling in reverse transcription, cDNA is cloned into pCMVSport 6.0.The average inset size in library is 1.5kb, and clone's original number is approximately 1.59 * 10 7cfu.6 * 10 11after the amplification for the first time of cfu/ml, initial titer is confirmed as 9.6 * 10 5cfu/ml.After plasmid extraction, 200ng template is used for to 50 μ l PCR mixtures.By primer prm08170 (the SEQ ID NO:3 comprising for the AttB site of Gateway restructuring; Have justice, initiator codon indicates with runic, and AttB1 site indicates with italic:
Figure S2006800521587D01431
) and prm08171 (SEQ ID NO:4; Oppositely, complementation; AttB2 site indicates with italic: 5 '-
Figure S2006800521587D01441
caaaaacaaaaataaattcccc-3 ') for pcr amplification.Under standard conditions, use Hifi Taq archaeal dna polymerase to carry out PCR.Also use the PCR fragment of the correct size of standard method amplification and purifying.Then carry out the first step BP reaction of Gateway method, during this step, PCR fragment and pDONR201 plasmid carry out restructuring in body, thereby produce, according to Gateway nomenclature, and " entry clones (entry clone) " pSYR.Plasmid pDONR201 is as Gateway a part for technology is purchased from Invitrogen.
Embodiment 6: the structure of carrier
Subsequently entry clones pSYR being used to LR with the object carrier (destination vector) transforming for rice reacts.This carrier form with functional element in T-DNA border comprises: plant selectable marker, the marker expression box that can screen and be intended to carry out the Gateway box of recombinating in LR body for the aim sequence with being cloned in entry clones.For the rice GOS2 promotor (SEQ ID NO:5) of constitutive expression, be positioned at the upstream of this Gateway box.Prepare similar but there is high mobility group protein promotor (HMGP, SEQ ID NO:33) but not the vector construction body of GOS promotor.
After LR reconstitution steps, the expression vector pGOS2::SYR of gained (having GOS2 promotor) and pHMGP::SYR (having HMGP promotor) (both expressing (Fig. 2) for composing type SYR) are transformed into Agrobacterium (Agrobacterium) strain LBA4044, are then transformed into rice plant.
Embodiment 7: the conversion of rice
The Agrobacterium-mediated Transformation rice plant that use comprises expression vector.Make the ripe dry seeds shelling of rice growing kind Japan fine (ricejaponica cultivar Nipponbare).By hatching in 70% ethanol 1 minute, then at 0.2%HgCl 2in hatch 30 minutes, with sterile distilled water washing 6 times, within each 15 minutes, carry out disinfection afterwards.Then in comprising the substratum of 2,4-D (callus inducing medium), sprout aseptic seed.Incubation, after 4 weeks, cuts the embryo generation callus in scutellum source in the dark, then on identical substratum, breeds.After 2 weeks, by upload culture at identical substratum, within other 2 weeks, breed or breed again callus.In common cultivation, within first 3 days, at fresh culture, upload culture embryo generation callus lines (to strengthen cell fission activity).
The Agrobacterium strain LBA4404 that comprises expression vector is for common cultivation.Agrobacterium is seeded in and is had on suitable antibiotic AB substratum, at 28 ℃, cultivate 3 days.Then collect bacterium, be suspended in liquid and be total in culture medium until be approximately 1 density (OD 600).Then suspension is transferred to culture dish (Petri dish), callus is immersed in suspension to 15 minutes.Then callus is blotted on filter paper, be transferred to afterwards curing common culture medium, incubation 3 days in the dark at 25 ℃.Then in the situation that selective agent exists at 28 ℃ in the dark, comprising on the substratum of 2,4-D the callus 4 weeks that growth cultivates altogether.During this period, produced the resistant calli island of Fast Growth.After this substance transfer is hatched to regeneration culture medium with under illumination, embryo generation potentiality are released, and in ensuing 4 to 5 weeks, grow and sprout.Bud is cut from callus, then in the cultivation that comprises growth hormone, hatches 2 to 3 weeks, then by they from described media transfer to soil.In greenhouse, under high humidity and short day, grow the bud of hardening.
For a construct, produce about 35 T0 rice transformant independently.Primary transformant is transferred to greenhouse from tissue culture room.After the quantitative PCR analysis of copy number of confirming T-DNA inset, only retain and show the results for T1 seed to single copy transgenic plant of selective agent tool resistance.Then within 3 to 5 months after transplanting, gather in the crops seed.The method produces single locus transformant (Aldemita and Hodges1996, the people such as Chan 1993, the people such as Hiei 1994) with more than 50% ratio.
About the conversions of other farm crop referring to embodiment 40.
Embodiment 8: the appraisal procedure of using the plant of the SYR conversion under rice GOS2 promotor or the control of HMGP promotor
assessment arranges
Produced about 15-20 independently T0 rice transformant.Primary transformant is transferred to greenhouse by tissue culture room and is grown and gather in the crops T1 seed.8 events are retained, and wherein T1 is for the separation in 3: 1 that transgenosis existence/shortage occurs.By the expression of monitoring visable indicia, in these events, respectively select about 10 T1 seedling containing transgenosis (heterozygote and homozygote), and about 10 T1 seedling that lack transgenosis (invalid zygote).The T1 plant of selection is transferred to greenhouse.Each strain plant is all accepted unique bar code label to make clearly phenotypic data associated with corresponding plant.The T1 plant of selection is grown in the soil of flowerpot that diameter is 10cm under following environment arranges, and described environment setting is: photoperiod=11.5h, intensity of illumination=30,000lux or stronger, daytime temperature=28 ℃ or higher, nocturnal temperature=22 ℃, relative humidity=60-70%.Transgenic plant and corresponding invalid zygote be growth side by side on random site.From sowing time to ripening stage, plant Multiple through then out digital image-forming case.On each time point, every strain plant is obtained to digital image (2048 * 1536 pixels, 1,000 6 hundred ten thousand pigments) from least 6 different angles.
Salt stress screening
In the matrix of being made by coconut fiber and argex (3 to 1 ratios), cultivate the plant from 4 events (T2 seed).Sprigging to first two weeks behind greenhouse is being used to normal nutritive medium.After first two weeks, in nutritive medium, add the salt (NaCl) of 25mM, until gather in the crops plant.
Arid screening
In flowerpot soil, cultivate under normal operation the plant from 5 events (T2 seed), until enter heading stage.Then transferred to " being dried " region, stop irrigating.In the flowerpot of random selection, insert humidity detection instrument, to monitor Soil Water Content (SWC).When SWC is during lower than certain threshold value, from trend plant, continue moisturizing, until again reach normal level.Then plant is transferred under normal condition again again.Remaining cultivation (plant maturation, seed results) is identical with the plant of not cultivating under abiotic stress condition.With the T2 seed of the plant results of cultivating under normal condition, and the T2 seed that need not gather in the crops from the plant of arid screening first repeats this and screens to carry out taking turns checking.
the parameter of measuring
The plant sum that on the ground area (Leaf biomass in other words) is different from the pixel of background on the digital image of plant part on the ground by counting is determined.This value is got same time point from the mean value of the photo of different angle shots, and is converted to by calibration the physical surface value (physical surface value) representing with square millimeter.The biomass that the ground plant area that experiment shows to measure by this method divides to plant shoot is relevant.Areamax is the ground area when plant reaches its maximum Leaf biomass.
Results, packed, with the main panicle of bar code label maturation, then at 37 ℃, in baking oven, be dried 3 days.Then to panicle threshing, collect all seeds.Use gas blower (air-blowing device) that full husk is separated with empty husk.After separation, then use commercially available counter all to count two batches of seeds.Discard sky husk.On analytical balance, take the weight of full husk, use digital picture to measure the cross-sectional area of seed.The method produces with next group seed relevant parameter set.
Every paniculiform flower is estimated the average number (coming divided by the first paniculiform number derivation from total number seeds) of every paniculiform little Hua on plant.The highest panicle with when vertical when comparison, be regarded as the first panicle and count by craft with the overlapping all panicles of the highest panicle.By the number of counting remaining full husk after separating step, determine the number of full seed.By taking the weight of all full husks of gathering in the crops from plant, measure total seed production (seed gross weight).By counting, from the number of the husk of plant results, measure total number seeds of every plant, it is corresponding to the number of every strain plant little Hua.From the number of full seed and its gross weight of counting, calculate thousand seed weight (TKW).Harvest index is defined as seed gross weight and ground area (mm 2) between ratio be multiplied by the factor 10 6.Parameter EmerVigor indication growth of seedling gesture.According to the area being covered by Leaf biomass in imaging for the first time (with mm 2represent) calculate.The plumpness of the full rate of seed (fillrate) indication seed.Its number that is expressed as full seed accounts for the ratio (representing with %) of little Hua number (seed sum).
Use image analysis software from digital picture, to derive these parameters in the mode of automatization, then these parameters are carried out to statistical analysis.Use the parameter (comprising width, length, area, weight) of measuring single seed with the customizing device (by two primary clusterings, weigh and imaging device, form) of image analysis software coupling.
Embodiment 9: the measurement of the output correlation parameter of the pGOS2::SYR transformant of growing under normal growth condition:
Seed analysis based on above-mentioned, present inventor finds to compare and have higher seed production (being expressed as the number of full seed, the gross weight of seed and harvest index) with the genetically modified plant of shortage SYR with the plant of PGOS2::SYR gene construct conversion.P value shows that this increase is significant.For the method for statistical study, it is the method that the Introductory part at embodiment provides.
The result that plant for T1 in generation obtains is summarized in table E, the mean value that described result is all tested strains:
Table E:
% difference P value
The number of full seed +47 0.0000
Seed gross weight +52 0.0000
Harvest index +54 0.0000
The data that obtain for SYR in the first experiment in the second experiment of using T2 plant, have been confirmed.4 strains that selection has correction pattern are further analyzed.By the expression of monitoring mark, screening is from the seed lot (Seed batch) of the sun plant in T1 (heterozygote and homozygote).For the event of each selection, then retain heterozygote seed lot to carry out T2 assessment.In every batch of seed, the positive of the equal amts of growing in greenhouse and heliophobous plant are to assess.Compare with lacking the genetically modified plant of SYR, the measurement of seed production parameter shows the increase of number, seed gross weight and the harvest index of full seed again.
Embodiment 10: the measurement of the output correlation parameter of the pGOS2::SYR transformant of growing under stress conditions:
The analysis of the seed based on above-mentioned, the inventor finds to compare with lacking the genetically modified plant of SYR, with the conversion of pGOS2::SYR gene construct and under salt stress growing plants there is higher seed production (being expressed as the number of full seed, the gross weight of seed, full rate and harvest index).In addition, these are compared with control plant by the plant of salt stress to have higher growth of seedling gesture.When growing plant under drought stress, transgenic plant are compared and have higher seed gross weight and the harvest index of increase with the genetically modified plant of shortage SYR.These differences are significant, and the P value of checking from F is lower than 0.05.
The measurement of the output correlation parameter of embodiment 11:pHMGP::SYR transformant:
The plant transforming in pGOS2::SYR gene construct similarly, present inventor finds to compare and have higher seed production (being expressed as the number of full seed, the gross weight of seed and harvest index) with the genetically modified plant of shortage SYR with the plant of pHMGP::SYR gene construct conversion.P value shows that this increase is significant.
The T1 obtaining is summarized in table F, the mean value that described result is all tested strains for the result of plant:
Table F:
% difference P value
The number of full seed +34 0.0000
Seed gross weight +33 0.0000
Harvest index +37 0.0000
Embodiment B: FG-GAP
Embodiment 12: the evaluation of the sequence relevant with SEQ ID NO:46 to SEQ ID NO:45
Usage data storehouse sequence search instrument, such as basic Local Alignment instrument (BLAST) (people (1990) J.Mol.Biol.215:403-410 such as Altschul; With people (1997) NucleicAcids Res.25:3389-3402 such as Altschul), in the sequence of safeguarding at the Entrez of American National biotechnology information center (NCBI) RiboaptDB, identify the sequence (full-length cDNA, EST or genome sequence) relevant to SEQ ID NO:45 and/or the protein sequence relevant with SEQ ID NO:46.Use blast program, by nucleic acid or peptide sequence and sequence library are compared, and the significance,statistical mating by calculating, to find the region between sequence with local similarity.The polypeptide coded to SEQID NO:45 uses TBLASTN algorithm, uses default setting, and opening filter, to ignore Sequences of Low Complexity.The output form of analyzing is for comparing between two, and according to probability score (E value) sequence, wherein score value reflects the occurrent probability of specific comparison (E value is lower, and the significance of hit event is higher).Except E value, also to relatively carrying out identity per-cent, score.Identity per-cent refers to the number of the identical Nucleotide (or amino acid) on length-specific between two nucleic acid (or polypeptide) sequences that compare.In some cases, can adjust default parameter with the stringency of change search.
Except the public obtainable nucleotide sequence that can obtain, also can search for other sequence libraries according to the method identical with aforesaid method on NCBI.
The nucleic acid that table G provides the nucleotide sequence that represents to SEQ ID NO:45 and the protein sequence that represents with SEQ ID NO:46 is relevant and the list of protein sequence.
Table G: can be used for nucleotide sequence the inventive method, relevant to nucleotide sequence (SEQ ID NO:45), and the corresponding polypeptide of deriving.
Title Source is biological Nucleic acid SEQ ID NO: Polypeptide SEQ ID NO: Database login number State
AtFG-GAP Arabidopis thaliana ?45 ?46 Total length
AtFG-GAP homologue Arabidopis thaliana ?54 ?55 NM_114965 Total length
OsFG-GAP homologue 1 Rice ?56 ?57 NM_185137 Total length
OsFG-GAP homologue 2 Rice ?58 ?59 AK068943 Total length
TaFG-GAP homologue Common wheat ?60 ?/ CK207217 Part
ZmFG-GAP homologue Zea mays ?61 ?/ AY111316 Part
StFG-GAP homologue Potato ?62 ?/ BG598275 Part
AFG-GAP homologue Aquilegia ?63 ?/ DT735817 Part
BnFG-GAP homologue Colea ?64 ?/ CX192752 Part
CsFG-GAP homologue Sweet orange ?65 ?/ CX674859 Part
AoFG-GAP homologue Officinalis ?66 ?/ CV288972 Part
PFG-GAP homologue 1 Populus ?67 ?/ CN520999 Part
PFG-GAP homologue 2 Populus ?68 ?/ CX176799 Part
EeFG-GAP homologue The breast oar root of Beijing euphorbia ?69 ?/ DV130386 Part
CrFG-GAP homologue Ceratopteris richardii ?70 ?/ CV736049 Part
WmFG-GAP homologue Orchid at the age of one hundred years old ?71 ?/ DT601669 Part
MsFG-GAP homologue Alfalfa ?72 SEQ ID NO:73 to SEQ ID NO:76 Part
Embodiment 13: the comparison of related polypeptide sequence
The clustering algorithm of the progressive comparison from the AlignX of Vector NTI (Invitrogen) based on generally using (people (1997) the Nucleic Acids Res 25:4876-4882 such as Thompson; The people such as Chenna (2003) .Nucleic Acids Res 31:3497-3500).Can use in abutting connection with clustering algorithm constructing system and set.The default value of the open point penalty in room is 10, and the default value that point penalty is extended in room is 0.1, and the weight matrix of selection is Blosum 62 (if comparison polypeptide).
In evaluation, can be used for implementing in the polypeptide of the inventive method, what the multiple sequence that use related polypeptide carries out was compared the results are shown in Fig. 7.Can be clear that, although there are some rooms in comparison, in the major part of protein sequence, have sequence conservation.
Embodiment 14: can be used for implementing the calculating of the overall per-cent identity between the peptide sequence of the inventive method
A method MatGAT in the method that use can obtain in this area (matrix overall comparison instrument) software (BMC Bioinformatics.20034:29.MatGAT:an application thatgenerates similarity/identity matrices using protein or DNA sequences.Campanella JJ, Bitincka L, Smalley J; Software by Ledion Bitincka trustship), determining can be for implementing overall similarity and the identity per-cent between the full-length polypeptide sequence of method of the present invention.MatGAT software, without data are compared in advance, can produce similarity/identity matrix of DNA or protein sequence.This program is utilized Myers and Miller overall comparison algorithm, and (the open point penalty in room is 12, and to extend point penalty be 2 in room) carry out a series of comparison between two, utilize for example Blosum 62 (for polypeptide) to calculate similarity and identity, then result is arranged in to distance matrix.Sequence similarity is shown in diagonal lines Lower Half, and sequence identity is shown in the diagonal lines first half.
Parameter more used has:
Matrix: Blosum 62 scores
First room: 12
Extend room: 2
The overall similarity of peptide sequence length range (part of polypeptide sequence is foreclosed) and the software analysis of identity the results are shown in table H.Diagonal lines top provides identity per-cent, and diagonal lines below provides similarity per-cent.
Compare with SEQ ID NO:46, the per-cent identity that can be used for implementing between the peptide sequence of the inventive method can be for being low to moderate 17% amino acid identity.
Table H: the overall similarity within the scope of full-length polypeptide sequence and the MatGAT result of identity.
1 2 3 4
1.AtFGAP1 18.1 65.5 17.4
2.AtFGGAP2 31.4 17.9 67.7
3.OsFGGAP1 76.7 33.5 16.9
4.OsFGGAP2 32.8 83.6 33
Embodiment 15: can be used for implementing the evaluation of the structural domain that comprises in the peptide sequence of the inventive method
Protein families, structural domain and site (Integrated Resource of ProteinFamilies, Domains and Sites (the InterPro)) database of reallocating resources is the integrated interface that carries out the conventional tag database of search based on text and sequence.InterPro database gets up these database combination, and they utilize diverse ways to learn and the relevant fully bioinformation in various degree of the protein of sign, to obtain protein tag.Cooperation database comprises SWISS-PROT, PROSITE, TrEMBL, PRINTS, ProDom and Pfam, Smart and TIGRFAMs.Interpro is by European information biology institute (the European Bioinformatics Institute) trustship that is positioned at Britain.
Shown in SEQ ID NO:46, the InterPro scanning result of peptide sequence is shown in Table I.
Table I: the InterPro scanning result of peptide sequence shown in SEQ ID NO:46
Database Accession number Logon name
Pfam PF01839 FG-GAP
INTERPRO IPR013517 FG-GAP
INTERPRO IPR000413 Beta 2 integrin alpha chain
Embodiment 16: for implementing the Topological Prognostics of the peptide sequence of method of the present invention
TargetP 1.1 can predict the Subcellular Localization of eukaryotic protein.According to this program, the predictability based on following arbitrary N-end presequence exists, and positions definite: chloroplast transit peptides (cTP), Mitochondrially targeted peptide (mTP) or Secretory Pathway signal peptide (SP).Final prediction institute based on score value be not real probability, and to add up also needn't be 1.But, according to TargetP, the location that score is the highest is most probable, and the relation between score value (reliability class) can be used as the index of described forecasting reliability.Reliability class (RC) scope from 1 to 5, wherein 1 represents the strongest prediction.TargetP is by the server maintenance of Technical University Of Denmark.
For the sequence that contains N-end presequence through prediction, also can predict potential cleavage site.
Selected many kinds of parameters, the prediction and calculation of biological example body type (non-plant or plant), cutoff value setting (without, the cutoff value setting predetermined or the cutoff value setting of user's appointment) and cleavage site (be or no).
TargetP 1.1 analytical resultss of peptide sequence shown in SEQ ID NO:46 are shown in following table J.What select is " plant " organism type, does not stipulate cutoff value, and requires the prediction length of transit peptides.Shown in SEQ ID NO:46, the Subcellular Localization of peptide sequence may be in cell, existence is to the slight deflection of Secretory Pathway (although having 5 reliability score value), the prediction length of the transit peptides of inferring is 24 amino acid (reliable not as Subcellular Localization prediction itself, may to have several amino acid whose length variations) that start from N-terminal.
Shown in table J:SEQ ID NO:46, the TargetP 1.1 of peptide sequence analyzes
Length (AA) 896
Chloroplast transit peptides 0.010
Mitochondrial transport peptide 0.546
Secretory Pathway signal peptide 0.643
Other ubcellular targets 0.038
The location of prediction Secretion
Reliability class
5
The transit peptides length of prediction 24
When using SignalP people such as (, J.Mol.Biol., 340:783-795,2004) Bendtsen to analyze, (0.998 probability) positive identification is to existing the N with 24 amino acid lengths to hold secreting signal peptide reliably.In addition, when using THMM algorithm (Center for Biological SequenceAnalysis, Technical University of Denmark) time, predict that this protein is positioned at the outside of cell, only have C end afterbody to be present in tenuigenin: residue 1-859: outside; Residue 860-879: membrane spaning domain, residue 880-896: inner side.
Can utilize many other algorithms to carry out such analysis, comprise:
● the trust server of ChloroP 1.1,You Technical University Of Denmark;
● protein is sought the trust server of molecular biosciences institute of Subcellular Localization forecasting software 1.2Ban,You Brisbane ,Australia University of Queensland;
● PENCE Proteome Analyst PA-GOSUB 2.5, by the trust server of Canada large Alberta Edmonton Alberta university;
Embodiment 17: gene clone
Use Arabidopsis thaliana Seedlings cDNA library (Invitrogen, Paisley, UK) to pass through pcr amplification Arabidopis thaliana FG-GAP gene as template.The RNA extracting from seedling in reverse transcription, cDNA is cloned into pCMV Sport 6.0.The average inset size in library is 1.5kb, and clone's original number is about 1.59 * 10 7cfu.6 * 10 11after the amplification for the first time of cfu/ml, initial titer is confirmed as 9.6 * 10 5cfu/ml.After plasmid extraction, 200ng template is used for to 50 μ lPCR mixtures.By primer prm06643 (the SEQID NO:47 comprising for the AttB site of Gateway restructuring; Have justice, initiator codon indicates with runic, and AttB1 site indicates with italics:
Figure S2006800521587D01551
aaatctcgagcgagg-3 ') and prm06644 (SEQ ID NO:48; Oppositely, complementation; AttB2 site indicates with italics:
Figure S2006800521587D01552
ctg tttacagatggtacctagt-3 ') for pcr amplification.Under standard conditions, use Hifi Taq archaeal dna polymerase to carry out PCR.Also use standard method amplification and the purifying 3.2kb PCR fragment of (comprising attB site).Then carry out the first step BP reaction of Gateway method, during this step, PCR fragment and pDONR201 plasmid carry out restructuring in body, thereby produce, according to Gateway nomenclature, and " entry clones " pFG-GAP.Plasmid pDONR201 is as Gateway
Figure S2006800521587D01553
a part for technology is purchased from Invitrogen.
Embodiment 18: the structure of carrier
Subsequently entry clones FG-GAP being used to LR with pGOS2 (the object carrier transforming for rice) reacts.This carrier form with functional element in T-DNA border comprises: plant selectable marker, the marker expression box that can screen and be intended to carry out the Gateway box of recombinating in LR body with the aim sequence that is cloned into entry clones.For the rice GOS2 promotor (Nucleotide 1 to 2193 of SEQ IDNO:49, promotor-assortment of genes) of constitutive expression, be positioned at the upstream of this Gateway box.
After LR reconstitution steps, the expression vector pGOS2::FG-GAP (Fig. 7) for FG-GAP of gained is transformed into Agrobacterium strain LBA4044, and then is transformed into rice plant.Make the rice plant's growth transforming, then with regard to the parameter of describing in embodiment 19, it is checked.
About the information of other farm crop referring to embodiment 40.
Embodiment 19: the appraisal procedure of the plant that the FG-GAP using under rice GOS2 promotor is controlled is transformed
Produce about 15 to 20 T0 rice transformant independently.Primary transformant is transferred to and greenhouse, carries out Growth and yield T1 seed from tissue culture room.With regard to genetically modified presence/absence, in T1 offspring, there are 7 events of separation in 3: 1 in reservation.For each event in these events, by the expression of monitoring witness marking, the T1 seedling of selecting T1 seedling that about 10 strains comprise transgenosis (heterozygote and homozygote) and about 10 strains to lack transgenosiss (invalid zygote).The T1 plant of selection is transferred to greenhouse.Every strain plant is accepted the unique bar code mark that makes clearly phenotypic data associated with corresponding plant.The T1 plant of selection is grown in the soil of flowerpot that diameter is 10cm under following environment arranges, and described environment setting is: photoperiod=11.5h, intensity of illumination=30,000lux or stronger, daytime temperature=28 ℃ or higher, nocturnal temperature=22 ℃, relative humidity=60-70%.Transgenic plant and corresponding invalid zygote are grown in to random position side by side.From sowing time to the ripening stage, plant is passed through to digital imagery chamber for several times.On each time point, to every strain plant from least 6 different angle shot digital pictures (2048 * 1536 pixels, 1,000 6 hundred ten thousand pigments).
The sum that is different from the pixel of background by counting in the digital picture of plant part is on the ground determined plant area (or Leaf biomass) on the ground.With regard to the image of taking from different perspectives on same time point, this value is averaged, then by calibration, convert described value to represent with square millimeter physical surface value.Experiment shows that the ground plant area of measuring by the method is associated with the biomass of ground plant part.Areamax is the ground area when plant reaches its maximum Leaf biomass.
The main panicle that results are ripe, packed, with barcode, it is carried out to mark, then at 37 ℃, in baking oven, be dried 3 days.Then to panicle threshing, collect all seeds.Use gas blower that full husk is separated with empty husk.After separation, then use commercially available counter all to count two batches of seeds.Discard sky husk.On analytical balance, take the weight of full husk, use digital picture to measure the cross-sectional area of seed.The method produces one group of following seed correlation parameter:
Every paniculiform number of spending is for estimating the parameter of the average number of every paniculiform little Hua on plant, and it can get divided by the first paniculiform number from seed overall number.The highest panicle with when vertical when comparison, be regarded as the first panicle and count by craft with the overlapping all panicles of the highest panicle.By count the number of the full husk staying after separating step, determine the number of full seed.By taking the weight of all full husks of gathering in the crops from plant, measure total seed production (seed gross weight).By counting, from the number of the husk of plant results, measure total number seeds of every strain plant, it is corresponding to the number of the little Hua of every strain plant.According to the number of the full seed of counting and its gross weight, calculate thousand seed weight (TKW).Harvest index is defined as seed gross weight and ground area (mm 2) between ratio be multiplied by the factor 10 6.Can use image analysis software from digital picture, to derive these parameters in the mode of automatization, then these parameters be carried out to statistical analysis.Use the customizing device (by 2 primary clusterings, weigh and imaging device, form) with image analysis software coupling, measure the parameter (comprising width, length, area, weight) of single seed.
The two-way ANOVA (variance analysis) of proofreading and correct with regard to imbalance design is as the statistical models of net assessment plant phenotype feature.All measuring parameters to all events of all plants with this gene transformation carry out F check.Carry out F check to check the impact of all transformation events of gene pairs and the population effect of checking gene, herein also referred to as " overall genetic effect ".If the value display data of F check is significant, reach a conclusion---there is " gene " effect, this means that what cause this effect is not only existence or the position of gene.For this F check, the significance threshold setting of real overall genetic effect is on 5% probability level.
For the intragentic effect of inspection event, check strain specificity effect, use the data set from transgenic plant and corresponding invalid plant, in each event, implement t check." invalid plant " or " invalid segregant " or " invalid zygote " refer to the plant of processing in the mode identical with transgenic plant, but transgenosis is separated from this plant.The negative conversion of plant that invalid plant also can be described to isozygoty.The significance threshold setting that T is checked is on 10% probability level.The possibility of result of some events is higher or lower than this threshold value.This is based on hypothesis: gene may only have effect on genomic some position, and this position dependence effect is not rare.The genetic effect of the type is herein also referred to as " the strain effect of gene ".By by t value and t-distribution compares or selectively by F value and F-distribution are compared, obtain p value.Then to provide null hypothesis (not having transgenosis effect) be correct probability to p value.
The data that obtain for FG-GAP in the first experiment in the second experiment of using T2 plant, have been confirmed.Select 4 strains further to analyze.By the expression of monitoring mark, screening is from the seed lot of the sun plant in T1 (heterozygote and homozygote).Then for the event of each selection, retain heterozygote seed lot to carry out T2 assessment.In every batch of seed, the positive of the equal amts of growing in greenhouse and heliophobous plant are to assess.
In T2 generation, assessed the FG-GAP conversion of plant that adds up to 120 strains, i.e. every event 30 strain plants, wherein 15 strains are transgenosis because of the positive, 15 strains are transgenosis feminine gender.
Because two experiments carrying out have overlapping events, therefore carry out combinatory analysis.This can be used for checking the consistence of effect in two experiments, and if situation if this is really true, thereby it can be used for collecting evidence from two experiments and increases the credibility of conclusion.The method of using is to consider the method with mixed model of the multilevel hierarchy of data (i.e. experiment-event-segregant).By card side is distributed and compared with likelihood ratio test, obtain p value.
The assessment of embodiment 20:FG-GAP transformant: the measurement of output correlation parameter
The analysis of the seed based on above-mentioned, present inventor finds to compare and have higher seed production with the genetically modified plant of shortage FG-GAP with the plant of FG-GAP gene construct conversion, and described seed production shows as number and the seed gross weight of full seed.P value shows that this increase is significant.In addition harvest index also increases (+9%).
The T1 obtaining is summarized in table K for the result of plant:
Table K:
% difference The p value of F check
The number of full seed +19 0.0051
Seed gross weight +17 0.0199
Again at T2, in generation, obtain these positive findingses.In table L, the overall percentage of data presentation full seed, seed gross weight and harvest index increases (according to the data of each single line in T2 generation, calculating) and P value accordingly.The result of combining T1 generation in combinatory analysis these T2 data of reappraising, the P value of acquisition shows that the effect of observing is highly significant.
Table L:
Figure S2006800521587D01581
Embodiment C: CYP90B
Embodiment 21: the gene clone of rice CYP90B cDNA
Use rice seedling cDNA library (Invitrogen, Paisley, UK) to pass through pcr amplification rice CYP90B cDNA as template.The RNA extracting from seedling in reverse transcription, cDNA is cloned into pCMV Sport 6.0.The average inset size in library is 1.6kb, and clone's original number is about 1.67 * 10 6cfu.6 * 10 10after the amplification for the first time of cfu/ml, initial titer is defined as 3.34 * 10 6cfu/ml.After plasmid extraction, 200ng template is used for to 50 μ lPCR mixtures.By primer (the SEQ ID NO:107 comprising for the AttB site of Gateway restructuring; Have justice, initiator codon indicates with runic, and AttB1 site indicates with italic: 5 '
Figure S2006800521587D01591
cTTAAACA
Figure S2006800521587D01592
gCCGCCATGATGGC 3 ') and (SEQ ID NO:108; Oppositely, complementation; AttB2 site indicates with italic: 5 '
Figure S2006800521587D01593
tTACTCCTGCTCATCATCC3 ') for pcr amplification.Under standard conditions, use Hifi Taq archaeal dna polymerase to carry out PCR.Also use standard method amplification and purifying 1585bp (to comprise attB site; From initial to stopping 1521bp) PCR fragment.Then carry out the first step BP reaction of Gateway method, during this step, PCR fragment and pDONR201 plasmid carry out restructuring in body, thereby produce, according to Gateway nomenclature, " entry clones ".Plasmid pDONR201 is as Gateway a part for technology is purchased from Invitrogen.
Embodiment 22: the structure of carrier
Subsequently entry clones being used to LR with the object carrier one transforming for rice reacts.These carriers form with functional element in T-DNA border comprises: plant selectable marker, the marker expression box that can screen and be intended to carry out the Gateway box of recombinating in LR body for the aim sequence with being cloned into entry clones.Use is positioned at 4 different rice promoters of this Gateway box upstream and expresses rice CYP90B: prolamine RP6, oleosin 18kDa, GOS2 and HMGB1.
After LR reconstitution steps, the expression vector of gained (prolamine RP6 promotor, oleosin 18kDa, GOS2 and HMGB1-are referring to Figure 14) is transformed into Agrobacterium strain LBA4044, be then transformed into rice plant.Make the rice plant's growth transforming, then with regard to the parameter of describing in example below, it is checked.About the conversions of other farm crop referring to example example 40.
Embodiment 23: the description of phenotype appraisal procedure
Every construct produces about 15 to 20 T0 rice transformant independently.Primary transformant is transferred to greenhouse to carry out Growth and yield T1 seed from tissue culture room.Reservation T1 offspring with regard to genetically modified presence/absence presents 4 events in 5 events of separation in 3: 1.For each event in these events, by the expression of monitoring witness marking, the T1 seedling of selecting T1 seedling that about 10 strains comprise transgenosis (heterozygote and homozygote) and about 10 strains to lack transgenosiss (invalid zygote).Transgenic plant and suitable control plant are grown in to random position side by side.From sowing time to the ripening stage, plant is passed through to digital imagery chamber for several times.On each time point, to each strain plant from least 6 different angle shot digital pictures (2048 * 1536 pixels, 1,000 6 hundred ten thousand pigments).
According to the appraisal procedure identical with T1 generation (but the assessment of every event is more individual) in T2 further 3 T1 events of assessment in generation.
The measurement of seed correlation parameter
The main panicle that results are ripe, counting, packed, use bar code label are then dried 3 days at 37 ℃ in baking oven.Then to panicle threshing, collect all seeds and count.Use gas blower that full husk is separated with empty husk.Discard sky husk, then residue fraction is counted again.On analytical balance, take the weight of full husk.The number of the full husk staying after separating step by counting is determined the number of full seed.By taking the weight of all full husks of gathering in the crops from plant, measure total seed production.By counting, from the number of the husk of plant results, measure total number seeds of every strain plant.According to the number of the full seed of counting and its gross weight, calculate thousand seed weight (TKW).Harvest index in the present invention (HI) is defined as seed ultimate production and ground area (mm 2) between ratio be multiplied by the factor 106.The sum of the every paniculiform flower defining in the present invention is the ratio between the total and ripe paniculiform number of master of seed.The full rate of seed defining in the present invention is the total ratio (representing with %) that the number of full seed accounts for seed (or little Hua).Use the parameter (width, length and area) of measuring single seed with the customizing device of image analysis software coupling, described device is comprised of 2 primary clusterings (weighing and imaging device).With shell with shelling seed all for these measurements.
Statistical analysis: F check
Statistical models by two-way ANOVA (variance analysis) as net assessment plant phenotype feature.All measuring parameters to all events of all plant with gene transformation of the present invention carry out F check.Carry out F check to check the effect of all transformation events of gene pairs, and check the population effect of gene, be also called " overall genetic effect ".The significance threshold value setting of real overall genetic effect is 5% probability level of F check.If significance F test value points to certain genetic effect, this means to be not only that existence or the position of gene causes the difference in phenotype.
Embodiment 24: the result of the rice CYP90B under non-constitutive promoter is controlled
24.1 express the transgenic plant of CYP90B under endosperm specificity promoter is controlled
Seed production and the HI measuring result of under endosperm-specific (prolamine RP6) promotor is controlled, expressing the transgenic plant of CYP90B are shown in table M and N.Shown the number of the event with increase and from the p value of the F check in T1 and T2 generation.
Table M: the seed production measuring result of expressing the transgenic plant of CYP90B under endosperm specificity promoter is controlled.
The number that shows the event increasing % difference The P value of F check
T1 generation In 43 11 0.1572
T2 generation In 33 13 0.0103
Table N: the HI measuring result of expressing the transgenic plant of CYP90B under endosperm specificity promoter is controlled.
The number that shows the event increasing % difference The P value of F check
T1 generation In 44 11 0.047
T2 generation In 33 10 0.0392
When comparing with control plant, although phytomass remains unchanged (data do not show) on the ground, but due to the increase of seed production, the transgenosis rice plant of expressing CYP90B under endosperm-specific (prolamine RP6) promotor is controlled presents the results of increase.
24.2 express the transgenic plant of CYP90B under embryo/aleuron specificity promoter is controlled
The TKW measuring result of expressing the transgenic plant of CYP90B under embryo/aleuron (oleosin 18kDa) promotor is controlled is shown in table O.Shown the number of the event with increase and from the p value of the F check in T1 and T2 generation.
Table O: the TKW measuring result of expressing the transgenic plant of CYP90B under embryo/aleuron promotor is controlled.
The number that shows the event increasing % difference The P value of F check
T1 generation In 55 4 0.0002
T2 generation In 32 1 0.2428
The average seed area measurement of expressing the transgenic plant of CYP90B under oleosin 18kDa promotor is controlled the results are shown in table P.Shown the number of the event with increase and from the p value of the F check in T1 and T2 generation.
Table P: the average seed area measurement result of expressing the transgenic plant of CYP90B under embryo/aleuron promotor is controlled.
The number that shows the event increasing % difference The P value of F check
T1 generation In 55 3 <0.0001
T2 generation In 33 2 0.0272
The average seed length measuring result of expressing the transgenic plant of CYP90B under oleosin 18kDa promotor is controlled is shown in table Q.Shown the number of the event with increase and from the p value of the F check in T1 and T2 generation.
Table Q: the average seed length measuring result of expressing the transgenic plant of CYP90B under embryo/aleuron promotor is controlled.
The number that shows the event increasing % difference The P value of F check
T1 generation In 55 3 <0.0001
T2 generation In 33 1 0.0086
The transgenosis rice plant of expressing CYP90B under embryo/aleuron (oleosin 18kDa) promotor is controlled has TKW, seed area and seed length the seed increasing occurs.Do not observe the remarkable increase of seed production.
Embodiment 25: assessment and the result of the rice CYP90B under constitutive promoter is controlled
25.1 express the transgenic plant of CYP90B under GOS2 constitutive promoter is controlled
The assessment of the measurement result of expressing the transgenic plant of CYP90B under GOS2 constitutive promoter is controlled is shown in table R.Shown the number of the event with increase and from the p value of the F check in T1 and T2 generation.When T1 obtains negative findings in generation, do not carry out the T2 assessment in generation.
Table R: the assessment of the measurement result of expressing the transgenic plant of CYP90B under GOS2 constitutive promoter is controlled
The number that shows the event increasing % difference The P value of F check
Ground biomass In 55 -13 <0.0001
Highly In 55 -7 <0.0001
The number of full seed In 55 -53 <0.0001
The number of seed In 55 -32 <0.0001
Seed production In 55 -53 <0.0001
HI In 55 -46 <0.0001
25.2 express the transgenic plant of CYP90B under HMBG1 constitutive promoter is controlled
The assessment of the measurement result of expressing the transgenic plant of CYP90B under HMGB1 constitutive promoter is controlled is shown in table S.Shown the number of the event with increase and from the p value of the F check in T1 generation.When T1 obtains negative findings in generation, do not carry out the T2 assessment in generation.
Table S: the assessment of the measurement result of expressing the transgenic plant of CYP90B under HMGB1 constitutive promoter is controlled.
The number that shows the event increasing % difference The P value of F check
Ground biomass In 55 -18 <0.0001
Highly In 55 -6 <0.0001
The number of full seed In 55 -56 <0.0001
The number of seed In 55 -33 <0.0001
Seed production In 55 -56 <0.0001
HI In 55 -46 <0.0001
Compare with control plant, the transgenic plant of expressing CYP90B under 2 kinds of different constitutive promoters are controlled demonstrate number, seed production and the HI of the ground phytomass of strong minimizing, plant height, full seed.
Embodiment D:CDC27
Embodiment 26: the NH that is coded in polypeptide 2end regions has the clone of arabidopsis gene of CDC27 polypeptide of the TPR structural domain of at least one inactivation
Use Arabidopsis thaliana Seedlings cDNA library (Invitrogen, Paisley, UK) as template, by the encode arabidopsis gene of CDC27 polypeptide of pcr amplification, described CDC27 polypeptide (CDS0171_2) is at the NH of polypeptide 2end regions has the TPR structural domain of at least one inactivation.The RNA extracting from seedling in reverse transcription, cDNA is cloned into pCMV Sport 6.0.The average inset size in library is 1.5kb, and clone's original number is about 1.59 * 10 7cfu.10 10after the amplification for the first time of cfu/ml, initial titer is defined as 9.6 * 10 5cfu/ml.After plasmid extraction, 200ng template is used for to 50 μ l PCR mixtures.By primer (the SEQ ID NO:149 comprising for the AttB site of Gateway restructuring; Have justice, initiator codon indicates with runic, and AttB1 site indicates with italics: 5 '- cTTCACA
Figure S2006800521587D01642
cAACAACTGTCAACTTC 3 ') and (SEQ ID NO:150; Oppositely, complementation; AttB2 site indicates with italics: 5 '
Figure S2006800521587D01643
tTGGAGTAGCTATGGTTTCAC-3 ') for pcr amplification.Under standard conditions, use Hifi TaqDNA polysaccharase to carry out PCR.Also use standard method amplification and purifying 1816bp (to comprise attB site; From initial to stopping 1737bp) PCR fragment.Then carry out the first step BP reaction of Gateway method, during this step, PCR fragment and pDONR201 plasmid carry out restructuring in body, thereby produce, according to Gateway nomenclature, " entry clones ".Plasmid pDONR201 is as Gateway a part for technology is purchased from Invitrogen.
Embodiment 27: the structure of carrier
Subsequently entry clones being used to LR with the object carrier one transforming for rice reacts.This carrier form with functional element in T-DNA border comprises: plant selectable marker, the marker expression box that can screen and be intended to carry out the Gateway box of recombinating in LR body for the aim sequence with being cloned into entry clones.The rice OSH1 promotor (SEQ ID NO:151) of expressing for shoot apical meristem is positioned at the upstream of this Gateway box.
After LR reconstitution steps, the expression vector of the gained shown in Figure 18 is transformed into Agrobacterium strain LBA4044, and then is transformed into rice plant.Make the rice plant's growth transforming, then with regard to the parameter of describing in embodiment 28 and 29, it is checked.About the conversions of other farm crop referring to embodiment 40.
Embodiment 28: the description of phenotype appraisal procedure
Produce about 15 to 20 T0 rice transformant independently.Primary transformant is transferred to greenhouse to carry out Growth and yield T1 seed from tissue culture room.Retain 5 events that T1 offspring presents separation in 3: 1 with regard to genetically modified presence/absence.For each event in these events, by the expression of monitoring witness marking, the T1 seedling of selecting T1 seedling that about 10 strains comprise transgenosis (heterozygote and homozygote) and about 10 strains to lack transgenosiss (invalid zygote).Transgenic plant and suitable control plant are grown in to random position side by side.From sowing time to the ripening stage, plant is passed through to digital imagery chamber for several times.On each time point, to every strain plant from least 6 different angle shot digital pictures (2048 * 1536 pixels, 1,000 6 hundred ten thousand pigments).
According to the appraisal procedure identical with T1 generation (but the assessment of every event is more individual) in T2 further 3 events of assessing in T1 of assessment in generation.
The measurement of seed correlation parameter
The main panicle that results are ripe, counting, packed, use bar code label are then dried 3 days at 37 ℃ in baking oven.Then to panicle threshing, collect all seeds and count.Use gas blower that full husk is separated with empty husk.Discard sky husk, then residue fraction is counted again.On analytical balance, take the weight of full husk.The number of the full husk staying after separating step by counting is determined the number of full seed.By taking the weight of all full husks of gathering in the crops from plant, measure total seed production.By counting, from the number of the husk of plant results, measure total number seeds of every strain plant.According to the number of the full seed of counting and its gross weight, calculate thousand seed weight (TKW).Harvest index of the present invention (HI) is defined as seed gross weight and ground area (mm 2) between ratio be multiplied by the factor 10 6.The sum of the every paniculiform flower defining in the present invention is the ratio between the total and ripe paniculiform number of master of seed.The full rate of seed defining in the present invention is the ratio (representing with %) that the number of full seed accounts for seed (or little Hua) sum.
Statistical analysis: F check
Statistical models by two-way ANOVA (variance analysis) as net assessment plant phenotype feature.All measuring parameters to all events of all plant with gene transformation of the present invention carry out F check.Carry out F check to check the effect of all transformation events of gene pairs, and check the population effect of gene, be also called " overall genetic effect ".The significance threshold value setting of real overall genetic effect is 5% probability level of F check.If significance F test value points to certain genetic effect, this means to be not only that existence or the position of gene causes the difference in phenotype.
Embodiment 29: the assessment result of expressing the transgenosis rice plant of modified Arabidopis thaliana CDC27 nucleic acid under shoot apical meristem promotor is controlled
The assessment of the measurement result (number of seed production, full seed and HI) of expressing the transgenic plant of modified CDC27 nucleic acid under shoot apical meristem promotor (OSH1) is controlled is shown in table T to V.Shown the number of the event with increase, with the % difference of suitable control plant and from the p value T of the F check in T1 and T2 generation.
Table T: the seed production measuring result of expressing the transgenic plant of modified CDC27 nucleic acid under shoot apical meristem promotor is controlled.
The number that shows the event increasing % difference The P value of F check
T1 generation In 53 35 0.0113
T2 generation In 32 11 0.0083
Table U: the measuring result of full seed number of expressing the transgenic plant of modified CDC27 nucleic acid under shoot apical meristem promotor is controlled.
The number that shows the event increasing % difference The P value of F check
T1 generation In 53 36 0.0083
T2 generation In 32 10 0.0099
Table V: the measuring result of harvest index of expressing the transgenic plant of modified CDC27 nucleic acid under shoot apical meristem promotor is controlled.
The number that shows the event increasing % difference The P value of F check
T1 generation In 53 34 0.0053
T2 generation In 32 6 0.0188
The transgenosis rice plant of expressing modified CDC27 nucleic acid under shoot apical meristem promotor is controlled has the seed production of remarkable increase, the full seed number of increase and the harvest index of increase.
Embodiment E: AT hook
Embodiment 30: the gene clone of the AT hook coding nucleic acid of rice
Use rice seedling cDNA library (Invitrogen, Paisley, UK) as template, the rice gene (referring to SEQID NO:152) by pcr amplification encoded packets containing the polypeptide of AT hook structure territory and DUF296 structural domain.The RNA extracting from seedling in reverse transcription, cDNA is cloned into pCMVSport 6.0.The average inset size in library is 1.6kb, and clone's original number is about 1.67 * 10 7cfu.6 * 10 10after the amplification for the first time of cfu/ml, initial titer is defined as 3.34 * 10 6cfu/ml.After plasmid extraction, 200ng template is used for to 50 μ l PCR mixtures.By primer (the SEQ ID NO:196 comprising for the AttB site of Gateway restructuring; 5 '-ggggacaagtttgtacaaaaaagcaggcttaaacaatggatccggtcacgg-3 ') and (SEQID NO:197 there is justice, AttB1 primer:; Oppositely, complementation; AttB2 primer: 5 '-ggggaccactttgtacaagaaagctgggtggaatcgatccatctcagaa-3 ') for pcr amplification.Under standard conditions, use Hifi Taq archaeal dna polymerase to carry out PCR.Use standard method amplification and purifying PCR fragment (to comprise attB site; From initial to stopping).Then carry out the first step BP reaction of Gateway method, during this step, PCR fragment and pDONR201 plasmid carry out restructuring in body, thereby produce, according to Gateway nomenclature, " entry clones ".Plasmid pDONR201 is as Gateway
Figure S2006800521587D01681
a part for technology is purchased from Invitrogen.
Embodiment 31: the structure of carrier
Subsequently entry clones being used to LR with the object carrier one that contains prolamine promotor transforming for rice reacts.This carrier form with functional element in T-DNA border comprises: plant selectable marker, the marker expression box that can screen and be intended to carry out the Gateway box of recombinating in LR body for the aim sequence with being cloned into entry clones.For the paddy Prolamin promoter (SEQ ID NO:195) of endosperm specificity expression, be positioned at the upstream of this Gateway box.
After LR reconstitution steps, the gained expression vector shown in Figure 22 is transformed into Agrobacterium strain LBA4044, and then is transformed into rice plant.Make the rice plant's growth transforming, the parameter then just the following describes checks it.About the conversions of other farm crop referring to embodiment 40.
Embodiment 32: assessment and result
Produce about 15 to 20 T0 rice transformant independently.Primary transformant is transferred to and greenhouse, carries out Growth and yield T1 seed from tissue culture room.Retain 7 events that T1 offspring presents separation in 3: 1 with regard to genetically modified presence/absence.For each event in these events, by the expression of monitoring witness marking, the T1 seedling of selecting T1 seedling that about 10 strains comprise transgenosis (heterozygote and homozygote) and about 10 strains to lack transgenosiss (invalid zygote).
32.1 statistical analysis: F check
Statistical models by two-way ANOVA (variance analysis) as net assessment plant phenotype feature.All measuring parameters to all events of all plant with gene transformation of the present invention carry out F check.Carry out F check to check the effect of all transformation events of gene pairs, and check the population effect of gene, be also called " overall genetic effect ".The significance threshold value setting of real overall genetic effect is 5% probability level of F check.If significance F test value points to certain genetic effect, this means to be not only that existence or the position of gene causes the difference in phenotype.
The measurement of 32.2 seed correlation parameters
The main panicle that results are ripe, counting, packed, use bar code label are then dried 3 days at 37 ℃ in baking oven.Then to panicle threshing, collect all seeds and count.Use gas blower that full husk is separated with empty husk.Discard sky husk, then residue fraction is counted again.On analytical balance, take the weight of full husk.The number of the full husk staying after separating step by counting is determined the number of full seed.By taking the weight of all full husks of gathering in the crops from plant, measure total seed production.By counting, from the number of the husk of plant results, measure total number seeds of every strain plant.According to the number of the full seed of counting and its gross weight, calculate thousand seed weight (TKW).Harvest index (HI) is expressed as seed ultimate production and ground area (mm 2) between ratio be multiplied by the factor 10 6.The sum of every paniculiform flower is expressed as the ratio between the total and ripe paniculiform number of master of seed.The number that the full rate of seed is expressed as full seed accounts for the total per-cent of seed (or little Hua).
Table W: show and compare with root-specific promoter (RCc3 promotor), the comparative data of the difference of the seed production that use endosperm specificity promoter (prolamine) obtains
Figure S2006800521587D01701
This table shows with corresponding control plant (invalid zygote) compares the percentage difference of transgenic plant in various parameters; The p value of the population effect of the demonstration gene of checking from F is also shown in table.As shown in table, be in the plant of endosperm specificity promoter control lower expression AT hook coding nucleic acid (SEQID NO:152), multiple seed production parameter increases, yet in transgenic plant, for being root-specific promoter, control the lower identical genetically modified plant of expressing, acquisition increase (in fact reducing significantly).
Embodiment F: DOF transcription factor
Embodiment 33: the gene clone of Arabidopis thaliana DOF transcription factor (SEQ ID NO:198)
Use Arabidopsis thaliana Seedlings cDNA library (Invitrogen, Paisley, UK) to pass through pcr amplification Arabidopis thaliana DOF transcription factor gene as template.The RNA extracting from seedling in reverse transcription, cDNA is cloned into pCMV Sport 6.0.The average inset size in library is 1.5kb, and clone's original number is 1.59 * 10 7the rank of cfu.6 * 10 11after the amplification for the first time of cfu/ml, initial titer is defined as 9.6 * 10 5cfu/ml.After plasmid extraction, 200ng template is used for to 50 μ lPCR mixtures.5 ' ggggacaagtttgtacaaaaaagcaggcttaaacaatgggtggatcgatggc 3 ') and (SEQ ID NO:224) (reverse complemental AttB2 primer: 5 ' ggggaccactttgtacaagaaagctgggtcgttaatgatccgacaaaaca 3 ') for pcr amplification by comprising primer (SEQ ID NO:223) for the AttB site of Gateway restructuring, (there is an adopted AttB1 primer:.In standard conditions, use Hifi Taq archaeal dna polymerase to carry out PCR.Also use standard method amplification and purifying PCR fragment (to comprise attB site; From initial to stopping).Then carry out the first step BP reaction of Gateway method, during this step, PCR fragment and pDONR201 plasmid carry out restructuring in body, thereby produce, according to Gateway nomenclature, " entry clones ".Plasmid pDONR201 is as Gateway a part for technology is purchased from Invitrogen.
Embodiment 33a: the structure of carrier
Subsequently entry clones being used to LR with the object carrier one that comprises GOS2 transforming for rice reacts.This carrier form with functional element in T-DNA border comprises: plant selectable marker, the marker expression box that can screen and be intended to carry out the Gateway box of recombinating in LR body for the aim sequence with being cloned into entry clones.For the rice GOS2 promotor (SEQ ID NO:225) of constitutive expression, be positioned at the upstream of this Gateway box.
After LR reconstitution steps, the gained expression vector shown in Figure 26 is transformed into Agrobacterium strain LBA4044, and then is transformed into rice plant.Make the rice plant's growth transforming, the parameter then just the following describes checks it.About the conversions of other farm crop referring to embodiment 40.
Embodiment 34: the gene clone of Arabidopis thaliana DOF transcription factor (SEQ ID NO:226)
Use Arabidopsis thaliana Seedlings cDNA library (Invitrogen, Paisley, UK) to pass through pcr amplification Arabidopis thaliana DOF transcription factor gene as template.The RNA extracting from seedling in reverse transcription, cDNA is cloned into pCMV Sport 6.0.The average inset size in library is 1.5kb, and clone's original number is 1.59 * 10 7cfu.6 * 10 11after the amplification for the first time of cfu/ml, initial titer is defined as 9.6 * 10 5cfu/ml.After plasmid extraction, 200ng template is used for to 50 μ l PCR mixtures.5 ' ggggacaagtttgtacaaaaaagcaggcttaaacaatgatgatggagactagagat c3 ') and (SEQ ID NO:257) (reverse complemental AttB2 primer: 5 ' ggggaccactttgtacaagaaagctgggtcatatgtaactctaaatctgttca3 ') for pcr amplification by comprising primer (SEQ ID NO:256) for the AttB site of Gateway restructuring, (there is an adopted AttB1 primer:.In standard conditions, use Hifi Taq archaeal dna polymerase to carry out PCR.Also use standard method amplification and purifying PCR fragment (to comprise attB site; From initial to stopping).Then carry out the first step BP reaction of Gateway method, during this step, PCR fragment and pDONR201 plasmid carry out restructuring in body, thereby produce, according to Gateway nomenclature, " entry clones ".Plasmid pDONR201 is as Gateway
Figure S2006800521587D01712
a part for technology is purchased from Invitrogen.
Embodiment 34a: the structure of carrier
Subsequently entry clones being used to LR with the object carrier one that comprises prolamine transforming for rice reacts.This carrier form with functional element in T-DNA border comprises: plant selectable marker, the marker expression box that can screen and be intended to carry out the Gateway box of recombinating in LR body for the aim sequence with being cloned into entry clones.For the paddy Prolamin promoter (SEQ ID NO:258) of seed-specific expression, be positioned at the upstream of this Gateway box.
After LR reconstitution steps, the gained expression vector shown in Figure 27 is transformed into Agrobacterium strain LBA4044, and then is transformed into rice plant.Make the rice plant's growth transforming, the parameter then just the following describes checks it.About the conversions of other farm crop referring to embodiment 40.
Embodiment 35: assessment and result
Produce about 15 to 20 T0 rice transformant independently.Primary transformant is transferred to and greenhouse, carries out Growth and yield T1 seed from tissue culture room.Reservation T1 offspring with regard to genetically modified presence/absence presents 7 events of separation in 3: 1.For each event in these events, by the expression of monitoring witness marking, the T1 seedling of selecting T1 seedling that about 10 strains comprise transgenosis (heterozygote and homozygote) and about 10 strains to lack transgenosiss (invalid zygote).According to about 4 the T1 events of the further assessment of appraisal procedure with T1 generation identical (but the assessment of every event is more individual).
Plant from 5 events was grown under normal operation until heading stage.Hygroreceptor continuous monitoring soil humidity in the flowerpot of the non-transgenic control plant of the several random selections of use insertion.In the first period, make flowerpot be saturated to 60% maximum value, thereby reduce the otherness of basin and basin.After flowerpot is saturated, stop irrigating until obtain the soil moisture content lower than 20%.Then plant is watered again until soil humidity reaches 60% highest level again.Then plant is taken a picture to assess following relevant and seed correlation parameter.
Root correlation parameter
Plant-growth is had to clear bottom to allow in the flowerpot of observation root specially designed.In growing process, pass through the bottom digital camera document image of flowerpot.Use suitable software from the image producing, to derive the feature of root, for example total projection area (it can be relevant to total root volume), mean diameter and higher than the length (the slightly length of root or the length of radicula) of the root of certain rugosity threshold value.
The measurement of seed correlation parameter
The main panicle that results are ripe, counting, packed, use bar code label are then dried 3 days at 37 ℃ in baking oven.Then to panicle threshing, collect all seeds, then count.Use gas blower that full husk is separated with empty husk.Discard sky husk, then residue fraction is counted again.On analytical balance, take the weight of full husk.The number of the full husk staying after separating step by counting is determined the number of full seed.By taking the weight of all full husks of gathering in the crops from plant, measure total seed production.By counting, from the number of the husk of plant results, measure total number seeds of every strain plant.According to the number of the full seed of counting and its gross weight, calculate thousand seed weight (TKW).Harvest index in the present invention (HI) is defined as seed ultimate production and ground area (mm 2) between ratio be multiplied by the factor 10 6.In the present invention, the sum of every paniculiform flower is the ratio between the total and ripe paniculiform number of master of seed.The full rate of seed defining in the present invention is the ratio (representing with per-cent) that the number of full seed accounts for seed (or little Hua) sum.
Statistical analysis: F check
Statistical models by two-way ANOVA (variance analysis) as net assessment plant phenotype feature.All measuring parameters to all events of all plant with gene transformation of the present invention carry out F check.Carry out F check to check the effect of all transformation events of gene pairs, and check the population effect of gene, be also called " overall genetic effect ".The significance threshold value setting of real overall genetic effect is 5% probability level of F check.If significance F test value points to certain genetic effect, this means to be not only that existence or the position of gene causes the difference in phenotype.
Table X be below presented at GOS2 promotor control lower nucleic acid of expressing encoding D OF transcription factor transgenic plant T2 assessment result and under prolamine promotor is controlled, express the T2 assessment result of transgenic plant of the nucleic acid of encoding D OP transcription factor.Although do not show, obtained suitable result on T1 plant.For listed parameter display in table the p value of F check, and transgenic plant are with respect to the percentage difference of invalid zygote.
The result of Table X: T2 assessment
Figure S2006800521587D01741
Except above-mentioned seed correlation parameter, compare with invalid zygote, in transgenic plant, following parameter also increases: total root biomass increases by 14%, radicula number (internal threshold) increases by 7%, thick radical order (internal threshold) increase by 36% and the mean diameter of root increase by 8%.
Under the condition of slight drought stress, obtained the above results; Be expected under normal or non-stress condition and will obtain similar result.
Embodiment G:CKI
Embodiment 36: the clone of the rice gene of coding CKI4 polypeptide
According to manufacturers instruction, use HybriZAP-2.1 test kit (Stratagene, the rice cell suspension culture cDNA library of cloning in pAD-Gal4-2.1 carrier La Jolla, California USA) is as template, by the encode rice gene of CKI4 polypeptide of pcr amplification.The average inset size in this library is 1.5kb, and clone's original number is about 2 * 10 6pfu.10 10after the amplification for the first time of pfu/ml, initial titer is defined as 4 * 10 6pfu/ml.After plasmid extraction, 200ng template is used for to 50 μ l PCR mixtures.By primer (the SEQ ID NO:284 comprising for the AttB site of Gateway restructuring; Have justice, initiator codon indicates with runic, and AttB1 site indicates with italic: 5 '
Figure S2006800521587D01742
cTTCACA gGCAAGTACATGCGCAAGGCC-3 ') and (SEQ ID NO:285; Oppositely, complementation; AttB2 site indicates with italic: 5 '-
Figure S2006800521587D01744
tGGAGCAGAGAGGTCCATGGTGCCC-3 ') for pcr amplification.Under standard conditions, use Hifi TaqDNA polysaccharase to carry out PCR.Also use the PCR fragment of standard method amplification and purifying 662bp (to comprise attB site; From initial to stopping 585bp).Then carry out the first step BP reaction of Gateway method, during this step, PCR fragment and pDONR201 plasmid carry out restructuring in body, thereby produce, according to Gateway nomenclature, " entry clones ".Plasmid pDONR201 is as Gateway
Figure S2006800521587D01751
a part for technology is purchased from Invitrogen.
Embodiment 37: the structure of carrier
Subsequently entry clones being used to LR with the object carrier one transforming for rice reacts.This carrier form with functional element in T-DNA border comprises: plant selectable marker, the marker expression box that can screen and two Gateway boxes with opposed orientation that are intended to carry out recombinating in LR body for the aim sequence with being cloned into entry clones.These two Gateway boxes (are the 315bp fragment of tobacco matrix attachment regions (MAR) by noncoding DNA in this situation, NCBI referenceU67919, fragment from 774 to 1088bp) separate, thereby after transcribing, promote this mRNA to form hairpin structure.For the rice RP6 prolamine promotor (SEQ IDNO:281) of endosperm specificity expression, be positioned at the upstream of a Gateway box, with this Gateway box opposed orientation.
Also entry clones being used to LR with another object carrier one transforming for rice reacts.Except the rice β expansion protein promoter with SEQ ID NO:282 replaces RP6 prolamine promotor, this carrier is identical with above-described carrier.
After LR reconstitution steps, the expression vector of two gained (about two carriers, referring to Figure 32) is transformed into Agrobacterium strain LBA4044, and then is transformed into rice plant.Make the rice plant's growth transforming, then with regard to the parameter of describing in embodiment 38 and 39, it is checked.About the conversions of other farm crop referring to embodiment 40.
Embodiment 38: the description of phenotype appraisal procedure
Produce about 15 to 20 T0 rice transformant independently.Primary transformant is transferred to greenhouse to carry out Growth and yield T1 seed from tissue culture room.Retain 4 to 5 events that T1 offspring presents separation in 3: 1 with regard to genetically modified presence/absence.For each event in these events, by the expression of monitoring witness marking, the T1 seedling of selecting T1 seedling that about 10 strains comprise transgenosis (heterozygote and homozygote) and about 10 strains to lack transgenosiss (invalid zygote).Transgenic plant and suitable control plant are grown in to random position side by side.From sowing time to the ripening stage, plant is passed through to digital imagery chamber for several times.On each time point, to every strain plant from least 6 different angle shot digital pictures (2048 * 1536 pixels, 1,000 6 hundred ten thousand pigments).
According to the similar events of assessing in T2 is further evaluated at T1 in generation for identical appraisal procedure with T1.
The measurement of seed correlation parameter
Results, counting, packed, with the main panicle of bar code label maturation, then at 37 ℃ in baking oven dry 3 days.Then to panicle threshing, collect all seeds, then count.Use gas blower that full husk is separated with empty husk.Discard sky husk, then residue fraction is counted again.On analytical balance, take the weight of full husk.The number of the full husk staying after separating step by counting is determined the number of full seed.By taking the weight of all full husks of gathering in the crops from plant, measure total seed production.By counting, from the number of the husk of plant results, measure total number seeds of every strain plant.Harvest index in the present invention (HI) is defined as seed ultimate production and ground area (mm 2) between ratio be multiplied by the factor 10 6.The sum of every paniculiform flower is the sum of seed and the ratio between the ripe paniculiform number of master in the present invention.The full rate of seed defining in the present invention is the ratio (representing with per-cent) that the number of full seed accounts for seed (or little Hua) sum.
Statistical analysis: F check
Statistical models by two-way ANOVA (variance analysis) as net assessment plant phenotype feature.All measuring parameters to all events of all plant with gene transformation of the present invention carry out F check.Carry out F check to check the effect of all transformation events of gene pairs, and check the population effect of gene, be also called " overall genetic effect ".The significance threshold value setting of real overall genetic effect is 5% probability level of F check.If significance F test value points to certain genetic effect, this means to be not only that existence or the position of gene causes the difference in phenotype.
Embodiment 39: the assessment result in endosperm with the transgenosis rice plant that the CKI4 of minimizing expresses
In table Y below the assessment of the measurement result (number of seed production, full seed, seed sum and every paniculiform number of spending) in endosperm with the transgenic plant that the CKI4 of minimizing expresses is shown in.The number, average percent that has shown the plant in parameter with increase increases and the P value in T2 generation, and with by using β to expand protein promoter (preferentially expressing) in root tissue, there is the result obtaining in the transgenic plant of CKI4 expression of minimizing and compare.
Result shows that the CKI4 expression reducing in endosperm causes, express the transgenic plant of (using β expansion protein promoter) with invalid zygote and the CKI4 preferentially in root tissue with minimizing and compare, there is seed weight, full seed number, seed sum and every paniculiform several plant of spending of remarkable increase.
Table Y: the assessment of the measurement result in endosperm with the transgenic plant that the CKI4 of minimizing expresses
Figure S2006800521587D01771
Embodiment 40: the conversion of the maize transformation of corn, wheat, soybean, rape (Rapseed) and alfalfa
The improving one's methods of method that use is described by the people such as Ishida (1996) Nature Biotech 14 (6): 745-50 carried out the conversion of corn (Zea mays).In corn, transforming is that genotype is dependent, only has specific genotype to be easy to transform and regenerate.Inbred lines A188 (University ofMinnesota) or the A188 of usining are the good sources of the donor material for transforming as parent's hybrid, but also can successfully use other genotype.After pollination, (DAP) is when within about 11 days, the length when immature embryo is about 1 to 1.2mm, from maize plant results tassel.Immature embryo and the agrobacterium tumefaciens (Agrobacterium tumefaciens) that comprises expression vector are cultivated altogether, by organ, transgenic plant are occurred to recover.The embryo culture cutting off, on callus inducing medium, is for example then cultivated, on the corn regeneration culture medium that comprises selective agent (imidazolone, but can use different selective markers).The in the situation that of illumination, at 25 ℃, hatch culture dish 2 to 3 weeks, or until bud generation.Green bud is transferred to maize rooting substratum from each embryo, at 25 ℃, hatches 2-3 week, until root produces.Then the bud of taking root is migrated in greenhouse soil.From showing the resistance of selective agent and comprising the plant generation T1 seed that list copies T-DNA inset.
Wheat transforms
The method that use is described by the people such as Ishida (1996) Nature Biotech 14 (6): 745-50 is carried out the conversion of wheat.Conventionally by Cultivar Bobwhite (can be from CIMMYT, Mexico obtain) for transforming.Immature embryo and the agrobacterium tumefaciens that comprises expression vector are cultivated altogether, by organ, transgenic plant are occurred to recover.After hatching with Agrobacterium, embryo is carried out on callus inducing medium to vitro culture, then for example, on the regeneration culture medium that comprises selective agent (imidazolone, but can use different selective markers), cultivate.The in the situation that of illumination, at 25 ℃, hatch culture dish 2 to 3 weeks, or until bud generation.Green bud is transferred to root media from each embryo, at 25 ℃, hatches 2-3 week, until root produces.The bud of taking root is migrated in greenhouse soil.From showing the resistance of selective agent and comprising the plant generation T1 seed that list copies T-DNA inset.
Transformation of soybean
According to the soybean transformation of improving one's methods of the method for describing in Texas A & M patent US 5,164,310.Several commercialization soybean varieties are easy to transform by the method.Conventionally by Cultivar Jack (can from Illinois Seed foundation obtain) for transforming.Soybean seeds is sterilized so that external sowing.From 7 age in days seedling, cut hypocotyl, radicle and a slice cotyledon.Allow epicotyl and remaining cotyledon further growth produce armpit joint (axillary node).Cut these armpit joints, by its incubation together with the agrobacterium tumefaciens that comprises expression vector.After common cultivation is processed, washing explant, is then transferred to selection substratum.Cut the bud of regeneration, be placed in bud elongation medium.The bud that length is no more than to 1cm is placed on root media until root generation.The bud of taking root is transferred in the soil in greenhouse.From showing the resistance of selective agent and comprising the plant generation T1 seed that list copies T-DNA inset.
The conversion of rape/Canola
The cotyledon petiole of the seedling of 5-6 age in days and hypocotyl, as the explant of tissue culture, transform it according to the people such as Babic (1998, Plant Cell Rep 17:183-188).Business Cultivar Westar (Agriculture Canada) is the standard variety for transforming, but also can use other kinds.Canola seed is carried out to surface sterilization to carry out external sowing.From external seedling, cut the cotyledon petiole explant with the cotyledon adhering to, then by the otch end of cotyledon petiole explant is immersed in bacterial suspension and inoculates Agrobacterium (comprising expression vector).Then by explant under illumination in 23 ℃, 16 hours, on the MSBAP-3 substratum that comprises 3mg/l BAP, 3% sucrose, 0.7%Phytagar, cultivate 2 days.Cultivating altogether after 2 days with Agrobacterium, cotyledon petiole explant is transferred on the MSBAP-3 substratum that comprises 3mg/l BAP, cefotaxime, Pyocianil or Ticarcillin/Clavulanate Acid (300mg/l) and is cultivated 7 days, then cultivate until shoot regeneration having on the MSBAP-3 substratum of cefotaxime, Pyocianil or Ticarcillin/Clavulanate Acid and selective agent.When the length of bud is 5-10mm, cut off, be then transferred to bud elongation medium (MSBAP-0.5 comprises 0.5mg/l BAP).The bud of the about 2cm of length is transferred to root media (MS0) to carry out root induction.The bud of taking root is migrated in the soil in greenhouse.From showing the resistance of selective agent and comprising the plant generation T1 seed that list copies T-DNA inset.
The conversion of alfalfa
Use the method for people such as (, 1999 Plant Physiol 119:839-847) McKersie to transform the regeneration clone of alfalfa (Medicago sativa).The regeneration of alfalfa and conversion are that genotype is dependent, thereby need the plant of regeneration.Described for obtaining the method for aftergrowth.For example, any other business alfalfa kind that these aftergrowths can be selected from Cultivar Rangelander (Agriculture Canada) or be described by Brown DCW and A Atanassov (1985.Plant Cell Tissue Organ Culture 4:111-112).Selectively, selected RA3 kind (University of Wisconsin) for tissue culture (people such as Walker, 1978 Am J Bot65:654-659).Cotyledon petiole explant and the agrobacterium tumefaciens C58C1 pMP90 that comprises expression vector people such as (, 1999 Plant Physiol 119:839-847) McKersie or the overnight culture of LBA4404 are cultivated altogether.Explant is being comprised to 288mg/L Pro, 53mg/L Thioproline, 4.35g/L K in the dark 2sO 4with on the SH inducing culture of 100 μ m Syringylethanones, cultivate altogether 3 days.At the Murashige-Skoog of half strength substratum (Murashige and Skoog, 1962) in washing explant, then by its kind not containing Syringylethanone but there is suitable selective agent and the identical SH inducing culture of suitable microbiotic (to suppress the growth of Agrobacterium) on.After several weeks, somatic embryo is transferred to not containing growth regulator, antibiotic-free but in the BOi2Y Development culture base that contains 50g/L sucrose.On the Murashige-Skoog of half strength substratum, sprout somatic embryo subsequently.The sprigging of taking root is entered to flowerpot and is grown in greenhouse.From showing the resistance of selective agent and comprising the plant generation T1 seed that list copies T-DNA inset.
Sequence table
<110> Cropdesign NV (CropDesign N.V.)
<120> has plant and the production method thereof of the growth characteristics of improvement
<130>PF57958
<150>EP?05111597.0
<151>2005-12-01
<150>US?60/742,352
<151>2005-12-05
<150>EP?05111691.1
<151>2005-12-05
<150>EP?05111786.9
<151>2005-12-07
<150>US?60/748,903
<151>2005-12-08
<150>US?60/749,219
<151>2005-12-09
<150>EP?05111996.4
<151>2005-12-12
<150>US?60/750,143
<151>2005-12-14
<150>EP?05112562.3
<151>2005-12-21
<150>US?60/753,650
<151>2005-12-23
<150>EP?05113110.0
<151>2005-12-30
<150>EP?05113111.8
<151>2005-12-30
<150>US?60/756,086
<151>2006-01-04
<150>US?60/756,042
<151>2006-01-04
<160>285
<170>PatentIn?version?3.3
<210>1
<211>353
<212>DNA
<213> rice (Oryza sativa)
<400>1
atggaaggtg?taggtgctag?gcagaggagg?aaccctctga?tacccagacc?aaacggttca 60
aagaggcatc?tgcagcatca?gcatcagcca?aatgctgccg?agaagaagac?cgccgcgaca 120
tcgaattact?tcagtatcga?ggcgttcctc?gtgctcgtct?tcctcaccat?gtcattgctc 180
atacttccat?tggtgcttcc?cccattgcct?ccgccgccat?cgctgctgct?gctgctgcca 240
gtctgcctgc?tcatcctgct?ggttgtgctg?gccttcatgc?caacggatgt?gcggagcatg 300
gcttcctctt?acttgtaaat?acatctccta?ggggaattta?tttttgtttt?tga 353
<210>2
<211>105
<212>PRT
<213> rice
<400>2
Met?Glu?Gly?Val?Gly?Ala?Arg?Gln?Arg?Arg?Asn?Pro?Leu?Ile?Pro?Arg
1 5 10 15
Pro?Asn?Gly?Ser?Lys?Arg?His?Leu?Gln?His?Gln?His?Gln?Pro?Asn?Ala
20 25 30
Ala?Glu?Lys?Lys?Thr?Ala?Ala?Thr?Ser?Asn?Tyr?Phe?Ser?Ile?Glu?Ala
35 40 45
Phe?Leu?Val?Leu?Val?Phe?Leu?Thr?Met?Ser?Leu?Leu?Ile?Leu?Pro?Leu
50 55 60
Val?Leu?Pro?Pro?Leu?Pro?Pro?Pro?Pro?Ser?Leu?Leu?Leu?Leu?Leu?Pro
65 70 75 80
Val?Cys?Leu?Leu?Ile?Leu?Leu?Val?Val?Leu?Ala?Phe?Met?Pro?Thr?Asp
85 90 95
Val?Arg?Ser?Met?Ala?Ser?Ser?Tyr?Leu
100 105
<210>3
<211>56
<212>DNA
<213> artificial sequence
<220>
<223> primer: prm08170
<400>3
ggggacaagt?ttgtacaaaa?aagcaggctt?aaacaatgga?aggtgtaggt?gctagg 56
<210>4
<211>51
<212>DNA
<213> artificial sequence
<220>
<223> primer: prm08171
<400>4
ggggaccact?ttgtacaaga?aagctgggtc?aaaaacaaaa?ataaattccc?c 51
<210>5
<211>2193
<212>DNA
<213> rice
<400>5
aatccgaaaa?gtttctgcac?cgttttcacc?ccctaactaa?caatataggg?aacgtgtgct 60
aaatataaaa?tgagacctta?tatatgtagc?gctgataact?agaactatgc?aagaaaaact 120
catccaccta?ctttagtggc?aatcgggcta?aataaaaaag?agtcgctaca?ctagtttcgt 180
tttccttagt?aattaagtgg?gaaaatgaaa?tcattattgc?ttagaatata?cgttcacatc 240
tctgtcatga?agttaaatta?ttcgaggtag?ccataattgt?catcaaactc?ttcttgaata 300
aaaaaatctt?tctagctgaa?ctcaatgggt?aaagagagag?atttttttta?aaaaaataga 360
atgaagatat?tctgaacgta?ttggcaaaga?tttaaacata?taattatata?attttatagt 420
ttgtgcattc?gtcatatcgc?acatcattaa?ggacatgtct?tactccatcc?caatttttat 480
ttagtaatta?aagacaattg?acttattttt?attatttatc?ttttttcgat?tagatgcaag 540
gtacttacgc?acacactttg?tgctcatgtg?catgtgtgag?tgcacctcct?caatacacgt 600
tcaactagca?acacatctct?aatatcactc?gcctatttaa?tacatttagg?tagcaatatc 660
tgaattcaag?cactccacca?tcaccagacc?acttttaata?atatctaaaa?tacaaaaaat 720
aattttacag?aatagcatga?aaagtatgaa?acgaactatt?taggtttttc?acatacaaaa 780
aaaaaaagaa?ttttgctcgt?gcgcgagcgc?caatctccca?tattgggcac?acaggcaaca 840
acagagtggc?tgcccacaga?acaacccaca?aaaaacgatg?atctaacgga?ggacagcaag 900
tccgcaacaa?ccttttaaca?gcaggctttg?cggccaggag?agaggaggag?aggcaaagaa 960
aaccaagcat?cctcctcctc?ccatctataa?attcctcccc?ccttttcccc?tctctatata 1020
ggaggcatcc?aagccaagaa?gagggagagc?accaaggaca?cgcgactagc?agaagccgag 1080
cgaccgcctt?cttcgatcca?tatcttccgg?tcgagttctt?ggtcgatctc?ttccctcctc 1140
cacctcctcc?tcacagggta?tgtgcccttc?ggttgttctt?ggatttattg?ttctaggttg 1200
tgtagtacgg?gcgttgatgt?taggaaaggg?gatctgtatc?tgtgatgatt?cctgttcttg 1260
gatttgggat?agaggggttc?ttgatgttgc?atgttatcgg?ttcggtttga?ttagtagtat 1320
ggttttcaat?cgtctggaga?gctctatgga?aatgaaatgg?tttagggtac?ggaatcttgc 1380
gattttgtga?gtaccttttg?tttgaggtaa?aatcagagca?ccggtgattt?tgcttggtgt 1440
aataaaagta?cggttgtttg?gtcctcgatt?ctggtagtga?tgcttctcga?tttgacgaag 1500
ctatcctttg?tttattccct?attgaacaaa?aataatccaa?ctttgaagac?ggtcccgttg 1560
atgagattga?atgattgatt?cttaagcctg?tccaaaattt?cgcagctggc?ttgtttagat 1620
acagtagtcc?ccatcacgaa?attcatggaa?acagttataa?tcctcaggaa?caggggattc 1680
cctgttcttc?cgatttgctt?tagtcccaga?attttttttc?ccaaatatct?taaaaagtca 1740
ctttctggtt?cagttcaatg?aattgattgc?tacaaataat?gcttttatag?cgttatccta 1800
gctgtagttc?agttaatagg?taatacccct?atagtttagt?caggagaaga?acttatccga 1860
tttctgatct?ccatttttaa?ttatatgaaa?tgaactgtag?cataagcagt?attcatttgg 1920
attatttttt?ttattagctc?tcaccccttc?attattctga?gctgaaagtc?tggcatgaac 1980
tgtcctcaat?tttgttttca?aattcacatc?gattatctat?gcattatcct?cttgtatcta 2040
cctgtagaag?tttctttttg?gttattcctt?gactgcttga?ttacagaaag?aaatttatga 2100
agctgtaatc?gggatagtta?tactgcttgt?tcttatgatt?catttccttt?gtgcagttct 2160
tggtgtagct?tgccactttc?accagcaaag?ttc 2193
<210>6
<211>3
<212>PRT
<213> artificial sequence
<220>
<223> guards primitive 1a
<400>6
Tyr?Phe?Ser
1
<210>7
<211>3
<212>PRT
<213> artificial sequence
<220>
<223> guards primitive 1b
<400>7
Tyr?Phe?Thr
1
<210>8
<211>3
<212>PRT
<213> artificial sequence
<220>
<223> guards primitive 1c
<400>8
Tyr?Phe?Gly
1
<210>9
<211>3
<212>PRT
<213> artificial sequence
<220>
<223> guards primitive 1d
<400>9
Tyr?Leu?Gly
1
<210>10
<211>7
<212>PRT
<213> artificial sequence
<220>
<223> guards primitive 2
<220>
<221> variant
<222>(1)..(1)
<223>/ displacement=" Ala "/displacement=" Ile "
<220>
<221> variant
<222>(7)..(7)
<223>/ displacement=" Ser "
<400>10
Val?Leu?Ala?Phe?Met?Pro?Thr
1 5
<210>11
<211>3
<212>PRT
<213> artificial sequence
<220>
<223> guards primitive 3
<220>
<221> variant
<222>(1)..(1)
<223>/ displacement=" Pro "
<400>11
Ser?Tyr?Leu
1
<210>12
<211>178
<212>PRT
<213> rice
<400>12
Met?Tyr?Leu?Leu?Ser?Pro?Arg?Asn?Gly?Asp?Glu?Glu?Asp?Glu?Gln?Glu
1 5 10 15
Glu?Ile?Gln?Glu?Leu?Ile?Ser?Asp?Asp?Glu?Pro?Pro?Asn?Leu?Lys?Leu
20 25 30
Ala?Ser?Cys?Ala?Thr?Ala?Ala?Ser?Ser?Ser?Ser?Ser?Ser?Gly?Ser?Asp
35 40 45
Met?Glu?Lys?Gly?Arg?Gly?Lys?Ala?Cys?Gly?Gly?Gly?Ser?Thr?Ala?Pro
50 55 60
Pro?Pro?Pro?Pro?Pro?Ser?Ser?Ser?Gly?Lys?Ser?Gly?Gly?Gly?Gly?Gly
65 70 75 80
Ser?Asn?Ile?Arg?Glu?Ala?Ala?Ala?Ser?Gly?Gly?Gly?Gly?Gly?Val?Trp
85 90 95
Gly?Lys?Tyr?Phe?Ser?Val?Glu?Ser?Leu?Leu?Leu?Leu?Val?Cys?Val?Thr
100 105 110
Ala?Ser?Leu?Val?Ile?Leu?Pro?Leu?Val?Leu?Pro?Pro?Leu?Pro?Pro?Pro
115 120 125
Pro?Ser?Met?Leu?Met?Leu?Val?Pro?Val?Ala?Met?Leu?Val?Leu?Leu?Leu
130 135 140
Ala?Leu?Ala?Phe?Met?Pro?Thr?Thr?Thr?Ser?Ser?Ser?Ser?Ser?Ala?Gly
145 150 155 160
Gly?Gly?Gly?Gly?Gly?Gly?Arg?Asn?Gly?Ala?Thr?Thr?Gly?His?Ala?Pro
165 170 175
Tyr?Leu
<210>13
<211>126
<212>PRT
<213> rice
<400>13
Met?Leu?Leu?Glu?His?Leu?Met?Ile?Thr?Met?Glu?Glu?Gln?Met?Phe?Arg
1 5 10 15
Glu?Gln?Gln?Met?Gln?Arg?Gly?Gly?Arg?His?His?Gln?His?His?Thr?Thr
20 25 30
Arg?Glu?Gln?Glu?Gln?Gln?Gln?Lys?Gln?Gln?Gln?Arg?Arg?Arg?Leu?Met
35 40 45
Asn?Asn?Ala?Thr?Asn?Gly?Gly?Gly?Gly?Asp?Gly?Gly?Ser?Arg?Cys?Tyr
50 55 60
Phe?Ser?Thr?Glu?Ala?Ile?Leu?Val?Leu?Ala?Cys?Val?Thr?Val?Ser?Leu
65 70 75 80
Leu?Val?Leu?Pro?Leu?Ile?Leu?Pro?Pro?Leu?Pro?Pro?Pro?Pro?Thr?Leu
85 90 95
Leu?Leu?Leu?Leu?Pro?Val?Cys?Leu?Leu?Ala?Leu?Leu?Val?Val?Leu?Ala
100 105 110
Phe?Met?Pro?Thr?Asp?Met?Arg?Thr?Met?Ala?Ser?Ser?Tyr?Leu
115 120 125
<210>14
<211>105
<212>PRT
<213> Zea mays (Zea mays)
<220>
<221> is uncertain
<222>(65)..(75)
<223>Xaa can be any natural amino acid
<400>14
Met?Ala?Ser?Arg?Ser?Ser?Ala?Met?Glu?Gly?Gly?Ala?Ala?Ile?Gln?Arg
1 5 10 15
Arg?Asn?Ala?Val?Lys?Arg?His?Leu?Gln?Gln?Arg?Gln?Gln?Glu?Ala?Asp
20 25 30
Phe?Leu?Asp?Lys?Lys?Val?Ile?Ala?Ser?Thr?Tyr?Phe?Ser?Ile?Gly?Ala
35 40 45
Phe?Leu?Val?Leu?Ala?Cys?Leu?Thr?Val?Ser?Leu?Leu?Ile?Leu?Pro?Leu
50 55 60
Xaa?Xaa?Xaa?Xaa?Xaa?Xaa?Xaa?Xaa?Xaa?Xaa?Xaa?Leu?Leu?Trp?Leu?Pro
65 70 75 80
Val?Cys?Leu?Leu?Val?Leu?Leu?Val?Val?Leu?Ala?Phe?Met?Pro?Thr?Asp
85 90 95
Val?Arg?Ser?Met?Ala?Ser?Ser?Tyr?Leu
100 105
<210>15
<211>110
<212>PRT
<213> common wheat (Triticum aestivum)
<400>15
Met?Asp?Ser?Gln?Phe?Gly?Ala?Leu?Glu?Arg?Gly?Gly?Ser?Arg?Gln?Arg
1 5 10 15
Arg?Ser?Pro?Val?Leu?Ala?Arg?Pro?Asn?Thr?Thr?Lys?Arg?His?Ile?Gln
20 25 30
Gln?Gln?Arg?Ala?Asn?Ala?Ala?Asp?Lys?Lys?Val?Val?Met?Pro?Asn?Tyr
35 40 45
Phe?Ser?Ile?Glu?Ala?Phe?Phe?Val?Leu?Ala?Cys?Leu?Thr?Val?Ser?Leu
50 55 60
Leu?Ile?Leu?Pro?Leu?Val?Leu?Pro?Pro?Leu?Pro?Pro?Pro?Pro?Ser?Leu
65 70 75 80
Leu?Leu?Phe?Val?Pro?Val?Cys?Leu?LeuIle?Leu?Leu?Met?Val?Leu?Ala
85 90 95
Phe?Met?Pro?Thr?Asp?Met?Arg?Ser?Met?Ala?Thr?Ser?Tyr?Leu
100 105 110
<210>16
<211>110
<212>PRT
<213> barley (Hordeum vulgare)
<400>16
Met?Asp?Ser?Gln?Phe?Gly?Ala?Met?Asp?Arg?Gly?Gly?Ser?Arg?Gln?Arg
1 5 10 15
Ser?Ser?Pro?Val?Leu?Ala?Arg?Pro?Asn?Thr?Ala?Lys?Arg?Gln?Met?Gln
20 25 30
Gln?Gln?Arg?Ala?Asn?Ala?Ala?Asp?Lys?Lys?Val?Val?Ile?Pro?Asn?Tyr
35 40 45
Phe?Gly?Val?Glu?Ala?Phe?Phe?Val?Leu?Ala?Cys?Leu?Thr?Val?Ser?Leu
50 55 60
Leu?Ile?Leu?Pro?Leu?Val?Leu?Pro?Pro?Leu?Pro?Pro?Pro?Pro?Ser?Leu
65 70 75 80
Leu?Leu?Leu?Leu?Pro?Val?Cys?Leu?Leu?Ile?Leu?Leu?Met?Val?Leu?Ala
85 90 95
Phe?Met?Pro?Thr?Asp?Val?Arg?Ser?Met?Ala?Thr?Ser?Tyr?Leu
100 105 110
<210>17
<211>99
<212>PRT
<213> sugarcane (Saccharum officinarum)
<220>
<221> is uncertain
<222>(62)..(62)
<223>Xaa can be any natural amino acid
<400>17
Met?Glu?Gly?Gly?Gly?Gln?Ile?Gln?Arg?Arg?Asn?Asn?Ala?Val?Lys?Arg
1 5 10 15
His?Leu?Gln?Gln?Arg?Gln?Gln?Glu?Ala?Asp?Phe?Leu?Asp?Lys?Lys?Val
20 25 30
Ile?Ala?Ser?Thr?Tyr?Phe?Ser?Ile?Glu?Ala?Phe?Leu?Val?Leu?Ala?Cys
35 40 45
Leu?Thr?Val?Ser?Leu?Leu?Ile?Leu?Pro?Leu?Val?Leu?Pro?Xaa?Leu?Pro
50 55 60
Ala?Pro?Ala?Ser?Leu?Leu?Leu?Trp?Leu?Pro?Val?Trp?Leu?Leu?Glu?Leu
65 70 75 80
Leu?Ile?Val?Leu?Ala?Phe?Met?Pro?Thr?Asp?Val?Arg?Ser?Met?Ala?Ser
85 90 95
Ser?Tyr?Leu
<210>18
<211>99
<212>PRT
<213> sugarcane
<400>18
Met?Glu?Gly?Gly?Gly?Gln?Ile?Gln?Arg?Arg?Asn?Asn?Ala?Val?Lys?Arg
1 5 10 15
His?Leu?Gln?Gln?Arg?Gln?Gln?Glu?Ala?Asp?Phe?Leu?Asp?Lys?Lys?Val
20 25 30
Ile?Ala?Ser?Thr?Tyr?Phe?Ser?Ile?Glu?Ala?Phe?Leu?Val?Leu?Ala?Cys
35 40 45
Leu?Thr?Val?Ser?Leu?Leu?Ile?Leu?Pro?Leu?Val?Leu?Pro?Pro?Leu?Pro
50 55 60
Pro?Pro?Pro?Ser?Leu?Leu?Leu?Trp?Leu?Pro?Val?Cys?Leu?Leu?Ile?Leu
65 70 75 80
Leu?Ile?Val?Leu?Ala?Phe?Met?Pro?Thr?Asp?Val?Arg?Ser?Met?Ala?Ser
85 90 95
Ser?Tyr?Leu
<210>19
<211>107
<212>PRT
<213> Chinese sorghum (Sorghum bicolour)
<400>19
Met?Ala?Ser?Arg?Ser?Ser?Ala?Leu?Glu?Gly?Gly?Gly?Ala?Ala?Ile?Gln
1 5 10 15
Arg?Arg?Asn?Asn?Ala?Val?Lys?Arg?His?Leu?Gln?Gln?Arg?Gln?Gln?Glu
20 25 30
Ala?Asp?Phe?His?Asp?Lys?Lys?Val?Ile?Ala?Ser?Thr?Tyr?Phe?Ser?Ile
35 40 45
Gly?Ala?Phe?Leu?Val?Leu?Ala?Cys?Leu?Thr?Phe?Ser?Leu?Leu?Ile?Leu
50 55 60
Pro?Leu?Val?Leu?Pro?Pro?Leu?Pro?Pro?Pro?Pro?Ser?Leu?Leu?Leu?Trp
65 70 75 80
Leu?Pro?Val?Cys?Leu?Leu?Val?Leu?Leu?Val?Val?Leu?Ala?Phe?Met?Pro
85 90 95
Thr?Asp?Val?Arg?Ser?Val?Ala?Ala?Ser?Tyr?Leu
100 105
<210>20
<211>130
<212>PRT
<213> Arabidopis thaliana (Arabidopsis thaliaha)
<400>20
Met?Ile?Arg?Glu?Ile?Ser?Asn?Leu?Gln?Lys?Asp?Ile?Ile?Asn?Ile?Gln
1 5 10 15
Asp?Ser?Tyr?Ser?Asn?Asn?Arg?Val?Met?Asp?Val?Gly?Arg?Asn?Asn?Arg
20 25 30
Lys?Asn?Met?Ser?Phe?Arg?Ser?Ser?Pro?Glu?Lys?Ser?Lys?Gln?Glu?Leu
35 40 45
Arg?Arg?Ser?Phe?Ser?Ala?Gln?Lys?Arg?Met?Met?Ile?Pro?Ala?Asn?Tyr
50 55 60
Phe?Ser?Leu?Glu?Ser?Leu?Phe?Leu?Leu?Val?Gly?Leu?Thr?Ala?Ser?Leu
65 70 75 80
Leu?Ile?Leu?Pro?Leu?Val?Leu?Pro?Pro?Leu?Pro?Pro?Pro?Pro?Phe?Met
85 90 95
Leu?Leu?Leu?Val?Pro?Ile?Gly?Ile?Met?Val?Leu?Leu?Val?Val?Leu?Ala
100 105 110
Phe?Met?Pro?Ser?Ser?His?Ser?Asn?Ala?Asn?Thr?Asp?Val?Thr?Cys?Asn
115 120 125
Phe?Met
130
<210>21
<211>135
<212>PRT
<213> Arabidopis thaliana
<400>21
Met?Ile?Arg?Glu?Phe?Ser?Ser?Leu?Gln?Asn?Asp?Ile?Ile?Asn?Ile?Gln
1 5 10 15
Glu?His?Tyr?Ser?Leu?Asn?Asn?Asn?Met?Asp?Val?Arg?Gly?Asp?His?Asn
20 25 30
Arg?Lys?Asn?Thr?Ser?Phe?Arg?Gly?Ser?Ala?Pro?Ala?Pro?Ile?Met?Gly
35 40 45
Lys?Gln?Glu?Leu?Phe?Arg?Thr?Leu?Ser?Ser?Gln?Asn?Ser?Pro?Arg?Arg
50 55 60
Leu?Ile?Ser?Ala?Ser?Tyr?Phe?Ser?Leu?Glu?Ser?Met?Val?Val?Leu?Val
65 70 75 80
Gly?Leu?Thr?Ala?Ser?Leu?Leu?Ile?Leu?Pro?Leu?Ile?Leu?Pro?Pro?Leu
85 90 95
Pro?Pro?Pro?Pro?Phe?Met?Leu?Leu?Leu?Ile?Pro?Ile?Gly?Ile?Met?Val
100 105 110
Leu?Leu?Met?Val?Leu?Ala?Phe?Met?Pro?Ser?Ser?Asn?Ser?Lys?His?Val
115 120 125
Ser?Ser?Ser?Ser?Thr?Phe?Met
130 135
<210>22
<211>139
<212>PRT
<213> grape (Vitis vinifera)
<400>22
Met?Ser?Ile?Glu?Gln?Pro?Glu?Ala?Asp?Ser?Arg?Leu?Ser?Glu?Gly?Pro
1 5 10 15
Leu?Ile?Asn?Leu?Gln?Asp?Arg?Tyr?Leu?Ser?Gly?Ile?Met?Glu?Ala?Arg
20 25 30
Gly?Arg?Arg?Asn?Ser?Ala?Pro?Leu?Gln?Val?Glu?Arg?Lys?Asn?Pro?Thr
35 40 45
Pro?Pro?Met?Ala?Glu?Gly?Lys?Lys?Met?Glu?Tyr?Asn?Arg?Thr?Pro?Leu
50 55 60
Ser?Arg?Glu?Asn?Ser?Arg?Arg?Leu?Ile?Pro?Ala?Ser?Tyr?Phe?Ser?Leu
65 70 75 80
Glu?Ser?Leu?Leu?Leu?Leu?Ile?Cys?Leu?Thr?Ala?Ser?Leu?Leu?Ile?Leu
85 90 95
Pro?Leu?Ile?Leu?Pro?Pro?Leu?Pro?Pro?Pro?Pro?Phe?Met?Leu?Leu?Leu
100 105 110
Leu?Pro?Ile?Gly?Ile?Leu?Ala?Val?Leu?Met?Ile?Leu?Ala?Phe?Met?Pro
115 120 125
Ser?Asn?Val?Arg?Asp?Leu?Thr?Tyr?Thr?Tyr?Val
130 135
<210>23
<21l>126
<212>PRT
<213> Citrus (Citrus sp.)
<220>
<221> is uncertain
<222>(103)..(103)
<223>Xaa can be any natural amino acid
<400>23
Met?Asn?Ser?Asp?Asn?Ser?Glu?Ser?Arg?Gln?Arg?Leu?Ser?Lys?Gly?Ile
1 5 10 15
Ile?Asn?Leu?Gln?Asp?Arg?Tyr?Pro?Thr?Ser?Ile?Met?Asp?Arg?Gly?Val
20 25 30
Arg?Lys?Ile?Ala?Thr?Pro?Pro?Val?Glu?Lys?Arg?Lys?Val?Glu?Tyr?His
35 40 45
Arg?Ser?Tyr?Ser?Gln?Gly?Ala?Ser?Arg?Lys?Leu?Phe?Ser?Ala?Ser?Tyr
50 55 60
Phe?Thr?Leu?Glu?Ser?Leu?Leu?Leu?Leu?Val?Cys?Leu?Thr?Ala?Ser?Leu
65 70 75 80
Leu?Ile?Leu?Pro?Leu?Val?Leu?Pro?Pro?Leu?Pro?Pro?Pro?Pro?Phe?Leu
85 90 95
Leu?Leu?Leu?Val?Pro?Ile?Xaa?Ile?Leu?Ala?Val?Leu?Leu?Val?Leu?Ala
100 105 110
Phe?Met?Pro?Ser?Asn?Val?Arg?Asp?Ile?Thr?Ser?Thr?Tyr?Val
115 120 125
<210>24
<211>118
<212>PRT
<213> tomato (Lycorpersicon esculentum)
<400>24
Met?Asn?Met?Asp?Met?Glu?Ser?Ser?Glu?Ala?Lys?Leu?Arg?Ser?Ser?Lys
1 5 10 15
Gly?Phe?Ile?Asn?Leu?Glu?Glu?His?Gln?Gln?Tyr?Phe?Asn?Asn?Ile?Met
20 25 30
Glu?Gly?Asn?Lys?Met?Glu?His?Lys?Arg?Ser?Phe?Thr?Gln?Gly?His?Gly
35 40 45
Lys?Lys?Met?Leu?Ser?Met?Asn?Tyr?Phe?Ser?Leu?Glu?Ser?Ile?Ile?Leu
50 55 60
Leu?Leu?Gly?Leu?Thr?Ala?Ser?Leu?Leu?Leu?Leu?Pro?Leu?Met?Leu?Pro
65 70 75 80
Pro?Leu?Pro?Pro?Pro?Pro?Phe?Met?Leu?Leu?Leu?Val?Pro?Ile?Phe?Ile
85 90 95
Leu?Val?Val?Leu?Met?Ile?Leu?Ala?Phe?Met?Pro?Ser?Asn?Val?Arg?Asn
100 105 110
Val?Thr?Cys?Ser?Tyr?Leu
115
<210>25
<211>87
<212>PRT
<213> tomato
<400>25
Met?Glu?Gly?Asn?Lys?Met?Glu?His?Lys?Arg?Ser?Phe?Thr?Gln?Gly?His
1 5 10 15
Gly?Lys?Lys?Met?Leu?Ser?Met?Asn?Tyr?Phe?Ser?Leu?Glu?Ser?Ile?Ile
20 25 30
Leu?Leu?Leu?Gly?Leu?Thr?Ala?Ser?Leu?Leu?Leu?Leu?Pro?Leu?Met?Leu
35 40 45
Pro?Pro?Leu?Pro?Pro?Pro?Pro?Phe?Met?Leu?Leu?Leu?Val?Pro?Ile?Phe
50 55 60
Ile?Leu?Val?Val?Leu?Met?Ile?Leu?Ala?Phe?Met?Pro?Ser?Asn?Val?Arg
65 70 75 80
Asn?Val?Thr?Cys?Ser?Tyr?Leu
85
<210>26
<211>106
<212>PRT
<213> Arabidopis thaliana
<400>26
Met?Asp?Val?Gly?Arg?Asn?Asn?Arg?Lys?Asn?Met?Ser?Phe?Arg?Ser?Ser
1 5 10 15
Pro?Glu?Lys?Ser?Lys?Gln?Glu?Leu?Arg?Arg?Ser?Phe?Ser?Ala?Gln?Lys
20 25 30
Arg?Met?Met?Ile?Pro?Ala?Asn?Tyr?Phe?Ser?Leu?Glu?Ser?Leu?Phe?Leu
35 40 45
Leu?Val?Gly?Leu?Thr?Ala?Ser?Leu?Leu?Ile?Leu?Pro?Leu?Val?Leu?Pro
50 55 60
Pro?Leu?Pro?Pro?Pro?Pro?Phe?Met?Leu?Leu?Leu?Val?Pro?Ile?Gly?Ile
65 70 75 80
Met?Val?Leu?Leu?Val?Val?Leu?Ala?Phe?Met?Pro?Ser?Ser?His?Ser?Asn
85 90 95
Ala?Asn?Thr?Asp?Val?Thr?Cys?Asn?Phe?Met
100 105
<210>27
<211>537
<212>DNA
<213> rice
<400>27
atgtacttgt?tgagcccaag?aaatggcgac?gaggaggacg?aacaggagga?aatccaggag 60
ctgatcagcg?acgacgagcc?gcccaatctc?aagttggcat?cctgcgccac?tgcagccagc 120
agcagcagca?gcagcggcag?cgacatggag?aagggaagag?gtaaagcctg?cggcggcggg 180
agtacggcgc?cgccgccgcc?gccgccgtcg?tcgtcaggta?aatccggcgg?cggcggcggc 240
agcaatatca?gggaggcggc?ggctagcggc?ggcggcggcg?gcgtgtgggg?caagtacttc 300
tcggtggagt?cgctgctcct?gctggtgtgc?gtgacggcgt?cgctggtgat?cctcccgctc 360
gtgctgccgc?cgctgccccc?gccgccgtcg?atgctgatgc?tggtgccggt?ggcgatgctg 420
gtgctgctgc?tggcgctggc?gttcatgccg?acgacgacgt?cgtcgtcgtc?gtccgccggc 480
ggcggcggcg?gcggcggccg?caatggggcg?acgacgggac?atgctcccta?cttgtag 537
<210>28
<211>538
<212>DNA
<213> Zea mays
<220>
<221>misc_feature
<222>(177)..(208)
<223>n is a, c, g, or t
<220>
<221>misc_feature
<222>(493)..(493)
<223>n is a, c, g, or t
<400>28
ttcacattac?actcatgact?cgtcttagga?cgaatcctgc?agctgcaaaa?cacagaaaat 60
ctggccaaga?cctatttatc?tatttacagg?taagaggagg?ccatgctgcg?cacatctgtc 120
ggcatgaagg?ccagtacaac?cagcaagacg?agcaggcaga?ccggcagcca?cagcagnnnn 180
nnnnnnnnnn?nnnnnnnnnn?nnnnnnnncc?agcggcagta?tcagcagcga?gacggtgagg 240
caggcgagca?cgaggaatgc?cccgatgctg?aagtaggtgg?acgcgatgac?cttcttgtcg 300
aggaaatccg?cctcctgctg?acgctgctgc?agatgccgct?tcacggcatt?cctcctttgt 360
attgccgccc?ctccttccat?cgcgctagat?cggcttgcca?tgtgttcttt?ggtgtaggcg 420
gaggtggaga?ccagtcgcag?tgagtggttg?ccaaagtaag?caagaagtga?aaggcggtgt 480
agaaccgcct?tgngttttct?gaacgttttg?taatcagatc?tgagctcggg?tggtcgaa 538
<210>29
<21l>578
<212>DNA
<213> grape
<400>29
tttttttttt?tttttttaat?caagaaataa?aataactgat?tttcatctga?atatcaagac 60
aaataacaaa?aattgtatga?tgagaagagg?tgcacttttg?aacaccacca?tttacacata 120
tgtataagtc?aaatctctga?cattagaagg?catgaaagcc?aagatcataa?gcactgctag 180
aatgccaatg?gggagcagaa?gcagcatgaa?aggagggggt?ggcaatggtg?gtagtatcag 240
gggaaggatc?agcaatgaag?ccgtgagaca?gatgagcaaa?agcaatgact?ccaagctgaa 300
atagcttgct?gggatcagtc?tcctgctgtt?ctctcgtgag?aggggagttc?tattatattc 360
catcttcttt?ccttcggcca?taggaggagt?agggtttttc?ctctcaactt?gcagaggagc 420
agagttcctc?cttcctctcg?cttccatgat?gccactcaaa?tatcgatctt?gcagattgat 480
caaaggtcct?tcagacagtc?ttgaatctgc?ttcaggctgc?tcaatactca?tttaaatttc 540
tcctttaccg?gtcaccaagt?tccaaccggt?tcaaagta 578
<210>30
<21l>704
<212>DNA
<213> tangerine (Citrus reticulate)
<220>
<221>misc_feature
<222>(619)..(619)
<223>n is a, c, g, or t
<400>30
agggtttctt?caaagatagg?tagccatttg?cacatttgaa?tctgcttgtt?ggatattgtc 60
aaggaggctg?ttggaattag?gccacatttc?agaatctggt?ttcatcctgg?atcgctgggc 120
atttgaaggc?attttgtgat?catcgctgtt?taaaatttgg?ccgcatatta?gaatctgggt 180
tctcatcggt?tttccgtaca?tttaccttga?ccacattttg?atatctgggt?tgagctgcat 240
tttagccttc?gtatttaaaa?ggacttgatc?taatctgggg?tcttggtgag?ccggggcaac 300
tgatcatagt?aaatgaattc?tgataattct?gagtcgagac?agagactatc?aaagggcatt 360
ataaacttgc?aagatcgata?tccgaccagc?attatggatc?gtggtgtaag?aaaaattgca 420
actcctccgg?tcgagaagag?gaaagttgag?tatcaccgaa?gttactcgca?aggggcatcc 480
agaaaactgt?tttcggcaag?ctatttcacc?ctggaatcat?tgcttttgct?cgtatgtctg 540
acggcctcat?tgctgatcct?gccattggtg?cttccgccct?tgccgccccc?gccattcctg 600
ctgcttctgg?ttcctatang?tattctagcc?gtgcttttgg?tcttggcatt?catgccttct 660
aatgtaagag?atataacttc?cacgtacgtg?taaatggtgt?tgct 704
<210>31
<211>382
<212>DNA
<213> tomato
<400>31
gaaaaaaatg?tatttaatca?ttatgtaaaa?aacaagtgaa?tctactttga?tattttcttc 60
taaattaaac?cacacaatta?aagatatgag?caagtcacat?tcctaacatt?agaaggcata 120
aaagctaaga?tcataagaac?aacaagaatg?aaaattggga?ctaacaacaa?cataaaaggt 180
ggtggtggca?atggtggaag?catcaatggc?aaaagtaaca?aagatgctgt?aagaccaagt 240
aacaaaataa?ttgactctaa?gctaaaataa?ttcattgaca?acattttctt?gccatgtcct 300
tgtgtaaatg?atctcttatg?ctccatctta?ttgccttcca?taatgttgtt?gaaatattgt 360
tgatgttcct?ccaaattaat?aa 382
<210>32
<211>624
<212>DNA
<213> tomato
<400>32
tttgttaaag?attggcacat?tttcaagttc?agtattcatt?cgatttttga?tatctacata 60
aaaaaaaagt?gtcctggtac?tactcaatat?tcctcagaac?gacttcatat?tcaggtctcg 120
aattcaaaac?ctcacatcaa?gattcttagg?aaatttcaag?attggttgaa?aaactcatat 180
ccttctctaa?gtttcaagat?tggttccaaa?ttaaaactcg?agacttctga?gtaagagcgt 240
acgactagta?atgaacatgg?acatggaatc?atcagaggca?aaattgagat?catcaaaagg 300
gtttattaat?ttggaggaac?atcaacaata?tttcaacaac?attatggaag?gcaataagat 360
ggagcataag?agatcattta?cacaaggaca?tggcaagaaa?atgttgtcaa?tgaattattt 420
tagcttagag?tcaattattt?tgttacttgg?tcttacagca?tctttgttac?ttttgccatt 480
gatgcttcca?ccattgccac?caccaccttt?tatgttgttg?ttagtcccaa?ttttcattct 540
tgttgttctt?atgatcttag?cttttatgcc?ttctaatgtt?aggaatgtga?cttgctcata 600
tctttaattg?tgtggtttaa?ttta 624
<210>33
<211>1130
<212>DNA
<213> rice
<400>33
catgcggcta?atgtagatgc?tcactgcgct?agtagtaagg?tactccagta?cattatggaa 60
tatacaaagc?tgtaatactc?gtatcagcaa?gagagaggca?cacaagttgt?agcagtagca 120
caggattaga?aaaacgggac?gacaaatagt?aatggaaaaa?caaaaaaaaa?caaggaaaca 180
catggcaata?taaatggaga?aatcacaaga?ggaacagaat?ccgggcaata?cgctgcgaaa 240
gtactcgtac?gtaaaaaaaa?gaggcgcatt?catgtgtgga?cagcgtgcag?cagaagcagg 300
gatttgaaac?cactcaaatc?caccactgca?aaccttcaaa?cgaggccatg?gtttgaagca 360
tagaaagcac?aggtaagaag?cacaacgccc?tcgctctcca?ccctcccacc?caatcgcgac 420
gcacctcgcg?gatcggtgac?gtggcctcgc?cccccaaaaa?tatcccgcgg?cgtgaagctg 480
acaccccggg?cccacccacc?tgtcacgttg?gcacatgttg?gttatggttc?ccggccgcac 540
caaaatatca?acgcggcgcg?gcccaaaatt?tccaaaatcc?cgcccaagcc?cctggcgcgt 600
gccgctcttc?cacccaggtc?cctctcgtaa?tccataatgg?cgtgtgtacc?ctcggctggt 660
tgtacgtggg?cgggttaccc?tgggggtgtg?ggtggatgac?gggtgggccc?ggaggaggtc 720
cggccccgcg?cgtcatcgcg?gggcggggtg?tagcgggtgc?gaaaaggagg?cgatcggtac 780
gaaaattcaa?attaggaggt?ggggggcggg?gcccttggag?aataagcgga?atcgcagata 840
tgcccctgac?ttggcttggc?tcctcttctt?cttatccctt?gtcctcgcaa?ccccgcttcc 900
ttctctcctc?tcctcttctc?ttctcttctc?tggtggtgtg?ggtgtgtccc?tgtctcccct 960
ctccttcctc?ctctcctttc?ccctcctctc?ttcccccctc?tcacaagaga?gagagcgcca 1020
gactctcccc?aggtgaggtg?agaccagtct?ttttgctcga?ttcgacgcgc?ctttcacgcc 1080
gcctcgcgcg?gatctgaccg?cttccctcgc?ccttctcgca?ggattcagcc 1130
<210>34
<211>77
<212>PRT
<213> alfalfa (Medicago sativa)
<400>34
Met?Val?Arg?Cys?Phe?Ser?Leu?Gly?Ser?Val?Leu?Ile?Leu?Ile?Ala?Leu
1 5 10 15
Ala?Ala?Ser?Met?Val?Val?Leu?Pro?Leu?Met?Leu?Pro?Pro?Leu?Pro?Pro
20 25 30
Pro?Pro?Leu?Ala?Leu?Leu?Phe?Phe?Pro?Val?Gly?Ile?Met?Ala?Ala?Leu
35 40 45
Val?Val?Leu?Ala?Phe?Ser?Pro?Ser?Glu?Asn?Val?Lys?Asn?Val?Val?Val
50 55 60
Tyr?Ser?Ser?Ser?Ser?Ser?Gly?Ile?Ala?Asn?Ser?Lys?Arg
65 70 75
<210>35
<211>78
<212>PRT
<213> alfalfa
<400>35
Met?Ile?Met?Val?Ala?Ser?Lys?Glu?Lys?Thr?Asn?Ser?Gly?Gly?Cys?Met
1 5 10 15
Phe?Arg?Tyr?Ser?Val?Leu?Ile?Leu?Ser?Leu?Leu?Ala?Leu?Ser?Ile?Leu
20 25 30
Val?Leu?Pro?Leu?Val?Met?Pro?Pro?Leu?Pro?Pro?Pro?Pro?Leu?Leu?Leu
35 40 45
Leu?Leu?Val?Pro?Val?Phe?Ile?Met?Leu?Leu?Leu?Phe?Phe?Ile?Ala?Phe
50 55 60
Ser?Pro?Ser?Lys?Lys?Val?Pro?Asn?Lys?Ala?Ser?Phe?Val?Ser
65 70 75
<210>36
<211>613
<212>DNA
<213> barley
<400>36
cttccgagaa?agatgcttca?tattgcactc?atcttatgcc?aacacacaat?cagaaacaaa 60
aaccacgcag?caagcctatt?tacaagtaag?aggtggccat?gctccgcaca?tcagtcggca 120
tgaaggccag?caccatcaac?aggatgagca?agcagaccgg?caagagcagc?agtagcgatg 180
gcggtggggg?caacggaggc?agcaccaatg?gcagtatgag?caatgaaacg?gtgaggcagg 240
cgagcacgaa?gaacgcttcg?acgccgaagt?agttcggtat?gacaaccttc?ttgtcagcag 300
catttgccct?ctgctgctgc?atttgcctct?ttgcagtatt?tggtctggct?aacacagggc 360
tgctcctctg?cctactaccg?cctctgtcca?ttgcaccgaa?ctggctatcc?atctattctt 420
tggtgagtgc?agatcagcgg?ctatccagga?actgagatga?ataagaactt?gtggaatctg 480
aaggttttta?acagatctga?agtctttgtg?agtccgtgac?tgaactgcag?atcatctgct 540
gtggaagaac?tgcaccgcaa?gtggcaatac?cttcgatcct?gaaacttgca?ttttggtgat 600
gcccgtacca?cgc 613
<210>37
<211>617
<212>DNA
<213> sugarcane
<220>
<221>misc_feature
<222>(451)..(451)
<223>n is a, c, g, or t
<400>37
ggagaacgtg?cttgttcagg?tggttcaaca?gtgcggacca?gagaacaatg?cgaggttcag 60
gattaaaggt?attctggctt?cagaggcagt?tcttccaaag?caagtgacag?gcgattccat 120
caccggagct?aagatcttat?tacaacattc?agaaacacag?gagtcctccc?accgcctttc 180
acttcttgct?tacttctgca?accactcgcc?gtgactgatc?tccacgcaca?ccaaagaaca 240
caacacgtgg?caagccgatc?tagcgcgatg?gaaggagggg?ggcaaataca?gaggaggaat 300
aatgccgtga?agcggcacct?gcagcagcgg?cagcaggagg?cggatttcct?cgacaagaag 360
gtcatcgcgt?ccacctattt?cagcatcgag?gcgttcctcg?tgctcgcctg?cctcaccgtc 420
tcgctgctga?tactgccgct?tgtgctgccg?ncgctgccgg?cgccggcgtc?gctgctgctg 480
tggctgccgg?tctggctgct?cgaactgctg?attgtgcttg?ccttcatgcc?gacagatgtg 540
cgcagcatgg?cctcctctta?cttgtaaaaa?aatagataaa?taggccacct?ttggcaattt 600
tctggggttt?ggaggtg 617
<210>38
<211>638
<212>DNA
<213> sugarcane
<400>38
gattttttcc?aagccagtga?ccggcgattc?atcaaccgga?gctgagatct?tatacaacat 60
tcagaaacac?aggagtcctc?gcaccgcttt?ccactcttgg?ctaattttgc?aaccactcgc 120
cgtgactgat?ctccacgcac?accaaagaac?acaacacgtg?gcaacccgat?ctagcgcgat 180
ggaaggaggg?gggcaaatac?agaggaggaa?taatgccgtg?aagcggcacc?tgcagcagcg 240
gcagcaggag?gcggatttcc?tcgacaagaa?ggtcatcgcg?tccacctatt?tcagcatcga 300
ggcgttcctc?gtgctcgcct?gcctcaccgt?ctcgctgctg?atactgccgc?tggtgctgcc 360
gccgctgccg?ccgccgccgt?cgctgctgct?gtggctgccg?gtctgcctgc?tcatcctgct 420
gattgtgctg?gccttcatgc?cgacagatgt?gcgcagcatg?gcctcctctt?acttgtaata 480
aatagataaa?taggccacct?tggtcaatat?tctgtgattt?ggaggtgatt?cgtcctgaga 540
tgagtctcga?ttgatgtcag?ctactcccaa?ggggaaatgc?atgtaacact?tggtggccga 600
cggtggcaag?ataatcatgc?taccatgtca?gttaaacc 638
<210>39
<211>778
<212>DNA
<213> Chinese sorghum
<400>39
gctgttggtg?ttgttcttga?gatctctttc?ttgatcttgt?gtgggattaa?agagggattc 60
ttgccttcct?acgggagaaa?gagaaaaggg?gaagaacgtg?cttgttccgg?tggttcaaca 120
gtgcggagac?ccggagaaca?atgcgaggtt?caggattaaa?ggtgttctgg?cttcaggtgc 180
agttcttcca?aagcaggtga?caggcgattc?gatcaccgga?gctcagatct?gacgaaaaca 240
aaacacagtc?ctcctcccac?cgcctttcag?ttcttgctta?cttctgcaac?cactcactgc 300
gaccgtacac?caaagaacac?tgcacatggc?aagccgatct?agcgcgctgg?aaggaggggg 360
ggcagcaata?cagcggagga?ataatgccgt?gaagcggcac?ctgcagcagc?ggcagcagga 420
ggcggatttc?cacgacaaga?aggtcatcgc?gtccacctac?ttcagcatcg?gcgcgttcct 480
ggtgctcgcc?tgcctcacct?tctcgctgct?catcctgccg?ctggtgctgc?cgccgctgcc 540
gccgccgccg?tcgctgctgc?tgtggctgcc?ggtctgcctg?ctcgtcctgc?tggttgtgct 600
ggccttcatg?ccgacagatg?tgcgcagcgt?ggcggcctct?tacttgtaaa?tagccagata 660
aataggccac?cacctttggc?cagttttctg?tgttttcggg?ggtgattcgt?cctaagatga 720
gtcatgatcg?agtgtaatgt?gaagcatctt?ttccaggggt?agtagatttc?aatgaagt 778
<210>40
<211>732
<212>DNA
<213> Arabidopis thaliana
<400>40
ttgtcttcct?catttcccta?ctagtacttg?tttcacacag?tttcttgatc?caaccaaaac 60
caatacacaa?agcttctcaa?actccttcac?ctcaaagctt?cttcctttac?atctgaatcg 120
ttgagttaac?tcggatttgt?tctgcatcct?ctgtttctga?atcgtgggcc?atccttattt 180
tgtctcgaat?tcttcaccaa?ttgcttcgat?caagctgcat?tggttaacca?gttgccctaa 240
agatcagatc?tttgagcaaa?attttgtcac?tgatcttcta?aatccaaacc?agacacagca 300
aaacaacctc?tgtagatgat?tcgagaaatc?tcaaacttac?aaaaagatat?tataaacatt 360
caagacagtt?attcgaacaa?ccgagtcatg?gacgtcggaa?gaaacaaccg?gaaaaacatg 420
agctttcgaa?gttcgccgga?gaaaagcaag?caagagttac?ggcggagttt?ctcggcgcag 480
aaaaggatga?tgatcccggc?gaattatttc?agtttagagt?ctctgttcct?attggttggt 540
ctaacggcat?ctctgttaat?acttccgtta?gttttgccgc?cgttacctcc?gcctccgttt 600
atgctgctat?tggttcccat?tgggattatg?gttttactcg?tcgttcttgc?cttcatgcct 660
tcttctcatt?ctaatgctaa?tacagatgta?acttgcaatt?tcatgtaaat?ctgaaattta 720
ttatatgatg?at 732
<210>41
<211>891
<212>DNA
<213> Arabidopis thaliana
<400>41
cccactttat?ttcttcttct?ctggttttct?taccaaaaga?aactttcttc?gtcttcctct 60
gtatttaagc?tttaacaccc?tgtttttggt?ttccaacgtt?caatcttcat?cttcttctcg 120
ctgaaggtgt?gtttggctct?aacggtttaa?agctttcttg?aaacaccaat?tgaatctttt 180
ctctctaccg?gcaaaaaaaa?aagattagtc?cttttaggtc?tggaaacgcc?aagatcactc 240
gttctaaacc?ttagattttg?tctgcatttc?gggataatca?tttcatcgtc?agggttcttc 300
aaccaaacta?catttacaga?agaagaagaa?gaagaaaagt?tcgttacttt?ttatgcgttt 360
ggataaacaa?actcaagttt?cttcttcata?catcgatctg?attttccaga?tcaaacttcg 420
aaaagagaaa?aagccttctt?taaatgattc?gtgagttctc?cagtctacaa?aacgacatca 480
taaacattca?agaacattat?tctctcaaca?acaacatgga?cgtgagagga?gatcataacc 540
ggaaaaacac?gagttttcgt?ggttcagctc?cagctccgat?tatggggaag?caagaattgt 600
ttcggacatt?gtcgtcgcag?aacagtccaa?ggaggctaat?atcagcgagt?tacttcagtt 660
tagaatcaat?ggttgtgctt?gttggtctca?cagcatctct?cttgatctta?ccgttgattc 720
ttccaccatt?gcctcctcct?ccttttatgc?tgcttttgat?tcctattggg?attatggttt 780
tgcttatggt?tcttgctttc?atgccttctt?ctaattccaa?acatgtttct?tcttcttcca 840
cttttatgta?ataaacgttt?ctttaattga?agaaagaaat?ccttaaacaa?a 891
<210>42
<211>732
<212>DNA
<213> Arabidopis thaliana
<400>42
ttgtcttcct?catttcccta?ctagtacttg?tttcacacag?tttcttgatc?caaccaaaac 60
caatacacaa?agcttctcaa?actccttcac?ctcaaagctt?cttcctttac?atctgaatcg 120
ttgagttaac?tcggatttgt?tctgcatcct?ctgtttctga?atcgtgggcc?atccttattt 180
tgtctcgaat?tcttcaccaa?ttgcttcgat?caagctgcat?tggttaacca?gttgccctaa 240
agatcagatc?tttgagcaaa?attttgtcac?tgatcttcta?aatccaaacc?agacacagca 300
aaacaacctc?tgtagatgat?tcgagaaatc?tcaaacttac?aaaaagatat?tataaacatt 360
caagacagtt?attcgaacaa?ccgagtcatg?gacgtcggaa?gaaacaaccg?gaaaaacatg 420
agctttcgaa?gttcgccgga?gaaaagcaag?caagagttac?ggcggagttt?ctcggcgcag 480
aaaaggatga?tgatcccggc?gaattatttc?agtttagagt?ctctgttcct?attggttggt 540
ctaacggcat?ctctgttaat?acttccgtta?gttttgccgc?cgttacctcc?gcctccgttt 600
atgctgctat?tggttcccat?tgggattatg?gttttactcg?tcgttcttgc?cttcatgcct 660
tcttctcatt?ctaatgctaa?tacagatgta?acttgcaatt?tcatgtaaat?ctgaaattta 720
ttatatgatg?at 732
<210>43
<211>519
<212>DNA
<213> Zea mays
<400>43
atgcgaggtt?cgggatttaa?gatgttcggc?tttaggggca?gttcttctga?agcaggggac 60
gggcgattcg?accaccggag?ctcagatctg?attacaaaac?gttcagaaaa?cacaaggcgt 120
tctcacaccg?cctttcactt?cttgcttact?ttggcaacca?ctcactgcga?ctggtctcca 180
cctccaccta?caccaagaac?acatggcaag?ccgatctacg?cgatggaagg?aggggcggca 240
atacaaagga?ggaatgccgt?gaagcggcat?ctgcagcagc?gtcagcagga?ggcggatttc 300
ctcgacaaga?aggtcatcgc?gtccacctac?ttcagcatcg?gggcgttcct?cgtgctcgcc 360
tgcctcaccg?tctcgctgct?gatactgccg?ctggtgctgc?ctcccctgcc?gccgccgccg 420
tcgctgctgt?tgtggctgcc?ggtctgcctg?ctcgtcttgc?tggttgtact?ggccttcatg 480
ccgacagatg?tgcgcagcat?ggcctcctct?tacctgtaa 519
<210>44
<211>98
<212>PRT
<213> Zea mays
<400>44
Met?Glu?Gly?Gly?Ala?Ala?Ile?Gln?Arg?Arg?Asn?Ala?Val?Lys?Arg?His
1 5 10 15
Leu?Gln?Gln?Arg?Gln?Gln?Glu?Ala?Asp?Phe?Leu?Asp?Lys?Lys?Val?Ile
20 25 30
Ala?Ser?Thr?Tyr?Phe?Ser?Ile?Gly?Ala?Phe?Leu?Val?Leu?Ala?Cys?Leu
35 40 45
Thr?Val?Ser?Leu?Leu?Ile?Leu?Pro?Leu?Val?Leu?Pro?Pro?Leu?Pro?Pro
50 55 60
Pro?Pro?Ser?Leu?Leu?Leu?Trp?Leu?Pro?Val?Cys?Leu?Leu?Val?Leu?Leu
65 70 75 80
Val?Val?Leu?Ala?Phe?Met?Pro?Thr?Asp?Val?Arg?Ser?Met?Ala?Ser?Ser
85 90 95
Tyr?Leu
<210>45
<211>2745
<212>DNA
<213> Arabidopis thaliana
<400>45
atgagcaatg?cttttttata?atgccaactt?tgtacaaaaa?agcaggctta?aacaatgaaa 60
tctcgagcga?ggcagtgtct?gctggtttgt?ttgctctgtc?tttccttaac?gaatctctcc 120
tatggagaaa?ataagttcag?agagcgtaaa?gccaccgatg?acgagctggg?ctaccccgat 180
attgatgaag?atgctttatt?gaatactcag?tgcccgaaaa?aattggagct?gcgatggcaa 240
actgaagtca?cttctagcgt?ttatgctaca?cccttgattg?ctgatattaa?cagtgatgga 300
aagcttgaca?ttgttgttcc?atcttttgtt?cattacctcg?aagttcttga?aggagctgat 360
ggagacaaga?tgccaggttg?gcctgctttt?caccagtcaa?atgtgcactc?gagtcctctt 420
ctatttgata?tcgacaaaga?tggtgttaga?gaaattgctc?tggctaccta?caatgccgaa 480
gtgctctttt?tcagggtatc?aggctttttg?atgtcagata?agctagaagt?gccacgtaga 540
aaagtgcaca?agaactggca?tgtgggactt?aatcctgatc?ctgttgaccg?ttcacatcct 600
gatgttcatg?atgatgtgct?tgaggaggaa?gctatggcaa?tgaagtcatc?gaccactcaa 660
acgaatgcaa?ctaccacaac?accaaatgtt?acagtctcga?tgaccaaaga?agttcatggc 720
gctaattcat?atgtgtcaac?tcaagaggat?caaaagagac?cagagaataa?tcaaacagaa 780
gctattgtaa?agcctactcc?agagctacat?aattcctcca?tggatgctgg?agcaaataat 840
ttggcagcaa?atgctactac?agctggctca?agagaaaacc?tcaatagaaa?tgtaaccacc 900
aatgaggtgg?atcaaagcaa?aattagtgga?gataagaatg?aaactgttat?taaattaaat 960
actagtacgg?gtaattcctc?agaaactctg?gggacatctg?gaaacagtag?tacggcagag 1020
acagtaacca?aaagtgggag?gcgacttctg?gaagaggatg?gttcgaaaga?atctgtggac 1080
agccattcgg?acagtaaaga?caacagtgag?ggtgtccgca?tggcgacagt?agaaaatgat 1140
ggaggcttag?aagctgacgc?agattcatcg?tttgagttgt?tgcgtgagaa?tgatgagtta 1200
gctgatgaat?acagttatga?ttatgacgat?tatgttgatg?agaaaatgtg?gggtgatgag 1260
gaatgggttg?aggggcagca?cgagaactca?gaagattatg?tgaatattga?cgcccatata 1320
ctatgcactc?ctgtaattgc?tgacatagac?aaagatggag?tacaggagat?gattgttgct 1380
gtttcctatt?tcttcgaccc?cgagtactat?gataatccag?aacatctgaa?agagcttggt 1440
ggtatcgaca?ttaaaaatta?tattgctagt?tcaattgtgg?ttttcaatct?tgatactaaa 1500
caagtcaagt?ggatcaaaga?gctagatttg?agtacggata?aagcaaactt?ccgtgcttat 1560
atttattctt?caccaacggt?tgttgatttg?gatggcgatg?gttatttgga?tatccttgtc 1620
ggaacttcct?ttggcttatt?ctacgccatg?gatcatcgtg?gaaacatcag?agaaaaattc 1680
ccactggaaa?tggctgaaat?tcaaggagca?gtggttgcgg?ccgacataaa?tgatgatgga 1740
aagattgaac?ttgtaactac?tgattcacac?ggaaatatag?cagcatggac?cacccaagga 1800
gtggaaattt?gggaagcaca?tcttaagagc?cttgttcccc?agggtccttc?tataggcgat 1860
gttgatggtg?acggacacac?ggaggttgtg?gttcctacat?catcaggaaa?catatacgtt 1920
cttagtggca?aggatggttc?tattgtccgt?ccttacccat?acaggactca?tggaagagtg 1980
atgaaccaac?ttcttcttgt?tgatctgaac?aagcgaggtg?agaaaaagaa?gggtctcacc 2040
atcgttacta?catcctttga?cggttacctg?tatctcatag?atggacccac?ctcgtgcact 2100
gacgttgttg?acattggcga?aacttcatac?agcatggtct?tggctgataa?tgttgacggt 2160
ggagatgatc?tcgatcttat?tgtctcaact?atgaatggaa?acgtcttttg?cttctcaacg 2220
ccttcttctc?accatcccct?taaggcttgg?agatctagtg?atcaaggcag?gaacaataag 2280
gccaatcgtt?atgatcgtga?aggcgttttt?gtcacgcatt?cgaccagagg?tttccgtgat 2340
gaggaaggca?aaaacttctg?ggctgagatc?gagatcgttg?ataaatatag?atatccatct 2400
ggttcacaag?caccctacaa?cgttactacg?acgctgttgg?ttccaggcaa?ttaccaggga 2460
gagaggagga?taacgcagag?ccagatctat?gaccgccctg?gaaaataccg?gataaaacta 2520
ccaactgtgg?gagtgagaac?aacaggaact?gtaatggtgg?agatggcaga?taagaatgga 2580
ctccatttct?cagacgaatt?ctcactaact?ttccatatgt?attactacaa?gcttctgaaa 2640
tggcttcttg?ttctcccgat?gctcgggatg?ttcggtctgc?tcgtgatact?acggcctcaa 2700
gaagccgtgc?ctctcccgtc?tttttcccgc?aacacagatt?tatga 2745
<210>46
<211>896
<212>PRT
<213> Arabidopis thaliana
<400>46
Met?Lys?Ser?Arg?Ala?Arg?Gln?Cys?Leu?Leu?Val?Cys?Leu?Leu?Cys?Leu
1 5 10 15
Ser?Leu?Thr?Asn?Leu?Ser?Tyr?Gly?Glu?Asn?Lys?Phe?Arg?Glu?Arg?Lys
20 25 30
Ala?Thr?Asp?Asp?Glu?Leu?Gly?Tyr?Pro?Asp?Ile?Asp?Glu?Asp?Ala?Leu
35 40 45
Leu?Asn?Thr?Gln?Cys?Pro?Lys?Lys?Leu?Glu?Leu?Arg?Trp?Gln?Thr?Glu
50 55 60
Val?Thr?Ser?Ser?Val?Tyr?Ala?Thr?Pro?Leu?Ile?Ala?Asp?Ile?Asn?Ser
65 70 75 80
Asp?Gly?Lys?Leu?Asp?Ile?Val?Val?Pro?Ser?Phe?Val?His?Tyr?Leu?Glu
85 90 95
Val?Leu?Glu?Gly?Ala?Asp?Gly?Asp?Lys?Met?Pro?Gly?Trp?Pro?Ala?Phe
100 105 110
His?Gln?Ser?Asn?Val?His?Ser?Ser?Pro?Leu?Leu?Phe?Asp?Ile?Asp?Lys
115 120 125
Asp?Gly?Val?Arg?Glu?Ile?Ala?Leu?Ala?Thr?Tyr?Asn?Ala?Glu?Val?Leu
130 135 140
Phe?Phe?Arg?Val?Ser?Gly?Phe?Leu?Met?Ser?Asp?Lys?Leu?Glu?Val?Pro
145 150 155 160
Arg?Arg?Lys?Val?His?Lys?Asn?Trp?His?Val?Gly?Leu?Asn?Pro?Asp?Pro
165 170 175
Val?Asp?Arg?Ser?His?Pro?Asp?Val?His?Asp?Asp?Val?Leu?Glu?Glu?Glu
180 185 190
Ala?Met?Ala?Met?Lys?Ser?Ser?Thr?Thr?Gln?Thr?Asn?Ala?Thr?Thr?Thr
195 200 205
Thr?Pro?Asn?Val?Thr?Val?Ser?Met?Thr?Lys?Glu?Val?His?Gly?Ala?Asn
210 215 220
Ser?Tyr?Val?Ser?Thr?Gln?Glu?Asp?Gln?Lys?Arg?Pro?Glu?Asn?Asn?Gln
225 230 235 240
Thr?Glu?Ala?Ile?Val?Lys?Pro?Thr?Pro?Glu?Leu?His?Asn?Ser?Ser?Met
245 250 255
Asp?Ala?Gly?Ala?Asn?Asn?Leu?Ala?Ala?Asn?Ala?Thr?Thr?Ala?Gly?Ser
260 265 270
Arg?Glu?Asn?Leu?Asn?Arg?Asn?Val?Thr?Thr?Asn?Glu?Val?Asp?Gln?Ser
275 280 285
Lys?Ile?Ser?Gly?Asp?Lys?Asn?Glu?Thr?Val?Ile?Lys?Leu?Asn?Thr?Ser
290 295 300
Thr?Gly?Asn?Ser?Ser?Glu?Thr?Leu?Gly?Thr?Ser?Gly?Asn?Ser?Ser?Thr
305 310 315 320
Ala?Glu?Thr?Val?Thr?Lys?Ser?Gly?Arg?Arg?Leu?Leu?Glu?Glu?Asp?Gly
325 330 335
Ser?Lys?Glu?Ser?Val?Asp?Ser?His?Ser?Asp?Ser?Lys?Asp?Asn?Ser?Glu
340 345 350
Gly?Val?Arg?Met?Ala?Thr?Val?Glu?Asn?Asp?Gly?Gly?Leu?Glu?Ala?Asp
355 360 365
Ala?Asp?Ser?Ser?Phe?Glu?Leu?Leu?Arg?Glu?Asn?Asp?Glu?Leu?Ala?Asp
370 375 380
Glu?Tyr?Ser?Tyr?Asp?Tyr?Asp?Asp?Tyr?Val?Asp?Glu?Lys?Met?Trp?Gly
385 390 395 400
Asp?Glu?Glu?Trp?Val?Glu?Gly?Gln?His?Glu?Asn?Ser?Glu?Asp?Tyr?Val
405 410 415
Asn?Ile?Asp?Ala?His?Ile?Leu?Cys?Thr?Pro?Val?Ile?Ala?Asp?Ile?Asp
420 425 430
Lys?Asp?Gly?Val?Gln?Glu?Met?Ile?Val?Ala?Val?Ser?Tyr?Phe?Phe?Asp
435 440 445
Pro?Glu?Tyr?Tyr?Asp?Asn?Pro?Glu?His?Leu?Lys?Glu?Leu?Gly?Gly?Ile
450 455 460
Asp?Ile?Lys?Asn?Tyr?Ile?Ala?Ser?Ser?Ile?Val?Val?Phe?Asn?Leu?Asp
465 470 475 480
Thr?Lys?Gln?Val?Lys?Trp?Ile?Lys?Glu?Leu?Asp?Leu?Ser?Thr?Asp?Lys
485 490 495
Ala?Asn?Phe?Arg?Ala?Tyr?Ile?Tyr?Ser?Ser?Pro?Thr?Val?Val?Asp?Leu
500 505 510
Asp?Gly?Asp?Gly?Tyr?Leu?Asp?Ile?Leu?Val?Gly?Thr?Ser?Phe?Gly?Leu
515 520 525
Phe?Tyr?Ala?Met?Asp?His?Arg?Gly?Asn?Ile?Arg?Glu?Lys?Phe?Pro?Leu
530 535 540
Glu?Met?Ala?Glu?Ile?Gln?Gly?Ala?Val?Val?Ala?Ala?Asp?Ile?Asn?Asp
545 550 555 560
Asp?Gly?Lys?Ile?Glu?Leu?Val?Thr?Thr?Asp?Ser?His?Gly?Asn?Ile?Ala
565 570 575
Ala?Trp?Thr?Thr?Gln?Gly?Val?Glu?Ile?Trp?Glu?Ala?His?Leu?Lys?Ser
580 585 590
Leu?Val?Pro?Gln?Gly?Pro?Ser?Ile?Gly?Asp?Val?Asp?Gly?Asp?Gly?His
595 600 605
Thr?Glu?Val?Val?Val?Pro?Thr?Ser?Ser?Gly?Asn?Ile?Tyr?Val?Leu?Ser
610 615 620
Gly?Lys?Asp?Gly?Ser?Ile?Val?Arg?Pro?Tyr?Pro?Tyr?Arg?Thr?His?Gly
625 630 635 640
Arg?Val?Met?Asn?Gln?Leu?Leu?Leu?Val?Asp?Leu?Asn?Lys?Arg?Gly?Glu
645 650 655
Lys?Lys?Lys?Gly?Leu?Thr?Ile?Val?Thr?Thr?Ser?Phe?Asp?Gly?Tyr?Leu
660 665 670
Tyr?Leu?Ile?Asp?Gly?Pro?Thr?Ser?Cys?Thr?Asp?Val?Val?Asp?Ile?Gly
675 680 685
Glu?Thr?Ser?Tyr?Ser?Met?Val?Leu?Ala?Asp?Asn?Val?Asp?Gly?Gly?Asp
690 695 700
Asp?Leu?Asp?Leu?Ile?Val?Ser?Thr?Met?Asn?Gly?Asn?Val?Phe?Cys?Phe
705 710 715 720
Ser?Thr?Pro?Ser?Ser?His?His?Pro?Leu?Lys?Ala?Trp?Arg?Ser?Ser?Asp
725 730 735
Gln?Gly?Arg?Asn?Asn?Lys?Ala?Asn?Arg?Tyr?Asp?Arg?Glu?Gly?Val?Phe
740 745 750
Val?Thr?His?Ser?Thr?Arg?Gly?Phe?Arg?Asp?Glu?Glu?Gly?Lys?Asn?Phe
755 760 765
Trp?Ala?Glu?Ile?Glu?Ile?Val?Asp?Lys?Tyr?Arg?Tyr?Pro?Ser?Gly?Ser
770 775 780
Gln?Ala?Pro?Tyr?Asn?Val?Thr?Thr?Thr?Leu?Leu?Val?Pro?Gly?Asn?Tyr
785 790 795 800
Gln?Gly?Glu?Arg?Arg?Ile?Thr?Gln?Ser?Gln?Ile?Tyr?Asp?Arg?Pro?Gly
805 810 815
Lys?Tyr?Arg?Ile?Lys?Leu?Pro?Thr?Val?Gly?Val?Arg?Thr?Thr?Gly?Thr
820 825 830
Val?Met?Val?Glu?Met?Ala?Asp?Lys?Asn?Gly?Leu?His?Phe?Ser?Asp?Glu
835 840 845
Phe?Ser?Leu?Thr?Phe?His?Met?Tyr?Tyr?Tyr?Lys?Leu?Leu?Lys?Trp?Leu
850 855 860
Leu?Val?Leu?Pro?Met?Leu?Gly?Met?Phe?Gly?Leu?Leu?Val?Ile?Leu?Arg
865 870 875 880
Pro?Gln?Glu?Ala?Val?Pro?Leu?Pro?Ser?Phe?Ser?Arg?Asn?Thr?Asp?Leu
885 890 895
<210>47
<211>53
<212>DNA
<213> artificial sequence
<220>
<223> primer: prm06643
<400>47
ggggacaagt?ttgtacaaaa?aagcaggctt?aaacaatgaa?atctcgagcg?agg 53
<210>48
<211>52
<212>DNA
<213> artificial sequence
<220>
<223> primer: prm06644
<400>48
ggggaccact?ttgtacaaga?aagctgggtc?ctgtttacag?atggtaccta?gt 52
<210>49
<211>4938
<212>DNA
<213> artificial sequence
<220>
<223> expression cassette
<400>49
aatccgaaaa?gtttctgcac?cgttttcacc?ccctaactaa?caatataggg?aacgtgtgct 60
aaatataaaa?tgagacctta?tatatgtagc?gctgataact?agaactatgc?aagaaaaact 120
catccaccta?ctttagtggc?aatcgggcta?aataaaaaag?agtcgctaca?ctagtttcgt 180
tttccttagt?aattaagtgg?gaaaatgaaa?tcattattgc?ttagaatata?cgttcacatc 240
tctgtcatga?agttaaatta?ttcgaggtag?ccataattgt?catcaaactc?ttcttgaata 300
aaaaaatctt?tctagctgaa?ctcaatgggt?aaagagagag?atttttttta?aaaaaataga 360
atgaagatat?tctgaacgta?ttggcaaaga?tttaaacata?taattatata?attttatagt 420
ttgtgcattc?gtcatatcgc?acatcattaa?ggacatgtct?tactccatcc?caatttttat 480
ttagtaatta?aagacaattg?acttattttt?attatttatc?ttttttcgat?tagatgcaag 540
gtacttacgc?acacactttg?tgctcatgtg?catgtgtgag?tgcacctcct?caatacacgt 600
tcaactagca?acacatctct?aatatcactc?gcctatttaa?tacatttagg?tagcaatatc 660
tgaattcaag?cactccacca?tcaccagacc?acttttaata?atatctaaaa?tacaaaaaat 720
aattttacag?aatagcatga?aaagtatgaa?acgaactatt?taggtttttc?acatacaaaa 780
aaaaaaagaa?ttttgctcgt?gcgcgagcgc?caatctccca?tattgggcac?acaggcaaca 840
acagagtggc?tgcccacaga?acaacccaca?aaaaacgatg?atctaacgga?ggacagcaag 900
tccgcaacaa?ccttttaaca?gcaggctttg?cggccaggag?agaggaggag?aggcaaagaa 960
aaccaagcat?cctcctcctc?ccatctataa?attcctcccc?ccttttcccc?tctctatata 1020
ggaggcatcc?aagccaagaa?gagggagagc?accaaggaca?cgcgactagc?agaagccgag 1080
cgaccgcctt?cttcgatcca?tatcttccgg?tcgagttctt?ggtcgatctc?ttccctcctc 1140
cacctcctcc?tcacagggta?tgtgcccttc?ggttgttctt?ggatttattg?ttctaggttg 1200
tgtagtacgg?gcgttgatgt?taggaaaggg?gatctgtatc?tgtgatgatt?cctgttcttg 1260
gatttgggat?agaggggttc?ttgatgttgc?atgttatcgg?ttcggtttga?ttagtagtat 1320
ggttttcaat?cgtctggaga?gctctatgga?aatgaaatgg?tttagggtac?ggaatcttgc 1380
gattttgtga?gtaccttttg?tttgaggtaa?aatcagagca?ccggtgattt?tgcttggtgt 1440
aataaaagta?cggttgtttg?gtcctcgatt?ctggtagtga?tgcttctcga?tttgacgaag 1500
ctatcctttg?tttattccct?attgaacaaa?aataatccaa?ctttgaagac?ggtcccgttg 1560
atgagattga?atgattgatt?cttaagcctg?tccaaaattt?cgcagctggc?ttgtttagat 1620
acagtagtcc?ccatcacgaa?attcatggaa?acagttataa?tcctcaggaa?caggggattc 1680
cctgttcttc?cgatttgctt?tagtcccaga?attttttttc?ccaaatatct?taaaaagtca 1740
ctttctggtt?cagttcaatg?aattgattgc?tacaaataat?gcttttatag?cgttatccta 1800
gctgtagttc?agttaatagg?taatacccct?atagtttagt?caggagaaga?acttatccga 1860
tttctgatct?ccatttttaa?ttatatgaaa?tgaactgtag?cataagcagt?attcatttgg 1920
attatttttt?ttattagctc?tcaccccttc?attattctga?gctgaaagtc?tggcatgaac 1980
tgtcctcaat?tttgttttca?aattcacatc?gattatctat?gcattatcct?cttgtatcta 2040
cctgtagaag?tttctttttg?gttattcctt?gactgcttga?ttacagaaag?aaatttatga 2100
agctgtaatc?gggatagtta?tactgcttgt?tcttatgatt?catttccttt?gtgcagttct 2160
tggtgtagct?tgccactttc?accagcaaag?ttcatttaaa?tcaactaggg?atatcacaag 2220
tttgtacaaa?aaagcaggct?taaacaatga?aatctcgagc?gaggcagtgt?ctgctggttt 2280
gtttgctctg?tctttcctta?acgaatctct?cctatggaga?aaataagttc?agagagcgta 2340
aagccaccga?tgacgagctg?ggctaccccg?atattgatga?agatgcttta?ttgaatactc 2400
agtgcccgaa?aaaattggag?ctgcgatggc?aaactgaagt?cacttctagc?gtttatgcta 2460
cacccttgat?tgctgatatt?aacagtgatg?gaaagcttga?cattgttgtt?ccatcttttg 2520
ttcattacct?cgaagttctt?gaaggagctg?atggagacaa?gatgccaggt?tggcctgctt 2580
ttcaccagtc?aaatgtgcac?tcgagtcctc?ttctatttga?tatcgacaaa?gatggtgtta 2640
gagaaattgc?tctggctacc?tacaatgccg?aagtgctctt?tttcagggta?tcaggctttt 2700
tgatgtcaga?taagctagaa?gtgccacgta?gaaaagtgca?caagaactgg?catgtgggac 2760
ttaatcctga?tcctgttgac?cgttcacatc?ctgatgttca?tgatgatgtg?cttgaggagg 2820
aagctatggc?aatgaagtca?tcgaccactc?aaacgaatgc?aactaccaca?acaccaaatg 2880
ttacagtctc?gatgaccaaa?gaagttcatg?gcgctaattc?atatgtgtca?actcaagagg 2940
atcaaaagag?accagagaat?aatcaaacag?aagctattgt?aaagcctact?ccagagctac 3000
ataattcctc?catggatgct?ggagcaaata?atttggcagc?aaatgctact?acagctggct 3060
caagagaaaa?cctcaataga?aatgtaacca?ccaatgaggt?ggatcaaagc?aaaattagtg 3120
gagataagaa?tgaaactgtt?attaaattaa?atactagtac?gggtaattcc?tcagaaactc 3180
tggggacatc?tggaaacagt?agtacggcag?agacagtaac?caaaagtggg?aggcgacttc 3240
tggaagagga?tggttcgaaa?gaatctgtgg?acagccattc?ggacagtaaa?gacaacagtg 3300
agggtgtccg?catggcgaca?gtagaaaatg?atggaggctt?agaagctgac?gcagattcat 3360
cgtttgagtt?gttgcgtgag?aatgatgagt?tagctgatga?atacagttat?gattatgacg 3420
attatgttga?tgagaaaatg?tggggtgatg?aggaatgggt?tgaggggcag?cacgagaact 3480
cagaagatta?tgtgaatatt?gacgcccata?tactatgcac?tcctgtaatt?gctgacatag 3540
acaaagatgg?agtacaggag?atgattgttg?ctgtttccta?tttcttcgac?cccgagtact 3600
atgataatcc?agaacatctg?aaagagcttg?gtggtatcga?cattaaaaat?tatattgcta 3660
gttcaattgt?ggttttcaat?cttgatacta?aacaagtcaa?gtggatcaaa?gagctagatt 3720
tgagtacgga?taaagcaaac?ttccgtgctt?atatttattc?ttcaccaacg?gttgttgatt 3780
tggatggcga?tggttatttg?gatatccttg?tcggaacttc?ctttggctta?ttctacgcca 3840
tggatcatcg?tggaaacatc?agagaaaaat?tcccactgga?aatggctgaa?attcaaggag 3900
cagtggttgc?ggccgacata?aatgatgatg?gaaagattga?acttgtaact?actgattcac 3960
acggaaatat?agcagcatgg?accacccaag?gagtggaaat?ttgggaagca?catcttaaga 4020
gccttgttcc?ccagggtcct?tctataggcg?atgttgatgg?tgacggacac?acggaggttg 4080
tggttcctac?atcatcagga?aacatatacg?ttcttagtgg?caaggatggt?tctattgtcc 4140
gtccttaccc?atacaggact?catggaagag?tgatgaacca?acttcttctt?gttgatctga 4200
acaagcgagg?tgagaaaaag?aagggtctca?ccatcgttac?tacatccttt?gacggttacc 4260
tgtatctcat?agatggaccc?acctcgtgca?ctgacgttgt?tgacattggc?gaaacttcat 4320
acagcatggt?cttggctgat?aatgttgacg?gtggagatga?tctcgatctt?attgtctcaa 4380
ctatgaatgg?aaacgtcttt?tgcttctcaa?cgccttctcc?tcaccatccc?cttaaggctt 4440
ggagatctag?tgatcaaggc?aggaacaata?aggccaatcg?ttatgatcgt?gaaggcgttt 4500
ttgtcacgca?ttcgaccaga?ggtttccgtg?atgaggaagg?caaaaacttc?tgggctgaga 4560
tcgagatcgt?tgataaatat?agatatccat?ctggttcaca?agcaccctac?aacgttacta 4620
cgacgctgtt?ggttccaggc?aattaccagg?gagagaggag?gataacgcag?agccagatct 4680
atgaccgccc?tggaaaatac?cggataaaac?taccaactgt?gggagtgaga?acaacaggaa 4740
ctgtaatggt?ggagatggca?gataagaatg?gactccattt?ctcagacgaa?ttctcactaa 4800
ctttccatat?gtattactac?aagcttctga?aatggcttct?tgttctcccg?atgctcggga 4860
tgttcggtct?gctcgtgata?ctacggcctc?aagaagccgt?gcctctcccg?tctttttccc 4920
gcaacacaga?tttatgat 4938
<210>50
<211>10
<212>PRT
<213> artificial sequence
<220>
<223> guards primitive 1
<220>
<221> variant
<222>(9)..(9)
<223>/ displacement=" Glu "
<400>50
Phe?Asp?Gly?Tyr?Leu?Tyr?Leu?Ile?Asp?Gly
1 5 10
<210>51
<211>5
<212>PRT
<213> artificial sequence
<220>
<223> guards primitive 2
<220>
<221> is uncertain
<222>(3)..(4)
<223>Xaa can be any natural amino acid
<220>
<221> variant
<222>(5)..(5)
<223>/ displacement=" Glu "
<400>51
Asp?Gly?Xaa?Xaa?Asp
1 5
<210>52
<211>9
<212>PRT
<213> artificial sequence
<220>
<223> guards primitive 3
<220>
<221> is uncertain
<222>(2)..(2)
<223>Xaa can be any natural amino acid
<220>
<221> is uncertain
<222>(4)..(4)
<223>Xaa can be any natural amino acid
<220>
<221> is uncertain
<222>(7)..(8)
<223>Xaa can be any natural amino acid
<220>
<221> variant
<222>(9)..(9)
<223>/ displacement=" Glu "
<400>52
Asp?Xaa?Asp?Xaa?Asp?Gly?Xaa?Xaa?Asp
1 5
<210>53
<211>36
<212>PRT
<213> artificial sequence
<220>
<223>FG-GAP conservative domain sequence
<400>53
Gly?Gly?Ser?Ser?Val?Ala?Ala?Gly?Asp?Leu?Asn?Gly?Asp?Gly?Arg?Pro
1 5 10 15
Asp?Leu?Val?Val?Gly?Ala?Pro?Gly?Ala?Asp?Gly?Gly?Thr?Asp?Gly?Ser
20 25 30
Val?Tyr?Leu?Leu
35
<210>54
<211>2449
<212>DNA
<213> Arabidopis thaliana
<400>54
attcttcatc?gttctctctg?ctctggtaag?gagattgctg?ctacctactg?atgcaaatct 60
gccattgata?catctgcttg?cggttagggc?aaagatgagg?aaacgcgatt?tggctatttt 120
gatgctctct?ggatttgcta?tattcttcac?tcttcagcac?gagggtgatt?ttgcgttcaa 180
agaagcatgg?tttcatttgt?atgatgaata?cccagtcaaa?tacgaagctg?atcgtctccc 240
accacctatt?gtagctgatc?ttaatggtga?tggaaagaag?gaggttctcg?ttgctactaa 300
tgatgccaaa?attcaggttc?tggagcctca?ttccaggcgt?gtggatgaag?gttttagtga 360
agcacgtgtt?cttgcggaaa?tcactctttt?gcctgacaag?atccgtgttg?cgtcagggag 420
acgtgctgtg?gccatggcca?caggtgttat?tgataggtac?tataaaaatg?gaactcccca 480
gaagcaggtt?gtggtcgttg?ttacctcagg?ttggtctgtg?ctctgctttg?atcacaacct 540
gaaaaagctg?tgggaaacga?atctgcagga?ggatttccca?cataatgcac?accatagaga 600
gatagcaatt?tcgataagca?attacacatt?gaagcatggt?gatacgggtt?tggttattgt 660
tggtggacgg?atggagatgc?agccatataa?tcacatggac?ccatttgagg?aacttggcat 720
gacagcacaa?aatgctgatc?aacacagaag?aagtgctact?gagaatcagg?cctctgaaga 780
ttctggagcc?ataaacttgc?gtcacttttc?tgtctatgca?tttgctggca?agactggcct 840
tcttcgatgg?agtaaaaaga?ctgatgatgt?tgaagctcac?acctcagatg?catcacaatt 900
aattccacaa?cacaattaca?agcttgatgt?gcatgctcta?aatagccgtc?acccaggaga 960
gtttgagtgc?agggaattta?gagaatcaat?tcttagtgtc?atgccccatc?gctgggaccg 1020
acgtgaagat?acattattga?agcttgctca?tttcaggcga?cacaagagga?aaacattgaa 1080
gaagcaggct?ggtagtaagt?ctacagctta?tccgtttcac?aaacctgagg?aacacacacc 1140
cgctggaaag?gacttgtcaa?gaaagattcc?aaaattgatt?ggaaaggctg?cacgctatgc 1200
tggctcggca?aaacccaaga?agggtatgca?atacattccg?acgataacta?attacacgaa 1260
gctttggtgg?gttcctaatg?ttgttgtggc?tcatcaaaag?gaaggaattg?aagctattca 1320
tttgcctact?ggtcgaacac?tttgcaagct?ttctctactt?gaaggtggac?ttcacgccga 1380
cataaacgga?gatggtgttc?tcgatcatgt?ccagactgtc?ggaggcaatg?ttggagagag 1440
aactgtagtg?agcgggtcaa?tggaagtgtt?gaagccttgc?tgggcagtgg?caacctcagg 1500
cgttcccatc?cgggaacagc?tctttaacgt?ctcgatctgc?catcactccc?cttttaactt 1560
cttgcactat?ggaggagatt?actcacgaca?cttcgcccag?gcaagagaca?cctctactct 1620
ggagatcgca?actcccattc?tcatccccag?agatgatgga?cacaaacacc?gcaaaggcag 1680
tcacggagat?gtaatcttct?tgacaaaccg?tggagaggtg?acatcataca?cgcctgatgt 1740
gcacggccac?gacgcagtct?ggcaatggca?gcttcagaca?gaagccacat?ggtcgaatct 1800
cccgtctcca?tcgggtttaa?ctgaatcagg?gacggtggtc?ccaaccctga?aaccattctc 1860
gttgcgcatt?catgataacc?agcctatgat?ccttgccggg?ggagatcaag?cagcggtcat 1920
catctctccg?ggaggaagca?tattggcttc?catcgaatta?ccgtctcaac?cgactcatgc 1980
acttatcact?gatgacttct?cgaacgatgg?tctaacggat?gtgattgtga?tgacctcaaa 2040
tggggtttac?gggtttgttc?aaaccagaca?gccaggggct?ctgttcttca?gttcgttggt 2100
gggttgtctc?ttagtagtta?tggcagttat?tttcgttact?cagcacttaa?actccattca 2160
aggtaagcct?cgaccatcat?ctagctttta?atagaaatct?cgtagagttt?tcttcctctc 2220
tacggaagtt?aaaccggcag?gtccgcttta?gcagcttcac?ccacatcggt?tttggtaaac 2280
cggaaatatt?actgatatac?cagtgtagat?tcagtgcctt?atttcctggt?ttcagctgta 2340
taactttata?ctttgtagaa?ttcaagtaaa?aaatggtaga?ggcaaataga?ggactttatg 2400
tttttgtcaa?ttttgatgtt?ttaatggaat?tatgtgacat?ttaatttat 2449
<210>55
<211>698
<212>PRT
<213> Arabidopis thaliana
<400>55
Met?Arg?Lys?Arg?Asp?Leu?Ala?Ile?Leu?Met?Leu?Ser?Gly?Phe?Ala?Ile
1 5 10 15
Phe?Phe?Thr?Leu?Gln?His?Glu?Gly?Asp?Phe?Ala?Phe?Lys?Glu?Ala?Trp
20 25 30
Phe?His?Leu?Tyr?Asp?Glu?Tyr?Pro?Val?Lys?Tyr?Glu?Ala?Asp?Arg?Leu
35 40 45
Pro?Pro?Pro?Ile?Val?Ala?Asp?Leu?Asn?Gly?Asp?Gly?Lys?Lys?Glu?Val
50 55 60
Leu?Val?Ala?Thr?Asn?Asp?Ala?Lys?Ile?Gln?Val?Leu?Glu?Pro?His?Ssr
65 70 75 80
Arg?Arg?Val?Asp?Glu?Gly?Phe?Ser?Glu?Ala?Arg?Val?Leu?Ala?Glu?Ile
85 90 95
Thr?Leu?Leu?Pro?Asp?Lys?Ile?Arg?Val?Ala?Ser?Gly?Arg?Arg?Ala?Val
100 105 110
Ala?Met?Ala?Thr?Gly?Val?Ile?Asp?Arg?Tyr?Tyr?Lys?Asn?Gly?Thr?Pro
115 120 125
Gln?Lys?Gln?Val?Val?Val?Val?Val?Thr?Ssr?Gly?Trp?Ser?Val?Leu?Cys
130 135 140
Phe?Asp?His?Asn?Leu?Lys?Lys?Leu?Trp?Glu?Thr?Asn?Leu?Gln?Glu?Asp
145 150 155 160
Phe?Pro?His?Asn?Ala?His?His?Arg?Glu?Ile?Ala?Ile?Ser?Ile?Ser?Asn
165 170 175
Tyr?Thr?Leu?Lys?His?Gly?Asp?Thr?Gly?Leu?Val?Ile?Val?Gly?Gly?Arg
180 185 190
Met?Glu?Met?Gln?Pro?Tyr?Asn?His?Met?Asp?Pro?Phe?Glu?Glu?Leu?Gly
195 200 205
Met?Thr?Ala?Gln?Asn?Ala?Asp?Gln?His?Arg?Arg?Ser?Ala?Thr?Glu?Asn
210 215 220
Gln?Ala?Ser?Glu?Asp?Ser?Gly?Ala?Ile?Asn?Leu?Arg?His?Phe?Ser?Val
225 230 235 240
Tyr?Ala?Phe?Ala?Gly?Lys?Thr?Gly?Leu?Leu?Arg?Trp?Ser?Lys?Lys?Thr
245 250 255
Asp?Asp?Val?Glu?Ala?His?Thr?Ser?Asp?Ala?Ser?Gln?Leu?Ile?Pro?Gln
260 265 270
His?Asn?Tyr?Lys?Leu?Asp?Val?His?Ala?Leu?Asn?Ser?Arg?His?Pro?Gly
275 280 285
Glu?Phe?Glu?Cys?Arg?Glu?Phe?Arg?Glu?Ser?Ile?Leu?Ser?Val?Met?Pro
290 295 300
His?Arg?Trp?Asp?Arg?Arg?Glu?Asp?Thr?Leu?Leu?Lys?Leu?Ala?His?Phe
305 310 315 320
Arg?Arg?His?Lys?Arg?Lys?Thr?Leu?Lys?Lys?Gln?Ala?Gly?Ser?Lys?Ser
325 330 335
Thr?Ala?Tyr?Pro?Phe?His?Lys?Pro?Glu?Glu?His?Thr?Pro?Ala?Gly?Lys
340 345 350
Asp?Leu?Ser?Arg?Lys?Ile?Pro?Lys?Leu?Ile?Gly?Lys?Ala?Ala?Arg?Tyr
355 360 365
Ala?Gly?Ser?Ala?Lys?Pro?Lys?Lys?Gly?Met?Gln?Tyr?Ile?Pro?Thr?Ile
370 375 380
Thr?Asn?Tyr?Thr?Lys?Leu?Trp?Trp?Val?Pro?Asn?Val?Val?Val?Ala?His
385 390 395 400
Gln?Lys?Glu?Gly?Ile?Glu?Ala?Ile?His?Leu?Pro?Thr?Gly?Arg?Thr?Leu
405 410 415
Cys?Lys?Leu?Ser?Leu?Leu?Glu?Gly?Gly?Leu?His?Ala?Asp?Ile?Asn?Gly
420 425 430
Asp?Gly?Val?Leu?Asp?His?Val?Gln?Thr?Val?Gly?Gly?Asn?Val?Gly?Glu
435 440 445
Arg?Thr?Val?Val?Ser?Gly?Ser?Met?Glu?Val?Leu?Lys?Pro?Cys?Trp?Ala
450 455 460
Val?Ala?Thr?Ser?Gly?Val?Pro?Ile?Arg?Glu?Gln?Leu?Phe?Asn?Val?Ser
465 470 475 480
Ile?Cys?His?His?Ser?Pro?Phe?Asn?Phe?Leu?His?Tyr?Gly?Gly?Asp?Tyr
485 490 495
Ser?Arg?His?Phe?Ala?Gln?Ala?Arg?Asp?Thr?Ser?Thr?Leu?Glu?Ile?Ala
500 505 510
Thr?Pro?Ile?Leu?Ile?Pro?Arg?Asp?Asp?Gly?His?Lys?His?Arg?Lys?Gly
515 520 525
Ser?His?Gly?Asp?Val?Ile?Phe?Leu?Thr?Asn?Arg?Gly?Glu?Val?Thr?Ser
530 535 540
Tyr?Thr?Pro?Asp?Val?His?Gly?His?Asp?Ala?Val?Trp?Gln?Trp?Gln?Leu
545 550 555 560
Gln?Thr?Glu?Ala?Thr?Trp?Ser?Asn?Leu?Pro?Ser?Pro?Ser?Gly?Leu?Thr
565 570 575
Glu?Ser?Gly?Thr?Val?Val?Pro?Thr?Leu?Lys?Pro?Phe?Ser?Leu?Arg?Ile
580 585 590
His?Asp?Asn?Gln?Pro?Met?Ile?Leu?Ala?Gly?Gly?Asp?Gln?Ala?Ala?Val
595 600 605
Ile?Ile?Ser?Pro?Gly?Gly?Ser?Ile?Leu?Ala?Ser?Ile?Glu?Leu?Pro?Ser
610 615 620
Gln?Pro?Thr?His?Ala?Leu?Ile?Thr?Asp?Asp?Phe?Ser?Asn?Asp?Gly?Leu
625 630 635 640
Thr?Asp?Val?Ile?Val?Met?Thr?Ser?Asn?Gly?Val?Tyr?Gly?Phe?Val?Gln
645 650 655
Thr?Arg?Gln?Pro?Gly?Ala?Leu?Phe?Phe?Ser?Ser?Leu?Val?Gly?Cys?Leu
660 665 670
Leu?Val?Val?Met?Ala?Val?Ile?Phe?Val?Thr?Gln?His?Leu?Asn?Ser?Ile
675 680 685
Gln?Gly?Lys?Pro?Arg?Pro?Ser?Ser?Ser?Phe
690 695
<210>56
<211>2834
<212>DNA
<213> rice
<400>56
atgcgtcccc?tcctcgcctt?cgcggcggta?tgcgcccttc?tcgtggctgc?cgcagcgccg 60
gcggccgcgg?aggaggagaa?ggcgaacaag?ttccggcagc?gcgaggccac?cgacgacatg 120
cttggatacc?cccaccttga?tgaagatgct?ttattgaaga?ccaagtgtcc?aaaacatgta 180
gagctgagat?ggcagactga?agttagttcc?agcatttatg?caactccgtt?gatcgctgat 240
atcaacagcg?atggaaagtt?ggaagtagtg?gtgccatcat?ttgttcatta?cctggaagtt 300
cttgaaggct?ctgatgggga?caaattgcca?ggatggcctg?catttcacca?gtcaaatgtt 360
cattcaagtc?cacttctata?tgatattgac?aaggacggga?cacgggaaat?agttttggca 420
acttacaatg?gtgtagtgaa?tttcttcagg?gtatcaggtt?atatgatgat?ggacaagcta 480
gaagtacctc?gtaggaaggt?acacaaagac?tggtatgttg?ggctgaatac?agatcccgtt 540
gaccgctccc?atccagatgt?tcatgacagc?tcaattgcaa?agaaagctgc?ttctgaagaa 600
tctcacccaa?atattcagga?caagccagtt?gtgaatgaat?cttctaagga?atcccagtca 660
cggagcacaa?atgactcaac?aacacgagga?gttgattcca?tgaaacatgc?gtctaaggaa 720
gagccagttg?aaagtaaacc?taattctacc?cgaggacagg?agaatatgga?tgtgttaaac 780
aatctaaaca?gcacagatgc?tgggaacaac?tctagtttaa?gtactacaac?agagaatgca 840
tcacatgttc?agagaaggtt?gcttcaaaca?gatgagaaaa?gtaatcaagc?aggaagctca 900
gaaactgatg?caagtgatac?cggaacagca?aaagcagcta?ctgttgaaaa?tagcgagcct 960
ctagaggctg?atgctgatgc?atcatttaat?ttgtttcggg?atgtagaaga?tctgcctgat 1020
gagtacaatt?acgattatga?tgactacgtt?gatgaaacca?tgtggggaga?cgaggactgg 1080
aaagaacaac?aacatgaaaa?ggcagaagat?tatgtgagca?tagatgctca?catcttgtcc 1140
accccagtga?ttgcagatat?tgacagagat?ggcatacaag?aaatggtgat?ttctgtatct 1200
tacttctttg?accacgagta?ttatgataaa?ccagaacatc?taaaggagtt?aggagggatt 1260
gacattggca?aatatattgc?aagcagtata?gttgttttta?accttgacac?aagacaagtc 1320
aaatggactg?cagaacttga?tttgagtaca?gatagtggaa?attttactgc?ccatgcatat 1380
tcttcgccga?ccgtggttga?tttggatggt?gatggaaatt?tggatattct?tgttggaact 1440
tcctttggct?tgttttatgt?tatcgatcat?cgtggtaagg?ttaggaacaa?gttcccactt 1500
gagatggcgg?agattcatgc?accagtcatt?gcagcagata?tcaatgatga?tgggaaaatc 1560
gagatggtca?ctgctgatgt?ccatggcaat?gtagcagcat?ggactgcaga?gggagaagaa 1620
atctgggagg?ttcatcttaa?gagtcttatc?ccacagcgcc?ctactgttgg?tgatgttaat 1680
ggagatggtc?gcactgaagt?tgtggtccca?accgtgtcag?gaaacatata?tgttcttagt 1740
ggaaaggatg?gctcaaaaat?tcagcctttc?ccatatagaa?cgcatggaag?gatcatgagt 1800
cctgttctat?tgcttgacat?gagcaaacat?gatgaaaagt?ctaaaggcct?cacccttgct 1860
actacatcct?ttgatggtta?cttgtatttg?attgagggct?caagtggctg?tgcagatgtt 1920
gttgacattg?gagagacctc?gtacagtatg?gttttggctg?ataatgttga?tggtggagat 1980
gacctcgatc?ttattgttac?taccatgaat?ggcaatgtct?tctgcttctc?cactccctct 2040
ccgcaccatc?cacttaagga?atggagatca?tcaaaccagg?gaagaaacaa?tgctgcatat 2100
cgttacaacc?gtgaaggtat?ttatgttaaa?cacggttcca?gaacattccg?tgacgaagag 2160
ggcaagcatt?tctgggtaga?gtttgagatt?gtggacaagt?acagggttcc?ttatgggaac 2220
caagctcctt?ataacgtgac?ggttactcta?cttgtccctg?ggaattatca?aggagaaagg 2280
cgcattgtgg?ttaatgcagc?ttataatgaa?ccaggcaagc?agcggatgaa?gcttcccaca 2340
gttcctgtga?gaaccacagg?aactgtgctt?gtggaaatgg?ttgacaaaaa?cgggttctac 2400
ttctctgacg?agttctcgct?caccttccac?atgcattatt?acaagcttct?gaaatggctc 2460
gtgcttcttc?caatgcttgg?gatgtttagc?gttcttgtca?tcctgcggcc?acaagaaggc 2520
gctccgttgc?catcattttc?aaggaatatt?gattagtgat?ttgcacagtg?aaacgtcagg 2580
tcctcataga?agcagataag?cagaacaaga?tattagcagg?atatccaatc?acccatgaag 2640
gagcttgtcc?acatcatact?gcatcgggga?gctcaatctg?cacagaaaaa?acccctcacg 2700
atgctgcatc?ccatcagtta?gctagttcgg?gaagtacagc?ttttagtcat?gcaaaaagaa 2760
ttttgtcaca?cttgagattg?ttttctaact?tatgatattt?acacaaggaa?ctggcagctg 2820
tctgatcctg?gttt 2834
<210>57
<211>851
<212>PRT
<213> rice
<400>57
Met?Arg?Pro?Leu?Leu?Ala?Phe?Ala?Ala?Val?Cys?Ala?Leu?Leu?Val?Ala
1 5 10 15
Ala?Ala?Ala?Pro?Ala?Ala?Ala?Glu?Glu?Glu?Lys?Ala?Asn?Lys?Phe?Arg
20 25 30
Gln?Arg?Glu?Ala?Thr?Asp?Asp?Met?Leu?Gly?Tyr?Pro?His?Leu?Asp?Glu
35 40 45
Asp?Ala?Leu?Leu?Lys?Thr?Lys?Cys?Pro?Lys?His?Val?Glu?Leu?Arg?Trp
50 55 60
Gln?Thr?Glu?Val?Ser?Ser?Ser?Ile?Tyr?Ala?Thr?Pro?Leu?Ile?Ala?Asp
65 70 75 80
Ile?Asn?Ser?Asp?Gly?Lys?Leu?Glu?Val?Val?Val?Pro?Ser?Phe?Val?His
85 90 95
Tyr?Leu?Glu?Val?Leu?Glu?Gly?Ser?Asp?Gly?Asp?Lys?Leu?Pro?Gly?Trp
100 105 110
Pro?Ala?Phe?His?Gln?Ser?Asn?Val?His?Ser?Ser?Pro?Leu?Leu?Tyr?Asp
115 120 125
Ile?Asp?Lys?Asp?Gly?Thr?Arg?Glu?Ile?Val?Leu?Ala?Thr?Tyr?Asn?Gly
130 135 140
Val?Val?Asn?Phe?Phe?Arg?Val?Ser?Gly?Tyr?Met?Met?Met?Asp?Lys?Leu
145 150 155 160
Glu?Val?Pro?Arg?Arg?Lys?Val?His?Lys?Asp?Trp?Tyr?Val?Gly?Leu?Asn
165 170 175
Thr?Asp?Pro?Val?Asp?Arg?Ser?His?Pro?Asp?Val?His?Asp?Ser?Ser?Ile
180 185 190
Ala?Lys?Lys?Ala?Ala?Ser?Glu?Glu?Ser?His?Pro?Asn?Ile?Gln?Asp?Lys
195 200 205
Pro?Val?Val?Asn?Glu?Ser?Ser?Lys?Glu?Ser?Gln?Ser?Arg?Ser?Thr?Asn
210 215 220
Asp?Ser?Thr?Thr?Arg?Gly?Val?Asp?Ser?Met?Lys?His?Ala?Ser?Lys?Glu
225 230 235 240
Glu?Pro?Val?Glu?Ser?Lys?Pro?Asn?Ser?Thr?Arg?Gly?Gln?Glu?Asn?Met
245 250 255
Asp?Val?Leu?Asn?Asn?Leu?Asn?Ser?Thr?Asp?Ala?Gly?Asn?Asn?Ser?Ser
260 265 270
Leu?Ser?Thr?Thr?Thr?Glu?Asn?Ala?Ser?His?Val?Gln?Arg?Arg?Leu?Leu
275 280 285
Gln?Thr?Asp?Glu?Lys?Ser?Asn?Gln?Ala?Gly?Ser?Ser?Glu?Thr?Asp?Ala
290 295 300
Ser?Asp?Thr?Gly?Thr?Ala?Lys?Ala?Ala?Thr?Val?Glu?Asn?Ser?Glu?Pro
305 310 315 320
Leu?Glu?Ala?Asp?Ala?Asp?Ala?Ser?Phe?Asn?Leu?Phe?Arg?Asp?Val?Glu
325 330 335
Asp?Leu?Pro?Asp?Glu?Tyr?Asn?Tyr?Asp?Tyr?Asp?Asp?Tyr?Val?Asp?Glu
340 345 350
Thr?Met?Trp?Gly?Asp?Glu?Asp?Trp?Lys?Glu?Gln?Gln?His?Glu?Lys?Ala
355 360 365
Glu?Asp?Tyr?Val?Ser?Ile?Asp?Ala?His?Ile?Leu?Ser?Thr?Pro?Val?Ile
370 375 380
Ala?Asp?Ile?Asp?Arg?Asp?Gly?Ile?Gln?Glu?Met?Val?Ile?Ser?Val?Ser
385 390 395 400
Tyr?Phe?Phe?Asp?His?Glu?Tyr?Tyr?Asp?Lys?Pro?Glu?His?Leu?Lys?Glu
405 410 415
Leu?Gly?Gly?Ile?Asp?Ile?Gly?Lys?Tyr?Ile?Ala?Ser?Ser?Ile?Val?Val
420 425 430
Phe?Asn?Leu?Asp?Thr?Arg?Gln?Val?Lys?Trp?Thr?Ala?Glu?Leu?Asp?Leu
435 440 445
Ser?Thr?Asp?Ser?Gly?Asn?Phe?Thr?Ala?His?Ala?Tyr?Ser?Ser?Pro?Thr
450 455 460
Val?Val?Asp?Leu?Asp?Gly?Asp?Gly?Asn?Leu?Asp?Ile?Leu?Val?Gly?Thr
465 470 475 480
Ser?Phe?Gly?Leu?Phe?Tyr?Val?Ile?Asp?His?Arg?Gly?Lys?Val?Arg?Asn
485 490 495
Lys?Phe?Pro?Leu?Glu?Met?Ala?Glu?Ile?His?Ala?Pro?Val?Ile?Ala?Ala
500 505 510
Asp?Ile?Asn?Asp?Asp?Gly?Lys?Ile?Glu?Met?Val?Thr?Ala?Asp?Val?His
515 520 525
Gly?Asn?Val?Ala?Ala?Trp?Thr?Ala?Glu?Gly?Glu?Glu?Ile?Trp?Glu?Val
530 535 540
His?Leu?Lys?Ser?Leu?Ile?Pro?Gln?Arg?Pro?Thr?Val?Gly?Asp?Val?Asn
545 550 555 560
Gly?Asp?Gly?Arg?Thr?Glu?Val?Val?Val?Pro?Thr?Val?Ser?Gly?Asn?Ile
565 570 575
Tyr?Val?Leu?Ser?Gly?Lys?Asp?Gly?Ser?Lys?Ile?Gln?Pro?Phe?Pro?Tyr
580 585 590
Arg?Thr?His?Gly?Arg?Ile?Met?Ser?Pro?Val?Leu?Leu?Leu?Asp?Met?Ser
595 600 605
Lys?His?Asp?Glu?Lys?Ser?Lys?Gly?Leu?Thr?Leu?Ala?Thr?Thr?Ser?Phe
610 615 620
Asp?Gly?Tyr?Leu?Tyr?Leu?Ile?Glu?Gly?Ser?Ser?Gly?Cys?Ala?Asp?Val
625 630 635 640
Val?Asp?Ile?Gly?Glu?Thr?Ser?Tyr?Ser?Met?Val?Leu?Ala?Asp?Asn?Val
645 650 655
Asp?Gly?Gly?Asp?Asp?Leu?Asp?Leu?Ile?Val?Thr?Thr?Met?Asn?Gly?Asn
660 665 670
Val?Phe?Cys?Phe?Ser?Thr?Pro?Ser?Pro?His?His?Pro?Leu?Lys?Glu?Trp
675 680 685
Arg?Ser?Ser?Asn?Gln?Gly?Arg?Asn?Asn?Ala?Ala?Tyr?Arg?Tyr?Asn?Arg
690 695 700
Glu?Gly?Ile?Tyr?Val?Lys?His?Gly?Ser?Arg?Thr?Phe?Arg?Asp?Glu?Glu
705 710 715 720
Gly?Lys?His?Phe?Trp?Val?Glu?Phe?Glu?Ile?Val?Asp?Lys?Tyr?Arg?Val
725 730 735
Pro?Tyr?Gly?Asn?Gln?Ala?Pro?Tyr?Asn?Val?Thr?Val?Thr?Leu?Leu?Val
740 745 750
Pro?Gly?Asn?Tyr?Gln?Gly?Glu?Arg?Arg?Ile?Val?Val?Asn?Ala?Ala?Tyr
755 760 765
Asn?Glu?Pro?Gly?Lys?Gln?Arg?Met?Lys?Leu?Pro?Thr?Val?Pro?Val?Arg
770 775 780
Thr?Thr?Gly?Thr?Val?Leu?Val?Glu?Met?Val?Asp?Lys?Asn?Gly?Phe?Tyr
785 790 795 800
Phe?Ser?Asp?Glu?Phe?Ser?Leu?Thr?Phe?His?Met?His?Tyr?Tyr?Lys?Leu
805 810 815
Leu?Lys?Trp?Leu?Val?Leu?Leu?Pro?Met?Leu?Gly?Met?Phe?Ser?Val?Leu
820 825 830
Val?Ile?Leu?Arg?Pro?Gln?Glu?Gly?Ala?Pro?Leu?Pro?Ser?Phe?Ser?Arg
835 840 845
Asn?Ile?Asp
850
<210>58
<211>2411
<212>DNA
<213> rice
<400>58
gagtgtctag?gccagtccag?tccagtccag?tccaggacgg?tccagtccgg?tcccgtagag 60
cgccggcgcg?tgtagcttcc?tcctccgctc?caggctccag?cgagggaggg?agggagacca 120
ccgtctccgc?cggctttgag?agagaaagag?aaagagagag?agagagagcg?gcgagatgcg 180
gaagcgggat?ctgggcatcc?tcctcctcgc?cgccttcgcc?gtcttcttct?cgctccagca 240
cgacggcgac?ctctccttcc?gcgaggcctg?gtaccacctc?tccgatgccg?actaccccat 300
caagcacgac?gccgaccgcc?tcccctctcc?cctagtcgcc?gacctcaacg?gcgacggcaa 360
acccgaggtc?ctcatcccca?cccacgacgc?caagatccag?gtcctccagc?cccaccccag 420
gccctccccc?gacgatgcct?ccttccacga?cgcccgcctc?atggctgatg?tctccctcct 480
cccctccaac?gttcgcctct?cctccgggag?gcgccccgtc?gccatggccg?ttggcaccgt 540
cgaccgccac?tacgcccacg?ccccctcccc?ctccaagcag?ctcctcgtcg?tcgtcacctc 600
cggatggtcc?gtcatgtgct?tcgaccacaa?cctcaaaaag?ctctgggagg?ctaatctcca 660
ggacgatttc?ccccacgccg?cccaccatcg?cgaggttgcc?atttccatta?ccaactacac 720
tctcaagcat?ggggatgcag?gtttggtcat?cgtcggagga?aggatggaaa?tgcaacatca 780
ttcagcagag?cttttcgatg?aatttatggt?gtcagaacac?aacagggaag?agcaccgtag 840
aagcgccagt?gagaagcagg?cttctgagac?aggcaacaca?gacctgcgtc?attttgccct 900
ttatgctttt?gctggccgca?ctggtgaatt?aagatggagc?cgaaagaatg?agaatatccc 960
atcgcaacca?tccgatgctt?cagtgctgat?accacaacac?aattacaagc?ttgatgccca 1020
tgcccttaat?agtcgtcatc?ctggtcagtt?cgaatgtcgg?gaatttagag?aatcagttct 1080
tggggtcatg?cctcatcatt?gggataggag?agaggatact?tttctgcaac?ttgcccattt 1140
taggaggcat?aaaaggaaag?cactgaagaa?aacacctgga?aaagctgttg?taaataacgt 1200
gcacaagccc?agtgaacata?atccacctgg?aaaggatgtt?tccaataggt?tagcaaatgt 1260
gattgggaaa?gctgcagata?tggctaattc?aaataaaatc?aagaagtcac?aaaggacgct 1320
ttatgttccg?acaatcacca?actatactca?agtttggtgg?gttcctaatg?ttgttgttgc 1380
ccacgaaaaa?gaagggatag?aggctgttca?tctagcttct?ggacgtacaa?tctgcaagct 1440
tcatttaaca?gaaggaggcc?ttcatgcaga?tattaatgga?gatggggttc?tagaccatgt 1500
tcaggttgtt?ggtgcaaatg?gcatcgagca?aacagttgtt?agtggttcaa?tggaagtgct 1560
gaaaccttgt?tgggcagtag?ctacatctgg?tgtgccagtg?cgggagcaac?tttttaatgt 1620
ttctatctgc?cattacaaca?atttcaattt?gtttcatcat?ggtgactttt?caagaagttt 1680
tgggaggaca?tttgatacaa?ctggcttaga?ggtggcgact?cctattctgc?tccagagaga 1740
tgatggtcat?aaacacagga?gaggaagcca?cggggatatc?atctttctta?cgagtcgtgg 1800
ggaggtgacc?tcgtactctc?caggtctact?tggtcatgat?gcaatatgga?gatggcaact 1860
gtcaacaggt?gcaacatggt?ccaaccttcc?gtctccatca?gggatgatgg?aaaacattgt 1920
agttccaact?ttgaaggctt?tctctctgcg?agcctatgac?ccaaaacagg?taatcatcgc 1980
gggtggtgat?ctggaggctg?tggtgatttc?tccttctggt?ggtttattgg?catccattga 2040
actccctgca?cctccaaccc?atgcgctggt?acttgaagat?ttcaatggtg?atggtttaac 2100
tgatattatt?ctggtaacat?cggggggagt?ctatgggttt?gtgcagacaa?gacatcctgg 2160
ggctcttttc?ttcagcacgc?ttgtgggttg?cttgatagtt?gttatcggag?tgatatttgt 2220
ttcactgcac?ctcaactcct?cgaacagcgg?taaacctagg?gcttcaaccg?actataggtg 2280
acgacattat?gtcagtcgac?agaattcctt?gtcaatattg?aggtgttgtt?atagcatttg 2340
atttagattt?ttcatataat?caactgccaa?ctgggttatg?taaacttgtg?cggcgaatgc 2400
atttttggcg?t 2411
<210>59
<211>701
<212>PRT
<213> rice
<400>59
Met?Arg?Lys?Arg?Asp?Leu?Gly?Ile?Leu?Leu?Leu?Ala?Ala?Phe?Ala?Val
1 5 10 15
Phe?Phe?Ser?Leu?Gln?His?Asp?Gly?Asp?Leu?Ser?Phe?Arg?Glu?Ala?Trp
20 25 30
Tyr?His?Leu?Ser?Asp?Ala?Asp?Tyr?Pro?Ile?Lys?His?Asp?Ala?Asp?Arg
35 40 45
Leu?Pro?Ser?Pro?Leu?Val?Ala?Asp?Leu?Asn?Gly?Asp?Gly?Lys?Pro?Glu
50 55 60
Val?Leu?Ile?Pro?Thr?His?Asp?Ala?Lys?Ile?Gln?Val?Leu?Gln?Pro?His
65 70 75 80
Pro?Arg?Pro?Ser?Pro?Asp?Asp?Ala?Ser?Phe?His?Asp?Ala?Arg?Leu?Met
85 90 95
Ala?Asp?Val?Ser?Leu?Leu?Pro?Ser?Asn?Val?Arg?Leu?Ser?Ser?Gly?Arg
100 105 110
Arg?Pro?Val?Ala?Met?Ala?Val?Gly?Thr?Val?Asp?Arg?His?Tyr?Ala?His
115 120 125
Ala?Pro?Ser?Pro?Ser?Lys?Gln?Leu?Leu?Val?Val?Val?Thr?Ser?Gly?Trp
130 135 140
Ser?Val?Met?Cys?Phe?Asp?His?Asn?Leu?Lys?Lys?Leu?Trp?Glu?Ala?Asn
145 150 155 160
Leu?Gln?Asp?Asp?Phe?Pro?His?Ala?Ala?His?His?Arg?Glu?Val?Ala?Ile
165 170 175
Ser?Ile?Thr?Asn?Tyr?Thr?Leu?Lys?His?Gly?Asp?Ala?Gly?Leu?Val?Ile
180 185 190
Val?Gly?Gly?Arg?Met?Glu?Met?Gln?His?His?Ser?Ala?Glu?Leu?Phe?Asp
195 200 205
Glu?Phe?Met?Val?Ser?Glu?His?Asn?Arg?Glu?Glu?His?Arg?Arg?Ser?Ala
210 215 220
Ser?Glu?Lys?Gln?Ala?Ser?Glu?Thr?Gly?Asn?Thr?Asp?Leu?Arg?His?Phe
225 230 235 240
Ala?Leu?Tyr?Ala?Phe?Ala?Gly?Arg?Thr?Gly?Glu?Leu?Arg?Trp?Ser?Arg
245 250 255
Lys?Asn?Glu?Asn?Ile?Pro?Ser?Gln?Pro?Ser?Asp?Ala?Ser?Val?Leu?Ile
260 265 270
Pro?Gln?His?Asn?Tyr?Lys?Leu?Asp?Ala?His?Ala?Leu?Asn?Ser?Arg?His
275 280 285
Pro?Gly?Gln?Phe?Glu?Cys?Arg?Glu?Phe?Arg?Glu?Ser?Val?Leu?Gly?Val
290 295 300
Met?Pro?His?His?Trp?Asp?Arg?Arg?Glu?Asp?Thr?Phe?Leu?Gln?Leu?Ala
305 310 315 320
His?Phe?Arg?Arg?His?Lys?Arg?Lys?Ala?Leu?Lys?Lys?Thr?Pro?Gly?Lys
325 330 335
Ala?Val?Val?Asn?Asn?Val?His?Lys?Pro?Ser?Glu?His?Asn?Pro?Pro?Gly
340 345 350
Lys?Asp?Val?Ser?Asn?Arg?Leu?Ala?Asn?Val?Ile?Gly?Lys?Ala?Ala?Asp
355 360 365
Met?Ala?Asn?Ser?Asn?Lys?Ile?Lys?Lys?Ser?Gln?Arg?Thr?Leu?Tyr?Val
370 375 380
Pro?Thr?Ile?Thr?Asn?Tyr?Thr?Gln?Val?Trp?Trp?Val?Pro?Asn?Val?Val
385 390 395 400
Val?Ala?His?Glu?Lys?Glu?Gly?Ile?Glu?ALa?Val?His?Leu?Ala?Ser?Gly
405 410 415
Arg?Thr?Ile?Cys?Lys?Leu?His?Leu?Thr?Glu?Gly?Gly?Leu?His?Ala?Asp
420 425 430
Ile?Asn?Gly?Asp?Gly?Val?Leu?Asp?His?Val?Gln?Val?Val?Gly?Ala?Asn
435 440 445
Gly?Ile?Glu?Gln?Thr?Val?Val?Ser?Gly?Ser?Met?Glu?Val?Leu?Lys?Pro
450 455 460
Cys?Trp?Ala?Val?Ala?Thr?Ser?Gly?Val?Pro?Val?Arg?Glu?Gln?Leu?Phe
465 470 475 480
Asn?Val?Ser?Ile?Cys?His?Tyr?Asn?Asn?Phe?Asn?Leu?Phe?His?His?Gly
485 490 495
Asp?Phe?Ser?Arg?Ser?Phe?Gly?Arg?Thr?Phe?Asp?Thr?Thr?Gly?Leu?Glu
500 505 510
Val?Ala?Thr?Pro?Ile?Leu?Leu?Gln?Arg?Asp?Asp?Gly?His?Lys?His?Arg
515 520 525
Arg?Gly?Ser?His?Gly?Asp?Ile?Ile?Phe?Leu?Thr?Ser?Arg?Gly?Glu?Val
530 535 540
Thr?Ser?Tyr?Ser?Pro?Gly?Leu?Leu?Gly?His?Asp?Ala?Ile?Trp?Arg?Trp
545 550 555 560
Gln?Leu?Ser?Thr?Gly?Ala?Thr?Trp?Ser?Asn?Leu?Pro?Ser?Pro?Ser?Gly
565 570 575
Met?Met?Glu?Asn?Ile?Val?Val?Pro?Thr?Leu?Lys?Ala?Phe?Ser?Leu?Arg
580 585 590
Ala?Tyr?Asp?Pro?Lys?Gln?Val?Ile?Ile?Ala?Gly?Gly?Asp?Leu?Glu?Ala
595 600 605
Val?Val?Ile?Ser?Pro?Ser?Gly?Gly?Leu?Leu?Ala?Ser?Ile?Glu?Leu?Pro
610 615 620
Ala?Pro?Pro?Thr?His?Ala?Leu?Val?Leu?Glu?Asp?Phe?Asn?Gly?Asp?Gly
625 630 635 640
Leu?Thr?Asp?Ile?Ile?Leu?Val?Thr?Ser?Gly?Gly?Val?Tyr?Gly?Phe?Val
645 650 655
Gln?Thr?Arg?His?Pro?Gly?Ala?Leu?Phe?Phe?Ser?Thr?Leu?Val?Gly?Cys
660 665 670
Leu?Ile?Val?Val?Ile?Gly?Val?Ile?Phe?Val?Ser?Leu?His?Leu?Asn?Ser
675 680 685
Ser?Asn?Ser?Gly?Lys?Pro?Arg?Ala?Ser?Thr?Asp?Tyr?Arg
690 695 700
<210>60
<211>1103
<212>DNA
<213> common wheat
<220>
<221>misc_feature
<222>(16)..(16)
<223>n is a, c, g, or t
<400>60
gcgttccgga?gctttnaaaa?gagtcaggag?ggattgacat?aggaccatat?attgcatgca 60
gtatagttgt?gggtaacctt?gacacaaaac?aagttaaatg?gacagcagaa?ctcgatttga 120
gtaccgaaag?cgggaaattc?cttgcccatg?catattcgtc?tccaactgtg?gttgatttgg 180
atggtgatgg?aaatttggat?atccttgtcg?gaacttccta?tggcttgttt?tatgttcttg 240
atcatcacgg?taagactagg?aaaaatttcc?cccttgagat?ggctgagatc?catgcaccag 300
tcattgcagc?agacatcaat?gatgatggta?agatcgagat?ggtcactgct?gatgtgcatg 360
gtaatgtagc?agcttggact?gcagagggag?acgaaatctg?ggaggtgcat?ctgaagagcc 420
ttgttccaca?gcgacctact?gtcggggacg?tcaatggaga?tggccacact?gatgttgtgg 480
tcccaactgt?atcaggaaac?atctacgttc?ttagtggaaa?ggatggctca?aaagttcagc 540
ctttcccata?tagaacacat?ggaaggatca?tgagtccggt?cttgttagtt?gacatgagca 600
aacgtggaga?aaagacgcaa?ggactaaccc?ttgctactac?gtcctttgat?ggttatttgt 660
atttgatcga?gggctctagt?ggctgtgcag?atgttgtcga?cattggagag?acctcgtaca 720
ctatgggttt?ggctgacaat?gtggatggcg?gagatgacct?tgatctgatt?gttactacca 780
tgattggcaa?tgtcttttgc?tttttcactc?cctcaccgga?acatcctctc?aaggaatgga 840
gatcatcaaa?ccaggaaagg?aataatgctg?catataggca?ccacccgtca?aggtatttat 900
gtaaggcatg?gttcaggaca?acccgggaat?gaaaagggta?aacatttcgg?ggtcgatttg 960
aaaattggag?acaagtacag?ggttccctat?gggaattaac?tccttaaaat?gtcagggtac 1020
cttactcgtc?ctgggaatta?ccagggaaac?aggggtattg?gggtttgcca?attttaaaat 1080
gaaccgggca?caaggaattg?ggt 1103
<210>61
<211>1152
<212>DNA
<213> Zea mays
<220>
<221>misc_feature
<222>(232)..(256)
<223>n is a, c, g, or t
<220>
<221>misc_feature
<222>(416)..(474)
<223>n is a, c, g, or t
<220>
<221>misc_feature
<222>(525)..(529)
<223>n is a, c, g, or t
<220>
<221>misc_feature
<222>(1025)..(1047)
<223>n is a, c, g, or t
<400>61
acaggcttat?tataggtttg?ttttctacta?atagttatga?agagcgtttt?gacacagtat 60
ccgagagttt?tgcttctcct?ctccgagggt?cgcttctctt?agaatctgac?aattaccgtt 120
tcaaaggcct?actgtaaact?ctcaatggtg?acaatatgct?tgttctttgg?gtgagccaat 180
attgaaaatg?gctgtgtaca?aaattgttct?gcagaactaa?atgggtacat?tnnnnnnnnn 240
nnnnnnnnnn?nnnnnnaaat?ggttaactgt?tgggatacta?cactgaacaa?gacatttagg 300
tcatggagat?gttggggagt?cacttcgtca?gcttcaatgg?gtcaccggca?tttcaccact 360
agtcgatatt?ccgtgaaaac?gatggcagcg?gcgcaccttc?ttggggcctc?aagatnnnnn 420
nnnnnnnnnn?nnnnnnnnnn?nnnnnnnnnn?nnnnnnnnnn?nnnnnnnnnn?nnnnagtaat 480
gcatgtggaa?ggtgagtgag?aactcgtcgg?agaagtacag?cccannnnna?tcgatcatct 540
ccacgaccac?agttccagta?gttctaacag?gaacagtggg?aagcatcatc?cgttgcttcc 600
ctggttgatg?atacacacca?ctgacaacaa?tgcgcctatc?tccttgataa?ttccccggaa 660
caagtaaagt?taccgtcacg?ttataaggag?cttgcttccc?atagggcacc?ctgtacttgt 720
caacgatttc?aaactctatc?cagaaattct?tgccctcttc?gtcacggaag?gtcctggaac 780
catgcttaac?atagatacct?tcacggttgt?actgatatgc?agcattattc?cttccttggt 840
ttgatgacct?ccattcctta?agcggatggt?gtggtgattg?agtggagaag?cagaagacgt 900
tgccattcat?agtggtaaca?ataagatcaa?ggtcatctcc?accatccacg?ttatcagcca 960
aaaccatagt?gtacgaggtc?tctccaatgt?caacaacatc?tgcacagcca?ctcgatccct 1020
caatnnnnnn?nnnnnnnnnn?nnnnnnnacg?ttgttgcaag?agttagccct?tttgcattgt 1080
ctccatgttt?gctcatgtcg?agaagtagaa?caggactcat?gattcttcca?tgtgttctat 1140
atgggaaagg?tt 1152
<210>62
<211>720
<212>DNA
<213> potato (Solanum tuberosum)
<400>62
gtttcaatct?agataccaag?caagttaaat?ggactgcaca?gttggactta?agtactgacg 60
acgggaaatt?ccgtgcctat?atatactctt?ctcctacggt?agttgatttg?gatggtgatg 120
gaaacatgga?cattctagtg?gggacctcct?atggcttctt?ttatgtgttg?gatcacaacg 180
gcaaagtgag?ggaaaagttc?cctctcgaaa?tggctgaaat?ccaaggagca?gtagttgcag 240
ctgatatcaa?tgatgatgga?aagattgaac?tagttacaac?agattcacat?ggaaatgttg 300
ctgcttggac?cgcacaaggc?acagaaattt?gggaaacgca?tctcaagagc?cttgttcctc 360
agggaccggt?tattggcgat?gtggatggag?atggccatac?agatgtcgtt?gtcccaacac 420
tttctgggaa?tatatatgtt?ctgaatggca?aggacggctc?atttgtacgt?ccatatcctt 480
ataggactca?tggtagggtg?atgaatcgag?cacttcttgt?cgacttgagc?aaacgtgggg 540
agaagaaaaa?agggcttaca?attgtcacaa?tgtcatttga?tggttatttg?tatctcatag 600
atggaccaac?atcatgtgct?gatgttgtag?atattggtga?aacttcatac?agcatggtct 660
tggctgataa?tgttgatggt?ggcgatgatc?ttgatcttat?tgtaacaacc?atgaatggta 720
<210>63
<211>904
<212>DNA
<213> aquilegia (Aquilegia)
<400>63
gtgaatattg?attcacacat?cctttgcact?cctgtgattg?cagacatcga?caatgacgga 60
gtatcagaaa?tggttgtcgc?tgtatcctat?ttctttgatc?atgagtatta?tgacaaccca 120
gagcatctct?ctgagttggg?tggcatagat?attgggaaat?atgtagcggg?aggaattgta 180
gtatttgatc?ttgatacaag?acaagttaag?tggacaacag?agctagatct?tagtacagac 240
acaggggact?tccgtgctta?tatatattct?tctccaacgg?tggtcgattt?ggatggagat 300
ggaaatttgg?acattcttgt?tgggacatct?tttggcttgt?tttatgtttt?ggaccataat 360
ggcaagataa?gaaacaagtt?ccctctcgaa?atggctgaga?ttcagggctc?tgtcattgcg 420
gcggatataa?atgatgatgg?aaaaattgaa?ttggttacaa?ctgatactca?tggaaatgtt 480
gctgcatgga?ccccagaagg?agaagaaatt?tgggaagtac?atcttaagag?tcttgttcca 540
caacgtccaa?cagttggtga?tgttgatggc?gatggtcata?ctgatgtggt?ggttcctaca 600
ctatcaggga?acatatacgt?tctcagtggc?aaggatggct?cttttgttca?cccataccca 660
tatcgtactc?atgggagagt?catgaatcaa?gttcttttag?tagatctaag?taaacgtgaa 720
gagaaacaga?agggactcac?tcttgtcaca?acatcatttg?atggctattt?gtaccttatt 780
gacggaccat?catcttgtgc?tgatgttgtt?gatattggcg?agacttcata?tagtatggtc 840
ttggcagaca?atgttgatgg?tggggatgat?cttgatctaa?ttgttacaac?tatgaatggg 900
aatg 904
<210>64
<211>708
<212>DNA
<213> colea (Brassica napus)
<400>64
atttgggaag?tgcatctaaa?gagtcttgtt?ccccagggtc?cttcaatagg?cgatgttgat 60
ggtgatggac?atactgatgt?cgtggttcct?acaacgtcag?gaaacattta?tgttcttagt 120
ggcaaggatg?gttcgattat?acgtccgtac?ccgtacagaa?ctcatggaag?agtgatgaac 180
caacttcttc?ttgttgatct?gaacaagcga?ggtgagaaaa?agaaggggct?caccattgtt 240
accacatcct?ttgacggtta?catgtacctc?atagatggac?ccacctcatg?cacggacgct 300
gttgatattg?gtgaaacttc?atacagcatg?gtcttggctg?ataatgttga?cggtggagat 360
gatcttgatc?taatcgtctc?aactatgaat?ggaaacgtct?tttgcttctc?tacaccttct 420
cctcaccatc?ccctcaaggc?gtggagatcg?actgatcaag?ggaggaacaa?taaggcaatc 480
cgttacggtc?gtgaaggtgt?ctttgtcact?cattcaacca?gaggcttccg?tgacgaggaa 540
ggcaaaaact?tctgggctga?gatcgagatt?gttgataact?acagataccc?atctggttca 600
caagcaccct?acaacgttac?tacgacgttg?ttggtaccag?gcaactacca?aggagatagg 660
aggataacac?atagccagat?ctatgaccga?ccaggaaaat?acagaatt 708
<210>65
<211>834
<212>DNA
<213> sweet orange (Citrus sinensis)
<400>65
gttgatgggg?atggccatac?tgatgttgta?gttccaacac?tatcggggaa?catttacgtt 60
cttagtggca?aggatggcag?taaagtccgt?ccttatcctt?atagaactca?tggaagggtg 120
atgaatcaag?tccttcttgt?tgatttaact?aaacgcgggg?agaaaagcaa?gggactcaca 180
attgttacaa?catcttttga?tggctatttg?taccttatag?atggcccaac?atcatgtgct 240
gatgtagtcg?acattggcga?aacttcatat?agcatggtct?tagctgacaa?tgttgacggt 300
ggagatgatc?ttgatcttat?tgttaccaca?atgaacggca?atgttttttg?cttctcaact 360
cctgctccac?accatcccct?caaggcatgg?agatcaatta?accaaggaag?aaacaatgtt 420
gcaatccgtt?acaaccgtga?aggaatctat?gttacacatc?catcaagagc?tttccgtgat 480
gaggaaggca?gaaacttctg?ggtggagatt?gagattgtag?atgaatatag?attcccatct 540
gggtcccaag?ctccatataa?tgtcactaca?acattgttgg?tccccggcaa?ttaccaaggt 600
gagaggagga?ttaagcaaag?ccaaatcttt?gcacgtcgtg?gaaaatatag?aatcaaattg 660
ccgacagtcg?gggtaaggac?gacagggact?gttttggtgg?agatggttga?caagaacgga 720
ctttatttct?cagacgaatt?ctcgcttaca?ttccatatgt?attactataa?actactaaag 780
tggctcctag?tcctcccgat?gctcgggatg?tttggtgtgc?ttgtcatcct?tcgt 834
<210>66
<211>906
<212>DNA
<213> officinalis (Asparagus officinalis)
<400>66
gggtggaaag?gatggatcgt?ttgttcgacc?cttcccctat?aggacacgag?ggagattgat 60
gagtccagtt?cttctggctg?atttaagcaa?acgtgatgaa?aagttaaagg?gcctaactct 120
tgttacaact?gcatttgatg?gctatttgta?cctaattgat?gggtccactg?gttgtacgga 180
tgttgttgac?attggcgaga?catcatacac?catggtcttg?gcagataatg?ttgatggtgg 240
ggacgatctt?gaccttattg?ttactactat?gaatggcaat?gtcttttgct?tttccacacc 300
ctcaccgcat?catcctctga?aggaatggag?atcatccaac?cagggaagaa?acaatgcagc 360
aagtagatat?aaccgtgaag?gaatatacat?atcacatgga?tccagagctt?tccgcgatga 420
ggaaggtaaa?catttctggg?tggagctgga?gataatagac?aagtacaggt?ttccctcagg 480
gcatcaaggg?ccttataatg?tcacaacaac?attattagtt?cctggaaatt?accaaggaga 540
aaggcgaatt?gtcgtcaaca?atgtatataa?tcaacctgga?aagcaacgga?taaagctgcc 600
aacagttcct?gttcgaacaa?cagggactgt?gctggtggag?atggttgaca?agaatggatt 660
gtatttctct?gatgaatttt?ctcttacatt?tcacatgcat?tactacaagc?tactgaagtg 720
gcttctgttt?ctaccgatgc?tcggaatgtt?tggagttctt?gtcattctac?gtccccagga 780
aggtgcaccg?ttaccatcgt?tttcacgaaa?tttggattga?tattaatgat?atcatccaat 840
gaagatgaga?atactccaaa?gtgcgatgct?atctgacatg?tatgcctttg?tacatctgaa 900
tgtgtg 906
<210>67
<211>779
<212>DNA
<213> Populus (Populus)
<220>
<221>misc_feature
<222>(34)..(39)
<223>n is a, c, g, or t
<220>
<221>misc_feature
<222>(663)..(663)
<223>n is a, c, g, or t
<220>
<221>misc_feature
<222>(686)..(688)
<223>n is a, c, g, or t
<220>
<221>misc_feature
<222>(739)..(744)
<223>n is a, c, g, or t
<220>
<221>misc_feature
<222>(746)..(748)
<223>n is a, c, g, or t
<220>
<221>misc_feature
<222>(760)..(761)
<223>n is a, c, g, or t
<220>
<221>misc_feature
<222>(766)..(769)
<223>n is a, c, g, or t
<220>
<221>misc_feature
<222>(773)..(777)
<223>n is a, c, g, or t
<400>67
tgaatcaagt?tcttcttctt?gacttaagta?aacnnnnnng?agaaaaacaa?gggactcaca 60
cttgttacaa?catcattcga?tggttatctt?taccttatag?atggaccaac?ttcttgtgct 120
gatgttgttg?atattggtga?aacttcatat?agcatggtct?tggcagacaa?tgttgatggt 180
ggagatgatc?ttgatctcat?agtttcaaca?atgaatggaa?atgtcttttg?cttttcaact 240
cctgttccac?atcatcccct?gaaggcttgg?agatctaata?atcaaggaag?aaacaatgta 300
gcaaaccgct?acaaccgtga?aggggtgtat?attaaacctt?catcaagaag?tttccgtgat 360
gaggagggga?agagcttctg?ggtggaattt?gagattgtgg?acaagtatag?aatcccgtct 420
gggtctcaag?caccttataa?tgtcactaca?accctgttag?ttcctggcaa?ttatcaaggt 480
gaacgacgga?taaagcaaaa?tcaaatcttt?gaccgtccag?gaaaatatcg?gataaaactt 540
ccaacagttg?gagtgagaac?tactggaact?gttttggtgg?agatggttga?taagaatgga 600
ctctatttct?cagatgactt?ctcgcttaca?ttccacatgc?attactataa?actgctgaag 660
tgnctccttg?tcctcccaat?gcttgnnntg?tttggtgtgc?ttgtcatcct?tcgtccacaa 720
gaggccgtgc?ccttgccann?nnnntnnngg?aatactgacn?ngtgannnnc?atnnnnnac 779
<210>68
<211>723
<212>DNA
<213> Populus
<400>68
ggcacgagca?cacttgttac?aacatcattt?gatggttatt?tgtaccttat?agacggacca 60
acttcttgtg?ctgatgttgt?tgatattggt?gaaacttcat?acagcatggt?cttggcagat 120
aatgttgatg?gtggagatga?tctagatctc?atagtctcaa?caatgaatgg?gaatgtcttt 180
tgcttttcaa?ctcctgttcc?acatcaccct?ctcaaggctt?ggagatcttc?taatcaagga 240
agaaacaacg?tggtgaaccg?ctacaaccgt?gaaggggttt?atgttacacc?ttcatcaaga 300
agttttcgtg?atgaggaggg?aaagagcttc?tgggtggaat?ttgagattgt?agacaagtat 360
agattcccat?ctgggtctca?agcaccttat?aatgtcacta?caaccctttt?agttcctggc 420
aattatcaag?gtgagagacg?aataaagcaa?agccaaatct?ttgaccgtcc?aggaaattat 480
cgggtaaaac?ttccaacagt?tggagtgagg?actactggaa?ctgttttggt?ggagatggtt 540
gataagaacg?ggctctattt?ctcagatgac?ttctccctta?cgtttcacat?gcattactat 600
aaactgctga?agtggctcct?agtcctccca?atgcttggaa?tgttttgtgt?gcttgtcatc 660
cttcgtccac?agaggccatg?ccccttacat?cattttcagg?aatactgact?tgtgatatca 720
tct 723
<210>69
<211>704
<212>DNA
<213> Euphorbia esula L (Euphorbia esula)
<220>
<221>misc_feature
<222>(10)..(11)
<223>n is a, c, g, or t
<400>69
ctgatacccn?ntgaaatgtt?gctgcttgga?cttcacaagg?aaaggaaatt?tgggagaggc 60
atctcaaaag?tcttatttcc?cagggcccat?cagttggtga?tgtggatggg?gatggccata 120
ccgatgtggt?agtccctact?atatctggga?atatatatgt?tttgagcggc?aaggatgggt 180
caaatgttcg?cccataccca?tatagaaccc?atgggagagt?aatgaatcaa?gttctccttg 240
ttgatttaag?taaacgtggg?gagaaaagca?ccggactcag?ccttgtaaca?acttcatttg 300
atggatactt?gtaccttata?gatgggccca?catcctgcgc?tgatgtcgtt?gatattggtg 360
aaacctcata?tagcatggtc?ttagcggaca?atgtagacgg?aggagatgac?cttgacctag 420
tagtcacaac?aatgaatggg?aacgtctttt?gcttcgcgac?tcctgttcca?catcatcccc 480
ttaaggcatg?gagatcggct?aatcaaggta?gaaataatgt?ggcaaacaga?tttaaccgtg 540
aaggggtcta?tgttacacct?tcatcaagag?cttttcgaga?cgaggaagga?aagaatttct 600
gggtggaaat?cgaaatcgtg?gataaatata?gatacccttc?tggttctcaa?gcaccttata 660
aagtcactac?aaccctgtta?gttccgggta?attatcaagg?tgag 704
<210>70
<211>1088
<212>DNA
<213>Ceratopteris?richardii
<400>70
ccacgcgtcc?gggttacaac?agatgcccgg?ggaaatgttg?ctgcatggac?aaataaagga 60
aaagaaattt?gggaagttca?cttaaaaagc?ttgattgctc?agggtccgac?tgtcggagat 120
attgatggag?acggaacatt?ggatattgtt?gtgccaactg?tgtcaggaaa?tatatatgtt 180
ttgcatggaa?agactggtgt?tactatgaag?ccatatccat?ttcgtaccca?tgggcgtgtg 240
atggctcctg?ttcttctggt?ggacttggcc?aagctaggca?ccgagagaag?aggtctggtc 300
ctggtggttt?catcatttga?tgggtacctc?tacctcatag?atggtcccac?agcctgtgct 360
gatgtggttg?atgtaggaga?gacatcctac?acaatggtgc?ttgcagacaa?cgttgatgga 420
ggagatgatt?tggatttaat?agtgacgacc?atgaatggga?atgttttctg?cttctctaca 480
cctgctcctt?atcatccttt?acggtcatgg?acctcacaga?atcagggtag?gagcaatctt 540
gcatctcgta?taagacatga?agggatttat?gctacatctg?gctcgagaag?tttcagggat 600
gaaggtggtg?aaagtttttg?ggtgcatttc?aatattattg?atgagaaccg?cttaccttcg 660
gggccttaca?atattacggc?tacccttctt?gtcccccaca?actacatggg?tccaaggcgc 720
attacagaga?gtcagttaat?tcaacaacca?ggaacgcaca?agttcaaact?gccatgtgta 780
tctgtacgat?catctgggac?tgtagttcta?gagatggtgg?ataaacatgg?gttctatttc 840
actgatgagt?attcattgac?attccacatg?cactattatc?ggctactgaa?atggatggta 900
gtgcttccaa?tgcttggaat?gctttttgtc?ttgttgtggc?ttcatcctga?ggatgccata 960
tcagttcttc?cttccttttc?aagggatcat?taaaatgaca?tatgagctca?atttttggta 1020
ctcctaaatc?caaaccttat?tgtaaatgta?tacattttga?catttatcca?gtctactaaa 1080
gaaatgca 1088
<210>71
<211>830
<212>DNA
<213> orchid at the age of one hundred years old (Welwitschia mirabilis)
<400>71
atgacaatca?tgaacacttg?aaggagctgg?gtgatattga?tattagcaaa?tatgtttcag 60
gtgctatagt?ggtatttaat?cttgatacaa?agcaagtgaa?gtggagtact?cagttggatc 120
ttagcacaac?ctctgggact?tttaatgcat?acatctattc?ttctcctact?gtggttgacc 180
tggatggtga?cggcaatttg?gatattattg?ttggcacgtc?atttggtttc?ttttatgtat 240
tggatcacca?tggaaaaaat?agagaaggct?ttccattaca?gatgggtgag?attcaaggac 300
aagtaattgc?tgctgatata?aatgatgatg?ggaagattga?aatggttaca?acagataccc 360
gtggaaatgt?ggctgcttgg?acttctcagg?ggaaagaaat?atgggagata?catttaaaaa 420
gtcttattgc?tcaggggcct?acagtaggtg?atattgatgg?agatggtcat?acagatttgg 480
tggttcctac?agtatcagga?aatatttatg?tattaaatgg?gaaagatgga?tcattggtga 540
agccatttcc?ttatcgtact?catggaagag?tcatgagtcc?ggtacttttg?gttgacctta 600
gcaaacgtgg?ggaaaagcaa?aagggcttaa?ctcttgcagc?attatcattt?gatggttact 660
tctacttaat?tgatggtcaa?acagcttgtg?cagatgttgt?tgatattgga?gagacttcct 720
actctatggc?tttggcggac?aatgtagatg?gcggcgatga?tcttgatttt?attatcacaa 780
ctatgaatgg?caatgtgttc?tgcttttcaa?cccctgctcc?acatcatcca 830
<210>72
<211>8730
<212>DNA
<213> alfalfa
<400>72
atgaggaagc?gtgatttggc?gattcttatg?ctctgcgctt?tcgctatttt?cttctctctt 60
caggtattgt?accctttaac?cccctaattc?actttctcac?tcttaaaccc?taaccctcat 120
tttcaattca?attgattcag?caagatggtg?gtgtttcatt?caaagacgcg?tggatgcatc 180
taacagatga?atacccaatc?aaatacgaag?ccgaacgcct?tcctcctcct?gttgtcgccg 240
atctcaacgg?cgatggtaag?aaagaagttc?tcgtagctac?ccacgatgcc?aaaattcagg 300
ttctttcatt?tcccaatttt?cctcaatttt?ttattcactt?ataaaattcc?aggttttatt 360
tggtttcctt?cacaactgga?cattgtcaaa?aaaacatttt?ttttctttca?gtaaaccatc 420
aatgtagttg?atgaactata?actctcttca?atttagtttg?taagtagtct?ctaaaattca 480
tcaattaatc?cctgctatta?atgtttggtt?ctacaccgaa?gaaagttgac?tttgaatgag 540
ttgattgtgt?aaactctatt?tgggctaaaa?ttgatttgaa?ggtaaagtga?tttatgtttg 600
gactttggat?acattcatgt?aaaagtgaat?tgaacaggtg?aaaaatcaac?tctagaatca 660
gaagctacaa?tttctaactt?taagtagaat?gtagaatcaa?ttctggaggt?aaaatcaatt 720
ttactctaga?agaaccaaat?atgtcaatca?attttgggtc?ctccaaaatt?agaaccaaac 780
atacagaaag?tagagactaa?aattgatgga?ttttcatata?ctttagggac?ttaattgacc 840
ggttttatat?actttaaaga?ctacttatca?tatttatata?gtttagggac?tagattgatg 900
gtacaagtaa?tatagtagta?actggatttt?gtatttatgg?tcggtgtctt?agattttgga 960
gccacatagt?aggcgtgttg?atgaaggatt?cagtgaggca?cgtgtgttag?cggaggtgtc 1020
tctgttgcct?gacaaagtgc?gtgtcatgtc?tgggagacga?cctgttgcta?tggccactgg 1080
ctttattgac?cgccatagaa?ttggacaacc?acataagcag?gttttggttg?tagtaacatc 1140
gggttggttt?gtaatgtgtt?ttgattccaa?cctccaaaag?ttgtgggaaa?ataatttgca 1200
ggtatgatgt?ttatgttgtg?ccatgtttca?gttgatagaa?ttttcagtta?aacattttga 1260
ttatcttgtt?atgttttagt?ttaccaactg?ttttagtggt?tgttaacagg?aggatttccc 1320
ccataatgct?caccacaggg?aagtttcaat?atctataagc?aattatactc?tcaagcatgg 1380
agatacagga?ttgatcattg?ttggtgggag?aatggaaatg?cagcctcatg?tatgtgtcac 1440
tttccttctt?gttttctggt?ttgttattct?ttttagcaga?gtatgtgtgt?ctgtgttcta 1500
tctgctgatg?gaaaaactta?gaatttaatg?tggatggtgt?ttaccatctt?ttatgaaagc 1560
gaaaactctc?aacttcatga?gtagcataag?attctggcta?tcttgttttc?ttggaagtga 1620
tgaaaatgaa?agttcctgag?taattttatt?tgataaagta?tgatggtaat?gtgagggttt 1680
gctgctgctt?ctcgagtttc?agaatttttt?atttgttatt?tgattctttc?tatggtaatg 1740
attttggaat?tgttcatctt?tggaattatt?ggcattatct?tctaatctga?tggttctgtt 1800
ggcttatgtt?gattgctttc?cattttcaga?tttttatgga?cccttttgaa?gaaatgggaa 1860
tgggagctag?atttgctgag?cagcatcgaa?gaagtgctac?tgaaaaggag?gtatagatac 1920
gtttctagtt?gatgctaaat?tttatgccca?tttttttact?atctgtagca?tgctaatttt 1980
ggtttaaact?ttgagacact?atttgcttta?tttatttcac?tttaattttg?ggtcttcaag 2040
gttgacctta?ttttatgctc?ctaaacagtc?aattcaaatt?cctattttga?tataaataga 2100
taatataaaa?gttcaccatg?tcttggcatg?ataaagccaa?taaataaaat?ctgtgcacct 2160
tgcagtaagt?agtctataaa?tctgaacctt?catgatcagg?tagctaaata?aacaggagac 2220
agtttcactc?gttttgttta?gatttttgtt?tttacaaaaa?aatgtatcag?gtgattttag 2280
ttttcttccc?attttaaggt?tgaagacttt?aacttgttta?ttgtgttcct?ttttctggat 2340
aggcttctga?aaacaccgga?actgtggatt?tacgccattt?tgcattttat?gcatttgctg 2400
gtcgatcagg?tgtagaacga?tggagcagaa?aaacagaggt?ggtgttcttt?tttttttgtt 2460
ttcagtgcgc?tctattattt?gggtgttgtc?aacatgcaaa?tatgaaacaa?ttatttattt 2520
ttaatttaaa?aatgcatttt?cttgtttttt?aaaagagctg?tcttttctat?ctggaaattc 2580
attaggtgat?taagtgaact?ttctctgtcc?tccctctctg?tacataactt?tattcagggg 2640
gtagcaactt?agttctagac?agtatgtttt?gtcctgcaac?agacatgaaa?actgaagaaa 2700
agttatatag?ttaagctcac?aaagttcaga?acataatgag?ttagagccta?aatgtcaata 2760
atagattata?aattatacct?ttgaagatat?tggagtcttg?ttgcaagcat?ctgcacttgg 2820
attttaacgc?actggtgcac?aaatatgtat?tttttgaaaa?gaaaatctat?caaacaaatg 2880
gaaccacctc?ccaaccagca?taaactttag?tcttttctgt?ctttgggtgg?tagtaccaga 2940
tagatgtttt?acaatcaaca?tagcggtcca?gtttgattga?atatgtgatt?tacgctagtc 3000
caacatttat?tttgttaaat?gatcttgtgt?atccttgtcc?tttttttttt?cttttctttt 3060
ctaattgcta?gtattgtgat?ttaattgttt?agaacattga?agcagcagct?tcttcagacg 3120
catcacagtt?aattccacag?cataactaca?aacttgatgt?tcatgctctg?aatagacgtc 3180
aacctggaga?ggtacttagc?tatagctgtt?caatttaatc?ctaaattcct?aatggtatat 3240
tgaattgatg?gaatatggta?aattggagtg?gcataaaata?ccattccatc?ctttttaagc 3300
aggggaatca?ttgcttttct?ttttcataca?tccattttat?tctaatctag?aaatatgcat 3360
gttgattttt?atgttctccc?ctttagctca?acgtactgat?tttgttatat?gtaagtaata 3420
ctgtaatttc?agatttatta?ctttttccat?tcctttcctc?atcaatctta?agtaataccg 3480
tagaatagat?tcctagtcat?atctttatgt?tcttcacctt?ttctcttcaa?atgatcaaac 3540
actaaagcaa?atatttgttt?gttaatatgg?agtttactat?gagaactcta?gtacaatagt 3600
actcatccaa?atctacttga?gtaacttggt?catctccttc?ctttgtgtgt?ggaaatagca 3660
gcatgtgcac?ataaaggagt?gtttcaatca?aatttaatat?tattgtgaaa?cctttgtata 3720
tgtttatcca?tatctaccca?atagatagct?tcctgtgaca?tgtgaaatta?tagtttgaat 3780
gcagggaatt?cagagaatca?atcctgggag?ttatgccaca?tcaatgggta?cactctattt 3840
tcaaccttga?ttaacgtttg?gtactaaagc?ataatctcaa?atgtcatagt?taactgatat 3900
tagatacatg?cactcatcag?gataggagag?aagatacttt?attgaagttg?gtccacttca 3960
atcggcataa?gaggaaaaca?ttgaagaaaa?cacctggaaa?gactatcaat?taccctttcg 4020
acaagcctga?ggaaaaccat?ccaccaggga?aggactcaac?caaaaaaatt?tcaaacataa 4080
ttgggaaagc?agcaaatttt?gctggttcag?caaaatccaa?gaaggtaatt?agaaaccatg 4140
tcatgcaatg?caactggtaa?caattcattc?aattgttgac?ataatgataa?ttagttttaa 4200
gatggctaca?actggacaac?tcaaaaattc?ttttccaaac?atgatttcag?ctacaagctt 4260
ttgttgtctt?tatccagtaa?cagagctgtc?tgtttacttt?ctaactactg?catgtccaat 4320
tttttgttat?gtgatctaaa?tctttgtgtt?ggtaatattc?tcagcatctg?ctgattttaa 4380
ttcattttgg?ctaaacctat?tttgaatttg?ttatgataac?cattgcttag?catttttaat 4440
ttttttttta?aactaagcac?tggtcagata?aaccatctca?cttgttatat?ttgtatttgt 4500
tcttaaagat?ttaagtctag?ctacattttt?tatttctcat?ttaaattttt?tgaatcctga 4560
atttagggag?ccaagatatt?tagttataaa?aataatgatt?aataataaat?atgcagttct 4620
ccccattgtc?gtgttaattt?ggtagatagc?atagtagtca?atcttggata?gcggtgcgta 4680
gtggccaacc?ccaaaaatgg?gatagcgtat?agcggtatga?caaatagcgg?tcaccgatgt 4740
ttgattattt?tttggacaat?tatatgaata?atagcaaagt?ataaacaaac?ttatatattt 4800
ctcaacaaaa?aaaacttata?ttaaatataa?cactcaaatc?tcacgagaca?ttcataaatc 4860
aaaacaccga?aaacaaaaga?caggaacaaa?taaaaaaaat?cataaaacag?gagaaaccat 4920
aagatagaag?atagaagagt?gtgtttcgcg?gcacaggtga?gaagagagaa?aaagttgaaa 4980
aatgttaggg?tttacgaaat?cctcaaaatg?ccctaaaaaa?ggttttaaaa?atagggtcaa 5040
tttggaaatt?tcctactaaa?ataaatagcg?gctgctatcc?aacccgcacc?gctatagcag 5100
ctgaagcggc?cgctatttga?ttccgcgcta?tttgataccg?ctatgctaca?cgcggccgct 5160
atagcgccac?tatcggctgc?tattgactac?tatggtagat?agaaactgtt?aggttaccta 5220
gtagggctga?tgatgtgtta?gtgggctcaa?gtaatgagtg?agaggcccat?tatttggagg 5280
gtgtatgaac?gtgggaagaa?gagaggagag?aagggactaa?gggtgcttcc?tagctggcag 5340
ttagttagta?tgaggcagag?ggagtgaata?tatttcttct?gaggagctgt?tgctctagtt 5400
tatccgtcat?agtgatttca?ttgttattct?agtttagcca?ggctttggga?gtatttggta 5460
tatctacctc?gaagatgcta?ggtcctaaaa?tgatgcagtt?ggaaggttcg?attgcgggag 5520
tctctctgtt?ggtgatgatt?taaacacaat?ttcatatact?cctggtgtgg?ttgaagcgtt 5580
gggggttgcc?tttggattca?tcagatactg?ctggtgtgca?tttgggtggg?ggtggggggt 5640
catatggtgc?agatattggg?caaatgtgtg?gttggcttct?gcatatcggc?ccttatgcag 5700
tcttgctgga?tacatatgtg?ttggggttag?aagaggtcat?gccaaagtac?caattactct 5760
cttaatacct?gtctaataag?actctaatgc?tttaaattga?cgaggatttg?catttttcac 5820
ctttcactgg?caaacatatg?ggttaaactg?gtagatgttt?agcgtgttca?agtacaagct 5880
gtgttcccat?agatgaagta?cttcatgttt?ggggagtttg?atcgttaaac?tacctaattg 5940
tttgtttaaa?tgaattttga?attccctctt?ctaataattt?tagtgcttcc?aaagattata 6000
atgcatataa?aacaatttga?ggattatctt?gttcttaggt?gaaaaacagt?ttttttccca 6060
tttgaaatta?gataaacaga?gtagttgtag?atttctactg?tggaaagcat?aacatgtcta 6120
agctggttaa?atatacttaa?ttgatggttt?ttgtcattaa?agtaatttct?ttgcatacat 6180
ttttatgttc?tcatgttatt?gcttaatcgg?aaaggggttc?tataaaatgg?atggcatttt 6240
atgggattcc?gagaagcctt?tttctttttt?ttgccagggt?ggggggtttg?cattatttgt 6300
cataatgttt?tttcttttgg?aatgcagtat?ccaccatatg?ttcccaccat?aaccaactat 6360
actaaggttt?ggtgggttcc?taatgttgtt?gtggctcatc?taaaggaggg?gatagaagtc 6420
cttcatctgg?catctggtcg?aacactatgt?aaggtaaata?taaagccact?gatcagcttg 6480
aaaatcaaaa?tacaaaaaaa?aaaaaaaaaa?gtttacaagt?agttgtacaa?catttgctcc 6540
tgtggttgta?gatttgtagt?attaaactgc?catggtttca?gccaaaatct?tatttagcat 6600
tcacgttact?tttgaaattt?ttcgtattct?gtgaaatgac?acttctattt?atctcagctt 6660
caccttcagg?aaggtggtct?acatgctgat?attaatggtg?atggagttct?ggatcatgtg 6720
caggttcact?ttttttcctt?cacatttttt?gataaacaaa?caagccaaat?ctttattaat 6780
ttagcatgat?aattgttaac?ttaacggggg?attttcctct?gcctgatgtc?tgaaagattt 6840
atctaatcag?gctgttggag?gaaatggtgc?tgagcaaact?gtagttagtg?ggtccatgga 6900
tgttctacgt?ccttgttggg?ctgttgcaac?gtctggcgta?ccagtacggg?aacaactctt 6960
caatgtatct?atttgtcatt?atacccattt?taacttattc?caacatggag?aactttatag 7020
aggcttcaac?cgaggttcag?atatgtcttc?tttggaggta?gcaacaccca?ttctcattcc 7080
tagaagcgat?ggtcacaagc?accggaaggg?aagccacggg?gatgttatct?tcttgacaaa 7140
ccggggagag?gtacgctctt?ttttgttcga?ctaaatctgg?ttatgtaaca?tttgatagtt 7200
tgtttgagca?ccaatcaaac?aaacctagtt?cttaacttct?gttaacaaat?tatttcaagt 7260
cacgcacgac?taatatattt?tggtggtatt?tgtgagataa?tccgtacctc?cgtactgact 7320
ttatgaaaat?tgctccttgc?agataacttc?gcacactcct?ggtttgcatg?gtcatgatgc 7380
tgtttggcag?tggcaacaat?caactggtgt?cacatggtca?aacctacctt?ccccagcagg 7440
gatgatggaa?ggtggtttgg?tgattcccac?actaaagcct?tttcctttgc?ggttgcatga 7500
caatcatgag?atgatccttg?cagctggaga?acaagaggct?gtggtaatat?cacccggagg 7560
tagcatattg?gctacaattg?aactccctgg?ttcacctaca?catgtattga?tccgtgaaga 7620
cttctcaaat?gatgggctca?ctgaccttat?tctcgtcacc?tcatccggag?tgtacggctt 7680
tgtccagact?cgacaacctg?gtgctctctt?cttcagtgtg?ctgatcggct?gtctcatagt 7740
cgtgatggga?attatatttg?ttacccagca?cataaattcc?atgaagggga?agcctcgtcc 7800
atcatctggt?cctaggtgaa?atgcaggacc?tgaaatttat?acattaactt?tgcaggcgct 7860
tacagatgaa?gcagaagaca?aagcggtgtg?cgcatcgtat?ggagcttcaa?gattgttgga 7920
aatgcataga?atgtaaggag?attttgagga?ggtgttgtac?tgtctaggat?ggatgattgt 7980
aaaatttaga?cagaagtgac?agaatgtcct?tcatgagaga?aacatgatcc?attaatataa 8040
ggaaactata?gtctttgcct?acgtatctgg?ctgttgttta?gaagttatac?tgcccacact 8100
tgacaattgt?cacccgttcc?gaattagttg?atacttgata?gttgatgcat?aacagaaact 8160
caccttggtc?tttacacttt?tcgctaaaag?gattttctct?tgtcattaca?caattcttgt 8220
aaatacgacc?atcgtttatt?tgcttcagat?ttagcagtgt?aaaacattaa?atctagcaac 8280
caacttgctc?caatctgtct?tggtcttctt?cagaatacac?ttcttaaaag?tcaattaaga 8340
aatgacttcc?tgattccatc?aaattaccaa?tgtggttgat?cccatcatac?atcaagtgct 8400
atgtacgtaa?tccctgttag?tctttggcat?caccttaagt?gttttagcta?ttgcttttcc 8460
tgtgcgtcga?gaaatgtttc?aaataaccat?ctgaatgatt?caatattgca?tcatataata 8520
ttgcaaaccc?aaaattagtg?tgttcctata?atggataaag?cttgaaaata?atgcgagtgg 8580
tcgattagtg?cgattggtgc?aatgttggat?tcattaacaa?ctggtattga?aaatattgca 8640
taaagctatc?aacttctcca?tataccatgc?tacattgtct?tttgcctgat?gatgattttt 8700
gacatccaac?cgtgtaaata?caatattagt 8730
<210>73
<211>57
<212>PRT
<213> alfalfa
<400>73
Ile?Gln?Gln?Asp?Gly?Gly?Val?Ser?Phe?Lys?Asp?Ala?Trp?Met?His?Leu
1 5 10 15
Thr?Asp?Glu?Tyr?Pro?Ile?Lys?Tyr?Glu?Ala?Glu?Arg?Leu?Pro?Pro?Pro
20 25 30
Val?Val?Ala?Asp?Leu?Asn?Gly?Asp?Gly?Lys?Lys?Glu?Val?Leu?Val?Ala
35 40 45
Thr?His?Asp?Ala?Lys?Ile?Gln?Val?Leu
50 55
<210>74
<211>25
<212>PRT
<213> alfalfa
<400>74
Leu?Ser?Gln?Leu?His?Leu?Gln?Glu?Gly?Gly?Leu?His?Ala?Asp?Ile?Asn
1 5 10 15
Gly?Asp?Gly?Val?Leu?Asp?His?Val?Gln
20 25
<210>75
<211>107
<212>PRT
<213> alfalfa
<400>75
Gln?Ala?Val?Gly?Gly?Asn?Gly?Ala?Glu?Gln?Thr?Val?Val?Ser?Gly?Ser
1 5 10 15
Met?Asp?Val?Leu?Arg?Pro?Cys?Trp?Ala?Val?Ala?Thr?Ser?Gly?Val?Pro
20 25 30
Val?Arg?Glu?Gln?Leu?Phe?Asn?Val?Ser?Ile?Cys?His?Tyr?Thr?His?Phe
35 40 45
Asn?Leu?Phe?Gln?His?Gly?Glu?Leu?Tyr?Arg?Gly?Phe?Asn?Arg?Gly?Ser
50 55 60
Asp?Met?Ser?Ser?Leu?Glu?Val?Ala?Thr?Pro?Ile?Leu?Ile?Pro?Arg?Ser
65 70 75 80
Asp?Gly?His?Lys?His?Arg?Lys?Gly?Ser?His?Gly?Asp?Val?Ile?Phe?Leu
85 90 95
Thr?Asn?Arg?Gly?Glu?Val?Arg?Ser?Phe?Leu?Phe
100 105
<210>76
<211>156
<212>PRT
<213> alfalfa
<400>76
Gln?Ile?Thr?Ser?His?Thr?Pro?Gly?Leu?His?Gly?His?Asp?Ala?Val?Trp
1 5 10 15
Gln?Trp?Gln?Gln?Ser?Thr?Gly?Val?Thr?Trp?Ser?Asn?Leu?Pro?Ser?Pro
20 25 30
Ala?Gly?Met?Met?Glu?Gly?Gly?Leu?Val?Ile?Pro?Thr?Leu?Lys?Pro?Phe
35 40 45
Pro?Leu?Arg?Leu?His?Asp?Asn?His?Glu?Met?Ile?Leu?Ala?Ala?Gly?Glu
50 55 60
Gln?Glu?Ala?Val?Val?Ile?Ser?Pro?Gly?Gly?Ser?Ile?Leu?Ala?Thr?Ile
65 70 75 80
Glu?Leu?Pro?Gly?Ser?Pro?Thr?His?Val?Leu?Ile?Arg?Glu?Asp?Phe?Ser
85 90 95
Asn?Asp?Gly?Leu?Thr?Asp?Leu?Ile?Leu?Val?Thr?Ser?Ser?Gly?Val?Tyr
100 105 110
Gly?Phe?Val?Gln?Thr?Arg?Gln?Pro?Gly?Ala?Leu?Phe?Phe?Ser?Val?Leu
115 120 125
Ile?Gly?Cys?Leu?Ile?Val?Val?Met?Gly?Ile?Ile?Phe?Val?Thr?Gln?His
130 135 140
Ile?Asn?Ser?Met?Lys?Gly?Lys?Pro?Arg?Pro?Ser?Ser
145 150 155
<210>77
<211>1521
<212>DNA
<213> rice
<400>77
atggccgcca?tgatggcgtc?cataaccagc?gagctgctct?tctttctccc?cttcatcctc 60
cttgccctgc?tcacgttcta?caccaccacc?gtggccaaat?gccacggcgg?gcactggtgg 120
cgaggtggga?cgacgccggc?gaagaggaag?cggatgaacc?tgccgcccgg?cgccgccggg 180
tggccgctcg?tcggcgagac?gttcggctac?ctccgcgccc?accccgccac?ctccgtcggc 240
cgcttcatgg?agcagcacat?cgcacggtac?gggaagatat?accggtcgag?cctgttcggg 300
gagcggacgg?tggtgtcggc?ggacgcgggg?ctcaaccggt?acatcctgca?gaacgagggg 360
aggctgttcg?agtgcagcta?cccgcgcagc?atcggcggca?tcctgggcaa?gtggtccatg 420
ctggtcctcg?tcggggaccc?gcaccgcgag?atgcgcgcca?tctccctcaa?cttcctctcc 480
tccgtccgcc?tccgcgccgt?cctcctcccc?gaggtcgagc?gccacaccct?cctcgtcctc 540
cgcgcctggc?ccccttcctc?caccttctcc?gctcagcacc?aagccaagaa?gttcacgttc 600
aacctgatgg?cgaagaacat?aatgagcatg?gacccggggg?aggaagagac?ggagcggctg 660
cggcgggagt?acatcacctt?catgaagggc?gtggtctccg?cgccgctcaa?cctgcccggg 720
acgccctact?ggaaggctct?caagtcgcgt?gctgccattc?tcggagtaat?agagaggaaa 780
atggaagagc?gggttgagaa?gctgagcaag?gaggatgcaa?gcgtagagca?agacgatctt 840
ctcggatggg?ctctgaaaca?atctaacctt?tcaaaagagc?aaatcctgga?cctcttgctg 900
agcttgctct?tcgccgggca?cgagacgtcg?tccatggcgc?tcgccctcgc?catcttcttc 960
cttgaaggct?gccccaaggc?tgtccaagaa?ctgagggagg?agcatcttgg?gattgcaagg 1020
agacaaaggc?taagagggga?gtgcaaattg?agctgggaag?actacaaaga?gatggttttc 1080
acgcaatgtg?tcataaacga?gacgttgcgg?ctaggaaacg?tggtcaggtt?cctgcaccgg 1140
aaggtcatca?aggacgtgca?ctacaagggt?tatgacattc?caagcggatg?gaagatcctg 1200
ccggtgttag?ccgcggtgca?tctggactcg?tccctgtacg?aggaccccca?gcgcttcaat 1260
ccctggagat?ggaagagtag?cggatcatcc?ggcggcttgg?ctcagagcag?cagcttcatg 1320
ccgtacggcg?gcgggacgcg?gctgtgcgcc?gggtcggagc?tcgcgaagct?ggagatggcc 1380
gtgttcttgc?accacctggt?gctcaacttc?aggtgggagc?tcgccgagcc?ggaccaagcc 1440
ttcgtcttcc?ccttcgtcga?cttccccaag?ggccttccca?ttagggttca?tagaattgca 1500
caggatgatg?agcaggagta?a 1521
<210>78
<211>505
<212>PRT
<213> rice
<400>78
Met?Ala?Ala?Met?Met?Ala?Ser?Ile?Thr?Ser?Glu?Leu?Leu?Phe?Phe?Leu
1 5 10 15
Pro?Phe?Ile?Leu?Leu?Ala?Leu?Leu?Thr?Phe?Tyr?Thr?Thr?Thr?Val?Ala
20 25 30
Lys?Cys?His?Gly?Gly?His?Trp?Trp?Arg?Gly?Gly?Thr?Thr?Pro?Ala?Lys
35 40 45
Arg?Lys?Arg?Met?Asn?Leu?Pro?Pro?Gly?Ala?Ala?Gly?Trp?Pro?Leu?Val
50 55 60
Gly?Glu?Thr?Phe?Gly?Tyr?Leu?Arg?Ala?His?Pro?Ala?Thr?Ser?Val?Gly
65 70 75 80
Arg?Phe?Met?Glu?Gln?His?Ile?Ala?Arg?Tyr?Gly?Lys?Ile?Tyr?Arg?Ser
85 90 95
Ser?Leu?Phe?Gly?Glu?Arg?Thr?Val?Val?Ser?Ala?Asp?Ala?Gly?Leu?Asn
100 105 110
Arg?Tyr?Ile?Leu?Gln?Asn?Glu?Gly?Arg?Leu?Phe?Glu?Cys?Ser?Tyr?Pro
115 120 125
Arg?Ser?Ile?Gly?Gly?Ile?Leu?Gly?Lys?Trp?Ser?Met?Leu?Val?Leu?Val
130 135 140
Gly?Asp?Pro?His?Arg?Glu?Met?Arg?Ala?Ile?Ser?Leu?Asn?Phe?Leu?Ser
145 150 155 160
Ser?Val?Arg?Leu?Arg?Ala?Val?Leu?Leu?Pro?Glu?Val?Glu?Arg?His?Thr
165 170 175
Leu?Leu?Val?Leu?Arg?Ala?Trp?Pro?Pro?Ser?Ser?Thr?Phe?Ser?Ala?Gln
180 185 190
His?Gln?Ala?Lys?Lys?Phe?Thr?Phe?Asn?Leu?Met?Ala?Lys?Asn?Ile?Met
195 200 205
Ser?Met?Asp?Pro?Gly?Glu?Glu?Glu?Thr?Glu?Arg?Leu?Arg?Arg?Glu?Tyr
210 215 220
Ile?Thr?Phe?Met?Lys?Gly?Val?Val?Ser?Ala?Pro?Leu?Asn?Leu?Pro?Gly
225 230 235 240
Thr?Pro?Tyr?Trp?Lys?Ala?Leu?Lys?Ser?Arg?Ala?Ala?Ile?Leu?Gly?Val
245 250 255
Ile?Glu?Arg?Lys?Met?Glu?Glu?Arg?Val?Glu?Lys?Leu?Ser?Lys?Glu?Asp
260 265 270
Ala?Ser?Val?Glu?Gln?Asp?Asp?Leu?Leu?Gly?Trp?Ala?Leu?Lys?Gln?Ser
275 280 285
Asn?Leu?Ser?Lys?Glu?Gln?Ile?Leu?Asp?Leu?Leu?Leu?Ser?Leu?Leu?Phe
290 295 300
Ala?Gly?His?Glu?Thr?Ser?Ser?Met?Ala?Leu?Ala?Leu?Ala?Ile?Phe?Phe
305 310 315 320
Leu?Glu?Gly?Cys?Pro?Lys?Ala?Val?Gln?Glu?Leu?Arg?Glu?Glu?His?Leu
325 330 335
Gly?Ile?Ala?Arg?Arg?Gln?Arg?Leu?Arg?Gly?Glu?Cys?Lys?Leu?Ser?Trp
340 345 350
Glu?Asp?Tyr?Lys?Glu?Met?Val?Phe?Thr?Gln?Cys?Val?Ile?Asn?Glu?Thr
355 360 365
Leu?Arg?Leu?Gly?Asn?Val?Val?Arg?Phe?Leu?His?Arg?Lys?Val?Ile?Lys
370 375 380
Asp?Val?His?Tyr?Lys?Gly?Tyr?Asp?Ile?Pro?Ser?Gly?Trp?Lys?Ile?Leu
385 390 395 400
Pro?Val?Leu?Ala?Ala?Val?His?Leu?Asp?Ser?Ser?Leu?Tyr?Glu?Asp?Pro
405 410 415
Gln?Arg?Phe?Asn?Pro?Trp?Arg?Trp?Lys?Ser?Ser?Gly?Ser?Ser?Gly?Gly
420 425 430
Leu?Ala?Gln?Ser?Ser?Ser?Phe?Met?Pro?Tyr?Gly?Gly?Gly?Thr?Arg?Leu
435 440 445
Cys?Ala?Gly?Ser?Glu?Leu?Ala?Lys?Leu?Glu?Met?Ala?Val?Phe?Leu?His
450 455 460
His?Leu?Val?Leu?Asn?Phe?Arg?Trp?Glu?Leu?Ala?Glu?Pro?Asp?Gln?Ala
465 470 475 480
Phe?Val?Phe?Pro?Phe?Val?Asp?Phe?Pro?Lys?Gly?Leu?Pro?Ile?Arg?Val
485 490 495
His?Arg?Ile?Ala?Gln?Asp?Asp?Glu?Gln
500 505
<210>79
<211>1542
<212>DNA
<213> Arabidopis thaliana
<400>79
atgttcgaaa?cagagcatca?tactctctta?cctcttcttc?ttctcccatc?gcttttgtct 60
cttcttctct?tcttgattct?cttgaagaga?agaaatagaa?aaaccagatt?caatctacct 120
ccgggtaaat?ccggttggcc?atttcttggt?gaaaccatcg?gttatcttaa?accgtacacc 180
gccacaacac?tcggtgactt?catgcaacaa?catgtctcca?agtatggtaa?gatatataga 240
tcgaacttgt?ttggagaacc?aacgatcgta?tcagctgatg?ctggacttaa?tagattcata 300
ttacaaaacg?aaggaaggct?ctttgaatgt?agttatccta?gaagtatagg?tgggattctt 360
gggaaatggt?cgatgcttgt?tcttgttggt?gacatgcata?gagatatgag?aagtatctcg 420
cttaacttct?taagtcacgc?acgtcttaga?actattctac?ttaaagatgt?tgagagacat 480
actttgtttg?ttcttgattc?ttggcaacaa?aactctattt?tctctgctca?agacgaggcc 540
aaaaagttta?cgtttaatct?aatggcgaag?catataatga?gtatggatcc?tggagaagaa 600
gaaacagagc?aattaaagaa?agagtatgta?actttcatga?aaggagttgt?ctctgctcct 660
ctaaatctac?caggaactgc?ttatcataaa?gctcttcagt?cacgagcaac?gatattgaag 720
ttcattgaga?ggaaaatgga?agagagaaaa?ttggatatca?aggaagaaga?tcaagaagaa 780
gaagaagtga?aaacagagga?tgaagcagag?atgagtaaga?gtgatcatgt?taggaaacaa 840
agaacagacg?atgatctttt?gggatgggtt?ttgaaacatt?cgaatttatc?gacggagcaa 900
attctcgatc?tcattcttag?tttgttattt?gccggacatg?agacttcttc?tgtagccatt 960
gctctcgcta?tcttcttctt?gcaagcttgc?cctaaagccg?ttgaagagct?tagggaagag 1020
catcttgaga?tcgcgagggc?caagaaggaa?ctaggagagt?cagaattaaa?ttgggatgat 1080
tacaagaaaa?tggactttac?tcaatgtgtt?ataaatgaaa?ctcttcgatt?gggaaatgta 1140
gttaggtttt?tgcatcgcaa?agcactcaaa?gatgttcggt?acaaaggata?cgatatccct 1200
agtgggtgga?aagtgttacc?ggtgatctca?gccgtacatt?tggataattc?tcgttatgac 1260
caacctaatc?tctttaatcc?ttggagatgg?caacagcaaa?acaacggagc?gtcatcgtca 1320
ggaagtggta?gtttttcgac?gtggggaaac?aactacatgc?cgtttggagg?agggccaagg 1380
ctatgtgctg?gttcagagct?agccaagtta?gaaatggcag?tgtttattca?tcatctagtt 1440
cttaaattca?attgggaatt?agcagaagat?gatcaaccat?ttgcttttcc?ttttgttgat 1500
tttcctaacg?gtttgcctat?tagggtttct?cgtattctgt?aa 1542
<210>80
<211>513
<212>PRT
<213> Arabidopis thaliana
<400>80
Met?Phe?Glu?Thr?Glu?His?His?Thr?Leu?Leu?Pro?Leu?Leu?Leu?Leu?Pro
1 5 10 15
Ser?Leu?Leu?Ser?Leu?Leu?Leu?Phe?Leu?Ile?Leu?Leu?Lys?Arg?Arg?Asn
20 25 30
Arg?Lys?Thr?Arg?Phe?Asn?Leu?Pro?Pro?Gly?Lys?Ser?Gly?Trp?Pro?Phe
35 40 45
Leu?Gly?Glu?Thr?Ile?Gly?Tyr?Leu?Lys?Pro?Tyr?Thr?Ala?Thr?Thr?Leu
50 55 60
Gly?Asp?Phe?Met?Gln?Gln?His?Val?Ser?Lys?Tyr?Gly?Lys?Ile?Tyr?Arg
65 70 75 80
Ser?Asn?Leu?Phe?Gly?Glu?Pro?Thr?Ile?Val?Ser?Ala?Asp?Ala?Gly?Leu
85 90 95
Asn?Arg?Phe?Ile?Leu?Gln?Asn?Glu?Gly?Arg?Leu?Phe?Glu?Cys?Ser?Tyr
100 105 110
Pro?Arg?Ser?Ile?Gly?Gly?Ile?Leu?Gly?Lys?Trp?Ser?Met?Leu?Val?Leu
115 120 125
Val?Gly?Asp?Met?His?Arg?Asp?Met?Arg?Ser?Ile?Ser?Leu?Asn?Phe?Leu
130 135 140
Ser?His?Ala?Arg?Leu?Arg?Thr?Ile?Leu?Leu?Lys?Asp?Val?Glu?Arg?His
145 150 155 160
Thr?Leu?Phe?Val?Leu?Asp?Ser?Trp?Gln?Gln?Asn?Ser?Ile?Phe?Ser?Ala
165 170 175
Gln?Asp?Glu?Ala?Lys?Lys?Phe?Thr?Phe?Asn?Leu?Met?Ala?Lys?His?Ile
180 185 190
Met?Ser?Met?Asp?Pro?Gly?Glu?Glu?Glu?Thr?Glu?Gln?Leu?Lys?Lys?Glu
195 200 205
Tyr?Val?Thr?Phe?Met?Lys?Gly?Val?Val?Ser?Ala?Pro?Leu?Asn?Leu?Pro
210 215 220
Gly?Thr?Ala?Tyr?His?Lys?Ala?Leu?Gln?Ser?Arg?Ala?Thr?Ile?Leu?Lys
225 230 235 240
Phe?Ile?Glu?Arg?Lys?Met?Glu?Glu?Arg?Lys?Leu?Asp?Ile?Lys?Glu?Glu
245 250 255
Asp?Gln?Glu?Glu?Glu?Glu?Val?Lys?Thr?Glu?Asp?Glu?Ala?Glu?Met?Ser
260 265 270
Lys?Ser?Asp?His?Val?Arg?Lys?Gln?Arg?Thr?Asp?Asp?Asp?Leu?Leu?Gly
275 280 285
Trp?Val?Leu?Lys?His?Ser?Asn?Leu?Ser?Thr?Glu?Gln?Ile?Leu?Asp?Leu
290 295 300
Ile?Leu?Ser?Leu?Leu?Phe?Ala?Gly?His?Glu?Thr?Ser?Ser?Val?Ala?Ile
305 310 315 320
Ala?Leu?Ala?Ile?Phe?Phe?Leu?Gln?Ala?Cys?Pro?Lys?Ala?Val?Glu?Glu
325 330 335
Leu?Arg?Glu?Glu?His?Leu?Glu?Ile?Ala?Arg?Ala?Lys?Lys?Glu?Leu?Gly
340 345 350
Glu?Ser?Glu?Leu?Asn?Trp?Asp?Asp?Tyr?Lys?Lys?Met?Asp?Phe?Thr?Gln
355 360 365
Cys?Val?Ile?Asn?Glu?Thr?Leu?Arg?Leu?Gly?Asn?Val?Val?Arg?Phe?Leu
370 375 380
His?Arg?Lys?Ala?Leu?Lys?Asp?Val?Arg?Tyr?Lys?Gly?Tyr?Asp?Ile?Pro
385 390 395 400
Ser?Gly?Trp?Lys?Val?Leu?Pro?Val?Ile?Ser?Ala?Val?His?Leu?Asp?Asn
405 410 415
Ser?Arg?Tyr?Asp?Gln?Pro?Asn?Leu?Phe?Asn?Pro?Trp?Arg?Trp?Gln?Gln
420 425 430
Gln?Asn?Asn?Gly?Ala?Ser?Ser?Ser?Gly?Ser?Gly?Ser?Phe?Ser?Thr?Trp
435 440 445
Gly?Asn?Asn?Tyr?Met?Pro?Phe?Gly?Gly?Gly?Pro?Arg?Leu?Cys?Ala?Gly
450 455 460
Ser?Glu?Leu?Ala?Lys?Leu?Glu?Met?Ala?Val?Phe?Ile?His?His?Leu?Val
465 470 475 480
Leu?Lys?Phe?Asn?Trp?Glu?Leu?Ala?Glu?Asp?Asp?Gln?Pro?Phe?Ala?Phe
485 490 495
Pro?Phe?Val?Asp?Phe?Pro?Asn?Gly?Leu?Pro?Ile?Arg?Val?Ser?Arg?Ile
500 505 510
Leu
<210>81
<211>1590
<212>DNA
<213> sugarcane
<220>
<221>misc_feature
<222>(394)..(394)
<223>n is a, c, g, or t
<400>81
atgggcgcca?tgatggcctc?cataaccagc?gagctcctct?tcttccttcc?cttcatcctg 60
ctggccctcc?tcgccctgta?caccaccact?gtcgccaaat?gcgacggcac?ccaccagtgg 120
cgccggccga?agaagaagcg?gccgaacctg?cccccgggcg?ccctcggatg?gcctttcgtc 180
ggcgagacct?tcggctacct?ccgcgcccac?ccggccacct?ccgtgggcct?cttcatggag 240
cagcatgtcg?cacggtacgg?caagatatac?cggtcgagcc?tgttcgggga?gcggacggtg 300
gtgtcggcgg?acgcggggct?caaccgctac?atcctgcaga?acgaggggcg?gctgttcgag 360
tgcagctacc?cgcgcagcat?cggcggcatc?ctgngcaagt?ggtccatgct?ggtgctggtg 420
ggcgacgcgc?accgcgagat?gcgcgccatc?tcgctcaact?ttctcagctc?cgtccgcctc 480
cgcgccgtgc?tgctcccgga?ggtggagcgc?cacaccctgc?tggtgctccg?ctcatggccg 540
ccctccgacg?gcacggtctc?cgcgcagcac?caagccaaga?agttcacgtt?taacctgatg 600
gcgaagaaca?taatgagcat?ggaccccggc?gaggaggaga?cggagcggct?gcggctggag 660
tacatcacct?tcatgaaggg?cgtcgtgtca?gcgccgctca?acttcccggg?cacggcctac 720
tggaaggcgc?tcaagtcacg?cgcgtccata?cttggagtaa?tagagaggaa?gatggaggac 780
aggcttcaga?aaatgagtaa?ggagaactca?agtgtggagg?aagacgatct?tcttggatgg 840
gccctgaagc?agtccaatct?gtcaaaggaa?cagatcctgg?acctcttgct?gagcctgctc 900
ttcgccgggc?acgagacttc?gtcaatggcg?ctagccctcg?ccatcttctt?ccttgaagga 960
tgccccaagg?ctgttcaaga?actccgggag?gagcatctcg?agattgctag?gagacaaagg 1020
ctaagagggg?cgttcaaatt?gagctgggaa?gactacaagg?aaatggtttt?cacgccatgg 1080
tgtataaacg?agacattgcg?ggttggcaac?gtggtcaggt?tcctgcaccg?gaaggtcatc 1140
caagatgtgc?actacaatgg?gtacgacata?ccacgcgggt?ggaaaatcct?gccggtgtta 1200
gcggcggtgc?atctggattc?gtcgctgtac?aaggacccct?accggttcaa?cccttggaga 1260
tggaagagca?acgcgccgag?cagcttcatg?ccgtacggcg?gcgggccgcg?gctgtgcgcc 1320
gggtcggagc?tggccaagct?ggagatcgcc?atcttcctgc?accacctggt?gctcaacttc 1380
cggtgggagc?tggcggagcc?ggaccaagcc?ttcgtctacc?ccttcgtcga?cttccccaag 1440
ggcctcccga?tcagggtcca?gcggatcgcc?gacgaccagg?gggcatcgca?gcgttttgac 1500
cgagaagcac?gatgtagcgg?tacgggtaca?caagcaagta?caaaattttc?gttgcatttt 1560
gagggaattg?gggctgggtg?gttatggtaa 1590
<210>82
<211>529
<212>PRT
<213> sugarcane
<220>
<221> is uncertain
<222>(132)..(132)
<223>Xaa can be any natural amino acid
<400>82
Met?Gly?Ala?Met?Met?Ala?Ser?Ile?Thr?Ser?Glu?Leu?Leu?Phe?Phe?Leu
1 5 10 15
Pro?Phe?Ile?Leu?Leu?Ala?Leu?Leu?Ala?Leu?Tyr?Thr?Thr?Thr?Val?Ala
20 25 30
Lys?Cys?Asp?Gly?Thr?His?Gln?Trp?Arg?Arg?Pro?Lys?Lys?Lys?Arg?Pro
35 40 45
Asn?Leu?Pro?Pro?Gly?Ala?Leu?Gly?Trp?Pro?Phe?Val?Gly?Glu?Thr?Phe
50 55 60
Gly?Tyr?Leu?Arg?Ala?His?Pro?Ala?Thr?Ser?Val?Gly?Leu?Phe?Met?Glu
65 70 75 80
Gln?His?Val?Ala?Arg?Tyr?Gly?Lys?Ile?Tyr?Arg?Ser?Ser?Leu?Phe?Gly
85 90 95
Glu?Arg?Thr?Val?Val?Ser?Ala?Asp?Ala?Gly?Leu?Asn?Arg?Tyr?Ile?Leu
100 105 110
Gln?Asn?Glu?Gly?Arg?Leu?Phe?Glu?Cys?Ser?Tyr?Pro?Arg?Ser?Ile?Gly
115 120 125
Gly?Ile?Leu?Xaa?Lys?Trp?Ser?Met?Leu?Val?Leu?Val?Gly?Asp?Ala?His
130 135 140
Arg?Glu?Met?Arg?Ala?Ile?Ser?Leu?Asn?Phe?Leu?Ser?Ser?Val?Arg?Leu
145 150 155 160
Arg?Ala?Val?Leu?Leu?Pro?Glu?Val?Glu?Arg?His?Thr?Leu?Leu?Val?Leu
165 170 175
Arg?Ser?Trp?Pro?Pro?Ser?Asp?Gly?Thr?Val?Ser?Ala?Gln?His?Gln?Ala
180 185 190
Lys?Lys?Phe?Thr?Phe?Asn?Leu?Met?Ala?Lys?Asn?Ile?Met?Ser?Met?Asp
195 200 205
Pro?Gly?Glu?Glu?Glu?Thr?Glu?Arg?Leu?Arg?Leu?Glu?Tyr?Ile?Thr?Phe
210 215 220
Met?Lys?Gly?Val?Val?Ser?Ala?Pro?Leu?Asn?Phe?Pro?Gly?Thr?Ala?Tyr
225 230 235 240
Trp?Lys?Ala?Leu?Lys?Ser?Arg?Ala?Ser?Ile?Leu?Gly?Val?Ile?Glu?Arg
245 250 255
Lys?Met?Glu?Asp?Arg?Leu?Gln?Lys?Met?Ser?Lys?Glu?Asn?Ser?Ser?Val
260 265 270
Glu?Glu?Asp?Asp?Leu?Leu?Gly?Trp?Ala?Leu?Lys?Gln?Ser?Asn?Leu?Ser
275 280 285
Lys?Glu?Gln?Ile?Leu?Asp?Leu?Leu?Leu?Ser?Leu?Leu?Phe?Ala?Gly?His
290 295 300
Glu?Thr?Ser?Ser?Met?Ala?Leu?Ala?Leu?Ala?Ile?Phe?Phe?Leu?Glu?Gly
305 310 315 320
Cys?Pro?Lys?Ala?Val?Gln?Glu?Leu?Arg?Glu?Glu?His?Leu?Glu?Ile?Ala
325 330 335
Arg?Arg?Gln?Arg?Leu?Arg?Gly?Ala?Phe?Lys?Leu?Ser?Trp?Glu?Asp?Tyr
340 345 350
Lys?Glu?Met?Val?Phe?Thr?Pro?Trp?Cys?Ile?Asn?Glu?Thr?Leu?Arg?Val
355 360 365
Gly?Asn?Val?Val?Arg?Phe?Leu?His?Arg?Lys?Val?Ile?Gln?Asp?Val?His
370 375 380
Tyr?Asn?Gly?Tyr?Asp?Ile?Pro?Arg?Gly?Trp?Lys?Ile?Leu?Pro?Val?Leu
385 390 395 400
Ala?Ala?Val?His?Leu?Asp?Ser?Ser?Leu?Tyr?Lys?Asp?Pro?Tyr?Arg?Phe
405 410 415
Asn?Pro?Trp?Arg?Trp?Lys?Ser?Asn?Ala?Pro?Ser?Ser?Phe?Met?Pro?Tyr
420 425 430
Gly?Gly?Gly?Pro?Arg?Leu?Cys?Ala?Gly?Ser?Glu?Leu?Ala?Lys?Leu?Glu
435 440 445
Ile?Ala?Ile?Phe?Leu?His?His?Leu?Val?Leu?Asn?Phe?Arg?Trp?Glu?Leu
450 455 460
Ala?Glu?Pro?Asp?Gln?Ala?Phe?Val?Tyr?Pro?Phe?Val?Asp?Phe?Pro?Lys
465 470 475 480
Gly?Leu?Pro?Ile?Arg?Val?Gln?Arg?Ile?Ala?Asp?Asp?Gln?Gly?Ala?Ser
485 490 495
Gln?Arg?Phe?Asp?Arg?Glu?Ala?Arg?Cys?Ser?Gly?Thr?Gly?Thr?Gln?Ala
500 505 510
Ser?Thr?Lys?Phe?Ser?Leu?His?Phe?Glu?Gly?Ile?Gly?Ala?Gly?Trp?Leu
515 520 525
Trp
<210>83
<211>1437
<212>DNA
<213> onion (Allium cepa)
<400>83
atggagatca?tattagtgtc?tacattgatc?atatcgctac?taatatttct?tggatttaga 60
agcaatggga?aaacggagag?aaaattgctg?cctacactac?caccaggcaa?tcttggaggt 120
tggccattca?tcggtgacac?cattccgttc?atgacacctc?attcttctgc?tttgttgggc 180
acttacatcg?atcaaaatat?ttccaaatat?gggaggatat?ttcgaatgaa?cttgttagga 240
aaggcaacga?tcgtgtctgt?agaccctgat?ttcaacagat?atattctaca?gaatgaagga 300
agattgtttg?aaaatagctg?cccaacgagc?attaaagaga?ttttgggaaa?atggtctatg 360
cttgcattag?ctggggatat?acacagagaa?atgagatcca?ttgctgtgaa?tttcatgaac 420
agtgttaagc?ttagaactta?ttttttaaag?gatattgata?ttcaggctgt?taatattctt 480
gatgcttgga?aggtcaactc?tactttctct?gcacaggatg?aaggaaagaa?gtttgcattt 540
aacctcatgg?tgaagcatct?aatgaatatg?gatcctggaa?tgccagagac?agaagaaatc 600
agaaaagagt?acattttctt?catggagggg?atggcttcca?ttcctttaaa?ctttcctgga 660
acagcctaca?gaagagcttt?acagtcaagg?tccaggattc?tggcaataat?ggggcaaaag 720
cttgacgaaa?ggatgcagaa?aataaaagaa?ggctgtaaag?gactggaaga?agaggatctt 780
cttgcctcag?ttgcaagaaa?tactaacata?acaagagacc?agattcttga?tttgatgatc 840
agcatgcttt?ttgctggtca?tgaaacttct?tctgccgcta?tttctcttgc?catttatttc 900
ctgcaagctt?cccccgatgt?tcttaaaaag?cttcgagagg?agcacataaa?gattgcaaaa 960
caaaagaaag?aaaggggcga?aactgaattg?aactgggatg?attacaagca?aatggaattc 1020
acaaactgcg?ttattcatga?aaccctaaga?ttaggcaaca?tcgttaagtt?tttgcatcgg 1080
aaaaccatca?aagatgttca?atacaaaggt?tatgaaattc?catgtgggtg?ggaagtagtg 1140
ccaatcatct?cagcagcaca?tttggattct?tctatctttg?acaacccaaa?agttatgaat 1200
ccttcgaggt?gggaggcgat?attttcagca?ggagcaaaga?gcaatataat?gtcattcagc 1260
ggtggacctc?ggttatgtcc?aggagcagag?ttggcgaaac?tggagatggc?tatttttctt 1320
catcatcttg?tacagaggtt?cgactgggaa?ttggtggaga?aggataaccc?tgtatcattc 1380
cccttccttg?gatttcccaa?gaaattgcct?atcaaaatca?cagctcttaa?acattga 1437
<210>84
<211>478
<212>PRT
<213> onion
<400>84
Met?Glu?Ile?Ile?Leu?Val?Ser?Thr?Leu?Ile?Ile?Ser?Leu?Leu?Ile?Phe
1 5 10 15
Leu?Gly?Phe?Arg?Ser?Asn?Gly?Lys?Thr?Glu?Arg?Lys?Leu?Leu?Pro?Thr
20 25 30
Leu?Pro?Pro?Gly?Asn?Leu?Gly?Gly?Trp?Pro?Phe?Ile?Gly?Asp?Thr?Ile
35 40 45
Pro?Phe?Met?Thr?Pro?His?Ser?Ser?Ala?Leu?Leu?Gly?Thr?Tyr?Ile?Asp
50 55 60
Gln?Asn?Ile?Ser?Lys?Tyr?Gly?Arg?Ile?Phe?Arg?Met?Asn?Leu?Leu?Gly
65 70 75 80
Lys?Ala?Thr?Ile?Val?Ser?Val?Asp?Pro?Asp?Phe?Asn?Arg?Tyr?Ile?Leu
85 90 95
Gln?Asn?Glu?Gly?Arg?Leu?Phe?Glu?Asn?Ser?Cys?Pro?Thr?Ser?Ile?Lys
100 105 110
Glu?Ile?Leu?Gly?Lys?Trp?Ser?Met?Leu?Ala?Leu?Ala?Gly?Asp?Ile?His
115 120 125
Arg?Glu?Met?Arg?Ser?Ile?Ala?Val?Asn?Phe?Met?Asn?Ser?Val?Lys?Leu
130 135 140
Arg?Thr?Tyr?Phe?Leu?Lys?Asp?Ile?Asp?Ile?Gln?Ala?Val?Asn?Ile?Leu
145 150 155 160
Asp?Ala?Trp?Lys?Val?Asn?Ser?Thr?Phe?Ser?Ala?Gln?Asp?Glu?Gly?Lys
165 170 175
Lys?Phe?Ala?Phe?Asn?Leu?Met?Val?Lys?His?Leu?Met?Asn?Met?Asp?Pro
180 185 190
Gly?Met?Pro?Glu?Thr?Glu?Glu?Ile?Arg?Lys?Glu?Tyr?Ile?Phe?Phe?Met
195 200 205
Glu?Gly?Met?Ala?Ser?Ile?Pro?Leu?Asn?Phe?Pro?Gly?Thr?Ala?Tyr?Arg
210 215 220
Arg?Ala?Leu?Gln?Ser?Arg?Ser?Arg?Ile?Leu?Ala?Ile?Met?Gly?Gln?Lys
225 230 235 240
Leu?Asp?Glu?Arg?Met?Gln?Lys?Ile?Lys?Glu?Gly?Cys?Lys?Gly?Leu?Glu
245 250 255
Glu?Glu?Asp?Leu?Leu?Ala?Ser?Val?Ala?Arg?Asn?Thr?Asn?Ile?Thr?Arg
260 265 270
Asp?Gln?Ile?Leu?Asp?Leu?Met?Ile?Ser?Met?Leu?Phe?Ala?Gly?His?Glu
275 280 285
Thr?Ser?Ser?Ala?Ala?Ile?Ser?Leu?Ala?Ile?Tyr?Phe?Leu?Gln?Ala?Ser
290 295 300
Pro?Asp?Val?Leu?Lys?Lys?Leu?Arg?Glu?Glu?His?Ile?Lys?Ile?Ala?Lys
305 310 315 320
Gln?Lys?Lys?Glu?Arg?Gly?Glu?Thr?Glu?Leu?Asn?Trp?Asp?Asp?Tyr?Lys
325 330 335
Gln?Met?Glu?Phe?Thr?Asn?Cys?Val?Ile?His?Glu?Thr?Leu?Arg?Leu?Gly
340 345 350
Asn?Ile?Val?Lys?Phe?Leu?His?Arg?Lys?Thr?Ile?Lys?Asp?Val?Gln?Tyr
355 360 365
Lys?Gly?Tyr?Glu?Ile?Pro?Cys?Gly?Trp?Glu?Val?Val?Pro?Ile?Ile?Ser
370 375 380
Ala?Ala?His?Leu?Asp?Ser?Ser?Ile?Phe?Asp?Asn?Pro?Lys?Val?Met?Asn
385 390 395 400
Pro?Ser?Arg?Trp?Glu?Ala?Ile?Phe?Ser?Ala?Gly?Ala?Lys?Ser?Asn?Ile
405 410 415
Met?Ser?Phe?Ser?Gly?Gly?Pro?Arg?Leu?Cys?Pro?Gly?Ala?Glu?Leu?Ala
420 425 430
Lys?Leu?Glu?Met?Ala?Ile?Phe?Leu?His?His?Leu?Val?Gln?Arg?Phe?Asp
435 440 445
Trp?Glu?Leu?Val?Glu?Lys?Asp?Asn?Pro?Val?Ser?Phe?Pro?Phe?Leu?Gly
450 455 460
Phe?Pro?Lys?Lys?Leu?Pro?Ile?Lys?Ile?Thr?Ala?Leu?Lys?His
465 470 475
<210>85
<211>1491
<212>DNA
<213> youth-and-old-age (Zinnia elegans)
<400>85
atgtgttcaa?caaccctaaa?tatgtgtgac?cttgagttct?tcatccttgc?atcttgtctt 60
gtcttggctc?tttttctcat?cttgaagctt?gtcaaaagaa?gaacaaacaa?tggttcgact 120
cgaaatcttc?caccgggcaa?catgggctgg?ccgttcatcg?gtgaaaccat?cggttacctc 180
caaccgtatt?cggctacaac?catcggcaag?tttatggaac?aacacatatc?caagtatggg 240
aagatataca?aatctagttt?gtttggtgag?ccaacaatag?tttctgctga?tccagggttg 300
aataagtaca?tattgcaaaa?tgaagggagg?ttatttgaat?gtagttatcc?aagaagcata 360
gggggtattc?ttggcaaatg?gtccatgttg?gttttggttg?gtgacatgca?tagagacatg 420
aggcaaattt?cactcaactt?tttgtccaat?gcaaggctta?aaactcaact?agtaaatgaa 480
gttgagaaaa?atactttgtg?ggtattagat?tcttggaaag?aaaactcacc?tttttgtgcc 540
caagaagaag?ccaagaagtt?tacttttaat?ctaatggcaa?cacatatcat?gagtttagac 600
ccgggtgaac?cggagaccga?gcgattgaag?aaagagtatg?taactttcat?gaaaggtgtg 660
gtttctcccc?ctttaaactt?ccctggaact?gcatactgga?aagctttaaa?gtctcgagcg 720
acgattctta?aattcatcga?aacaaaaatg?gaggagcgga?ttaggatgga?cgaaggaaac 780
ggattaggga?aactagacaa?tgatcttctt?ggatggtcta?tgaagaactc?aaatctcact 840
aaagagcaaa?tactcgattt?ggtattgagt?ctactctttg?ctggtcacga?aacgtcttcg 900
gtttcgatat?cgttagccgt?ttacttcctt?gaagcttgtc?ctaccgcggt?tcgtcaactt 960
agagaagaac?atgaagaaat?tgtgatgaaa?aaaaagctat?tgggtgagaa?gtatctcact 1020
tgggatgact?acaaaaagat?ggagtttact?cagtgtgtga?tcaatgagac?gctaagattc 1080
gggaatgtgg?tgagattcct?ccacagaaag?gctattaaag?atgtgaggta?taaaggatat 1140
gacattccat?gtggttggaa?agtgctgcca?gtgattgcag?ccgtgcattt?ggatcctaca 1200
cattttgacc?aaccttacct?ttttgatcca?tggagatggc?agaacgcaag?tgtcacgtca 1260
tctacttgtt?caaccccgcc?atcagcaagt?aacttcatgc?catttggtgg?agggccccgc 1320
ttatgcacag?ggtcagagct?agcgaaacta?gagatggcga?tatttatcca?ccatttggtc 1380
ctaaaatacg?agtgggaatt?ggttgactca?gatgaagcat?tcgcttatcc?atatctcgac 1440
tttccaaaag?gtctgccaat?caaaatccgt?caccgaaaac?aatcatgtta?g 1491
<210>86
<211>496
<212>PRT
<213> youth-and-old-age
<400>86
Met?Cys?Ser?Thr?Thr?Leu?Asn?Met?Cys?Asp?Leu?Glu?Phe?Phe?Ile?Leu
1 5 10 15
Ala?Ser?Cys?Leu?Val?Leu?Ala?Leu?Phe?Leu?Ile?Leu?Lys?Leu?Val?Lys
20 25 30
Arg?Arg?Thr?Asn?Asn?Gly?Ser?Thr?Arg?Asn?Leu?Pro?Pro?Gly?Asn?Met
35 40 45
Gly?Trp?Pro?Phe?Ile?Gly?Glu?Thr?Ile?Gly?Tyr?Leu?Gln?Pro?Tyr?Ser
50 55 60
Ala?Thr?Thr?Ile?Gly?Lys?Phe?Met?Glu?Gln?His?Ile?Ser?Lys?Tyr?Gly
65 70 75 80
Lys?Ile?Tyr?Lys?Ser?Ser?Leu?Phe?Gly?Glu?Pro?Thr?Ile?Val?Ser?Ala
85 90 95
Asp?Pro?Gly?Leu?Asn?Lys?Tyr?Ile?Leu?Gln?Asn?Glu?Gly?Arg?Leu?Phe
100 105 110
Glu?Cys?Ser?Tyr?Pro?Arg?Ser?Ile?Gly?Gly?Ile?Leu?Gly?Lys?Trp?Ser
115 120 125
Met?Leu?Val?Leu?Val?Gly?Asp?Met?His?Arg?Asp?Met?Arg?Gln?Ile?Ser
130 135 140
Leu?Asn?Phe?Leu?Ser?Asn?Ala?Arg?Leu?Lys?Thr?Gln?Leu?Val?Asn?Glu
145 150 155 160
Val?Glu?Lys?Asn?Thr?Leu?Trp?Val?Leu?Asp?Ser?Trp?Lys?Glu?Asn?Ser
165 170 175
Pro?Phe?Cys?Ala?Gln?Glu?Glu?Ala?Lys?Lys?Phe?Thr?Phe?Asn?Leu?Met
180 185 190
Ala?Thr?His?Ile?Met?Ser?Leu?Asp?Pro?Gly?Glu?Pro?Glu?Thr?Glu?Arg
195 200 205
Leu?Lys?Lys?Glu?Tyr?Val?Thr?Phe?Met?Lys?Gly?Val?Val?Ser?Pro?Pro
210 215 220
Leu?Asn?Phe?Pro?Gly?Thr?Ala?Tyr?Trp?Lys?Ala?Leu?Lys?Ser?Arg?Ala
225 230 235 240
Thr?Ile?Leu?Lys?Phe?Ile?Glu?Thr?Lys?Met?Glu?Glu?Arg?Ile?Arg?Met
245 250 255
Asp?Glu?Gly?Asn?Gly?Leu?Gly?Lys?Leu?Asp?Asn?Asp?Leu?Leu?Gly?Trp
260 265 270
Ser?Met?Lys?Asn?Ser?Asn?Leu?Thr?Lys?Glu?Gln?Ile?Leu?Asp?Leu?Val
275 280 285
Leu?Ser?Leu?Leu?Phe?Ala?Gly?His?Glu?Thr?Ser?Ser?Val?Ser?Ile?Ser
290 295 300
Leu?Ala?Val?Tyr?Phe?Leu?Glu?Ala?Cys?Pro?Thr?Ala?Val?Arg?Gln?Leu
305 310 315 320
Arg?Glu?Glu?His?Glu?Glu?Ile?Val?Met?Lys?Lys?Lys?Leu?Leu?Gly?Glu
325 330 335
Lys?Tyr?Leu?Thr?Trp?Asp?Asp?Tyr?Lys?Lys?Met?Glu?Phe?Thr?Gln?Cys
340 345 350
Val?Ile?Asn?Glu?Thr?Leu?Arg?Phe?Gly?Asn?Val?Val?Arg?Phe?Leu?His
355 360 365
Arg?Lys?Ala?Ile?Lys?Asp?Val?Arg?Tyr?Lys?Gly?Tyr?Asp?Ile?Pro?Cys
370 375 380
Gly?Trp?Lys?Val?Leu?Pro?Val?Ile?Ala?Ala?Val?His?Leu?Asp?Pro?Thr
385 390 395 400
His?Phe?Asp?Gln?Pro?Tyr?Leu?Phe?Asp?Pro?Trp?Arg?Trp?Gln?Asn?Ala
405 410 415
Ser?Val?Thr?Ser?Ser?Thr?Cys?Ser?Thr?Pro?Pro?Ser?Ala?Ser?Asn?Phe
420 425 430
Met?Pro?Phe?Gly?Gly?Gly?Pro?Arg?Leu?Cys?Thr?Gly?Ser?Glu?Leu?Ala
435 440 445
Lys?Leu?Glu?Met?Ala?Ile?Phe?Ile?His?His?Leu?Val?Leu?Lys?Tyr?Glu
450 455 460
Trp?Glu?Leu?Val?Asp?Ser?Asp?Glu?Ala?Phe?Ala?Tyr?Pro?Tyr?Leu?Asp
465 470 475 480
Phe?Pro?Lys?Gly?Leu?Pro?Ile?Lys?Ile?Arg?His?Arg?Lys?Gln?Ser?Cys
485 490 495
<210>87
<211>1422
<212>DNA
<213> puncture vine clover (Medicago trunculata)
<400>87
atgtctaact?catacttaac?ttgcagtttt?ctttcttcca?tctttgttct?ttctttgatt 60
ttcattttca?tcaaaagaaa?gaaaacaagg?tataatcttc?cacctggaaa?aatgggatgg 120
ccctttatag?gagaaaccat?tggttatttg?aagccttaca?ctgccaccac?aatgggagaa 180
tttatggaaa?atcacatagc?aaggtatggg?acaatttaca?agtcaaattt?gtttggaggg 240
ccagctattg?tatcagcaga?tgcagaattg?aataggttca?tattacaaaa?tgatggaaaa 300
ttgtttgagt?gtagctatcc?aaaaagcatt?ggtggaatac?ttggaaaatg?gtcaatgttg 360
gttttagtag?gtgacatgca?tagggaaatg?aggaatatat?cactaaactt?tatgagctat 420
gctaggctta?aaacacattt?tttgaaagat?atggagaagc?ataccctttt?tgttctaagc 480
tcttggaaag?aaaattgtac?attttcagct?caagatgaag?caaaaaagtt?caccttcaat 540
ttgatggcca?aacaaatcat?gagtttggat?ccagggaatc?ttgagacaga?acagttgaaa 600
aaagagtatg?tctgtttcat?gaaaggtgtt?gtttctgctc?ctttgaattt?gccaggaact 660
gcatacagaa?aagcattaaa?gtctaggaac?aatatattga?agttcataga?ggggaaaatg 720
gaagaaaggg?tgaagagaaa?ccaagaagga?aaaaaaggga?tggaggaaaa?tgatcttcta 780
aattgggttt?taaagcattc?aaatctttcc?actgagcaaa?ttcttgactt?gattctaagt 840
ttactttttg?ctggccatga?aacttcatct?gtggctatag?ctctagctat?ttactttttg 900
cctagttgtc?ctcaagctat?acaacaatta?agggaagagc?atagagaaat?agctagatcc 960
aagaagaaag?caggggaggt?tgaattaact?tgggatgatt?ataaaagaat?ggaatttact 1020
cattgtgttg?tgaatgaaac?actaaggttg?ggtaatgttg?tgagattcct?tcacaggaag 1080
gctatcaaag?atgttcatta?caaaggttat?gacattccat?gtggatggaa?agtccttccg 1140
gtgatttcag?cggtacattt?ggatccttca?aattttgacc?aacctcaaca?cttcaatcct 1200
tggagatggc?agatgagcaa?taacaacttc?atgccatttg?gaggaggacc?aaggctatgt 1260
gcaggattag?aattagccaa?acttgaaatg?gctgttttca?ttcaccatat?catcctcaaa 1320
tacaactggg?acatggtcga?tgttgatcaa?cctattgtat?acccttttgt?tgattttccc 1380
aaaggtttgc?caattagagt?ccaaagccaa?gccactcttt?aa 1422
<210>88
<211>480
<212>PRT
<213> puncture vine clover
<400>88
Met?Ser?Asn?Ser?Tyr?Leu?Thr?Cys?Ser?Phe?Leu?Ser?Ser?Ile?Phe?Val
1 5 10 15
Leu?Ser?Leu?Ile?Phe?Ile?Phe?Ile?Lys?Arg?Lys?Lys?Thr?Arg?Tyr?Asn
20 25 30
Leu?Pro?Pro?Gly?Lys?Met?Gly?Trp?Pro?Phe?Ile?Gly?Glu?Thr?Ile?Gly
35 40 45
Tyr?Leu?Lys?Pro?Tyr?Thr?Ala?Thr?Thr?Met?Gly?Glu?Phe?Met?Glu?Asn
50 55 60
His?Ile?Ala?Arg?Tyr?Gly?Thr?Ile?Tyr?Lys?Ser?Asn?Leu?Phe?Gly?Gly
65 70 75 80
Pro?Ala?Ile?Val?Ser?Ala?Asp?Ala?Glu?Leu?Asn?Arg?Phe?Ile?Leu?Gln
85 90 95
Asn?Asp?Gly?Lys?Leu?Phe?Glu?Cys?Ser?Tyr?Pro?Lys?Ser?Ile?Gly?Gly
100 105 110
Ile?Leu?Gly?Lys?Trp?Ser?Met?Leu?Val?Leu?Val?Gly?Asp?Met?His?Arg
115 120 125
Glu?Met?Arg?Asn?Ile?Ser?Leu?Asn?Phe?Met?Ser?Tyr?Ala?Arg?Leu?Lys
130 135 140
Thr?His?Phe?Leu?Lys?Asp?Met?Glu?Lys?His?Thr?Leu?Phe?Val?Leu?Ser
145 150 155 160
Ser?Trp?Lys?Glu?Asn?Cys?Thr?Phe?Ser?Ala?Gln?Asp?Glu?Ala?Lys?Lys
165 170 175
Phe?Thr?Phe?Asn?Leu?Met?Ala?Lys?Gln?Ile?Met?Ser?Leu?Asp?Pro?Gly
180 185 190
Asn?Leu?Glu?Thr?Glu?Gln?Leu?Lys?Lys?Glu?Tyr?Val?Cys?Phe?Met?Lys
195 200 205
Gly?Val?Val?Ser?Ala?Pro?Leu?Asn?Leu?Pro?Gly?Thr?Ala?Tyr?Arg?Lys
210 215 220
Ala?Leu?Lys?Ser?Arg?Asn?Asn?Ile?Leu?Lys?Phe?Ile?Glu?Gly?Lys?Met
225 230 235 240
Glu?Glu?Arg?Val?Lys?Arg?Asn?Gln?Glu?Gly?Lys?Lys?Gly?Met?Glu?Glu
245 250 255
Asn?Asp?Leu?Leu?Asn?Trp?Val?Leu?Lys?His?Ser?Asn?Leu?Ser?Thr?Glu
260 265 270
Gln?Ile?Leu?Asp?Leu?Ile?Leu?Ser?Leu?Leu?Phe?Ala?Gly?His?Glu?Thr
275 280 285
Ser?Ser?Val?Ala?Ile?Ala?Leu?Ala?Ile?Tyr?Phe?Leu?Pro?Ser?Cys?Pro
290 295 300
Gln?Ala?Ile?Gln?Gln?Leu?Arg?Glu?Glu?His?Arg?Glu?Ile?Ala?Arg?Ser
305 310 315 320
Lys?Lys?Lys?Ala?Gly?Glu?Val?Glu?Leu?Thr?Trp?Asp?Asp?Tyr?Lys?Arg
325 330 335
Met?Glu?Phe?Thr?His?Cys?Val?Val?Asn?Glu?Thr?Leu?Arg?Leu?Gly?Asn
340 345 350
Val?Val?Arg?Phe?Leu?His?Arg?Lys?Ala?Ile?Lys?Asp?Val?His?Tyr?Lys
355 360 365
Gly?Tyr?Asp?Ile?Pro?Cys?Gly?Trp?Lys?Val?Leu?Pro?Val?Ile?Ser?Ala
370 375 380
Val?His?Leu?Asp?Pro?Ser?Asn?Phe?Asp?Gln?Pro?Gln?His?Phe?Asn?Pro
385 390 395 400
Trp?Arg?Trp?Gln?Gln?Asn?Asn?Asp?Gly?Ala?Ser?Gly?Asn?Ser?Asn?Ile
405 410 415
Phe?Leu?Pro?Phe?Gly?Gly?Gly?Pro?Arg?Leu?Cys?Ala?Gly?Leu?Glu?Leu
420 425 430
Ala?Lys?Leu?Glu?Met?Ala?Val?Phe?Ile?His?His?Ile?Ile?Leu?Lys?Tyr
435 440 445
Asn?Trp?Asp?Met?Val?Asp?Val?Asp?Gln?Pro?Ile?Val?Tyr?Pro?Phe?Val
450 455 460
Asp?Phe?Pro?Lys?Gly?Leu?Pro?Ile?Arg?Val?Gln?Ser?Gln?Ala?Thr?Leu
465 470 475 480
<210>89
<211>1485
<212>DNA
<213> comospore poplar (populus trichocarpa)
<220>
<221>misc_feature
<222>(1110)..(1110)
<223>n is a, c, g, or t
<400>89
atgtctcact?cagagcttgt?tgtctttctc?cttccatcga?ttttatcact?actcttgctc 60
ttcattctcg?tgcaaagaaa?gcaagtaaga?tttaatctcc?caccgggcaa?catggggtgg 120
ccatttcttg?gagaaaccat?tggctacctg?aagccttact?ctgctacttc?aataggagaa 180
ttcatggaac?agcacatatc?aaggtatgga?aagatttaca?agtccaattt?gtttggggag 240
ccaacaatag?tatccgcaga?tgctggactt?agcagattta?tactacagaa?tgagggaaga 300
ttatttgaat?gcagctatcc?aaaaagtatt?ggtggaattc?ttggaaaatg?gtccatgatg 360
gttcttgttg?gagacatgca?tagagacatg?aggattatat?ctctcaactt?tttgagccat 420
gccaggttaa?gaactcatct?attgaaagaa?gtggagaagc?aaaccctgct?tgttcttagc 480
tcttggaagg?agaattgtac?attttcagct?caagatgaag?caaacaagtt?taccttcaat 540
tggatggcaa?aacatatcat?gagcttggat?cctggaaaga?cagagactga?gcagctgaaa 600
aaagagtatg?ttactttcat?gaaaggagta?gtttcaggtc?ctataaattt?tcctggaacc 660
ccatatagaa?aagccttgaa?gtctcgatca?atcatcttga?aatttataga?gcgaaagatg 720
gaggagagaa?ttggagaaac?gaagggtgga?gtagaaaact?tggaagacga?tgatcttctt 780
ggatgggtct?tgaagcattc?aaatctttat?acggagcaaa?tccttgaatt?aatcttaagc 840
ttgctctttg?ctggccacga?aacttcttct?gtgtccatag?ctctagccat?atccttcttg 900
caagcttgtc?ctggttctat?tcaacagtta?aaagaagaac?atattcaaat?ctccagagcc 960
aagaaacggt?caggagagac?ggaattgacc?tgggatgatt?acaaaaaaat?ggaattcact 1020
caatgcgtta?taagcgagac?agtgaggctt?ggaaacgtag?tcaggtttgt?tcacagaaaa 1080
gctctaaaag?atgttcggta?caaagggtan?gacattccat?gtggatggaa?agtgttacca 1140
gtaatctcat?ccgtccattt?agattcaact?cttttcgacc?aacctcaaca?cttcaatcca 1200
tggagatggc?agcagcacaa?caatgctcgt?ggatcttcta?cttgttcgag?tgcggcggcg 1260
gcggcggcgg?cggcggtgag?tagtaatcac?ttcatgccat?ttgggggagg?accgcgactc 1320
tgtgcaggat?cggaattggc?aaaacttgaa?atggcagttt?tcattcacca?tttggttctg 1380
aacttccatt?gggaattggt?cggtgccgat?caagcctttg?cctttccttt?tgttgatttt 1440
cctaaaggct?tgccaataag?agtcaagcac?cacacagtca?tataa 1485
<210>90
<211>494
<212>PRT
<213> comospore poplar
<220>
<221> is uncertain
<222>(370)..(370)
<223>Xaa can be any natural amino acid
<400>90
Met?Ser?His?Ser?Glu?Leu?Val?Val?Phe?Leu?Leu?Pro?Ser?Ile?Leu?Ser
1 5 10 15
Leu?Leu?Leu?Leu?Phe?Ile?Leu?Val?Gln?Arg?Lys?Gln?Val?Arg?Phe?Asn
20 25 30
Leu?Pro?Pro?Gly?Asn?Met?Gly?Trp?Pro?Phe?Leu?Gly?Glu?Thr?Ile?Gly
35 40 45
Tyr?Leu?Lys?Pro?Tyr?Ser?Ala?Thr?Ser?Ile?Gly?Glu?Phe?Met?Glu?Gln
50 55 60
His?Ile?Ser?Arg?Tyr?Gly?Lys?Ile?Tyr?Lys?Ser?Asn?Leu?Phe?Gly?Glu
65 70 75 80
Pro?Thr?Ile?Val?Ser?Ala?Asp?Ala?Gly?Leu?Ser?Arg?Phe?Ile?Leu?Gln
85 90 95
Asn?Glu?Gly?Arg?Leu?Phe?Glu?Cys?Ser?Tyr?Pro?Lys?Ser?Ile?Gly?Gly
100 105 110
Ile?Leu?Gly?Lys?Trp?Ser?Met?Met?Val?Leu?Val?Gly?Asp?Met?His?Arg
115 120 125
Asp?Met?Arg?Ile?Ile?Ser?Leu?Asn?Phe?Leu?Ser?His?Ala?Arg?Leu?Arg
130 135 140
Thr?His?Leu?Leu?Lys?Glu?Val?Glu?Lys?Gln?Thr?Leu?Leu?Val?Leu?Ser
145 150 155 160
Ser?Trp?Lys?Glu?Asn?Cys?Thr?Phe?Ser?Ala?Gln?Asp?Glu?Ala?Asn?Lys
165 170 175
Phe?Thr?Phe?Asn?Trp?Met?Ala?Lys?His?Ile?Met?Ser?Leu?Asp?Pro?Gly
180 185 190
Lys?Thr?Glu?Thr?Glu?Gln?Leu?Lys?Lys?Glu?Tyr?Val?Thr?Phe?Met?Lys
195 200 205
Gly?Val?Val?Ser?Gly?Pro?Ile?Asn?Phe?Pro?Gly?Thr?Pro?Tyr?Arg?Lys
210 215 220
Ala?Leu?Lys?Ser?Arg?Ser?Ile?Ile?Leu?Lys?Phe?Ile?Glu?Arg?Lys?Met
225 230 235 240
Glu?Glu?Arg?Ile?Gly?Glu?Thr?Lys?Gly?Gly?Val?Glu?Asn?Leu?Glu?Asp
245 250 255
Asp?Asp?Leu?Leu?Gly?Trp?Val?Leu?Lys?His?Ser?Asn?Leu?Tyr?Thr?Glu
260 265 270
Gln?Ile?Leu?Glu?Leu?Ile?Leu?Ser?Leu?Leu?Phe?Ala?Gly?His?Glu?Thr
275 280 285
Ser?Ser?Val?Ser?Ile?Ala?Leu?Ala?Ile?Ser?Phe?Leu?Gln?Ala?Cys?Pro
290 295 300
Gly?Ser?Ile?Gln?Gln?Leu?Lys?Glu?Glu?His?Ile?Gln?Ile?Ser?Arg?Ala
305 310 315 320
Lys?Lys?Arg?Ser?Gly?Glu?Thr?Glu?Leu?Thr?Trp?Asp?Asp?Tyr?Lys?Lys
325 330 335
Met?Glu?Phe?Thr?Gln?Cys?Val?Ile?Ser?Glu?Thr?Val?Arg?Leu?Gly?Asn
340 345 350
Val?Val?Arg?Phe?Val?His?Arg?Lys?Ala?Leu?Lys?Asp?Val?Arg?Tyr?Lys
355 360 365
Gly?Xaa?Asp?Ile?Pro?Cys?Gly?Trp?Lys?Val?Leu?Pro?Val?Ile?Ser?Ser
370 375 380
Val?His?Leu?Asp?Ser?Thr?Leu?Phe?Asp?Gln?Pro?Gln?His?Phe?Asn?Pro
385 390 395 400
Trp?Arg?Trp?Gln?Gln?His?Asn?Asn?Ala?Arg?Gly?Ser?Ser?Thr?Cys?Ser
405 410 415
Ser?Ala?Ala?Ala?Ala?Ala?Ala?Ala?Ala?Val?Ser?Ser?Asn?His?Phe?Met
420 425 430
Pro?Phe?Gly?Gly?Gly?Pro?Arg?Leu?Cys?Ala?Gly?Ser?Glu?Leu?Ala?Lys
435 440 445
Leu?Glu?Met?Ala?Val?Phe?Ile?His?His?Leu?Val?Leu?Asn?Phe?His?Trp
450 455 460
Glu?Leu?Val?Gly?Ala?Asp?Gln?Ala?Phe?Ala?Phe?Pro?Phe?Val?Asp?Phe
465 470 475 480
Pro?Lys?Gly?Leu?Pro?Ile?Arg?Val?Lys?His?His?Thr?Val?Ile
485 490
<210>91
<211>1407
<212>DNA
<213>Aquilegia?formosa?x?Aquilegia?pubescens
<220>
<221>misc_feature
<222>(1031)..(1032)
<223>n is a, c, g, or t
<400>91
atgcctgagc?ttgtgttttt?cttttcatta?gctccagcaa?ttttagcact?aatacttctc 60
ttgaaactct?tcaaaaggaa?gaaaaagtca?tataatcttc?caccaggaaa?catgggttgg 120
ccatatctag?gcgaaactct?tggttatttg?aagccttatt?gtgctatcac?tactggagat 180
ttcatggagc?aacatatatc?aaggtatggg?aagatctaca?agtcaaattt?atttggttat 240
cctacaatag?tttcagttga?tcctgaatta?aatcgatatg?tattacaaaa?cgaaggaaga 300
ctgtttgaat?gtagttatcc?aagtagttta?ggtgggattc?ttggcaaatg?gtcaatgtta 360
gttttggttg?gagacatgca?taaaaacatg?aggatgatct?ctgtcaactt?catgagcagc 420
gcaagacttc?gaacacatct?aattcaagat?gtggagactc?aagccttatt?ggtgctgaaa 480
tcttggcagg?ttgataaaaa?gattttggcc?caagatgaag?caaagaagtt?taccttcaat 540
ttaattgtaa?aaaatataat?gagcatggaa?cctggaacac?ctgaaagtga?gaagcttagg 600
agggaataca?ttacattcat?gaaaggaatc?atttctgcgc?ctttgaattt?gcctggaact 660
gcatatagaa?gagccttaaa?gtctcgatcg?aacattctgc?aacttatcga?gcataacatg 720
aatgagagac?tccaaaagac?taacggagat?ggtaagaaag?tggaagatga?tgatctactt 780
ggatgggtct?tgaagcattc?aaatcttacc?actgaacaaa?ttcttgattt?gatactaagt 840
atgcttttcg?cgggtcatga?aacttcctca?gtatctatat?ctctagccat?ataccttttg 900
caaggatgcc?taaaagcagt?tgaagagtta?agggaagagc?atattagaat?tgctaaagca 960
aaagaacagg?caggacagag?atctggatta?aattgggaag?attacaaaca?catggaattc 1020
actcaatgtg?nntttcttca?tagaaaaact?ctcaaagatg?ttcagtacaa?agggtatgac 1080
attccatgtg?gttggaaagt?tcttccagta?tttgcagcag?ttcatttgga?ccctttaaat 1140
ttcgaccaac?ctcatgcttt?caatccatgg?agatggcaga?atgggaagac?aagcacgacg 1200
actaacaact?tcatgccgtt?tggtggtgga?ttacggttat?gtgctggttc?agagctagcc 1260
aagttggaaa?tggctatttt?cattcaccat?ttggtcttga?attatgattg?ggatatagca 1320
gaaccagatc?aaccatttgc?ctacccattt?gttgaatttc?caaaaggtct?accaattaag 1380
gtctatgacc?atcagtgctt?aacatga 1407
<210>92
<211>468
<212>PRT
<213>Aquilegia?formosa?x?Aquilegia?pubescens
<220>
<22l> is uncertain
<222>(344)..(344)
<223>Xaa can be any natural amino acid
<400>92
Met?Pro?Glu?Leu?Val?Phe?Phe?Phe?Ser?Leu?Ala?Pro?Ala?Ile?Leu?Ala
1 5 10 15
Leu?Ile?Leu?Leu?Leu?Lys?Leu?Phe?Lys?Arg?Lys?Lys?Lys?Ser?Tyr?Asn
20 25 30
Leu?Pro?Pro?Gly?Asn?Met?Gly?Trp?Pro?Tyr?Leu?Gly?Glu?Thr?Leu?Gly
35 40 45
Tyr?Leu?Lys?Pro?Tyr?Cys?Ala?Ile?Thr?Thr?Gly?Asp?Phe?Met?Glu?Gln
50 55 60
His?Ile?Ser?Arg?Tyr?Gly?Lys?Ile?Tyr?Lys?Ser?Asn?Leu?Phe?Gly?Tyr
65 70 75 80
Pro?Thr?Ile?Val?Ser?Val?Asp?Pro?Glu?Leu?Asn?Arg?Tyr?Val?Leu?Gln
85 90 95
Asn?Glu?Gly?Arg?Leu?Phe?Glu?Cys?Ser?Tyr?Pro?Ser?Ser?Leu?Gly?Gly
100 105 110
Ile?Leu?Gly?Lys?Trp?Ser?Met?Leu?Val?Leu?Val?Gly?Asp?Met?His?Lys
115 120 125
Asn?Met?Arg?Met?Ile?Ser?Val?Asn?Phe?Met?Ser?Ser?Ala?Arg?Leu?Arg
130 135 140
Thr?His?Leu?Ile?Gln?Asp?Val?Glu?Thr?Gln?Ala?Leu?Leu?Val?Leu?Lys
145 150 155 160
Ser?Trp?Gln?Val?Asp?Lys?Lys?Ile?Leu?Ala?Gln?Asp?Glu?Ala?Lys?Lys
165 170 175
Phe?Thr?Phe?Asn?Leu?Ile?Val?Lys?Asn?Ile?Met?Ser?Met?Glu?Pro?Gly
180 185 190
Thr?Pro?Glu?Ser?Glu?Lys?Leu?Arg?Arg?Glu?Tyr?Ile?Thr?Phe?Met?Lys
195 200 205
Gly?Ile?Ile?Ser?Ala?Pro?Leu?Asn?Leu?Pro?Gly?Thr?Ala?Tyr?Arg?Arg
210 215 220
Ala?Leu?Lys?Ser?Arg?Ser?Asn?Ile?Leu?Gln?Leu?Ile?Glu?His?Asn?Met
225 230 235 240
Asn?Glu?Arg?Leu?Gln?Lys?Thr?Asn?Gly?Asp?Gly?Lys?Lys?Val?Glu?Asp
245 250 255
Asp?Asp?Leu?Leu?Gly?Trp?Val?Leu?Lys?His?Ser?Asn?Leu?Thr?Thr?Glu
260 265 270
Gln?Ile?Leu?Asp?Leu?Ile?Leu?Ser?Met?Leu?Phe?Ala?Gly?His?Glu?Thr
275 280 285
Ser?Ser?Val?Ser?Ile?Ser?Leu?Ala?Ile?Tyr?Leu?Leu?Gln?Gly?Cys?Leu
290 295 300
Lys?Ala?Val?Glu?Glu?Leu?Arg?Glu?Glu?His?Ile?Arg?Ile?Ala?Lys?Ala
305 310 315 320
Lys?Glu?Gln?Ala?Gly?Gln?Arg?Ser?Gly?Leu?Asn?Trp?Glu?Asp?Tyr?Lys
325 330 335
His?Met?Glu?Phe?Thr?Gln?Cys?Xaa?Phe?Leu?His?Arg?Lys?Thr?Leu?Lys
340 345 350
Asp?Val?Gln?Tyr?Lys?Gly?Tyr?Asp?Ile?Pro?Cys?Gly?Trp?Lys?Val?Leu
355 360 365
Pro?Val?Phe?Ala?Ala?Val?His?Leu?Asp?Pro?Leu?Asn?Phe?Asp?Gln?Pro
370 375 380
His?Ala?Phe?Asn?Pro?Trp?Arg?Trp?Gln?Asn?Gly?Lys?Thr?Ser?Thr?Thr
385 390 395 400
Thr?Asn?Asn?Phe?Met?Pro?Phe?Gly?Gly?Gly?Leu?Arg?Leu?Cys?Ala?Gly
405 410 415
Ser?Glu?Leu?Ala?Lys?Leu?Glu?Met?Ala?Ile?Phe?Ile?His?His?Leu?Val
420 425 430
Leu?Asn?Tyr?Asp?Trp?Asp?Ile?Ala?Glu?Pro?Asp?Gln?Pro?Phe?Ala?Tyr
435 440 445
Pro?Phe?Val?Glu?Phe?Pro?Lys?Gly?Leu?Pro?Ile?Lys?Val?Tyr?Asp?His
450 455 460
Gln?Cys?Leu?Thr
465
<210>93
<2ll>64l
<212>DNA
<213> common wheat
<400>93
atggccgcca?tcatggcctc?cataaccagc?gagctccttt?tcttcctccc?cttcatcctc 60
ctggccctgc?tcaccttcta?caccagcgcc?gtggctaaat?gccatggcct?ccactggtgg 120
agcggccgga?cgaagaagag?gcggccgaac?ctgccgcccg?gcgccgtcgg?ctggcccttc 180
atcggcgaga?ccttcgggta?cctccgcgcc?cacccggcca?cctccatcgg?ccagttcatg 240
gaccagcaca?tcgcacggta?cgggaagata?taccggtcga?gcctgttcgg?ggaccggacg 300
gtggtgtcgg?cggacgcggg?gctgaaccgg?tacatcctgc?agaacgaggg?gcggctgttc 360
gagtgtagct?acccgcggag?catcggcggc?atccttggca?aatggtcgat?gctggtgctc 420
gtcggcgacc?cccaccgcga?gatgcgcttc?atctccctca?acttcctcag?ctccgtccgc 480
ctccgcgccg?tgctcctccc?ggaggtggag?cgccacaccc?tcctcgtcct?ccgcgactgg 540
ctgccttact?cctcctcctc?cgtcttctcc?gcgcagcacg?aagccaagaa?gttcacgttt 600
aacctgatgg?cgaagaacat?catgagcatg?gaccccggcg?a 641
<210>94
<211>213
<212>PRT
<213> common wheat
<400>94
Met?Ala?Ala?Ile?Met?Ala?Ser?Ile?Thr?Ser?Glu?Leu?Leu?Phe?Phe?Leu
1 5 10 15
Pro?Phe?Ile?Leu?Leu?Ala?Leu?Leu?Thr?Phe?Tyr?Thr?Ser?Ala?Val?Ala
20 25 30
Lys?Cys?His?Gly?Leu?His?Trp?Trp?Ser?Gly?Arg?Thr?Lys?Lys?Arg?Arg
35 40 45
Pro?Asn?Leu?Pro?Pro?Gly?Ala?Val?Gly?Trp?Pro?Phe?Ile?Gly?Glu?Thr
50 55 60
Phe?Gly?Tyr?Leu?Arg?Ala?His?Pro?Ala?Thr?Ser?Ile?Gly?Gln?Phe?Met
65 70 75 80
Asp?Gln?His?Ile?Ala?Arg?Tyr?Gly?Lys?Ile?Tyr?Arg?Ser?Ser?Leu?Phe
85 90 95
Gly?Asp?Arg?Thr?Val?Val?Ser?Ala?Asp?Ala?Gly?Leu?Asn?Arg?Tyr?Ile
100 105 110
Leu?Gln?Asn?Glu?Gly?Arg?Leu?Phe?Glu?Cys?Ser?Tyr?Pro?Arg?Ser?Ile
115 120 125
Gly?Gly?Ile?Leu?Gly?Lys?Trp?Ser?Met?Leu?Val?Leu?Val?Gly?Asp?Pro
130 135 140
His?Arg?Glu?Met?Arg?Phe?Ile?Ser?Leu?Asn?Phe?Leu?Ser?Ser?Val?Arg
145 150 155 160
Leu?Arg?Ala?Val?Leu?Leu?Pro?Glu?Val?Glu?Arg?His?Thr?Leu?Leu?Val
165 170 175
Leu?Arg?Asp?Trp?Leu?Pro?Tyr?Ser?Ser?Ser?Ser?Val?Phe?Ser?Ala?Gln
180 185 190
His?Glu?Ala?Lys?Lys?Phe?Thr?Phe?Asn?Leu?Met?Ala?Lys?Asn?Ile?Met
195 200 205
Ser?Met?Asp?Pro?Gly
210
<210>95
<211>791
<212>DNA
<213> common wheat
<400>95
ggaaggccct?caagtcgcga?gccaccatac?ttggagtaat?agagaggaaa?atggaggaaa 60
ggcttgagaa?aatgaataag?gaggcctcga?gcatggaaga?agatgatctt?ctcgggtggg 120
cgatgaagca?gtccaatctt?tcgaaagaac?aaatattgga?cctcttgctg?agcttgctgt 180
ttgccgggca?tgagacatcg?tcaatggcgc?tcgccctcgc?catcttcttc?ctcgaaggtt 240
gccctaaagc?cgttgaagaa?ctgcgggagg?agcatcttga?gattgctagg?agacagaagc 300
tgagagggga?gtgcaaactg?agctgggaag?actacaaaga?gatggttttc?acgcaatgcg 360
ttataaacga?gaccttgcgg?ctaggcaacg?tggtcaggtt?cctgcaccgg?aaggtcattc 420
gagatgtgca?ctacaatggg?tatgacatcc?cgagcggatg?gaaaattctg?ccggtgttag 480
cggcggtgca?tctcgactcg?tcgctgtacg?aggaccccag?cagcttcaac?ccttggagat 540
ggaagggcaa?cgcgtccggc?gtggcgcaga?acagtaactt?catgccctac?ggcggcggca 600
cgaggctctg?cgccgggtcg?gagctcgcca?agctcgagat?ggccatcttc?ctgcaccacc 660
tggtgctcaa?cttccggtgg?gagctcgccg?agcccgacca?ggcgttcgtg?tacccgttcg 720
tcgacttccc?caagggcctg?cccatcaggg?tccataggat?tgcacaggaa?gaagaaggag 780
aagaggagta?a 791
<210>96
<211>261
<212>PRT
<213> common wheat
<400>96
Lys?Ala?Leu?Lys?Ser?Arg?Ala?Thr?Ile?Leu?Gly?Val?Ile?Glu?Arg?Lys
1 5 10 15
Met?Glu?Glu?Arg?Leu?Glu?Lys?Met?Asn?Lys?Glu?Ala?Ser?Ser?Met?Glu
20 25 30
Glu?Asp?Asp?Leu?Leu?Gly?Trp?Ala?Met?Lys?Gln?Ser?Asn?Leu?Ser?Lys
35 40 45
Glu?Gln?Ile?Leu?Asp?Leu?Leu?Leu?Ser?Leu?Leu?Phe?Ala?Gly?His?Glu
50 55 60
Thr?Ser?Ser?Met?Ala?Leu?Ala?Leu?Ala?Ile?Phe?Phe?Leu?Glu?Gly?Cys
65 70 75 80
Pro?Lys?Ala?Val?Glu?Glu?Leu?Arg?Glu?Glu?His?Leu?Glu?Ile?Ala?Arg
85 90 95
Arg?Gln?Lys?Leu?Arg?Gly?Glu?Cys?Lys?Leu?Ser?Trp?Glu?Asp?Tyr?Lys
100 105 110
Glu?Met?Val?Phe?Thr?Gln?Cys?Val?Ile?Asn?Glu?Thr?Leu?Arg?Leu?Gly
115 120 125
Asn?Val?Val?Arg?Phe?Leu?His?Arg?Lys?Val?Ile?Arg?Asp?Val?His?Tyr
130 135 140
Asn?Gly?Tyr?Asp?Ile?Pro?Ser?Gly?Trp?Lys?Ile?Leu?Pro?Val?Leu?Ala
145 150 155 160
Ala?Val?His?Leu?Asp?Ser?Ser?Leu?Tyr?Glu?Asp?Pro?Ser?Ser?Phe?Asn
165 170 175
Pro?Trp?Arg?Trp?Lys?Gly?Asn?Ala?Ser?Gly?Val?Ala?Gln?Asn?Ser?Asn
180 185 190
Phe?Met?Pro?Tyr?Gly?Gly?Gly?Thr?Arg?Leu?Cys?Ala?Gly?Ser?Glu?Leu
195 200 205
Ala?Lys?Leu?Glu?Met?Ala?Ile?Phe?Leu?His?His?Leu?Val?Leu?Asn?Phe
210 215 220
Arg?Trp?Glu?Leu?Ala?Glu?Pro?Asp?Gln?Ala?Phe?Val?Tyr?Pro?Phe?Val
225 230 235 240
Asp?Phe?Pro?Lys?Gly?Leu?Pro?Ile?Arg?Val?His?Arg?Ile?Ala?Gln?Glu
245 250 255
Glu?Glu?Gly?Glu?Glu
260
<210>97
<211>789
<212>DNA
<213> Euphorbia esula L
<220>
<221>misc_feature
<222>(325)..(326)
<223>n is a, c, g, or t
<400>97
agcatggacc?ctggaaaacc?agagactgaa?aagctcaaga?aagaatatgt?tactttcatg 60
aaaggagttg?tttctgctcc?tattaatttg?cctggaactg?cttatagaag?ggccttacag 120
tctcgatcga?caattttgaa?gttcatagag?gagaaaatgg?aggaaagaaa?tgaaaaatta 180
aaagaaggaa?aagcagagga?agaagaagaa?gatgatcttc?taggatgggt?tttaaagcat 240
tcaaatcttt?caactgagca?aattctagat?ttggtattaa?gtttaatgtt?tgctggccat 300
gaaacttctt?cagtagcaat?tcttnnagct?atctattttt?tgcaagattc?tcctgctgct 360
cttcaacagc?taagggaaga?acataaggaa?attgaaaaag?ccaagaagca?gtcaggagag 420
aagggattga?actgggatgt?ttacaaaaat?atggaattca?ctcagtgtgt?tatcaatgaa 480
acactaagac?ttggaaatgt?agtcaggttc?cttcatagga?agactattaa?acacgttcaa 540
tacaaaggat?atgacattcc?acgtggatgg?aaagtgctgc?cagtgattgc?agccgtgcat 600
ttggacagta?gccattttga?gaagcctcaa?cacttcaatc?catggagatg?gttgcaccag 660
aataatggga?tacaaaatat?gaataataat?ttcatgccat?ttgggggagg?accaagatta 720
tgtgcaggat?cagaattagc?aaaactagaa?atggctattt?ttattcatca?tttggtcctt 780
aattaccag 789
<210>98
<211>263
<212>PRT
<213> Euphorbia esula L
<220>
<221> is uncertain
<222>(109)..(109)
<223>Xaa can be any natural amino acid
<400>98
Ser?Met?Asp?Pro?Gly?Lys?Pro?Glu?Thr?Glu?Lys?Leu?Lys?Lys?Glu?Tyr
1 5 10 15
Val?Thr?Phe?Met?Lys?Gly?Val?Val?Ser?Ala?Pro?Ile?Asn?Leu?Pro?Gly
20 25 30
Thr?Ala?Tyr?Arg?Arg?Ala?Leu?Gln?Ser?Arg?Ser?Thr?Ile?Leu?Lys?Phe
35 40 45
Ile?Glu?Glu?Lys?Met?Glu?Glu?Arg?Asn?Glu?Lys?Leu?Lys?Glu?Gly?Lys
50 55 60
Ala?Glu?Glu?Glu?Glu?Glu?Asp?Asp?Leu?Leu?Gly?Trp?Val?Leu?Lys?His
65 70 75 80
Ser?Asn?Leu?Ser?Thr?Glu?Gln?Ile?Leu?Asp?Leu?Val?Leu?Ser?Leu?Met
85 90 95
Phe?Ala?Gly?His?Glu?Thr?Ser?Ser?Val?Ala?Ile?Leu?Xaa?Ala?Ile?Tyr
100 105 110
Phe?Leu?Gln?Asp?Ser?Pro?Ala?Ala?Leu?Gln?Gln?Leu?Arg?Glu?Glu?His
115 120 125
Lys?Glu?Ile?Glu?Lys?Ala?Lys?Lys?Gln?Ser?Gly?Glu?Lys?Gly?Leu?Asn
130 135 140
Trp?Asp?Val?Tyr?Lys?Asn?Met?Glu?Phe?Thr?Gln?Cys?Val?Ile?Asn?Glu
145 150 155 160
Thr?Leu?Arg?Leu?Gly?Asn?Val?Val?Arg?Phe?Leu?His?Arg?Lys?Thr?Ile
165 170 175
Lys?His?Val?Gln?Tyr?Lys?Gly?Tyr?Asp?Ile?Pro?Arg?Gly?Trp?Lys?Val
180 185 190
Leu?Pro?Val?Ile?Ala?Ala?Val?His?Leu?Asp?Ser?Ser?His?Phe?Glu?Lys
195 200 205
Pro?Gln?His?Phe?Asn?Pro?Trp?Arg?Trp?Leu?His?Gln?Asn?Asn?Gly?Ile
210 215 220
Gln?Asn?Met?Asn?Asn?Asn?Phe?Met?Pro?Phe?Gly?Gly?Gly?Pro?Arg?Leu
225 230 235 240
Cys?Ala?Gly?Ser?Glu?Leu?Ala?Lys?Leu?Glu?Met?Ala?Ile?Phe?Ile?His
245 250 255
His?Leu?Val?Leu?Asn?Tyr?Gln
260
<210>99
<211>955
<212>DNA
<213> upland cotton (Gossypium hirsutum)
<400>99
atgcctgact?cagagcctat?tttcttgctt?cttccatcta?ttttatcttt?gattctgttc 60
ttcattctca?tcaagagaaa?gcaaagaagg?tataatcttc?caccagggaa?catggggtgg 120
ccttttctcg?gcgaaacaat?cggttacttg?aggccttact?ctgctacttc?agtaggtgaa 180
ttcatgcacc?agcatatatc?aaggtatggg?aatatctaca?aatcgaattt?gtttggtgag 240
aagacaatag?tgtctgcaga?tgctgggttg?aacaagttca?tattacaaaa?cgaagggaga 300
ttattcgagt?gcagttaccc?gagaagcatt?ggtggcattc?ttgggaaatg?gtcgatgctg 360
gttttggttg?gggatatgca?tagagacatg?aggattatat?cactcaactt?cttgagcaac 420
gccaggctga?ggactcatct?tttgagagaa?gtggagaaac?atactttgct?tgttctaaat 480
acttggaaag?agaagtgcat?attttcagct?caggatgaag?caaaaaagtt?cactttcaat 540
ttgatggcaa?aaaatatcat?gagcatggac?cctggacatc?cagagacgga?gcagctaaag 600
aaagaatatg?ttactttcat?gaaaggagtc?gtttctgctc?ctttaaattt?acctggaact 660
gcatacagaa?aagccttaca?atctcgatca?acaatcctga?aatttattga?aaagaaaatg 720
gaagtaagga?taaggaaaat?gaaggaagga?aaagaaaact?cagaggaaga?tgatcttctt 780
gaatgggtct?taaagcattc?taatctttcc?acagagcaaa?tccttgactt?gattttgagc 840
ttgctttttg?ctggacatga?gacttcctcg?gtagccataa?ccttagccat?ctacttcttg 900
ccaggttgtc?ctttggccat?tcaacagttg?agagaggaac?accttgaagt?tgcag 955
<210>100
<211>333
<212>PRT
<213> upland cotton
<220>
<221> is uncertain
<222>(326)..(326)
<223>Xaa can be any natural amino acid
<400>100
Met?Pro?Asp?Ser?Glu?Pro?Ile?Phe?Leu?Leu?Leu?Pro?Ser?Ile?Leu?Ser
1 5 10 15
Leu?Ile?Leu?Phe?Phe?Ile?Leu?Ile?Lys?Arg?Lys?Gln?Arg?Arg?Tyr?Asn
20 25 30
Leu?Pro?Pro?Gly?Asn?Met?Gly?Trp?Pro?Phe?Leu?Gly?Glu?Thr?Ile?Gly
35 40 45
Tyr?Leu?Arg?Pro?Tyr?Ser?Ala?Thr?Ser?Val?Gly?Glu?Phe?Met?His?Gln
50 55 60
His?Ile?Ser?Arg?Tyr?Gly?Asn?Ile?Tyr?Lys?Ser?Asn?Leu?Phe?Gly?Glu
65 70 75 80
Lys?Thr?Ile?Val?Ser?Ala?Asp?Ala?Gly?Leu?Asn?Lys?Phe?Ile?Leu?Gln
85 90 95
Asn?Glu?Gly?Arg?Leu?Phe?Glu?Cys?Ser?Tyr?Pro?Arg?Ser?Ile?Gly?Gly
100 105 110
Ile?Leu?Gly?Lys?Trp?Ser?Met?Leu?Val?Leu?Val?Gly?Asp?Met?His?Arg
115 120 125
Asp?Met?Arg?Ile?Ile?Ser?Leu?Asn?Phe?Leu?Ser?Asn?Ala?Arg?Leu?Arg
130 135 140
Thr?His?Leu?Leu?Arg?Glu?Val?Glu?Lys?His?Thr?Leu?Leu?Val?Leu?Asn
145 150 155 160
Thr?Trp?Lys?Glu?Lys?Cys?Ile?Phe?Ser?Ala?Gln?Asp?Glu?Ala?Lys?Lys
165 170 175
Phe?Thr?Phe?Asn?Leu?Met?Ala?Lys?Asn?Ile?Met?Ser?Met?Asp?Pro?Gly
180 185 190
His?Pro?Glu?Thr?Glu?Gln?Leu?Lys?Lys?Glu?Tyr?Val?Thr?Phe?Met?Lys
195 200 205
Gly?Val?Val?Ser?Ala?Pro?Leu?Asn?Leu?Pro?Gly?Thr?Ala?Tyr?Arg?Lys
210 215 220
Ala?Leu?Gln?Ser?Arg?Ser?Thr?Ile?Leu?Lys?Phe?Ile?Glu?Lys?Lys?Met
225 230 235 240
Glu?Val?Arg?Ile?Arg?Lys?Met?Lys?Glu?Gly?Lys?Glu?Asn?Ser?Glu?Glu
245 250 255
Asp?Asp?Leu?Leu?Glu?Trp?Val?Leu?Lys?His?Ser?Asn?Leu?Ser?Thr?Glu
260 265 270
Gln?Ile?Leu?Asp?Leu?Ile?Leu?Ser?Leu?Leu?Phe?Ala?Gly?His?Glu?Thr
275 280 285
Ser?Ser?Val?Ala?Ile?Thr?Leu?Ala?Ile?Tyr?Phe?Leu?Pro?Gly?Cys?Pro
290 295 300
Leu?Ala?Ile?Gln?Gln?Leu?Arg?Glu?Asn?Thr?Leu?Lys?Leu?Gln?Ser?Gln
305 310 315 320
Thr?Asn?Gln?Arg?Asp?Xaa?Leu?Asn?Trp?Asp?Asp?Thr?Glu
325 330
<210>101
<211>832
<212>DNA
<213> tomato (Lycopersicon esculentum)
<400>101
atgggttggc?cttttcttgg?tgaaactatt?ggctatttga?gaccttattc?agctactact 60
attggagatt?tcatgcaaga?tcatatctct?aggtatggga?aaattttcaa?gtcaaatttg 120
tttggagagc?caacaatagt?ttcagcagat?gcagggctaa?acagatacat?tctgcagaat 180
gaagggagat?tatttgagtg?taattatcca?agaagtatag?gtgggatact?tggtaaatgg 240
tctatgttag?ttcaagttgg?acaaatgcat?agagatatga?ggatgatttc?tctgaatttt 300
ttgagcaatg?ctaggctaag?gaatcaactt?ttaagtgaag?ttgaaaagca?tactttgctt 360
gttcttggct?cttggaaaca?ggattctgtt?gtttgtgcac?aagatgaagc?aaagaagtta 420
acattcaact?ttatggcaga?gcatatcatg?agtctacaac?ctggaaatcc?agagacagag 480
aagctgaaaa?aagagtacat?cacatttatg?aaaggagtgg?tttctgctcc?attgaatttt 540
ccaggaacag?cttacagaaa?ggccttacag?tctcgatcaa?caattcttgg?atttattgag 600
agaaaaatgg?aggagaggct?taaggaaatg?aacagaaacg?aaaacgacct?tctaggttgg 660
gttctgaaga?attcaaatct?ctcaaaagag?caaattcttg?atttgctact?gagtttgctc 720
tttgctggcc?atgaaacttc?atcagtagca?atagctctgt?ctattttctt?actcgaaagc 780
tgtcctgctg?ctgttcaaca?attaacagaa?gagcacttgg?agatttcccg?gg 832
<210>102
<211>277
<212>PRT
<213> tomato
<400>102
Met?Gly?Trp?Pro?Phe?Leu?Gly?Glu?Thr?Ile?Gly?Tyr?Leu?Arg?Pro?Tyr
1 5 10 15
Ser?Ala?Thr?Thr?Ile?Gly?Asp?Phe?Met?Gln?Asp?His?Ile?Ser?Arg?Tyr
20 25 30
Gly?Lys?Ile?Phe?Lys?Ser?Asn?Leu?Phe?Gly?Glu?Pro?Thr?Ile?Val?Ser
35 40 45
Ala?Asp?Ala?Gly?Leu?Asn?Arg?Tyr?Ile?Leu?Gln?Asn?Glu?Gly?Arg?Leu
50 55 60
Phe?Glu?Cys?Asn?Tyr?Pro?Arg?Ser?Ile?Gly?Gly?Ile?Leu?Gly?Lys?Trp
65 70 75 80
Ser?Met?Leu?Val?Gln?Val?Gly?Gln?Met?His?Arg?Asp?Met?Arg?Met?Ile
85 90 95
Ser?Leu?Asn?Phe?Leu?Ser?Asn?Ala?Arg?Leu?Arg?Asn?Gln?Leu?Leu?Ser
100 105 110
Glu?Val?Glu?Lys?His?Thr?Leu?Leu?Val?Leu?Gly?Ser?Trp?Lys?Gln?Asp
115 120 125
Ser?Val?Val?Cys?Ala?Gln?Asp?Glu?Ala?Lys?Lys?Leu?Thr?Phe?Asn?Phe
130 135 140
Met?Ala?Glu?His?Ile?Met?Ser?Leu?Gln?Pro?Gly?Asn?Pro?Glu?Thr?Glu
145 150 155 160
Lys?Leu?Lys?Lys?Glu?Tyr?Ile?Thr?Phe?Met?Lys?Gly?Val?Val?Ser?Ala
165 170 175
Pro?Leu?Asn?Phe?Pro?Gly?Thr?Ala?Tyr?Arg?Lys?Ala?Leu?Gln?Ser?Arg
180 185 190
Ser?Thr?Ile?Leu?Gly?Phe?Ile?Glu?Arg?Lys?Met?Glu?Glu?Arg?Leu?Lys
195 200 205
Glu?Met?Asn?Arg?Asn?Glu?Asn?Asp?Leu?Leu?Gly?Trp?Val?Leu?Lys?Asn
210 215 220
Ser?Asn?Leu?Ser?Lys?Glu?Gln?Ile?Leu?Asp?Leu?Leu?Leu?Ser?Leu?Leu
225 230 235 240
Phe?Ala?Gly?His?Glu?Thr?Ser?Ser?Val?Ala?Ile?Ala?Leu?Ser?Ile?Phe
245 250 255
Leu?Leu?Glu?Ser?Cys?Pro?Ala?Ala?Val?Gln?Gln?Leu?Thr?Glu?Glu?His
260 265 270
Leu?Glu?Ile?Ser?Arg
275
<210>103
<211>711
<212>DNA
<213> potato
<400>103
atgtctgact?tagagttttt?tctttttctt?gttcctccaa?tcttggcagt?ccttattatt 60
cttaatctat?tcaaaagaaa?acacaaattt?caaaatcttc?caccagggga?tatgggttgg 120
ccttttcttg?gtgaaactat?tggttatttg?agaccttact?cagttactac?tattggagat 180
ttcatgcaag?atcatatctc?aaggtatggg?aaaattttca?agtcaaattt?gtttggagag 240
ccaacaattg?tttcagcaga?tgcagggctt?aacagataca?ttctgcagaa?tgaagggaga 300
ttatttgagt?gtaattatcc?aagaagtata?ggtgggatac?ttggtaaatg?gtctatgttg 360
gttcaagttg?gacaaatgca?tagagatatg?aggatgattt?ctctgaattt?tttgagcaat 420
gctagactca?ggaatcaact?tttaagtgaa?gttgaaaagc?atactgtgct?tgttcttggc 480
tcttggaaac?aggattctgt?tgtttgtgca?caagatgaag?caaagaagtt?tacattcaac 540
tttatggcag?agcatatcat?gagtctacaa?cctggaaatc?cagagacaga?gaagctgaag 600
aaagagtaca?tcacatttat?gaaaggagtg?gtttctgctc?cattgaattt?tccaggaaca 660
gcttacagaa?aagccctaca?gtctcgatca?acaattcttg?gaattattga?g 711
<210>104
<211>237
<212>PRT
<213> potato
<400>104
Met?Ser?Asp?Leu?Glu?Phe?Phe?Leu?Phe?Leu?Val?Pro?Pro?Ile?Leu?Ala
1 5 10 15
Val?Leu?Ile?Ile?Leu?Asn?Leu?Phe?Lys?Arg?Lys?His?Lys?Phe?Gln?Asn
20 25 30
Leu?Pro?Pro?Gly?Asp?Met?Gly?Trp?Pro?Phe?Leu?Gly?Glu?Thr?Ile?Gly
35 40 45
Tyr?Leu?Arg?Pro?Tyr?Ser?Val?Thr?Thr?Ile?Gly?Asp?Phe?Met?Gln?Asp
50 55 60
His?Ile?Ser?Arg?Tyr?Gly?Lys?Ile?Phe?Lys?Ser?Asn?Leu?Phe?Gly?Glu
65 70 75 80
Pro?Thr?Ile?Val?Ser?Ala?Asp?Ala?Gly?Leu?Asn?Arg?Tyr?Ile?Leu?Gln
85 90 95
Asn?Glu?Gly?Arg?Leu?Phe?Glu?Cys?Asn?Tyr?Pro?Arg?Ser?Ile?Gly?Gly
100 105 110
Ile?Leu?Gly?Lys?Trp?Ser?Met?Leu?Val?Gln?Val?Gly?Gln?Met?His?Arg
115 120 125
Asp?Met?Arg?Met?Ile?Ser?Leu?Asn?Phe?Leu?Ser?Asn?Ala?Arg?Leu?Arg
130 135 140
Asn?Gln?Leu?Leu?Ser?Glu?Val?Glu?Lys?His?Thr?Val?Leu?Val?Leu?Gly
145 150 155 160
Ser?Trp?Lys?Gln?Asp?Ser?Val?Val?Cys?Ala?Gln?Asp?Glu?Ala?Lys?Lys
165 170 175
Phe?Thr?Phe?Asn?Phe?Met?Ala?Glu?His?Ile?Met?Ser?Leu?Gln?Pro?Gly
180 185 190
Asn?Pro?Glu?Thr?Glu?Lys?Leu?Lys?Lys?Glu?Tyr?Ile?Thr?Phe?Met?Lys
195 200 205
Gly?Val?Val?Ser?Ala?Pro?Leu?Asn?Phe?Pro?Gly?Thr?Ala?Tyr?Arg?Lys
210 215 220
Ala?Leu?Gln?Ser?Arg?Ser?Thr?Ile?Leu?Gly?Ile?Ile?Glu
225 230 235
<210>105
<211>431
<212>DNA
<213> potato
<400>105
ggaaagctgt?gaaagatgtt?cgatacaaag?gttatgacat?tccatgtgga?tggaaagtat 60
tgccggtgat?ttcagcagcg?catttagatc?cttcactttt?tgaccgacct?cacgactttg 120
atccttggag?atggcagaat?gcagaagagt?cgccttcagg?taaaggagga?agcacaggca 180
caagcagcac?aacaaaaagt?agtaataatt?tcatgccatt?tgggggaggt?ccacgtctat 240
gtgcaggatc?tgaactggcc?aaacttgaga?tggccatttt?cattcactat?cttgttctta 300
attttcactg?gaaattagct?gcacctgatc?aggcttttgc?ctatccttac?gtagattttc 360
ccaatgccct?accaatcact?atccaacatc?gatcgtcaaa?taaattaaac?caccacactt 420
actacctcta?a 431
<210>106
<211>142
<212>PRT
<213> potato
<400>106
Lys?Ala?Val?Lys?Asp?Val?Arg?Tyr?Lys?Gly?Tyr?Asp?Ile?Pro?Cys?Gly
1 5 10 15
Trp?Lys?Val?Leu?Pro?Val?Ile?Ser?Ala?Ala?His?Leu?Asp?Pro?Ser?Leu
20 25 30
Phe?Asp?Arg?Pro?His?Asp?Phe?Asp?Pro?Trp?Arg?Trp?Gln?Asn?Ala?Glu
35 40 45
Glu?Ser?Pro?Ser?Gly?Lys?Gly?Gly?Ser?Thr?Gly?Thr?Ser?Ser?Thr?Thr
50 55 60
Lys?Ser?Ser?Asn?Asn?Phe?Met?Pro?Phe?Gly?Gly?Gly?Pro?Arg?Leu?Cys
65 70 75 80
Ala?Gly?Ser?Glu?Leu?Ala?Lys?Leu?Glu?Met?Ala?Ile?Phe?Ile?His?Tyr
85 90 95
Leu?Val?Leu?Asn?Phe?His?Trp?Lys?Leu?Ala?Ala?Pro?Asp?Gln?Ala?Phe
100 105 110
Ala?Tyr?Pro?Tyr?Val?Asp?Phe?Pro?Asn?Ala?Leu?Pro?Ile?Thr?Ile?Gln
115 120 125
His?Arg?Ser?Ser?Asn?Lys?Leu?Asn?His?His?Thr?Tyr?Tyr?Leu
130 135 140
<210>107
<211>52
<212>DNA
<213> artificial sequence
<220>
<223> primer: prm06540
<400>107
ggggacaagt?ttgtacaaaa?aagcaggctt?aaacaatggc?cgccatgatg?gc 52
<210>108
<211>48
<212>DNA
<213> artificial sequence
<220>
<223> primer: prm06520
<400>108
ggggaccact?ttgtacaaga?aagctgggtt?tactcctgct?catcatcc 48
<210>109
<211>654
<212>DNA
<213> rice
<400>109
cttctacatc?ggcttaggtg?tagcaacacg?actttattat?tattattatt?attattatta 60
ttattttaca?aaaatataaa?atagatcagt?ccctcaccac?aagtagagca?agttggtgag 120
ttattgtaaa?gttctacaaa?gctaatttaa?aagttattgc?attaacttat?ttcatattac 180
aaacaagagt?gtcaatggaa?caatgaaaac?catatgacat?actataattt?tgtttttatt 240
attgaaatta?tataattcaa?agagaataaa?tccacatagc?cgtaaagttc?tacatgtggt 300
gcattaccaa?aatatatata?gcttacaaaa?catgacaagc?ttagtttgaa?aaattgcaat 360
ccttatcaca?ttgacacata?aagtgagtga?tgagtcataa?tattattttc?tttgctaccc 420
atcatgtata?tatgatagcc?acaaagttac?tttgatgatg?atatcaaaga?acatttttag 480
gtgcacctaa?cagaatatcc?aaataatatg?actcacttag?atcataatag?agcatcaagt 540
aaaactaaca?ctctaaagca?accgatggga?aagcatctat?aaatagacaa?gcacaatgaa 600
aatcctcatc?atccttcacc?acaattcaaa?tattatagtt?gaagcatagt?agta 654
<210>110
<211>1236
<212>DNA
<213> rice
<400>110
ggtcagccaa?tacattgatc?cgttgccaat?catgcaaagt?attttggctg?tggccgagtg 60
ccggaattga?taattgtgtt?ctgactaaat?taaatgacca?gaagtcgcta?tcttccaatg 120
tatccgaaac?ctggattaaa?caatcctgtt?ctgttctcta?gcccctcctg?catggccgga 180
ttgttttttt?gacatgtttt?cttgactgag?gcctgtttgt?tctaaacttt?ttcttcaaac 240
ttttaacttt?ttcatcacat?cagaactttt?ctacacatat?aaacttttaa?cttttccgtc 300
acatcgttcc?aatttcaatc?aaactttcaa?ttttggcgtg?aactaaacac?accctgagtc 360
ttttattgct?cctccgtacg?ggttggctgg?ttgagaatag?gtattttcag?agagaaaatc 420
tagatattgg?gaggaacttg?gcatgaatgg?ccactatatt?tagagcaatt?ctacggtcct 480
tgaggaggta?ccatgaggta?ccaaaatttt?agtgtaaatt?ttagtatctc?attataacta 540
ggtattatga?ggtaccaaat?ttacaataga?aaaaatagta?cttcatggta?ctttcttaag 600
taccgtaaaa?ttgctcctat?atttaagggg?atgtttatat?ctatccatat?ccataatttg 660
attttgataa?gaaaaaatgt?gagcacacca?agcatgtcca?tgaccttgca?ctcttggctc 720
actcgtcaac?tgtgaagaac?ctcaaaaatg?ctcaatatag?ctacaggtgc?ctgaaaaaat 780
aactttaaag?ttttgaacat?cgatttcact?aaacaacaat?tattatctcc?ctctgaaaga 840
tgatagttta?gaactctaga?atcattgtcg?gcggagaaag?taaattattt?tccccaaatt 900
tccagctatg?aaaaaaccct?caccaaacac?catcaaacaa?gagttcacca?aaccgcccat 960
gcggccatgc?tgtcacgcaa?cgcaccgcat?tgcctgatgg?ccgctcgatg?catgcatgct 1020
tccccgtgca?catatccgac?agacgcgccg?tgtcagcgag?ctcctcgacc?gacctgtgta 1080
gcccatgcaa?gcatccaccc?ccgccacgta?caccccctcc?tcctccctac?gtgtcaccgc 1140
tctctccacc?tatatatgcc?cacctggccc?ctctcctccc?atctccactt?cacccgatcg 1200
cttcttcttc?ttcttcgttg?cattcatctt?gctagc 1236
<210>111
<211>1455
<212>DNA
<213> soybean (Glycine max)
<220>
<221>misc_feature
<222>(1043)..(1044)
<223>n is a, c, g, or t
<400>111
atgtctgact?cactcttaac?tttctattct?ctttcagcca?ttcttgctct?tctcccaatc 60
ttcatcttca?ttctcatcaa?aagaaagcaa?agcaaaccca?ggctcaacct?tcccccaggt 120
aacatgggtt?ggccatttct?tggtgaaacc?attggctatt?tgaagcctta?ttctgccacc 180
acagtagggg?aattcatgga?gcaacacata?gcaaggtatg?gtacaattta?caagtcaaaa 240
ctgtttgcgg?ggccagcaat?agtgtcagca?gatgcaggac?tcaacaggtt?cattctacaa 300
aacgaaggga?aattgttcga?gtgcagctat?cctagaagca?tcggtggaat?actaggaaaa 360
tggtccatgt?tggtcttagt?tggtgacatg?catagagaca?tgcgggttat?atcactcaac 420
tttctaagcc?acgccaggct?cagaacacac?ctcttgaaag?aggtggagaa?gcaatccctc 480
ttggttctga?actcttggag?ccaaaattcc?atattctcag?cccaagatga?agctaagaag 540
ttcaccttca?atttaatggc?taagcatatc?atgagcatgg?atcctgggga?tatcgagaca 600
gagcaactaa?agaaagagta?cgtcactttc?atgaaagggg?tggtttccgc?gccattgaat 660
ttacctggaa?ctgcataccg?aaaggcattg?aagtctcggt?ccattatact?aaagttcata 720
gaggggaaaa?tggaagagag?agttagaaga?atccaagagg?ggaatgagag?tttggaggaa 780
gatgatcttc?taaattgggt?tttgaagaat?tcaaatcttt?caaccgagca?aattcttgac 840
ttgattctca?gcttgctctt?cgctggccat?gaaacttcgt?cggtagccat?agctctagcc 900
atttacttct?tacccggttg?tcctcaagct?atacaacagt?taaaggaaga?acacagagaa 960
attgccagag?ccaaaaagca?agcaggggaa?gttgaactca?cttgggatga?ctacaaacga 1020
atggaattta?ctcattgtgt?aannttggga?aatgttgtga?ggtttctcca?caggaaggct 1080
gtgaaagatg?ttaactataa?aggttatgac?attccatgtg?ggtggaaagt?cctcccggtg 1140
attgcagccg?tgcatctgga?tccttcactt?tttgaccaac?ctcaacactt?caatccatgg 1200
agatggcaga?acaatggcag?tcatggaagt?tgtccaagca?agaacacagc?aaacaacaac 1260
tttcttccgt?tcggaggagg?accacgatta?tgtgcaggat?cagagttagc?taagcttgaa 1320
atggctgttt?tcattcacca?tctcattctc?aactaceatt?gggaattggc?tgataccgat 1380
caagcttttg?cctacccttt?tgtcgacttc?cccaaaggcc?tacccgttag?agtccaagcc 1440
cattctttac?tttga 1455
<210>112
<211>530
<212>PRT
<213> soybean
<220>
<221> is uncertain
<222>(391)..(392)
<223>Xaa can be any natural amino acid
<400>112
Met?Ser?Asp?Ser?Leu?Leu?Thr?Phe?Tyr?Ser?Leu?Ser?Ala?Ile?Leu?Ala
1 5 10 15
Leu?Leu?Pro?Ile?Phe?Ile?Phe?Ile?Leu?Ile?Lys?Arg?Lys?Gln?Ser?Lys
20 25 30
Pro?Arg?Leu?Asn?Leu?Pro?Pro?Gly?Asn?Met?Gly?Trp?Pro?Phe?Leu?Gly
35 40 45
Glu?Thr?Ile?Gly?Tyr?Leu?Lys?Pro?Tyr?Ser?Ala?Thr?Thr?Val?Gly?Glu
50 55 60
Phe?Met?Glu?Gln?His?Ile?Ala?Arg?Tyr?Gly?Thr?Ile?Tyr?Lys?Ser?Lys
65 70 75 80
Leu?Phe?Ala?Gly?Pro?Ala?Ile?Val?Ser?Ala?Asp?Ala?Gly?Leu?Asn?Arg
85 90 95
Phe?Ile?Leu?Gln?Asn?Glu?Gly?Lys?Leu?Phe?Glu?Cys?Ser?Tyr?Pro?Arg
100 105 110
Ser?Ile?Gly?Gly?Ile?Leu?Gly?Lys?Trp?Ser?Met?Leu?Val?Leu?Val?Gly
115 120 125
Asp?Met?His?Arg?Asp?Met?Arg?Val?Ile?Ser?Leu?Asn?Phe?Leu?Ser?His
130 135 140
Ala?Arg?Leu?Arg?Thr?His?Leu?Leu?Lys?Glu?Val?Glu?Lys?Gln?Ser?Leu
145 150 155 160
Leu?Val?Leu?Asn?Ser?Trp?Ser?Gln?Asn?Ser?Ile?Phe?Ser?Ala?Gln?Asp
165 170 175
Glu?Ala?Lys?Lys?Phe?Thr?Phe?Asn?Leu?Met?Ala?Lys?His?Ile?Met?Ser
180 185 190
Met?Asp?Pro?Gly?Asp?Ile?Glu?Thr?Glu?Gln?Leu?Lys?Lys?Glu?Tyr?Val
195 200 205
Thr?Phe?Met?Lys?Gly?Val?Val?Ser?Ala?Pro?Leu?Asn?Leu?Pro?Gly?Thr
210 215 220
Ala?Tyr?Arg?Lys?Ala?Leu?Lys?Ser?Arg?Ser?Ile?Ile?Leu?Lys?Phe?Ile
225 230 235 240
Glu?Gly?Lys?Met?Glu?Glu?Arg?Val?Arg?Arg?Ile?Gln?Glu?Gly?Asn?Glu
245 250 255
Ser?Leu?Glu?Glu?Asp?Asp?Leu?Leu?Asn?Trp?Val?Leu?Lys?Asn?Ser?Asn
260 265 270
Leu?Ser?Thr?Glu?Gln?Ile?Leu?Asp?Leu?Ile?Leu?Ser?Leu?Leu?Phe?Ala
275 280 285
Gly?His?Glu?Thr?Ser?Ser?Val?Ala?Ile?Ala?Leu?Ala?Ile?Tyr?Phe?Leu
290 295 300
Pro?Gly?Cys?Pro?Gln?Ala?Ile?Gln?Gln?Leu?Lys?Glu?Glu?His?Arg?Glu
305 310 315 320
Ile?Ala?Arg?Ala?Lys?Lys?Gln?Ala?Gly?Glu?Val?Glu?Leu?Thr?Trp?Asp
325 330 335
Asp?Tyr?Lys?Arg?Met?Glu?Phe?Thr?His?Cys?Val?Ser?Gly?Met?Ile?Ile
340 345 350
Asn?Glu?Leu?Trp?Arg?Ser?Thr?Cys?Leu?Phe?Phe?Tyr?Phe?Met?Tyr?Ser
355 360 365
Asn?Cys?Tyr?Tyr?Tyr?Tyr?Leu?Met?Asn?Met?Leu?Val?Val?Ser?Asn?Ile
370 375 380
Ile?Trp?Asp?Asp?Glu?Ala?Xaa?Xaa?Val?Gly?Leu?Gly?Asn?Val?Val?Arg
385 390 395 400
Phe?Leu?His?Arg?Lys?Ala?Val?Lys?Asp?Val?Asn?Tyr?Lys?Gly?Tyr?Asp
405 410 415
Ile?Pro?Cys?Gly?Trp?Lys?Val?Leu?Pro?Val?Ile?Ala?Ala?Val?His?Leu
420 425 430
Asp?Pro?Ser?Leu?Phe?Asp?Gln?Pro?Gln?His?Phe?Asn?Pro?Trp?Arg?Trp
435 440 445
Gln?Asn?Asn?Gly?Ser?His?Gly?Ser?Cys?Pro?Ser?Lys?Asn?Thr?Ala?Asn
450 455 460
Asn?Asn?Phe?Leu?Pro?Phe?Gly?Gly?Gly?Pro?Arg?Leu?Cys?Ala?Gly?Ser
465 470 475 480
Glu?Leu?Ala?Lys?Leu?Glu?Met?Ala?Val?Phe?Ile?His?His?Leu?Ile?Leu
485 490 495
Asn?Tyr?His?Trp?Glu?Leu?Ala?Asp?Thr?Asp?Gln?Ala?Phe?Ala?Tyr?Pro
500 505 510
Phe?Val?Asp?Phe?Pro?Lys?Gly?Leu?Pro?Val?Arg?Val?Gln?Ala?His?Ser
515 520 525
Leu?Leu
530
<210>113
<211>1458
<212>DNA
<213> upland cotton
<400>113
atgcctgact?cagagcctat?tttcttgctt?ctaccatcta?ttttatcttt?gattctgttc 60
ttcattctca?tcaagagaaa?gcaaagaagg?tataatcttc?caccagggaa?catggggtgg 120
ccttttctcg?gcgaaacaat?cggttacttg?aggccttact?ctgctacttc?agtaggtgaa 180
ttcatgcacc?agcatatatc?aaggtatggg?aatatctaca?aatcgaattt?gtttggtgag 240
aagacaatag?tgtctgcaga?tgctgggttg?aacaagttca?tattacaaaa?cgaagggaga 300
ttattcgagt?gcagttaccc?gagaagcatt?ggtggcattc?ttgggaaatg?gtcgatgctg 360
gttttggttg?gggatatgca?tagagacatg?aggattatat?cactcaactt?cttgagcaac 420
gccaggctga?ggactcatct?tttgagagaa?gtggagaaac?atactttgct?tgttctaaat 480
acttggaaag?agaagtgcat?attttcagct?caggatgaag?caaaaaagtt?cactttcaat 540
ttggtggcaa?aaaatatcat?gagcatggac?cctggacatc?cagagacgga?gcagctaaag 600
aaagaatatg?ttactttcat?gaaaggagtc?gtttctgctc?ctttaaattt?acctggaact 660
gcatacagaa?aagccttaca?atctcgatca?acaatcctga?aatttattga?aaagaaaatg 720
gaagtaagga?taaggaaaat?gaaggaagga?aaagaaaact?cagaggaaga?tgatcttctt 780
gaatgggtct?taaagcattc?taatctttcc?acagagcaaa?tccttgactt?gattttgagc 840
ttgctttttg?ctggacatga?gacctcctcg?gtagccataa?ccttagccat?ctacttcttg 900
ccaggttgtc?ctttggccat?tcaacagttg?agagaagaac?accttgaagt?tgccagagcc 960
aagaaccaat?caggagagac?tgaactcaac?tgggatgatt?acaagaaaat?ggagttcact 1020
caatgtgtta?ttaacgagac?acttaggctt?ggtaatgtcg?tcagatttct?ccacagaaaa 1080
gctctcaaag?atattagata?taaaggttat?gatattccat?gtgggtggaa?agtgcttcca 1140
gtgattgcag?cagtgcactt?ggatccctgt?ctttttgacc?accctcaact?cttcaatcca 1200
tggcgatggc?agcaaaataa?tgggagtcga?ggggcgggga?cggcaacgtc?atcagcgagc 1260
agcagcaatt?acttcatgcc?attcggggga?ggaccacggc?tatgtgcagg?aacagagctg 1320
gctaaactgg?aaatggcggt?gttcatccac?catttggtcc?tcaactacca?gtgggagtta 1380
gccgatacgg?atgaagcctt?tgccttccct?tttgtcgact?tccctaaagg?cctacccatc 1440
agagtcttca?aatcttaa 1458
<210>114
<211>485
<212>PRT
<213> upland cotton
<400>114
Met?Pro?Asp?Ser?Glu?Pro?Ile?Phe?Leu?Leu?Leu?Pro?Ser?Ile?Leu?Ser
1 5 10 15
Leu?Ile?Leu?Phe?Phe?Ile?Leu?Ile?Lys?Arg?Lys?Gln?Arg?Arg?Tyr?Asn
20 25 30
Leu?Pro?Pro?Gly?Asn?Met?Gly?Trp?Pro?Phe?Leu?Gly?Glu?Thr?Ile?Gly
35 40 45
Tyr?Leu?Arg?Pro?Tyr?Ser?Ala?Thr?Ser?Val?Gly?Glu?Phe?Met?His?Gln
50 55 60
His?Ile?Ser?Arg?Tyr?Gly?Asn?Ile?Tyr?Lys?Ser?Asn?Leu?Phe?Gly?Glu
65 70 75 80
Lys?Thr?Ile?Val?Ser?Ala?Asp?Ala?Gly?Leu?Asn?Lys?Phe?Ile?Leu?Gln
85 90 95
Asn?Glu?Gly?Arg?Leu?Phe?Glu?Cys?Ser?Tyr?Pro?Arg?Ser?Ile?Gly?Gly
100 105 110
Ile?Leu?Gly?Lys?Trp?Ser?Met?Leu?Val?Leu?Val?Gly?Asp?Met?His?Arg
115 120 125
Asp?Met?Arg?Ile?Ile?Ser?Leu?Asn?Phe?Leu?Ser?Asn?Ala?Arg?Leu?Arg
130 135 140
Thr?His?Leu?Leu?Arg?Glu?Val?Glu?Lys?His?Thr?Leu?Leu?Val?Leu?Asn
145 150 155 160
Thr?Trp?Lys?Glu?Lys?Cys?Ile?Phe?Ser?Ala?Gln?Asp?Glu?Ala?Lys?Lys
165 170 175
Phe?Thr?Phe?Asn?Leu?Val?Ala?Lys?Asn?Ile?Met?Ser?Met?Asp?pro?Gly
180 185 190
His?Pro?Glu?Thr?Glu?Gln?Leu?Lys?Lys?Glu?Tyr?Val?Thr?Phe?Met?Lys
195 200 205
Gly?Val?Val?Ser?Ala?Pro?Leu?Asn?Leu?Pro?Gly?Thr?Ala?Tyr?Arg?Lys
210 215 220
Ala?Leu?Gln?Ser?Arg?Ser?Thr?Ile?Leu?Lys?Phe?Ile?Glu?Lys?Lys?Met
225 230 235 240
Glu?Val?Arg?Ile?Arg?Lys?Met?Lys?Glu?Gly?Lys?Glu?Asn?Ser?Glu?Glu
245 250 255
Asp?Asp?Leu?Leu?Glu?Trp?Val?Leu?Lys?His?Ser?Asn?Leu?Ser?Thr?Glu
260 265 270
Gln?Ile?Leu?Asp?Leu?Ile?Leu?Ser?Leu?Leu?Phe?Ala?Gly?His?Glu?Thr
275 280 285
Ser?Ser?Val?Ala?Ile?Thr?Leu?Ala?Ile?Tyr?Phe?Leu?Pro?Gly?Cys?Pro
290 295 300
Leu?Ala?Ile?Gln?Gln?Leu?Arg?Glu?Glu?His?Leu?Glu?Val?Ala?Arg?Ala
305 310 315 320
Lys?Asn?Gln?Ser?Gly?Glu?Thr?Glu?Leu?Asn?Trp?Asp?Asp?Tyr?Lys?Lys
325 330 335
Met?Glu?Phe?Thr?Gln?Cys?Val?Ile?Asn?Glu?Thr?Leu?Arg?Leu?Gly?Asn
340 345 350
Val?Val?Arg?Phe?Leu?His?Arg?Lys?Ala?Leu?Lys?Asp?Ile?Arg?Tyr?Lys
355 360 365
Gly?Tyr?Asp?Ile?Pro?Cys?Gly?Trp?Lys?Val?Leu?Pro?Val?Ile?Ala?Ala
370 375 380
Val?His?Leu?Asp?Pro?Cys?Leu?Phe?Asp?His?Pro?Gln?Leu?Phe?Asn?Pro
385 390 395 400
Trp?Arg?Trp?Gln?Gln?Asn?Asn?Gly?Ser?Arg?Gly?Ala?Gly?Thr?Ala?Thr
405 410 415
Ser?Ser?Ala?Ser?Ser?Ser?Asn?Tyr?Phe?Met?Pro?Phe?Gly?Gly?Gly?Pro
420 425 430
Arg?Leu?Cys?Ala?Gly?Thr?Glu?Leu?Ala?Lys?Leu?Glu?Met?Ala?Val?Phe
435 440 445
Ile?His?His?Leu?Val?Leu?Asn?Tyr?Gln?Trp?Glu?Leu?Ala?Asp?Thr?Asp
450 455 460
Glu?Ala?Phe?Ala?Phe?Pro?Phe?Val?Asp?Phe?Pro?Lys?Gly?Leu?Pro?Ile
465 470 475 480
Arg?Val?Phe?Lys?Ser
485
<210>115
<211>1521
<212>DNA
<213> Zea mays
<400>115
atgggcgcca?tgatggcctc?cataaccagc?gagctcctct?tcttccttcc?cttcatcctg 60
ctggccctcc?tcgccttgta?caccaccacc?gtegccaaat?gccacggcac?ccacccgtgg 120
cgccgtcaga?agaagaagcg?gcccaacctg?cccccgggcg?cccgcggatg?gcccttggtc 180
ggcgaaactt?tcggctacct?ccgcgcccac?ccggccacct?ccgtgggccg?cttcatggag 240
cggcatgtcg?cacggtacgg?gaagatatac?cggtcgagcc?tgttcgggga?gcggacggtg 300
gtgtcggcgg?acgcggggct?gaaccgctac?atcctgcaga?acgaggggcg?gctgttcgag 360
tgcagctacc?cgcgcagcat?cggcggcatc?ctgggcaagt?ggtccatgct?ggtgctcgtg 420
ggcgacgcgc?accgcgagat?gcgcgctatc?tcgctcaact?tcctcagctc?cgtccgcctc 480
cgcgccgtgc?tgctccccga?ggtggagcgc?cacaccctgc?tggtcctccg?ctcgtggccg 540
ccctccgacg?gcaccttctc?cgcccagcac?gaagccaaga?agttcacgtt?taacctgatg 600
gcgaagaaca?taatgagcat?ggaccccggc?gaggaggaga?cggagcggct?gcggctggag 660
tacatcacct?tcatgaaggg?cgtcgtgtca?gcgccgctca?acttcccggg?cacggcctac 720
tggaaggcgc?tcaagtcacg?cgcgtccata?cttggagtga?tagagaggaa?gatggaggac 780
aggcttgaga?agatgagcag?ggagaagtca?agcgtggagg?aggacgacct?tcttggatgg 840
gccctgaagc?aatccaacct?gtccaaggaa?cagatcctgg?acctcttgct?gagcctgctc 900
ttcgcggggc?acgagacttc?gtccatggcg?ctcgccctcg?ccatcttctt?cctcgaaggg 960
tgccctaagg?ccgtgcaaga?actccgggag?gagcatctcc?tgattgctag?gagacaaagg 1020
ctaagagggg?cgtctaaatt?gagctgggaa?gactacaagg?aaatggtttt?cacgcagtgt 1080
gttataaacg?agacattgcg?gctcggcaac?gtggtcaggt?tcctgcaccg?gaaggtcatc 1140
cgagatgtac?actacaatgg?gtacgacata?ccgcgggggt?ggaaaatcct?gccggttcta 1200
gcggcggtgc?acctggactc?gtcgctgtac?gaggacccca?gccggttcaa?cccttggaga 1260
tggaagagca?acaacgcgcc?aagcagcttc?atgccgtacg?gcggcgggcc?gcggctgtgc 1320
gccgggtcgg?agctggccaa?gctggagatg?gccatcttcc?tgcaccacct?ggtgctcaac 1380
ttccggtggg?agctggcgga?gccggaccag?gccttcgttt?accctttcgt?cgacttcccc 1440
aagggcctcc?cgatcagggt?ccagcgggtc?gccgacgacc?aaggccatcg?tagcgttttg 1500
accgagagca?caagaggctg?a 1521
<210>116
<211>506
<212>PRT
<213> Zea mays
<400>116
Met?Gly?Ala?Met?Met?Ala?Ser?Ile?Thr?Ser?Glu?Leu?Leu?Phe?Phe?Leu
1 5 10 15
Pro?Phe?Ile?Leu?Leu?Ala?Leu?Leu?Ala?Leu?Tyr?Thr?Thr?Thr?Val?Ala
20 25 30
Lys?Cys?His?Gly?Thr?His?Pro?Trp?Arg?Arg?Gln?Lys?Lys?Lys?Arg?Pro
35 40 45
Asn?Leu?Pro?Pro?Gly?Ala?Arg?Gly?Trp?Pro?Leu?Val?Gly?Glu?Thr?Phe
50 55 60
Gly?Tyr?Leu?Arg?Ala?His?Pro?Ala?Thr?Ser?Val?Gly?Arg?Phe?Met?Glu
65 70 75 80
Arg?His?Val?Ala?Arg?Tyr?Gly?Lys?Ile?Tyr?Arg?Ser?Ser?Leu?Phe?Gly
85 90 95
Glu?Arg?Thr?Val?Val?Ser?Ala?Asp?Ala?Gly?Leu?Asn?Arg?Tyr?Ile?Leu
100 105 110
Gln?Asn?Glu?Gly?Arg?Leu?Phe?Glu?Cys?Ser?Tyr?Pro?Arg?Ser?Ile?Gly
115 120 125
Gly?Ile?Leu?Gly?Lys?Trp?Ser?Met?Leu?Val?Leu?Val?Gly?Asp?Ala?His
130 135 140
Arg?Glu?Met?Arg?Ala?Ile?Ser?Leu?Asn?Phe?Leu?Ser?Ser?Val?Arg?Leu
145 150 155 160
Arg?Ala?Val?Leu?Leu?Pro?Glu?Val?Glu?Arg?His?Thr?Leu?Leu?Val?Leu
165 170 175
Arg?Ser?Trp?Pro?Pro?Ser?Asp?Gly?Thr?Phe?Ser?Ala?Gln?His?Glu?Ala
180 185 190
Lys?Lys?Phe?Thr?Phe?Asn?Leu?Met?Ala?Lys?Asn?Ile?Met?Ser?Met?Asp
195 200 205
Pro?Gly?Glu?Glu?Glu?Thr?Glu?Arg?Leu?Arg?Leu?Glu?Tyr?Ile?Thr?Phe
210 215 220
Met?Lys?Gly?Val?Val?Ser?Ala?Pro?Leu?Asn?Phe?Pro?Gly?Thr?Ala?Tyr
225 230 235 240
Trp?Lys?Ala?Leu?Lys?Ser?Arg?Ala?Ser?Ile?Leu?Gly?Val?Ile?Glu?Arg
245 250 255
Lys?Met?Glu?Asp?Arg?Leu?Glu?Lys?Met?Ser?Arg?Glu?Lys?Ser?Ser?Val
260 265 270
Glu?Glu?Asp?Asp?Leu?Leu?Gly?Trp?Ala?Leu?Lys?Gln?Ser?Asn?Leu?Ser
275 280 285
Lys?Glu?Gln?Ile?Leu?Asp?Leu?Leu?Leu?Ser?Leu?Leu?Phe?Ala?Gly?His
290 295 300
Glu?Thr?Ser?Ser?Met?Ala?Leu?Ala?Leu?Ala?Ile?Phe?Phe?Leu?Glu?Gly
305 310 315 320
Cys?Pro?Lys?Ala?Val?Gln?Glu?Leu?Arg?Glu?Glu?His?Leu?Leu?Ile?Ala
325 330 335
Arg?Arg?Gln?Arg?Leu?Arg?Gly?Ala?Ser?Lys?Leu?Ser?Trp?Glu?Asp?Tyr
340 345 350
Lys?Glu?Met?Val?Phe?Thr?Gln?Cys?Val?Ile?Asn?Glu?Thr?Leu?Arg?Leu
355 360 365
Gly?Asn?Val?Val?Arg?Phe?Leu?His?Arg?Lys?Val?Ile?Arg?Asp?Val?His
370 375 380
Tyr?Asn?Gly?Tyr?Asp?Ile?Pro?Arg?Gly?Trp?Lys?Ile?Leu?Pro?Val?Leu
385 390 395 400
Ala?Ala?Val?His?Leu?Asp?Ser?Ser?Leu?Tyr?Glu?Asp?Pro?Ser?Arg?Phe
405 410 415
Asn?Pro?Trp?Arg?Trp?Lys?Ser?Asn?Asn?Ala?Pro?Ser?Ser?Phe?Met?Pro
420 425 430
Tyr?Gly?Gly?Gly?Pro?Arg?Leu?Cys?Ala?Gly?Ser?Glu?Leu?Ala?Lys?Leu
435 440 445
Glu?Met?Ala?Ile?Phe?Leu?His?His?Leu?Val?Leu?Asn?Phe?Arg?Trp?Glu
450 455 460
Leu?Ala?Glu?Pro?Asp?Gln?Ala?Phe?Val?Tyr?Pro?Phe?Val?Asp?Phe?Pro
465 470 475 480
Lys?Gly?Leu?Pro?Ile?Arg?Val?Gln?Arg?Val?Ala?Asp?Asp?Gln?Gly?His
485 490 495
Arg?Ser?Val?Leu?Thr?Glu?Ser?Thr?Arg?Gly
500 505
<210>117
<211>1566
<212>DNA
<213> Zea mays
<400>117
atgggcgcca?tgatggcctc?cataaccagc?gagctcctct?tcttccttcc?cttcatcctg 60
ctggccctcc?tcgccttgta?caccaccacc?gtcgccaaat?gccacggcac?ccaccagtgg 120
cgccgtcaga?agaagaagcg?gcccaacctg?cccccgggcg?cccgcggatg?gcccttggtc 180
ggcgagactt?tcggctacct?ccgcgcccac?ccggccacct?ccgtgggccg?cttcatggag 240
cggcatgtcg?cacggtacgg?gaagatatac?cggtcgagcc?tgttcgggga?gcggacggtg 300
gtgtcggcgg?acgcggggct?gaaccggtac?atcctgcaga?acgaggggcg?gctgttcgag 360
tgcagctacc?cgcgcagcat?cggcggcatc?ctgggcaagt?ggtccatgct?ggtgctcgtg 420
ggcgacgcgc?accgcgagat?gcgcgctatc?tcgctcaact?tcctcagctc?cgtccgcctc 480
cgcgccgtgc?tgctccccga?ggtggagcgc?cacaccctgc?tggtcctccg?ctcctggccg 540
cctccgaccg?gcaccttctc?cgcccagcac?gaagccaaga?agttcacgtt?taacctgatg 600
gcgaagaaca?taatgagcat?ggaccccggc?gaggaggaga?cggagcggct?gcggctggag 660
tacatcacct?tcatgaaggg?cgtcgtgtca?gcgccgctca?acttcccggg?cacggcctac 720
tggaaggcgc?tcaagtcgcg?cgcgtccata?cttggagtga?tagagaggaa?gatggaggac 780
aggcttgaga?agatgagcag?ggagaagtca?agcgtggagg?aggacgacct?tcttggatgg 840
gccctgaagc?aatccaacct?gtccaaggaa?cagatcctgg?acctcttgct?gagcctgctc 900
ttcgcggggc?acgagacttc?gtccatggcg?ctcgccctcg?ccatcttctt?cctcgaaggg 960
tgccctaagg?ccgtgcaaga?actccgggag?gagcatctcc?tgattgctag?gagacaaagg 1020
ctaagggggg?cgtccaaatt?gagctgggaa?gactacaagg?aaatggtttt?cacgcagtgt 1080
gttataaacg?agacattgcg?gctcggcaac?gtggtcaggt?tcctgcaccg?gaaggtcatc 1140
cgagatgtac?actacaatgg?gtacgacata?ccgcgggggt?ggaaaatcct?gccggttcta 1200
gcggcggtgc?acctggactc?gtcgctgtac?gaggatccca?gccggttcaa?cccttggaga 1260
tggaaggtca?gtgccctgcc?ccctcccctc?gcaaaaggca?caagccaagg?gacaagcaag 1320
aggtttacac?cgttcggtgg?tggcccccgg?ctctgcccag?gatcagagct?cgctaaagtg 1380
gagactgctt?tcttcctcca?tcaccttgtc?ctcaattata?gatggagaat?tgatggcgat 1440
gacattccaa?tggcataccc?gtatgtggag?tttcagagag?gtctgccaat?agaaatcgag 1500
ccaacgtccc?ctgaatttga?ctgtcctgga?gctacagcca?tcagttatca?caccagagag 1560
aaatga 1566
<210>118
<211>521
<212>PRT
<213> Zea mays
<400>118
Met?Gly?Ala?Met?Met?Ala?Ser?Ile?Thr?Ser?Glu?Leu?Leu?Phe?Phe?Leu
1 5 10 15
Pro?Phe?Ile?Leu?Leu?Ala?Leu?Leu?Ala?Leu?Tyr?Thr?Thr?Thr?Val?Ala
20 25 30
Lys?Cys?His?Gly?Thr?His?Gln?Trp?Arg?Arg?Gln?Lys?Lys?Lys?Arg?Pro
35 40 45
Asn?Leu?Pro?Pro?Gly?Ala?Arg?Gly?Trp?Pro?Leu?Val?Gly?Glu?Thr?Phe
50 55 60
Gly?Tyr?Leu?Arg?Ala?His?Pro?Ala?Thr?Ser?Val?Gly?Arg?Phe?Met?Glu
65 70 75 80
Arg?His?Val?Ala?Arg?Tyr?Gly?Lys?Ile?Tyr?Arg?Ser?Ser?Leu?Phe?Gly
85 90 95
Glu?Arg?Thr?Val?Val?Ser?Ala?Asp?Ala?Gly?Leu?Asn?Arg?Tyr?Ile?Leu
100 105 110
Gln?Asn?Glu?Gly?Arg?Leu?Phe?Glu?Cys?Ser?Tyr?Pro?Arg?Ser?Ile?Gly
115 120 125
Gly?Ile?Leu?Gly?Lys?Trp?Ser?Met?Leu?Val?Leu?Val?Gly?Asp?Ala?His
130 135 140
Arg?Glu?Met?Arg?Ala?Ile?Ser?Leu?Asn?Phe?Leu?Ser?Ser?Val?Arg?Leu
145 150 155 160
Arg?Ala?Val?Leu?Leu?Pro?Glu?Val?Glu?Arg?His?Thr?Leu?Leu?Val?Leu
165 170 175
Arg?Ser?Trp?Pro?Pro?Pro?Thr?Gly?Thr?Phe?Ser?Ala?Gln?His?Glu?Ala
180 185 190
Lys?Lys?Phe?Thr?Phe?Asn?Leu?Met?Ala?Lys?Asn?Ile?Met?Ser?Met?Asp
195 200 205
Pro?Gly?Glu?Glu?Glu?Thr?Glu?Arg?Leu?Arg?Leu?Glu?Tyr?Ile?Thr?Phe
210 215 220
Met?Lys?Gly?Val?Val?Ser?Ala?Pro?Leu?Asn?Phe?Pro?Gly?Thr?Ala?Tyr
225 230 235 240
Trp?Lys?Ala?Leu?Lys?Ser?Arg?Ala?Ser?Ile?Leu?Gly?Val?Ile?Glu?Arg
245 250 255
Lys?Met?Glu?Asp?Arg?Leu?Glu?Lys?Met?Ser?Arg?Glu?Lys?Ser?Ser?Val
260 265 270
Glu?Glu?Asp?Asp?Leu?Leu?Gly?Trp?Ala?Leu?Lys?Gln?Ser?Asn?Leu?Ser
275 280 285
Lys?Glu?Gln?Ile?Leu?Asp?Leu?Leu?Leu?Ser?Leu?Leu?Phe?Ala?Gly?His
290 295 300
Glu?Thr?Ser?Ser?Met?Ala?Leu?Ala?Leu?Ala?Ile?Phe?Phe?Leu?Glu?Gly
305 310 315 320
Cys?Pro?Lys?Ala?Val?Gln?Glu?Leu?Arg?Glu?Glu?His?Leu?Leu?Ile?Ala
325 330 335
Arg?Arg?Gln?Arg?Leu?Arg?Gly?Ala?Ser?Lys?Leu?Ser?Trp?Glu?Asp?Tyr
340 345 350
Lys?Glu?Met?Val?Phe?Thr?Gln?Cys?Val?Ile?Asn?Glu?Thr?Leu?Arg?Leu
355 360 365
Gly?Asn?Val?Val?Arg?Phe?Leu?His?Arg?Lys?Val?Ile?Arg?Asp?Val?His
370 375 380
Tyr?Asn?Gly?Tyr?Asp?Ile?Pro?Arg?Gly?Trp?Lys?Ile?Leu?Pro?Val?Leu
385 390 395 400
Ala?Ala?Val?His?Leu?Asp?Ser?Ser?Leu?Tyr?Glu?Asp?Pro?Ser?Arg?Phe
405 410 415
Asn?Pro?Trp?Arg?Trp?Lys?Val?Ser?Ala?Leu?Pro?Pro?Pro?Leu?Ala?Lys
420 425 430
Gly?Thr?Ser?Gln?Gly?Thr?Ser?Lys?Arg?Phe?Thr?Pro?Phe?Gly?Gly?Gly
435 440 445
Pro?Arg?Leu?Cys?Pro?Gly?Ser?Glu?Leu?Ala?Lys?Val?Glu?Thr?Ala?Phe
450 455 460
Phe?Leu?His?His?Leu?Val?Leu?Asn?Tyr?Arg?Trp?Arg?Ile?Asp?Gly?Asp
465 470 475 480
Asp?Ile?Pro?Met?Ala?Tyr?Pro?Tyr?Val?Glu?Phe?Gln?Arg?Gly?Leu?Pro
485 490 495
Ile?Glu?Ile?Glu?Pro?Thr?Ser?Pro?Glu?Phe?Asp?Cys?Pro?Gly?Ala?Thr
500 505 510
Ala?Ile?Ser?Tyr?His?Thr?Arg?Glu?Lys
515 520
<210>119
<211>1257
<212>DNA
<213> overgrown with weeds blue or green (Brassica rapa)
<220>
<221>misc_feature
<222>(967)..(969)
<223>n is a, c, g, or t
<400>119
atgttcgaaa?cagagcatac?tctcgtgcct?cttcttcttc?tcccatcact?tctatctctt 60
ctcctcttct?tgattctctt?gaagagacga?agtcgacaca?gtttcaatct?ccctcctgga 120
aaatctggat?ggccatttct?aggcgaaacc?atcggatatc?tcaaacctta?ctctgccaaa 180
actctcggtt?acttcatgca?acaacatatc?tccaagtatg?ggaagatata?tagatcgaat 240
ttgtttggag?aaccaacgat?cgtatcagct?gatgcaggac?tcaacaggtt?catattacaa 300
aacgaaggaa?gactctttga?atgtagttat?cctcgaagta?ttggtgggat?tcttgggaaa 360
tggtcgatgc?ttgttcttgt?tggagacatg?catagagaca?tgagaagtat?ctcgctaaac 420
tttctaagtc?acgctcgtct?cagaacgatt?cttcttaagg?acgttgagag?gcatactttg 480
ttcgttctta?attcttggca?acaacattct?gttttctctg?ctcaagatga?ggccaaaaag 540
tttacgttta?atctaatggc?gaagcatata?atgagtatgg?atcctggaga?agaagagaca 600
gagcagttaa?agaaagagta?tgtgactttc?atgaaagggg?ttgtttctgc?tcctctcaat 660
ctcccaggaa?ctgcttatcg?taaagctctc?cagcagtcac?gagggacgat?attgaagttt 720
attgagaaga?aaatggaaga?gagaaaatca?gagattcaag?aagaagacga?agaagatgaa 780
gcagagatta?gtagaagtga?tcattatgag?agaaaacata?gagcagatga?tgatcttttg 840
ggatgggttc?taaaacattc?caatctttcg?actgagcaaa?ttctcgatct?tattctcagt 900
ttattatttg?ccggacatga?gacatcatct?gtagccatcg?ctctcgctat?ctacttttta 960
gcgggcnnnt?tgaaggaaga?gcatcttgaa?atcgcgaggg?tgaagaagga?acttggagag 1020
tcagaattga?attgggatga?ttacaagaca?atggacttta?ctcatagtgt?tataaatgag 1080
actcttcgac?taggaaatgt?agtaaggttt?ttgcatcgta?aagcactcaa?aaacgttcgg 1140
tataaaggat?acgatatccc?aagtgggtgg?aaagtgttac?cagtgatctc?agccgtacat 1200
ttggataact?cccgttacga?cgaacctaat?ctctttaatc?cttggagatg?gcaacag 1257
<210>120
<211>419
<212>PRT
<213> is overgrown with weeds blue or green
<220>
<221> is uncertain
<222>(323)..(323)
<223>Xaa can be any natural amino acid
<400>120
Met?Phe?Glu?Thr?Glu?His?Thr?Leu?Val?Pro?Leu?Leu?Leu?Leu?Pro?Ser
1 5 10 15
Leu?Leu?Ser?Leu?Leu?Leu?Phe?Leu?Ile?Leu?Leu?Lys?Arg?Arg?Ser?Arg
20 25 30
His?Ser?Phe?Asn?Leu?Pro?Pro?Gly?Lys?Ser?Gly?Trp?Pro?Phe?Leu?Gly
35 40 45
Glu?Thr?Ile?Gly?Tyr?Leu?Lys?Pro?Tyr?Ser?Ala?Lys?Thr?Leu?Gly?Tyr
50 55 60
Phe?Met?Gln?Gln?His?Ile?Ser?Lys?Tyr?Gly?Lys?Ile?Tyr?Arg?Ser?Asn
65 70 75 80
Leu?Phe?Gly?Glu?Pro?Thr?Ile?Val?Ser?Ala?Asp?Ala?Gly?Leu?Asn?Arg
85 90 95
Phe?Ile?Leu?Gln?Asn?Glu?Gly?Arg?Leu?Phe?Glu?Cys?Ser?Tyr?Pro?Arg
100 105 110
Ser?Ile?Gly?Gly?Ile?Leu?Gly?Lys?Trp?Ser?Met?Leu?Val?Leu?Val?Gly
115 120 125
Asp?Met?His?Arg?Asp?Met?Arg?Ser?Ile?Ser?Leu?Asn?Phe?Leu?Ser?His
130 135 140
Ala?Arg?Leu?Arg?Thr?Ile?Leu?Leu?Lys?Asp?Val?Glu?Arg?His?Thr?Leu
145 150 155 160
Phe?Val?Leu?Asn?Ser?Trp?Gln?Gln?His?Ser?Val?Phe?Ser?Ala?Gln?Asp
165 170 175
Glu?Ala?Lys?Lys?Phe?Thr?Phe?Asn?Leu?Met?Ala?Lys?His?Ile?Met?Ser
180 185 190
Met?Asp?Pro?Gly?Glu?Glu?Glu?Thr?Glu?Gln?Leu?Lys?Lys?Glu?Tyr?Val
195 200 205
Thr?Phe?Met?Lys?Gly?Val?Val?Ser?Ala?Pro?Leu?Asn?Leu?Pro?Gly?Thr
210 215 220
Ala?Tyr?Arg?Lys?Ala?Leu?Gln?Gln?Ser?Arg?Gly?Thr?Ile?Leu?Lys?Phe
225 230 235 240
Ile?Glu?Lys?Lys?Met?Glu?Glu?Arg?Lys?Ser?Glu?Ile?Gln?Glu?Glu?Asp
245 250 255
Glu?Glu?Asp?Glu?Ala?Glu?Ile?Ser?Arg?Ser?Asp?His?Tyr?Glu?Arg?Lys
260 265 270
His?Arg?Ala?Asp?Asp?Asp?Leu?Leu?Gly?Trp?Val?Leu?Lys?His?Ser?Asn
275 280 285
Leu?Ser?Thr?Glu?Gln?Ile?Leu?Asp?Leu?Ile?Leu?Ser?Leu?Leu?Phe?Ala
290 295 300
Gly?His?Glu?Thr?Ser?Ser?Val?Ala?Ile?Ala?Leu?Ala?Ile?Tyr?Phe?Leu
305 310 315 320
Ala?Gly?Xaa?Leu?Lys?Glu?Glu?His?Leu?Glu?Ile?Ala?Arg?Val?Lys?Lys
325 330 335
Glu?Leu?Gly?Glu?Ser?Glu?Leu?Asn?Trp?Asp?Asp?Tyr?Lys?Thr?Met?Asp
340 345 350
Phe?Thr?His?Ser?Val?Ile?Asn?Glu?Thr?Leu?Arg?Leu?Gly?Asn?Val?Val
355 360 365
Arg?Phe?Leu?His?Arg?Lys?Ala?Leu?Lys?Asn?Val?Arg?Tyr?Lys?Gly?Tyr
370 375 380
Asp?Ile?Pro?Ser?Gly?Trp?Lys?Val?Leu?Pro?Val?Ile?Ser?Ala?Val?His
385 390 395 400
Leu?Asp?Asn?Ser?Arg?Tyr?Asp?Glu?Pro?Asn?Leu?Phe?Asn?Pro?Trp?Arg
405 410 415
Trp?Gln?Gln
<210>121
<211>848
<212>DNA
<213> barley
<400>121
atggccgcca?tgatggcatc?cataaccagc?gagctccttt?tcttcctccc?cttcatcctc 60
ctggccctgc?tcaccttcta?caccagcagc?gtggccaaat?gccatggcct?ccaccggtgg 120
agcggccgga?cgaagaagaa?gcggccgaat?ctgccgcccg?gcgccgccgg?ctggcctttc 180
gtcggcgaga?ccttcgggta?cctccgcgcc?cacccggcca?cctccatcgg?ccagttcatg 240
aaccagcaca?tcgcacggta?cgggaagata?taccggtcga?gcctgttcgg?ggagcggacg 300
gtggtgtcgg?cggacgcggg?gctgaaccgg?tacatcctgc?agaacgaggg?gcggctgttc 360
gagtgcagct?acccgcggag?catcggcggc?atcctgggca?aatggtccat?gctggtgctc 420
gtgggcgacc?cccaccgcga?gatgcgctcc?atctccctca?acttcctcag?ctccctccgc 480
ctccgcgccg?tgctcctccc?ggaggtggag?cgccacaccc?tcctcgtcct?ccgcgactgg 540
ctgccttcct?cctcctccgc?cgtcttctcc?gcccagcacg?aagccaagaa?gttcacgttt 600
aacctgatgg?cgaagaacat?catgagcatg?gaccccggcg?aggaggagac?ggagcggctg 660
aggctcgagt?acatcacctt?catgaagggg?gtggtgtccg?cgcccctcaa?cttccccggg 720
acggcctact?ggaaggccct?caagtctcga?gccaccatac?ttggggtaat?agagaggaaa 780
atggaggata?ggctcgagaa?aatgaacaag?gaggcctcga?gcatgaagaa?gatatctctc 840
ggggggcg 848
<210>122
<211>282
<212>PRT
<213> barley
<400>122
Met?Ala?Ala?Met?Met?Ala?Ser?Ile?Thr?Ser?Glu?Leu?Leu?Phe?Phe?Leu
1 5 10 15
Pro?Phe?Ile?Leu?Leu?Ala?Leu?Leu?Thr?Phe?Tyr?Thr?Ser?Ser?Val?Ala
20 25 30
Lys?Cys?His?Gly?Leu?His?Arg?Trp?Ser?Gly?Arg?Thr?Lys?Lys?Lys?Arg
35 40 45
Pro?Asn?Leu?Pro?Pro?Gly?Ala?Ala?Gly?Trp?Pro?Phe?Val?Gly?Glu?Thr
50 55 60
Phe?Gly?Tyr?Leu?Arg?Ala?His?Pro?Ala?Thr?Ser?Ile?Gly?Gln?Phe?Met
65 70 75 80
Asn?Gln?His?Ile?Ala?Arg?Tyr?Gly?Lys?Ile?Tyr?Arg?Ser?Ser?Leu?Phe
85 90 95
Gly?Glu?Arg?Thr?Val?Val?Ser?Ala?Asp?Ala?Gly?Leu?Asn?Arg?Tyr?Ile
100 105 110
Leu?Gln?Asn?Glu?Gly?Arg?Leu?Phe?Glu?Cys?Ser?Tyr?Pro?Arg?Ser?Ile
115 120 125
Gly?Gly?Ile?Leu?Gly?Lys?Trp?Ser?Met?Leu?Val?Leu?Val?Gly?Asp?Pro
130 135 140
His?Arg?Glu?Met?Arg?Ser?Ile?Ser?Leu?Asn?Phe?Leu?Ser?Ser?Leu?Arg
145 150 155 160
Leu?Arg?Ala?Val?Leu?Leu?Pro?Glu?Val?Glu?Arg?His?Thr?Leu?Leu?Val
165 170 175
Leu?Arg?Asp?Trp?Leu?Pro?Ser?Ser?Ser?Ser?Ala?Val?Phe?Ser?Ala?Gln
180 185 190
His?Glu?Ala?Lys?Lys?Phe?Thr?Phe?Asn?Leu?Met?Ala?Lys?Asn?Ile?Met
195 200 205
Ser?Met?Asp?Pro?Gly?Glu?Glu?Glu?Thr?Glu?Arg?Leu?Arg?Leu?Glu?Tyr
210 215 220
Ile?Thr?Phe?Met?Lys?Gly?Val?Val?Ser?Ala?Pro?Leu?Asn?Phe?Pro?Gly
225 230 235 240
Thr?Ala?Tyr?Trp?Lys?Ala?Leu?Lys?Ser?Arg?Ala?Thr?Ile?Leu?Gly?Val
245 250 255
Ile?Glu?Arg?Lys?Met?Glu?Asp?Arg?Leu?Glu?Lys?Met?Asn?Lys?Glu?Ala
260 265 270
Ser?Ser?Met?Lys?Lys?Ile?Ser?Leu?Gly?Gly
275 280
<210>123
<211>1200
<212>DNA
<213> light leaf Root or stem of Littleleaf Indianmulberry (Lotus japonicus)
<400>123
atgtctgact?catacctcac?tttctgtttt?ctttcttcca?ttcttgctct?cactgtaatc 60
atcattttca?tgaaaagaaa?gaaggcaagg?cttaaccttc?cccctggaaa?aatgggatgg 120
ccctttcttg?gggaaaccat?tgggtacttg?aagccatact?ctgctaccac?agtaggagat 180
tttatggaaa?agcacatagc?aaggtatggt?acaatttaca?agtcaaaatt?gtttggtgag 240
cctgcaatag?tttctgcaga?tgcagagttg?aacaggttca?tattacagaa?cgaagggaag 300
ctgtttgagt?gcagctatcc?aagaagcatt?ggaggaatac?ttggaaaatg?gtccatgttg 360
gtcttagttg?gggacatgca?tagggacatg?agaaacattt?cactgaactt?tctgagcctt 420
gctaggctca?aaacacatct?attgaaagaa?gtggagaagc?actctcttct?agttctaggc 480
tcttggaaag?aaaattgtac?attctcagct?caagatgaag?caaagaagtt?cacattcaat 540
ttgatggcga?aacatatcat?gagcttggat?cctgggaatc?tagagacaga?acagctgaag 600
aaagagtatg?tctctttcat?gaatggtgtg?gtgtctgcac?ctttgaattt?tcccggaact 660
gcatacagaa?aagcattaaa?gtctaggtcc?accatactga?agttcataga?gggaaaaatg 720
gaagaaagga?tcaaaagaaa?ccaaaatttg?gaggaagatc?ttctaaactg?ggttgtgatg 780
cattcaaatc?tttcaactga?gcaaattctt?gacctggttc?tgagcttgct?ctttgcaggc 840
catgaaactt?catctgtggc?tatagcttta?gctatttact?ttttgccagg?ttgtcctaaa 900
gctatacaac?aattaaggga?agaacataga?gaaatagcca?ggtccaagaa?gcaagcaggg 960
gaggttgaat?taacttggga?tgattacaaa?agaatggagt?ttactcaatg?tgtagttgtg 1020
aatgaaacac?tgaggttggg?aaatgttgtg?aggttccttc?acaggaaggc?tctgaaagat 1080
gttcggtaca?aaggttatga?cattccacgt?gggtggaaag?tcctccctgt?gatttcagct 1140
atgcatctgg?atcctgcact?tttttaccaa?cctcaacact?tcaatccatg?gagatggaag 1200
<210>124
<211>400
<212>PRT
<213> light leaf Root or stem of Littleleaf Indianmulberry
<400>124
Met?Ser?Asp?Ser?Tyr?Leu?Thr?Phe?Cys?Phe?Leu?Ser?Ser?Ile?Leu?Ala
1 5 10 15
Leu?Thr?Val?Ile?Ile?Ile?Phe?Met?Lys?Arg?Lys?Lys?Ala?Arg?Leu?Asn
20 25 30
Leu?Pro?Pro?Gly?Lys?Met?Gly?Trp?Pro?Phe?Leu?Gly?Glu?Thr?Ile?Gly
35 40 45
Tyr?Leu?Lys?Pro?Tyr?Ser?Ala?Thr?Thr?Val?Gly?Asp?Phe?Met?Glu?Lys
50 55 60
His?Ile?Ala?Arg?Tyr?Gly?Thr?Ile?Tyr?Lys?Ser?Lys?Leu?Phe?Gly?Glu
65 70 75 80
Pro?Ala?Ile?Val?Ser?Ala?Asp?Ala?Glu?Leu?Asn?Arg?Phe?Ile?Leu?Gln
85 90 95
Asn?Glu?Gly?Lys?Leu?Phe?Glu?Cys?Ser?Tyr?Pro?Arg?Ser?Ile?Gly?Gly
100 105 110
Ile?Leu?Gly?Lys?Trp?Ser?Met?Leu?Val?Leu?Val?Gly?Asp?Met?His?Arg
115 120 125
Asp?Met?Arg?Asn?Ile?Ser?Leu?Asn?Phe?Leu?Ser?Leu?Ala?Arg?Leu?Lys
130 135 140
Thr?His?Leu?Leu?Lys?Glu?Val?Glu?Lys?His?Ser?Leu?Leu?Val?Leu?Gly
145 150 155 160
Ser?Trp?Lys?Glu?Asn?Cys?Thr?Phe?Ser?Ala?Gln?Asp?Glu?Ala?Lys?Lys
165 170 175
Phe?Thr?Phe?Asn?Leu?Met?Ala?Lys?His?Ile?Met?Ser?Leu?Asp?Pro?Gly
180 185 190
Asn?Leu?Glu?Thr?Glu?Gln?Leu?Lys?Lys?Glu?Tyr?Val?Ser?Phe?Met?Asn
195 200 205
Gly?Val?Val?Ser?Ala?Pro?Leu?Asn?Phe?Pro?Gly?Thr?Ala?Tyr?Arg?Lys
210 215 220
Ala?Leu?Lys?Ser?Arg?Ser?Thr?Ile?Leu?Lys?Phe?Ile?Glu?Gly?Lys?Met
225 230 235 240
Glu?Glu?Arg?Ile?Lys?Arg?Asn?Gln?Asn?Leu?Glu?Glu?Asp?Leu?Leu?Asn
245 250 255
Trp?Val?Val?Met?His?Ser?Asn?Leu?Ser?Thr?Glu?Gln?Ile?Leu?Asp?Leu
260 265 270
Val?Leu?Ser?Leu?Leu?Phe?Ala?Gly?His?Glu?Thr?Ser?Ser?Val?Ala?Ile
275 280 285
Ala?Leu?Ala?Ile?Tyr?Phe?Leu?Pro?Gly?Cys?Pro?Lys?Ala?Ile?Gln?Gln
290 295 300
Leu?Arg?Glu?Glu?His?Arg?Glu?Ile?Ala?Arg?Ser?Lys?Lys?Gln?Ala?Gly
305 310 315 320
Glu?Val?Glu?Leu?Thr?Trp?Asp?Asp?Tyr?Lys?Arg?Met?Glu?Phe?Thr?Gln
325 330 335
Cys?Val?Val?Val?Asn?Glu?Thr?Leu?Arg?Leu?Gly?Asn?Val?Val?Arg?Phe
340 345 350
Leu?His?Arg?Lys?Ala?Leu?Lys?Asp?Val?Arg?Tyr?Lys?Gly?Tyr?Asp?Ile
355 360 365
Pro?Arg?Gly?Trp?Lys?Val?Leu?Pro?Val?Ile?Ser?Ala?Met?His?Leu?Asp
370 375 380
Pro?Ala?Leu?Phe?Tyr?Gln?Pro?Gln?His?Phe?Asn?Pro?Trp?Arg?Trp?Lys
385 390 395 400
<210>125
<211>1092
<212>DNA
<213> apple (Malus domestica)
<400>125
agagacatga?ggatgatatc?tctcaacttc?ttgagccatg?ccagactcag?aacccatctg 60
atgagagaag?ttgaaaagca?cactcttctt?gttttgggga?gttggaagga?aaactctgtt 120
ttttcagctc?aggatgaagc?taagaagttc?acgttcaact?tgatggccaa?acatatcatg 180
agcttggatc?ctggaaaacc?agagactgag?cagctgaaga?aattgtatgt?tactttcatg 240
aaaggtgtgg?tttctcctcc?tctgaattta?ccaggaacag?cttacagaag?agccttacag 300
tcaagatcaa?cgattctgaa?gtttatagag?tgcaaaatga?aagaaagatt?gatggaggga 360
accgaaaaca?ttggggaaga?tgatctgctt?ggatgggttc?tgaagaattc?aaatctttca 420
aaggagcaaa?ttcttgactt?aatattgagc?ttgctctttg?ctggccatga?aacttcatca 480
gtgtctatag?ccttagcaat?ttacttttta?ccaagctgcc?ctaatgcaat?tctgcagtta 540
agggaagaac?acagtgaaat?tgccaaagcc?aagaaactgg?caggcgagac?agagttgaat 600
tgggaggact?acaagaaaat?ggagttcacc?gaatgtgtaa?tctgtgagac?acttcggctt 660
gggaatgtgg?tgagattttt?acacagaaag?gctctgaagg?atgttcggta?caaagggtat 720
gacattccat?ctgggtggaa?agtgcttccg?gtgattgcag?ccgtgcattt?ggatccttta 780
ctttttgacc?acccgcaaca?cttcaatcca?tggagatggc?agcagaataa?caaccaccac 840
caccgtggat?catcgtcgtc?atcatcatgc?tacacgagca?tgacaagtca?caactttatg 900
ccatttgggg?gaggaccacg?actttgcgcc?ggttcagaat?tggccaaact?tgaaatggcc 960
gtgttcatcc?accaccttgt?cctcaacttc?cactgggagt?tagccgatcc?tttcgacaaa 1020
ccttttgctt?tccccttcgt?cgatttccaa?aatggcctac?caatcacagc?ccaccgctac 1080
gtaccaaact?aa 1092
<210>126
<211>363
<212>PRT
<213> apple
<400>126
Arg?Asp?Met?Arg?Met?Ile?Ser?Leu?Asn?Phe?Leu?Ser?His?Ala?Arg?Leu
1 5 10 15
Arg?Thr?His?Leu?Met?Arg?Glu?Val?Glu?Lys?His?Thr?Leu?Leu?Val?Leu
20 25 30
Gly?Ser?Trp?Lys?Glu?Asn?Ser?Val?Phe?Ser?Ala?Gln?Asp?Glu?Ala?Lys
35 40 45
Lys?Phe?Thr?Phe?Asn?Leu?Met?Ala?Lys?His?Ile?Met?Ser?Leu?Asp?Pro
50 55 60
Gly?Lys?Pro?Glu?Thr?Glu?Gln?Leu?Lys?Lys?Leu?Tyr?Val?Thr?Phe?Met
65 70 75 80
Lys?Gly?Val?Val?Ser?Pro?Pro?Leu?Asn?Leu?Pro?Gly?Thr?Ala?Tyr?Arg
85 90 95
Arg?Ala?Leu?Gln?Ser?Arg?Ser?Thr?Ile?Leu?Lys?Phe?Ile?Glu?Cys?Lys
100 105 110
Met?Lys?Glu?Arg?Leu?Met?Glu?Gly?Thr?Glu?Asn?Ile?Gly?Glu?Asp?Asp
115 120 125
Leu?Leu?Gly?Trp?Val?Leu?Lys?Asn?Ser?Asn?Leu?Ser?Lys?Glu?Gln?Ile
130 135 140
Leu?Asp?Leu?Ile?Leu?Ser?Leu?Leu?Phe?Ala?Gly?His?Glu?Thr?Ser?Ser
145 150 155 160
Val?Ser?Ile?Ala?Leu?Ala?Ile?Tyr?Phe?Leu?Pro?Ser?Cys?Pro?Asn?Ala
165 170 175
Ile?Leu?Gln?Leu?Arg?Glu?Glu?His?Ser?Glu?Ile?Ala?Lys?Ala?Lys?Lys
180 185 190
Leu?Ala?Gly?Glu?Thr?Glu?Leu?Asn?Trp?Glu?Asp?Tyr?Lys?Lys?Met?Glu
195 200 205
Phe?Thr?Glu?Cys?Val?Ile?Cys?Glu?Thr?Leu?Arg?Leu?Gly?Asn?Val?Val
210 215 220
Arg?Phe?Leu?His?Arg?Lys?Ala?Leu?Lys?Asp?Val?Arg?Tyr?Lys?Gly?Tyr
225 230 235 240
Asp?Ile?Pro?Ser?Gly?Trp?Lys?Val?Leu?Pro?Val?Ile?Ala?Ala?Val?His
245 250 255
Leu?Asp?Pro?Leu?Leu?Phe?Asp?His?Pro?Gln?His?Phe?Asn?Pro?Trp?Arg
260 265 270
Trp?Gln?Gln?Asn?Asn?Asn?His?His?His?Arg?Gly?Ser?Ser?Ser?Ser?Ser
275 280 285
Ser?Cys?Tyr?Thr?Ser?Met?Thr?Ser?His?Asn?Phe?Met?Pro?Phe?Gly?Gly
290 295 300
Gly?Pro?Arg?Leu?Cys?Ala?Gly?Ser?Glu?Leu?Ala?Lys?Leu?Glu?Met?Ala
305 310 315 320
Val?Phe?Ile?His?His?Leu?Val?Leu?Asn?Phe?His?Trp?Glu?Leu?Ala?Asp
325 330 335
Pro?Phe?Asp?Lys?Pro?Phe?Ala?Phe?Pro?Phe?Val?Asp?Phe?Gln?Asn?Gly
340 345 350
Leu?Pro?Ile?Thr?Ala?His?Arg?Tyr?Val?Pro?Asn
355 360
<210>127
<211>748
<212>DNA
<213> grape
<400>127
agacttcatg?gagcaacaca?tatcaaggtt?cggagaaatc?tacaagtcca?atctgtttgg 60
cgagccaacc?atagtctcag?cggattctgg?gctgaacaga?ttcatactac?agaacgaagg 120
aaaattgttt?gaatgcagct?atcccagaag?cataggtgga?attcttggga?aatggtccat 180
gctggtttta?gttggagaca?tgcatagaga?catgagaacc?atctccctca?acttcttgag 240
ccatggcagg?cttaggactc?atctcctacc?agaggtggtg?aagcacactt?tgcttgttct 300
aagctcttgg?aaggagaatt?gtacattttc?tgctcaagat?gaagctaaga?agtttacctt 360
caatctgatg?gcaaaacata?tcatgagctt?ggatcccgga?aagccggaga?ctgagcagct 420
taagaaagag?tatgttactt?tcatgaaagg?agtggtatct?gctcctttga?atttccctgg 480
aactgcatac?agaaaagccc?tacagtctcg?gtccaccatc?ttaaaattta?tcgagctgaa 540
gatggaagag?aggattcaga?aactgagggg?aggagggttt?gagaatatgg?aggatgacga 600
tcttcttgga?tgggtgctga?agcattccaa?cctttcaact?gagcaaatcc?tggacttggt 660
actgagcttg?ctctttgctg?gccatgaaac?ttcatcagtg?gcaatagctt?tagctatcta 720
cttcttggaa?ggctgtccca?acgccgtt 748
<210>128
<211>248
<212>PRT
<213> grape
<400>128
Asp?Phe?Met?Glu?Gln?His?Ile?Ser?Arg?Phe?Gly?Glu?Ile?Tyr?Lys?Ser
1 5 10 15
Asn?Leu?Phe?Gly?Glu?Pro?Thr?Ile?Val?Ser?Ala?Asp?Ser?Gly?Leu?Asn
20 25 30
Arg?Phe?Ile?Leu?Gln?Asn?Glu?Gly?Lys?Leu?Phe?Glu?Cys?Ser?Tyr?Pro
35 40 45
Arg?Ser?Ile?Gly?Gly?Ile?Leu?Gly?Lys?Trp?Ser?Met?Leu?Val?Leu?Val
50 55 60
Gly?Asp?Met?His?Arg?Asp?Met?Arg?Thr?Ile?Ser?Leu?Asn?Phe?Leu?Ser
65 70 75 80
His?Gly?Arg?Leu?Arg?Thr?His?Leu?Leu?Pro?Glu?Val?Val?Lys?His?Thr
85 90 95
Leu?Leu?Val?Leu?Ser?Ser?Trp?Lys?Glu?Asn?Cys?Thr?Phe?Ser?Ala?Gln
100 105 110
Asp?Glu?Ala?Lys?Lys?Phe?Thr?Phe?Asn?Leu?Met?Ala?Lys?His?Ile?Met
115 120 125
Ser?Leu?Asp?Pro?Gly?Lys?Pro?Glu?Thr?Glu?Gln?Leu?Lys?Lys?Glu?Tyr
130 135 140
Val?Thr?Phe?Met?Lys?Gly?Val?Val?Ser?Ala?Pro?Leu?Asn?Phe?Pro?Gly
145 150 155 160
Thr?Ala?Tyr?Arg?Lys?Ala?Leu?Gln?Ser?Arg?Ser?Thr?Ile?Leu?Lys?Phe
165 170 175
Ile?Glu?Leu?Lys?Met?Glu?Glu?Arg?Ile?Gln?Lys?Leu?Arg?Gly?Gly?Gly
180 185 190
Phe?Glu?Asn?Met?Glu?Asp?Asp?Asp?Leu?Leu?Gly?Trp?Val?Lau?Lys?His
195 200 205
Ser?Asn?Leu?Ser?Thr?Glu?Gln?Ile?Leu?Asp?Leu?Val?Leu?Ser?Leu?Leu
210 215 220
Phe?Ala?Gly?His?Glu?Thr?Ser?Ser?Val?Ala?Ile?Ala?Leu?Ala?Ile?Tyr
225 230 235 240
Phe?Leu?Glu?Gly?Cys?Pro?Asn?Ala
245
<210>129
<211>1737
<212>DNA
<213> Arabidopis thaliana
<400>129
atgcaacaac?tgtcaacttc?cctcggctta?aacacttaca?acgaggaacg?taattcaact 60
tctactaaaa?acacgagttc?tgaagattat?agtccaaggc?agtctaaaca?cacacaaagc 120
catggcctta?aagatatctc?cggaaatttc?cattctcatg?gagttaatgg?aggtgtttcg 180
aacatgtcat?tctataatac?gccttcgcca?gtggctgcac?agctatccgg?tatagctcca 240
ccaccacttt?tccggaattt?tcagccagct?gttgcaaacc?caaactccct?tattactgac 300
agttctccaa?agtccactgt?taactctact?cttcaagcac?ctagaagaaa?gtttgtagat 360
gaaggaaagt?tacgtaagat?ttctggcaga?ctattttctg?attctggtcc?acgacggagt 420
tcaagactgt?ctgctgattc?aggggcaaac?attaattcaa?gtgttgcaac?agtaagcgga 480
aatgtgaaca?acgcttccaa?gtatttggga?ggttctaaat?tgagttcttt?ggcacttcgt 540
tctgtaacac?ttcggaaggg?acactcctgg?gcaaatgaaa?acatggatga?aggggtccgt 600
ggggaacctt?ttgatgattc?aaggcctaat?actgcctcaa?cgactggttc?tatggcttcc 660
aatgatcaag?aagacgaaac?aatgtcgatt?ggtggcatag?caatgagttc?tcaaacaatc 720
acaattggtg?tttcggaaat?tttaaacctc?cttaggacac?tcggagaagg?gtgtagactt 780
tcatacatgt?acaggtgtca?ggaggcactg?gatacgtata?tgaaacttcc?acataagcat 840
tataatacag?gatgggttct?ttcccaggtc?gggaaagcat?actttgaact?aattgactat 900
ttagaggctg?aaaaggcatt?ccgtcttgcc?cgtctggctt?ctccttattg?cttagaagga 960
atggatatat?actctacggt?cctctatcat?ttgaaggaag?acatgaagct?gagttacttg 1020
gctcaggaac?taatatcaac?cgatcgctta?gctcctcaat?cttggtgtgc?tatgggaaat 1080
tgctatagct?tgcaaaagga?ccatgagacc?gcactgaaga?atttcctacg?agctgttcaa 1140
ctgaatccaa?gatttgcata?tgcacatacc?ttatgtggcc?acgaatacac?aactcttgag 1200
gattttgaga?acggaatgaa?aagttaccaa?aacgcacttc?gtgtagatac?aagacactac 1260
aacgcatggt?acgggcttgg?aatgatatat?ctacgccaag?agaagttaga?gttctcagag 1320
catcacttca?gaatggcttt?cctaataaac?ccgagttcct?ctgttataat?gtcttattta 1380
gggacatctt?tgcatgcctt?gaagagaagt?gaggaagcac?tagagataat?ggagcaagcc 1440
atagtagcag?atagaaaaaa?ccctcttcca?atgtaccaga?aagctaacat?acttgtctgc 1500
ttagaaagat?tagatgaagc?tctagaagtt?cttgaggagc?tcaaagagta?tgcgccttca 1560
gagagcagcg?tttacgcttt?aatgggcagg?atctataagc?ggcgaaacat?gcacgataaa 1620
gccatgcttc?atttcggtct?agctttagat?atgaaaccgc?ctgcaactga?cgttgctgca 1680
ataaaggctg?caatggagaa?attgcatgtt?ccagatgaga?tcgatgagag?cccgtga 1737
<210>130
<211>578
<212>PRT
<213> Arabidopis thaliana
<400>130
Met?Gln?Gln?Leu?Ser?Thr?Ser?Leu?Gly?Leu?Asn?Thr?Tyr?Asn?Glu?Glu
1 5 10 15
Arg?Asn?Ser?Thr?Ser?Thr?Lys?Asn?Thr?Ser?Ser?Glu?Asp?Tyr?Ser?Pro
20 25 30
Arg?Gln?Ser?Lys?His?Thr?Gln?Ser?His?Gly?Leu?Lys?Asp?Ile?Ser?Gly
35 40 45
Asn?Phe?His?Ser?His?Gly?Val?Asn?Gly?Gly?Val?Ser?Asn?Met?Ser?Phe
50 55 60
Tyr?Asn?Thr?Pro?Ser?Pro?Val?Ala?Ala?Gln?Leu?Ser?Gly?Ile?Ala?Pro
65 70 75 80
Pro?Pro?Leu?Phe?Arg?Asn?Phe?Gln?Pro?Ala?Val?Ala?Asn?Pro?Asn?Ser
85 90 95
Leu?Ile?Thr?Asp?Ser?Ser?Pro?Lys?Ser?Thr?Val?Asn?Ser?Thr?Leu?Gln
100 105 110
Ala?Pro?Arg?Arg?Lys?Phe?Val?Asp?Glu?Gly?Lys?Leu?Arg?Lys?Ile?Ser
115 120 125
Gly?Arg?Leu?Phe?Ser?Asp?Ser?Gly?Pro?Arg?Arg?Ser?Ser?Arg?Leu?Ser
130 135 140
Ala?Asp?Ser?Gly?Ala?Asn?Ile?Asn?Ser?Ser?Val?Ala?Thr?Val?Ser?Gly
145 150 155 160
Asn?Val?Asn?Asn?Ala?Ser?Lys?Tyr?Leu?Gly?Gly?Ser?Lys?Leu?Ser?Ser
165 170 175
Leu?Ala?Leu?Arg?Ser?Val?Thr?Leu?Arg?Lys?Gly?His?Ser?Trp?Ala?Asn
180 185 190
Glu?Asn?Met?Asp?Glu?Gly?Val?Arg?Gly?Glu?Pro?Phe?Asp?Asp?Ser?Arg
195 200 205
Pro?Asn?Thr?Ala?Ser?Thr?Thr?Gly?Ser?Met?Ala?Ser?Asn?Asp?Gln?Glu
210 215 220
Asp?Glu?Thr?Met?Ser?Ile?Gly?Gly?Ile?Ala?Met?Ser?Ser?Gln?Thr?Ile
225 230 235 240
Thr?Ile?Gly?Val?Ser?Glu?Ile?Leu?Asn?Leu?Leu?Arg?Thr?Leu?Gly?Glu
245 250 255
Gly?Cys?Arg?Leu?Ser?Tyr?Met?Tyr?Arg?Cys?Gln?Glu?Ala?Leu?Asp?Thr
260 265 270
Tyr?Met?Lys?Leu?Pro?His?Lys?His?Tyr?Asn?Thr?Gly?Trp?Val?Leu?Ser
275 280 285
Gln?Val?Gly?Lys?Ala?Tyr?Phe?Glu?Leu?Ile?Asp?Tyr?Leu?Glu?Ala?Glu
290 295 300
Lys?Ala?Phe?Arg?Leu?Ala?Arg?Leu?Ala?Ser?Pro?Tyr?Cys?Leu?Glu?Gly
305 310 315 320
Met?Asp?Ile?Tyr?Ser?Thr?Val?Leu?Tyr?His?Leu?Lys?Glu?Asp?Met?Lys
325 330 335
Leu?Ser?Tyr?Leu?Ala?Gln?Glu?Leu?Ile?Ser?Thr?Asp?Arg?Leu?Ala?Pro
340 345 350
Gln?Ser?Trp?Cys?Ala?Met?Gly?Asn?Cys?Tyr?Ser?Leu?Gln?Lys?Asp?His
355 360 365
Glu?Thr?Ala?Leu?Lys?Asn?Phe?Leu?Arg?Ala?Val?Gln?Leu?Asn?Pro?Arg
370 375 380
Phe?Ala?Tyr?Ala?His?Thr?Leu?Cys?Gly?His?Glu?Tyr?Thr?Thr?Leu?Glu
385 390 395 400
Asp?Phe?Glu?Asn?Gly?Met?Lys?Ser?Tyr?Gln?Asn?Ala?Leu?Arg?Val?Asp
405 410 415
Thr?Arg?His?Tyr?Asn?Ala?Trp?Tyr?Gly?Leu?Gly?Met?Ile?Tyr?Leu?Arg
420 425 430
Gln?Glu?Lys?Leu?Glu?Phe?Ser?Glu?His?His?Phe?Arg?Met?Ala?Phe?Leu
435 440 445
Ile?Asn?Pro?Ser?Ser?Ser?Val?Ile?Met?Ser?Tyr?Leu?Gly?Thr?Ser?Leu
450 455 460
His?Ala?Leu?Lys?Arg?Ser?Glu?Glu?Ala?Leu?Glu?Ile?Met?Glu?Gln?Ala
465 470 475 480
Ile?Val?Ala?Asp?Arg?Lys?Asn?Pro?Leu?Pro?Met?Tyr?Gln?Lys?Ala?Asn
485 490 495
Ile?Leu?Val?Cys?Leu?Glu?Arg?Leu?Asp?Glu?Ala?Leu?Glu?Val?Leu?Glu
500 505 510
Glu?Leu?Lys?Glu?Tyr?Ala?Pro?Ser?Glu?Ser?Ser?Val?Tyr?Ala?Leu?Met
515 520 525
Gly?Arg?Ile?Tyr?Lys?Arg?Arg?Asn?Met?His?Asp?Lys?Ala?Met?Leu?His
530 535 540
Phe?Gly?Leu?Ala?Leu?Asp?Met?Lys?Pro?Pro?Ala?Thr?Asp?Val?Ala?Ala
545 550 555 560
Ile?Lys?Ala?Ala?Met?Glu?Lys?Leu?His?Val?Pro?Asp?Glu?Ile?Asp?Glu
565 570 575
Ser?Pro
<210>131
<211>2235
<212>DNA
<213> Arabidopis thaliana
<400>131
atggaagcta?tgcttgtgga?ctgtgtaaac?aacagtcttc?gtcattttgt?ctacaaaaat 60
gctattttca?tgtgcgagcg?tctctgcgct?gagtttcctt?ctgaggttaa?tttgcagcta 120
ttagccacca?gctacctgca?gaataatcaa?gcttacagtg?catatcatct?gctaaaggga 180
acacaaatgg?ctcagtcccg?atacttgttc?gcattatcat?gcttccagat?ggaccttctc 240
aatgaagctg?aatctgcact?ctgccctgtt?aatgaacctg?gtgcggagat?cccaaatggt 300
gcagcaggcc?attaccttct?tggacttatt?tacaagtata?ctgatagaag?gaagaatgct 360
gctcaacaat?ttaaacagtc?cttgacaata?gaccctctac?tttgggctgc?atatgaggaa 420
ttatgtatat?taggtgctgc?tgaggaagca?actgcagttt?ttggtgaaac?agctgctctc 480
tccattcaaa?agcagtatat?gcaacaactg?tcaacttccc?tcggcttaaa?cacttacaac 540
gaggaacgta?attcaacttc?tactaaaaac?acgagttctg?aagattatag?tccaaggcag 600
tctaaacaca?cacaaagcca?tggccttaaa?gatatctccg?gaaatttcca?ttctcatgga 660
gttaatggag?gtgtttcgaa?catgtcattc?tataatacgc?cttcgccagt?ggctgcacag 720
ctatccggta?tagctccacc?accacttttc?cggaattttc?agccagctgt?tgcaaaccca 780
aactccctta?ttactgacag?ttctccaaag?tccactgtta?actctactct?tcaagcacct 840
agaagaaagt?ttgtagatga?aggaaagtta?cgtaagattt?ctggcagact?attttctgat 900
tctggtccac?gacggagttc?aagactgtct?gctgattcag?gggcaaacat?taattcaagt 960
gttgcaacag?taagcggaaa?tgtgaacaac?gcttccaagt?atttgggagg?ttctaaattg 1020
agttctttgg?cacttcgttc?tgtaacactt?cggaagggac?actcctgggc?aaatgaaaac 1080
atggatgaag?gggtccgtgg?ggaacctttt?gatgattcaa?ggcctaatac?tgcctcaacg 1140
actggttcta?tggcttccaa?tgatcaagaa?gacgaaacaa?tgtcgattgg?tggcatagca 1200
atgagttctc?aaacaatcac?aattggtgtt?tcggaaattt?taaacctcct?taggacactc 1260
ggagaagggt?gtagactttc?atacatgtac?aggtgtcagg?aggcactgga?tacgtatatg 1320
aaacttccac?ataagcatta?taatacagga?tgggttcttt?cccaggtcgg?gaaagcatac 1380
tttgaactaa?ttgactattt?agaggctgaa?aaggcattcc?gtcttgcccg?tctggcttct 1440
ccttattgct?tagaaggaat?ggatatatac?tctacggtcc?tctatcattt?gaaggaagac 1500
atgaagctga?gttacttggc?tcaggaacta?atatcaaccg?atcgcttagc?tcctcaatct 1560
tggtgtgcta?tgggaaattg?ctatagcttg?caaaaggacc?atgagaccgc?actgaagaat 1620
ttcctacgag?ctgttcaact?gaatccaaga?tttgcatatg?cacatacctt?atgtggccac 1680
gaatacacaa?ctcttgagga?ttttgagaac?ggaatgaaaa?gttaccaaaa?cgcacttcgt 1740
gtagatacaa?gacactacaa?cgcatggtac?gggcttggaa?tgatatatct?acgccaagag 1800
aagttagagt?tctcagagca?tcacttcaga?atggctttcc?taataaaccc?gagttcctct 1860
gttataatgt?cttatttagg?gacatctttg?catgccttga?agagaagtga?ggaagcacta 1920
gagataatgg?agcaagccat?agtagcagat?agaaaaaacc?ctcttccaat?gtaccagaaa 1980
gctaacatac?ttgtctgctt?agaaagatta?gatgaagctc?tagaagttct?tgaggagctc 2040
aaagagtatg?cgccttcaga?gagcagcgtt?tacgctttaa?tgggcaggat?ctataagcgg 2100
cgaaacatgc?acgataaagc?catgcttcat?ttcggtctag?ctttagatat?gaaaccgcct 2160
gcaactgacg?ttgctgcaat?aaaggctgca?atggagaaat?tgcatgttcc?agatgagatc 2220
gatgagagcc?cgtga 2235
<210>132
<211>744
<212>PRT
<213> Arabidopis thaliana
<400>132
Met?Glu?Ala?Met?Leu?Val?Asp?Cys?Val?Asn?Asn?Ser?Leu?Arg?His?Phe
1 5 10 15
Val?Tyr?Lys?Asn?Ala?Ile?Phe?Met?Cys?Glu?Arg?Leu?Cys?Ala?Glu?Phe
20 25 30
Pro?Ser?Glu?Val?Asn?Leu?Gln?Leu?Leu?Ala?Thr?Ser?Tyr?Leu?Gln?Asn
35 40 45
Asn?Gln?Ala?Tyr?Ser?Ala?Tyr?His?Leu?Leu?Lys?Gly?Thr?Gln?Met?Ala
50 55 60
Gln?Ser?Arg?Tyr?Leu?Phe?Ala?Leu?Ser?Cys?Phe?Gln?Met?Asp?Leu?Leu
65 70 75 80
Asn?Glu?Ala?Glu?Ser?Ala?Leu?Cys?Pro?Val?Asn?Glu?Pro?Gly?Ala?Glu
85 90 95
Ile?Pro?Asn?Gly?Ala?Ala?Gly?His?Tyr?Leu?Leu?Gly?Leu?Ile?Tyr?Lys
100 105 110
Tyr?Thr?Asp?Arg?Arg?Lys?Asn?Ala?Ala?Gln?Gln?Phe?Lys?Gln?Ser?Leu
115 120 125
Thr?Ile?Asp?Pro?Leu?Leu?Trp?Ala?Ala?Tyr?Glu?Glu?Leu?Cys?Ile?Leu
130 135 140
Gly?Ala?Ala?Glu?Glu?Ala?Thr?Ala?Val?Phe?Gly?Glu?Thr?Ala?Ala?Leu
145 150 155 160
Ser?Ile?Gln?Lys?Gln?Tyr?Met?Gln?Gln?Leu?Ser?Thr?Ser?Leu?Gly?Leu
165 170 175
Asn?Thr?Tyr?Asn?Glu?Glu?Arg?Asn?Ser?Thr?Ser?Thr?Lys?Asn?Thr?Ser
180 185 190
Ser?Glu?Asp?Tyr?Ser?Pro?Arg?Gln?Ser?Lys?His?Thr?Gln?Ser?His?Gly
195 200 205
Leu?Lys?Asp?Ile?Ser?Gly?Asn?Phe?His?Ser?His?Gly?Val?Asn?Gly?Gly
210 215 220
Val?Ser?Asn?Met?Ser?Phe?Tyr?Asn?Thr?Pro?Ser?Pro?Val?Ala?Ala?Gln
225 230 235 240
Leu?Ser?Gly?Ile?Ala?Pro?Pro?Pro?Leu?Phe?Arg?Asn?Phe?Gln?Pro?Ala
245 250 255
Val?Ala?Asn?Pro?Asn?Ser?Leu?Ile?Thr?Asp?Ser?Ser?Pro?Lys?Ser?Thr
260 265 270
Val?Asn?Ser?Thr?Leu?Gln?Ala?Pro?Arg?Arg?Lys?Phe?Val?Asp?Glu?Gly
275 280 285
Lys?Leu?Arg?Lys?Ile?Ser?Gly?Arg?Leu?Phe?Ser?Asp?Ser?Gly?Pro?Arg
290 295 300
Arg?Ser?Ser?Arg?Leu?Ser?Ala?Asp?Ser?Gly?Ala?Asn?Ile?Asn?Ser?Ser
305 310 315 320
Val?Ala?Thr?Val?Ser?Gly?Asn?Val?Asn?Asn?Ala?Ser?Lys?Tyr?Leu?Gly
325 330 335
Gly?Ser?Lys?Lau?Ser?Ser?Leu?Ala?Leu?Arg?Ser?Val?Thr?Leu?Arg?Lys
340 345 350
Gly?His?Ser?Trp?Ala?Asn?Glu?Asn?Met?Asp?Glu?Gly?Val?Arg?Gly?Glu
355 360 365
Pro?Phe?Asp?Asp?Ser?Arg?Pro?Asn?Thr?Ala?Ser?Thr?Thr?Gly?Ser?Met
370 375 380
Ala?Ser?Asn?Asp?Gln?Glu?Asp?Glu?Thr?Met?Ser?Ile?Gly?Gly?Ile?Ala
385 390 395 400
Met?Ser?Ser?Gln?Thr?Ile?Thr?Ile?Gly?Val?Ser?Glu?Ile?Leu?Asn?Leu
405 410 415
Leu?Arg?Thr?Leu?Gly?Glu?Gly?Cys?Arg?Leu?Ser?Tyr?Met?Tyr?Arg?Cys
420 425 430
Gln?Glu?Ala?Leu?Asp?Thr?Tyr?Met?Lys?Leu?Pro?His?Lys?His?Tyr?Asn
435 440 445
Thr?Gly?Trp?Val?Leu?Ser?Gln?Val?Gly?Lys?Ala?Tyr?Phe?Glu?Leu?Ile
450 455 460
Asp?Tyr?Leu?Glu?Ala?Glu?Lys?Ala?Phe?Arg?Leu?Ala?Arg?Leu?Ala?Ser
465 470 475 480
Pro?Tyr?Cys?Leu?Glu?Gly?Met?Asp?Ile?Tyr?Ser?Thr?Val?Leu?Tyr?His
485 490 495
Leu?Lys?Glu?Asp?Met?Lys?Leu?Ser?Tyr?Leu?Ala?Gln?Glu?Leu?Ile?Ser
500 505 510
Thr?Asp?Arg?Leu?Ala?Pro?Gln?Ser?Trp?Cys?Ala?Met?Gly?Asn?Cys?Tyr
515 520 525
Ser?Leu?Gln?Lys?Asp?His?Glu?Thr?Ala?Leu?Lys?Asn?Phe?Leu?Arg?Ala
530 535 540
Val?Gln?Leu?Asn?Pro?Arg?Phe?Ala?Tyr?Ala?His?Thr?Leu?Cys?Gly?His
545 550 555 560
Glu?Tyr?Thr?Thr?Leu?Glu?Asp?Phe?Glu?Asn?Gly?Met?Lys?Ser?Tyr?Gln
565 570 575
Asn?Ala?Leu?Arg?Val?Asp?Thr?Arg?His?Tyr?Asn?Ala?Trp?Tyr?Gly?Leu
580 585 590
Gly?Met?Ile?Tyr?Leu?Arg?Gln?Glu?Lys?Leu?Glu?Phe?Ser?Glu?His?His
595 600 605
Phe?Arg?Met?Ala?Phe?Leu?Ile?Asn?Pro?Ser?Ser?Ser?Val?Ile?Met?Ser
610 615 620
Tyr?Leu?Gly?Thr?Ser?Leu?His?Ala?Leu?Lys?Arg?Ser?Glu?Glu?Ala?Leu
625 630 635 640
Glu?Ile?Met?Glu?Gln?Ala?Ile?Val?Ala?Asp?Arg?Lys?Asn?Pro?Leu?Pro
645 650 655
Met?Tyr?Gln?Lys?Ala?Asn?Ile?Leu?Val?Cys?Leu?Glu?Arg?Leu?Asp?Glu
660 665 670
Ala?Leu?Glu?Val?Leu?Glu?Glu?Leu?Lys?Glu?Tyr?Ala?Pro?Ser?Glu?Ser
675 680 685
Ser?Val?Tyr?Ala?Leu?Met?Gly?Arg?Ile?Tyr?Lys?Arg?Arg?Asn?Met?His
690 695 700
Asp?Lys?Ala?Met?Leu?His?Phe?Gly?Leu?Ala?Leu?Asp?Met?Lys?Pro?Pro
705 710 715 720
Ala?Thr?Asp?Val?Ala?Ala?Ile?Lys?Ala?Ala?Met?Glu?Lys?Leu?His?Val
725 730 735
Pro?Asp?Glu?Ile?Asp?Glu?Ser?Pro
740
<210>133
<211>2181
<212>DNA
<213> Arabidopis thaliana
<400>133
atgatggaga?atctactggc?gaattgtgtc?cagaaaaacc?ttaaccattt?tatgttcacc 60
aatgctatct?tcctttgcga?acttcttctc?gcccaatttc?catctgaggt?gaacctgcaa 120
ttgttagcca?ggtgttactt?gagtaacagt?caagcttata?gtgcatatta?tatccttaaa 180
ggttcaaaaa?cgcctcagtc?tcggtattta?tttgcattct?catgctttaa?gttggatctt 240
cttggagagg?ctgaagctgc?attgttgccc?tgtgaagatt?atgctgaaga?agttcctggt 300
ggtgcagctg?ggcattatct?tcttggtctt?atatatagat?attctgggag?gaagaactgt 360
tcaatacaac?agtttaggat?ggcattgtca?tttgatccat?tgtgttggga?agcatatgga 420
gaactttgta?gtttaggtgc?cgctgaagaa?gcctcaacag?ttttcgggaa?tgttgcttcc 480
cagcgtctta?aaacttgtgt?agaacaaaga?ataagcttct?cagaaggagc?aaccatagac 540
cagattacag?attctgataa?ggccttaaaa?gatacaggtt?tatcgcaaac?agaacacatt 600
ccaggagaga?accaacaaga?tctgaaaatt?atgcagcagc?ctggagatat?tccaccaaat 660
actgacaggc?aacttagtac?aaacggatgg?gacttgaaca?caccttctcc?agtgctttta 720
caggtaatgg?atgctccacc?gcctctgctt?cttaagaata?tgcgtcgtcc?agcagtggaa 780
ggatctttga?tgtctgtaca?tggagtgcgt?gtgcgtcgaa?gaaacttttt?tagtgaagaa 840
ttgtcagcag?aggctcaaga?agaatctggg?cgccgccgta?gtgctagaat?agcagcaagg 900
aaaaagaatc?ctatgtcgca?gtcatttgga?aaagattccc?attggttaca?tctttcacct 960
tccgagtcaa?actatgcacc?ttctctttcc?tcgatgattg?gaaaatgcag?aatccaaagc 1020
agcaaagaag?cgattcctga?taccgttact?ctaaatgatc?cagcaacgac?gtcaggccag 1080
tctgtaagtg?acactggaag?ctctgttgat?gatgaggaaa?agtcaaatcc?tagtgaatct 1140
tccccggatc?gtttcagcct?tatttctgga?atttcagaag?tgctaggcat?tctgaaaatt 1200
cttggagatg?gccacaggca?tttacatatg?tacaagtgtc?aggaagcttt?gttggcatat 1260
caaaagctat?ctcagaaaca?atacaataca?cactgggttc?tcatgcaggt?tggaaaagca 1320
tattttgagc?tacaagacta?cttcaacgct?gactcttcct?ttactcttgc?tcatcaaaag 1380
tatccttatg?ctttggaagg?aatggataca?tactccactg?ttctttatca?cctgaaagaa 1440
gagatgaggt?tgggctatct?ggctcaggaa?ctgatttcag?ttgatcgcct?gtctccagaa 1500
tcctggtgtg?cagttgggaa?ctgttacagt?ttgcgtaagg?atcatgatac?tgctctcaaa 1560
atgtttcaga?gagctatcca?actgaatgaa?agattcacat?atgcacatac?cctttgtggc 1620
cacgagtttg?ccgcattgga?agaattcgag?gatgcagaga?gatgctaccg?gaaggctctg 1680
ggcatagata?cgagacacta?taatgcatgg?tacggtcttg?gaatgaccta?tcttcgtcag 1740
gagaaattcg?agtttgcgca?gcatcaattt?caactggctc?tccaaataaa?tccaagatct 1800
tcagtcatca?tgtgttacta?tggaattgct?ttgcatgagt?caaagagaaa?cgatgaggcg 1860
ttgatgatga?tggagaaggc?tgtactcact?gatgcaaaga?atccgctccc?caagtactac 1920
aaggctcaca?tattaaccag?cctaggtgat?tatcacaaag?cacagaaagt?tttagaagag 1980
ctcaaagaat?gtgctcctca?agaaagcagt?gtccatgcat?cgcttggcaa?aatatacaat 2040
cagctaaagc?aatacgacaa?agccgtgtta?catttcggca?ttgctttgga?tttaagccct 2100
tctccatctg?atgctgtcaa?gataaaggct?tacatggaga?ggttgatact?accagacgag 2160
ctggtgacgg?aggaaaattt?g 2181
<210>134
<211>728
<212>PRT
<213> Arabidopis thaliana
<400>134
Met?Met?Glu?Asn?Leu?Leu?Ala?Asn?Cys?Val?Gln?Lys?Asn?Leu?Asn?His
1 5 10 15
Phe?Met?Phe?Thr?Asn?Ala?Ile?Phe?Lau?Cys?Glu?Leu?Leu?Leu?Ala?Gln
20 25 30
Phe?Pro?Ser?G1u?Val?Asn?Leu?Gln?Leu?Leu?Ala?Arg?Cys?Tyr?Leu?Ser
35 40 45
Asn?Ser?Gln?Ala?Tyr?Ser?Ala?Tyr?Tyr?Ile?Lau?Lys?Gly?Ser?Lys?Thr
50 55 60
Pro?Gln?Ser?Arg?Tyr?Leu?Phe?Ala?Phe?Ser?Cys?Phe?Lys?Leu?Asp?Leu
65 70 75 80
Leu?Gly?Glu?Ala?Glu?Ala?Ala?Leu?Leu?Pro?Cys?Glu?Asp?Tyr?Ala?Glu
85 90 95
Glu?Val?Pro?Gly?Gly?Ala?Ala?Gly?His?Tyr?Leu?Leu?Gly?Leu?Ile?Tyr
100 105 110
Arg?Tyr?Ser?Gly?Arg?Lys?Asn?Cys?Ser?Ile?Gln?Gln?Phe?Arg?Met?Ala
115 120 125
Leu?Ser?Phe?Asp?Pro?Leu?Cys?Trp?Glu?Ala?Tyr?Gly?Glu?Leu?Cys?Ser
130 135 140
Leu?Gly?Ala?Ala?Glu?Glu?Ala?Ser?Thr?Val?Phe?Gly?Asn?Val?Ala?Ser
145 150 155 160
Gln?Arg?Leu?Gln?Lys?Thr?Cys?Val?Glu?Gln?Arg?Ile?Ser?Phe?Ser?Glu
165 170 175
Gly?Ala?Thr?Ile?Asp?Gln?Ile?Thr?Asp?Ser?Asp?Lys?Ala?Leu?Lys?Asp
180 185 190
Thr?Gly?Leu?Ser?Gln?Thr?Glu?His?Ile?Pro?Gly?Glu?Asn?Gln?Gln?Asp
195 200 205
Leu?Lys?Ile?Met?Gln?Gln?Pro?Gly?Asp?Ile?Pro?Pro?Asn?Thr?Asp?Arg
210 215 220
Gln?Leu?Ser?Thr?Asn?Gly?Trp?Asp?Leu?Asn?Thr?Pro?Ser?Pro?Val?Leu
225 230 235 240
Leu?Gln?Val?Met?Asp?Ala?Leu?Pro?Pro?Leu?Leu?Leu?Lys?Asn?Met?Arg
245 250 255
Arg?Pro?Ala?Val?Glu?Gly?Ser?Leu?Met?Ser?Val?His?Gly?Val?Arg?Val
260 265 270
Arg?Arg?Arg?Asn?Phe?Phe?Ser?Glu?Glu?Leu?Ser?Ala?Glu?Ala?Gln?Glu
275 280 285
Glu?Ser?Gly?Arg?Arg?Arg?Ser?Ala?Arg?Ile?Ala?Ala?Arg?Lys?Lys?Asn
290 295 300
Pro?Met?Ser?Gln?Ser?Phe?Gly?Lys?Asp?Ser?His?Trp?Leu?His?Leu?Ser
305 310 315 320
Pro?Ser?Glu?Ser?Asn?Tyr?Ala?Pro?Ser?Leu?Ser?Ser?Met?Ile?Gly?Lys
325 330 335
Cys?Arg?Ile?Gln?Ser?Ser?Lys?Glu?Val?Ile?Pro?Asp?Thr?Val?Thr?Leu
340 345 350
Asn?Asp?Pro?Ala?Thr?Thr?Ser?Gly?Gln?Ser?Val?Ser?Asp?Ile?Gly?Ser
355 360 365
Ser?Val?Asp?Asp?Glu?Glu?Lys?Ser?Asn?Pro?Ser?Glu?Ser?Ser?Pro?Asp
370 375 380
Arg?Phe?Ser?Leu?Ile?Ser?Gly?Ile?Ser?Glu?Val?Leu?Ser?Leu?Leu?Lys
385 390 395 400
Ile?Leu?Gly?Asp?Gly?His?Arg?His?Leu?His?Met?Tyr?Lys?Cys?Gln?Glu
405 410 415
Ala?Leu?Leu?Ala?Tyr?Gln?Lys?Leu?Ser?Gln?Lys?Gln?Tyr?Asn?Thr?His
420 425 430
Trp?Val?Leu?Met?Gln?Val?Gly?Lys?Ala?Tyr?Phe?Glu?Leu?Gln?Asp?Tyr
435 440 445
Phe?Asn?Ala?Asp?Ser?Ser?Phe?Thr?Leu?Ala?His?Gln?Lys?Tyr?Pro?Tyr
450 455 460
Ala?Leu?Glu?Gly?Met?Asp?Thr?Tyr?Ser?Thr?Val?Leu?Tyr?His?Leu?Lys
465 470 475 480
Glu?Glu?Met?Arg?Leu?Gly?Tyr?Leu?Ala?Gln?Glu?Leu?Ile?Ser?Val?Asp
485 490 495
Arg?Leu?Ser?Pro?Glu?Ser?Trp?Cys?Ala?Val?Gly?Asn?Cys?Tyr?Ser?Leu
500 505 510
Arg?Lys?Asp?His?Asp?Thr?Ala?Leu?Lys?Met?Phe?Gln?Arg?Ala?Ile?Gln
515 520 525
Leu?Asn?Glu?Arg?Phe?Thr?Tyr?Ala?His?Thr?Leu?Cys?Gly?His?Glu?Phe
530 535 540
Ala?Ala?Leu?Glu?Glu?Phe?Glu?Asp?Ala?Glu?Arg?Cys?Tyr?Arg?Lys?Ala
545 550 555 560
Leu?Gly?Ile?Asp?Thr?Arg?His?Tyr?Asn?Ala?Trp?Tyr?Gly?Leu?Gly?Met
565 570 575
Thr?Tyr?Leu?Arg?Gln?Glu?Lys?Phe?Glu?Phe?Ala?Gln?His?Gln?Phe?Gln
580 585 590
Leu?Ala?Leu?Gln?Ile?Asn?Pro?Arg?Ser?Ser?Val?Ile?Met?Cys?Tyr?Tyr
595 600 605
Gly?Ile?Ala?Leu?His?Glu?Ser?Lys?Arg?Asn?Asp?Glu?Ala?Leu?Met?Met
610 615 620
Met?Glu?Lys?Ala?Val?Leu?Thr?Asp?Ala?Lys?Asn?Pro?Leu?Pro?Lys?Tyr
625 630 635 640
Tyr?Lys?Ala?His?Ile?Leu?Thr?Ser?Leu?Gly?Asp?Tyr?His?Lys?Ala?Gln
645 650 655
Lys?Val?Leu?Glu?Glu?Leu?Lys?Glu?Cys?Ala?Pro?Gln?Glu?Ser?Ser?Val
660 665 670
His?Ala?Ser?Leu?Gly?Lys?Ile?Tyr?Asn?Gln?Leu?Lys?Gln?Tyr?Asp?Lys
675 680 685
Ala?Val?Leu?His?Phe?Gly?Ile?Ala?Leu?Asp?Leu?Ser?Pro?Ser?Pro?Ser
690 695 700
Asp?Ala?Val?Lys?Ile?Lys?Ala?Tyr?Met?Glu?Arg?Leu?Ile?Leu?Pro?Asp
705 710 715 720
Glu?Leu?Val?Thr?Glu?Glu?Asn?Leu
725
<210>135
<211>1835
<212>DNA
<213> rice
<220>
<221>misc_feature
<222>(729)..(732)
<223>n is a, c, g, or t
<400>135
atggaaaccc?taatggtgga?ccgcgtccac?ggcagcctcc?gcctcttcat?gcaccgcaac 60
gccgtcttcc?tctgcgagcg?cctctgcgcc?cagttccccg?ccgagacaaa?tgtccagttg 120
tagcaacttg?ctaccttcac?aacaaccagc?catatgctgc?ataccacatc?ttgaaaggaa 180
agaagctgcc?agagtcccgg?tacttgtttg?ctatgtcatg?cttccgaatg?aacctcttac 240
gggaagctga?agaagccttg?tgtcctgtca?atgaaccaaa?tattgaggtt?ccaagtggtg 300
caacagggca?ctaccttctt?ggagtaattt?acaggtacac?tggcagagtg?gaagctgcag 360
ctgagcaatt?tgtacaagct?ctgactcttg?atcctcttct?atgggcagca?tacgaggaat 420
tgtgcatact?aggtgttgct?gaagatgcaa?atgaatgttt?cagtgaagca?acagctctac 480
gtcttcagca?ggaactcaca?tccacatcaa?atgtggaaaa?gtcaaacttt?gttaatgaaa 540
atcggtttct?atcttccaat?gtgtcagcaa?gttttggtga?tagtcctaag?caaattaaac 600
agctgcatgc?taacaccact?gcagaagtat?ctggttatcc?tcatgtaaag?tcaactgcat 660
tgcatatgca?gaacggtgca?ccatctaatt?tatcacagtt?tgacactcca?tcgccaactt 720
caacgcagnn?nnataatgta?acttcaactt?cgtcttctac?aagtatagtt?gatggaagat 780
atcccgagca?agagaaatct?gaacgagttc?tgtcacagga?ctccaaatta?gctattggta 840
tcagggagct?aatggcactc?ttgcggacac?taggggaagg?gtataggctt?tcttgcttgt 900
ttaagtgtca?ggaagcattg?gaagtatata?gaaagctccc?agaggcacaa?tttaatactg 960
gatgggttct?ttgccaggtt?gggaagacat?attttgaact?cgtcaattat?ttagaagccg 1020
atcatttttt?tgagttagcg?catcgactat?caccatgcac?gttggaggga?atggacattt 1080
actccactgt?tctttatcat?ttgaatgagg?aaatgcggct?aagttacctt?gctcaagatc 1140
ttgtttctat?tgatcgacta?tctccccaag?catggtgtgc?tgtgggaaat?tgctttgcct 1200
tgaggaaaga?tcatgagact?gccttgaaga?attttcaacg?tgctgtacag?cttgactcaa 1260
gagttgcata?cgctcacacg?ctatgcggtc?acgatataaa?actataccga?tctgcacttc 1320
aggtagatga?aagacactac?aatgcctggt?atggccttgg?agtggtgtac?cttcgccagg 1380
aaaagtttga?gtttgctgag?catcatttca?gaagggcatt?ccagataaat?ccttgctctt 1440
ctgttcttat?gtgctatctt?gggatggcct?tgcatgcttt?aaagaggaat?gaggaagcct 1500
tggaaatgat?ggagaaggct?atatttgctg?ataagaagaa?tccactcccc?aagtatcaaa 1560
aggctttaat?ccttctaggc?ctacaaaaat?accctgatgc?tctggatgag?ttggaacggc 1620
taaaggaaat?tgcacctcat?gaaagtagta?tgtatgcact?gatgggaaag?atttacaagc 1680
aacttaacat?tcttgacaag?gctgtatttt?gctttggcat?tgccctggat?ttgaaacctc 1740
ctgctgctga?cgttgctata?atacaatctg?caatggagaa?agtacacctt?ccagatgaac 1800
ttatggatga?tgatgatgat?gatgatgaga?tttaa 1835
<210>136
<211>757
<212>PRT
<213> rice
<400>136
Met?Glu?Thr?Leu?Met?Val?Asp?Arg?Val?His?Gly?Ser?Leu?Arg?Leu?Phe
1 5 10 15
Met?His?Arg?Asn?Ala?Val?Phe?Leu?Cys?Glu?Arg?Leu?Cys?Ala?Gln?Phe
20 25 30
Pro?Ala?Glu?Val?Asn?Val?Gln?Leu?Leu?Ala?Thr?Cys?Tyr?Leu?His?Asn
35 40 45
Asn?Gln?Pro?Tyr?Ala?Ala?Tyr?His?Ile?Leu?Lys?Gly?Lys?Lys?Leu?Pro
50 55 60
Glu?Ser?Arg?Tyr?Leu?Phe?Ala?Met?Ser?Cys?Phe?Arg?Met?Asn?Leu?Leu
65 70 75 80
Arg?Glu?Ala?Glu?Glu?Ala?Leu?Cys?Pro?Val?Asn?Glu?Pro?Asn?Ile?Glu
85 90 95
Val?Pro?Ser?Gly?Ala?Thr?Gly?His?Tyr?Leu?Leu?Gly?Val?Ile?Tyr?Arg
100 105 110
Tyr?Thr?Gly?Arg?Val?Glu?Ala?Ala?Ala?Glu?Gln?Phe?Val?Gln?Ala?Leu
115 120 125
Thr?Leu?Asp?Pro?Leu?Leu?Trp?Ala?Ala?Tyr?Glu?Glu?Leu?Cys?Ile?Leu
130 135 140
Gly?Val?Ala?Glu?Asp?Ala?Asn?Glu?Cys?Phe?Ser?Glu?Ala?Thr?Ala?Leu
145 150 155 160
Arg?Leu?Gln?Gln?Glu?Leu?Thr?Ser?Thr?Ser?Asn?Val?Glu?Lys?Ser?Asn
165 170 175
Phe?Val?Asn?Glu?Asn?Arg?Phe?Leu?Ser?Ser?Asn?Val?Ser?Ala?Ser?Phe
180 185 190
Gly?Asp?Ser?Pro?Lys?Gln?Ile?Lys?Gln?Leu?His?Ala?Asn?Thr?Thr?Ala
195 200 205
Glu?Val?Ser?Gly?Tyr?Pro?His?Val?Lys?Ser?Thr?Ala?Leu?His?Met?Gln
210 215 220
Asn?Gly?Ala?Pro?Ser?Asn?Leu?Ser?Gln?Phe?Asp?Thr?Pro?Ser?Pro?Thr
225 230 235 240
Ser?Thr?Gln?Val?Ser?Gly?Ile?Ala?Pro?Pro?Pro?Leu?Phe?Arg?Asn?Met
245 250 255
His?Ala?Tyr?Gln?Asn?Thr?Ala?Gly?Gly?Asn?Ala?Pro?Ser?Lys?Pro?Lys
260 265 270
Val?Asn?Ala?Pro?Asn?Leu?Thr?Leu?Arg?Arg?Lys?Tyr?Ile?Asp?Glu?Ala
275 280 285
Gly?Leu?Lys?Lys?Val?Ser?Gly?Arg?Leu?Phe?Asn?Gln?Ser?Ser?Asp?Ser
290 295 300
Val?Pro?Arg?Arg?Ser?Ala?Arg?Leu?Ser?Arg?Asp?Thr?Thr?Ile?Asn?Ser
305 310 315 320
Asn?Ser?Asn?Ile?Ser?Gln?Phe?Gly?Gly?Asn?Gly?Thr?Asp?His?Ser?Ser
325 330 335
Gly?Lys?Leu?Arg?Val?Asn?Ser?Ser?Thr?Pro?Ser?Lys?Leu?Cys?Ser?Thr
340 345 350
Ala?Leu?Arg?Ser?Val?Gln?Val?Arg?Lys?Gly?Lys?Pro?Gln?Ala?Thr?Glu
355 360 365
Asn?Phe?Asp?Glu?Gly?Asp?Tyr?His?Phe?Asp?Met?Asp?Asp?Ser?Val?Thr
370 375 380
Ser?Thr?Ser?Ser?Ser?Thr?Ser?Ile?Val?Asp?Gly?Arg?Tyr?Pro?Glu?Gln
385 390 395 400
Glu?Lys?Ser?Glu?Arg?Val?Leu?Ser?Gln?Asp?Ser?Lys?Leu?Ala?Ile?Gly
405 410 415
Ile?Arg?Glu?Leu?Met?Ala?Leu?Leu?Arg?Thr?Leu?Gly?Glu?Gly?Tyr?Arg
420 425 430
Leu?Ser?Cys?Leu?Phe?Lys?Cys?Gln?Glu?Ala?Leu?Glu?Val?Tyr?Arg?Lys
435 440 445
Leu?Pro?Glu?Ala?Gln?Phe?Asn?Thr?Gly?Trp?Val?Leu?Cys?Gln?Val?Gly
450 455 460
Lys?Thr?Tyr?Phe?Glu?Leu?Val?Asn?Tyr?Leu?Glu?Ala?Asp?His?Phe?Phe
465 470 475 480
Glu?Leu?Ala?His?Arg?Leu?Ser?Pro?Cys?Thr?Leu?Glu?Gly?Met?Asp?Ile
485 490 495
Tyr?Ser?Thr?Val?Leu?Tyr?His?Leu?Asn?Glu?Glu?Met?Arg?Leu?Ser?Tyr
500 505 510
Leu?Ala?Gln?Asp?Leu?Val?Ser?Ile?Asp?Arg?Leu?Ser?Pro?Gln?Ala?Trp
515 520 525
Cys?Ala?Val?Gly?Asn?Cys?Phe?Ala?Leu?Arg?Lys?Asp?His?Glu?Thr?Ala
530 535 540
Leu?Lys?Asn?Phe?Gln?Arg?Ala?Val?Gln?Leu?Asp?Ser?Arg?Val?Ala?Tyr
545 550 555 560
Ala?His?Thr?Leu?Cys?Gly?His?Glu?Tyr?Ser?Ala?Leu?Glu?Asp?Tyr?Glu
565 570 575
Asn?Ser?Ile?Lys?Leu?Tyr?Arg?Ser?Ala?Leu?Gln?Val?Asp?Glu?Arg?His
580 585 590
Tyr?Asn?Ala?Trp?Tyr?Gly?Leu?Gly?Val?Val?Tyr?Leu?Arg?Gln?Glu?Lys
595 600 605
Phe?Glu?Phe?Ala?Glu?His?His?Phe?Arg?Arg?Ala?Phe?Gln?Ile?Asn?Pro
610 615 620
Cys?Ser?Ser?Val?Leu?Met?Cys?Tyr?Leu?Gly?Met?Ala?Leu?His?Ala?Leu
625 630 635 640
Lys?Arg?Asn?Glu?Glu?Ala?Leu?Glu?Met?Met?Glu?Asn?Ala?Ile?Phe?Ala
645 650 655
Asp?Lys?Lys?Asn?Pro?Leu?Pro?Lys?Tyr?Gln?Lys?Ala?Leu?Ile?Leu?Leu
660 665 670
Gly?Leu?Gln?Lys?Tyr?Pro?Asp?Ala?Leu?Asp?Glu?Leu?Glu?Arg?Leu?Lys
675 680 685
Glu?Ile?Ala?Pro?His?Glu?Ser?Ser?Met?Tyr?Ala?Leu?Met?Gly?Lys?Ile
690 695 700
Tyr?Lys?Gln?Leu?Asn?Ile?Leu?Asp?Lys?Ala?Val?Phe?Cys?Phe?Gly?Ile
705 710 715 720
Ala?Leu?Asp?Leu?Lys?Pro?Pro?Ala?Ala?Asp?Val?Ala?Ile?Ile?Lys?Ser
725 730 735
Ala?Met?Glu?Lys?Val?His?Leu?Pro?Asp?Glu?Leu?Met?Asp?Asp?Asp?Asp
740 745 750
Asp?Asp?Asp?Glu?Ile
755
<210>137
<211>2253
<212>DNA
<213> potato
<400>137
atggaaaccc?tactagctga?atctgtgcaa?aacagccttg?gccaatttat?gtaccacaac 60
gccattttca?tgtgtgaacg?actctgtgcc?gagttcccca?ctgagacaaa?tatgcagctt 120
ttagctggct?gctacctgca?caaccaacag?gcttatgctg?catatcatct?tctcaagggg 180
acaagtatgg?ctcaatcccg?ctacttgttt?gcactatcat?gctttcagat?ggatcttctc 240
actgaagctg?agacagcact?ttgccctcct?aatgagccaa?ctgcagaggt?tccaaatggt 300
gcagctgggc?attaccttct?tggtcttatt?tacaggtata?cagatagaag?aaatagttcc 360
atccagcatt?tcaatcaggc?attgttattg?gatccattgc?tatgggctgc?atatgaggag 420
ttgtgtatac?taggtgctgc?agaagaagca?gctgcagttt?ttggggaagc?atctttgctt 480
tgcattcaga?aacaacacat?agaccaaggg?aaccaatctc?aaaatttaca?agcatccact 540
gatgatcaga?atgtagcttc?tacgaatatt?gtctcaggcg?acatcagccc?tatgcaatca 600
aaacatacac?acagccataa?tcttcgagaa?atgtctggaa?attataatgg?agcagctgct 660
atccagaatt?taggtggggt?ttctactaac?atgtcattct?acaacactcc?ctcaccaatg 720
gcatcacagt?tgtcaggagt?ggttccacct?ccagtttgta?gaaattttca?gcaaaatgga 780
actaatgcat?ctgtggctgg?tgctgataat?tctccacgag?caactgtcaa?ttcaaccatt 840
caggcccctc?ggagaaagtt?tgttgatgag?gggaagttaa?gaaagatatc?tgggaggtta 900
ttttctgatt?ctggccctcg?acgaaattca?aggcttgctg?gagaatctac?tggaaacaca 960
aattcaaatg?tatctggtgc?ttctggaaat?ggaacaattc?attcttccaa?atattatggt 1020
agttcgaagc?tgagctcaat?gactttacgt?tccatgacaa?gtcgaaaggc?acaatcttgg 1080
gctaccgaaa?actatggtga?agggactcgc?aatgacattt?ctaatgattc?tcggctaaat 1140
atgactatgt?cacacccttc?tggagatgct?agacctcttg?aacaagaaag?gccccgaact 1200
tctgcttctg?gggttaatgt?aagcagcaca?tctatccctc?tcagtgcttc?agagatattg 1260
gcccttttca?ggtttcttgg?ggaaggctat?agactttctt?gtttatatag?atgtcaggat 1320
gcactggatg?tttataacaa?actcccacac?aaacattatc?acactggatg?ggttctttct 1380
cagattggaa?gagcatactt?cgaaatggtt?gattacctag?aagcagatca?tgcatttggc 1440
cttgctcgtc?tggcctcacc?ttatagttta?gaaggaatgg?acgtgtactc?gacagtgttg 1500
tttcatctca?aggaggacat?gaagttgagc?tatctggcgc?aggtgctggt?atcaactgat 1560
agattagctc?ctcaatcttg?gtgtgctatg?gggaattgct?atagtttaca?gaaagaccat 1620
gaaactgctc?ttaaaaattt?tcaacgagct?gtacaactaa?atcctagatt?tgcatacggg 1680
cacacgcttt?gtggtcatga?atatgttgct?ttagaagatt?ttgaaaatgc?tattaagagc 1740
tatcagagtg?cacttcgtgt?ggatgccagg?cattacaatg?cctggtatgg?gcttggaatg 1800
atctatctcc?gacaggagaa?gtttgaattt?tcagagcatc?actttcgaat?ggctttgggt 1860
ataaatccac?agtcttctgt?tatcatgtca?tatcttggca?ctgcattaca?cgctctgaag 1920
aaaaatgaag?aggcattgga?agtgatggag?ctggctattg?tagcagacaa?gaaaaaccct 1980
cttccaatgt?atcagaaggc?taacatcctt?gtgagcacgg?aaagttttga?tgccgcttta 2040
gaagtcttag?aggaacttaa?agagcatgct?cctcgtgaga?gcagtgtcta?tgctttgatg 2100
ggtcggatat?acaagaggcg?taatatgtac?gacaaagcca?tgcttcattt?tggagtggca 2160
ttagatttaa?aaccatctgc?aactgatgtt?gctaccatta?aggctgccat?tgaaaagctg 2220
catgtaccag?atgagatgga?agatgaatta?taa 2253
<210>138
<211>750
<212>PRT
<213> potato
<400>138
Met?Glu?Thr?Leu?Leu?Ala?Glu?Ser?Val?Gln?Asn?Ser?Leu?Gly?Gln?Phe
1 5 10 15
Met?Tyr?His?Asn?Ala?Ile?Phe?Met?Cys?Glu?Arg?Leu?Cys?Ala?Glu?Phe
20 25 30
Pro?Thr?Glu?Thr?Asn?Met?Gln?Leu?Leu?Ala?Gly?Cys?Tyr?Leu?His?Asn
35 40 45
Gln?Gln?Ala?Tyr?Ala?Ala?Tyr?His?Leu?Leu?Lys?Gly?Thr?Ser?Met?Ala
50 55 60
Gln?Ser?Arg?Tyr?Leu?Phe?Ala?Leu?Ser?Cys?Phe?Gln?Met?Asp?Leu?Leu
65 70 75 80
Thr?Glu?Ala?Glu?Thr?Ala?Leu?Cys?Pro?Pro?Asn?Glu?Pro?Thr?Ala?Glu
85 90 95
Val?Pro?Asn?Gly?Ala?Ala?Gly?His?Tyr?Leu?Leu?Gly?Leu?Ile?Tyr?Arg
100 105 110
Tyr?Thr?Asp?Arg?Arg?Asn?Ser?Ser?Ile?Gln?His?Phe?Asn?Gln?Ala?Leu
115 120 125
Leu?Leu?Asp?Pro?Leu?Leu?Trp?Ala?Ala?Tyr?Glu?Glu?Leu?Cys?Ile?Leu
130 135 140
Gly?Ala?Ala?Glu?Glu?Ala?Ala?Ala?Val?Phe?Gly?Glu?Ala?Ser?Leu?Leu
145 150 155 160
Cys?Ile?Gln?Lys?Gln?His?Ile?Asp?Gln?Gly?Asn?Gln?Ser?Gln?Asn?Leu
165 170 175
Gln?Ala?Ser?Thr?Asp?Asp?Gln?Asn?Val?Ala?Ser?Thr?Asn?Ile?Val?Ser
180 185 190
Gly?Asp?Ile?Ser?Pro?Met?Gln?Ser?Lys?His?Thr?His?Ser?His?Asn?Leu
195 200 205
Arg?Glu?Met?Ser?Gly?Asn?Tyr?Asn?Gly?Ala?Ala?Ala?Ile?Gln?Asn?Leu
210 215 220
Gly?Gly?Val?Ser?Thr?Asn?Met?Ser?Phe?Tyr?Asn?Thr?Pro?Ser?Pro?Met
225 230 235 240
Ala?Ser?Gln?Leu?Ser?Gly?Val?Val?Pro?Pro?Pro?Val?Cys?Arg?Asn?Phe
245 250 255
Gln?Gln?Asn?Gly?Thr?Asn?Ala?Ser?Val?Ala?Gly?Ala?Asp?Asn?Ser?Pro
260 265 270
Arg?Ala?Thr?Val?Asn?Ser?Thr?Ile?Gln?Ala?Pro?Arg?Arg?Lys?Phe?Val
275 280 285
Asp?Glu?Gly?Lys?Leu?Arg?Lys?Ile?Ser?Gly?Arg?Leu?Phe?Ser?Asp?Ser
290 295 300
Gly?Pro?Arg?Arg?Asn?Ser?Arg?Leu?Ala?Gly?Glu?Ser?Thr?Gly?Asn?Thr
305 310 315 320
Asn?Ser?Asn?Val?Ser?Gly?Ala?Ser?Gly?Asn?Gly?Thr?Ile?His?Ser?Ser
325 330 335
Lys?Tyr?Tyr?Gly?Ser?Ser?Lys?Leu?Ser?Ser?Met?Thr?Leu?Arg?Ser?Met
340 345 350
Thr?Ser?Arg?Lys?Ala?Gln?Ser?Trp?Ala?Thr?Glu?Asn?Tyr?Gly?Glu?Gly
355 360 365
Thr?Arg?Asn?Asp?Ile?Ser?Asn?Asp?Ser?Arg?Leu?Asn?Met?Thr?Met?Ser
370 375 380
His?Pro?Ser?Gly?Asp?Ala?Arg?Pro?Leu?Glu?Gln?Glu?Arg?Pro?Arg?Thr
385 390 395 400
Ser?Ala?Ser?Gly?Val?Asn?Val?Ser?Ser?Thr?Ser?Ile?Pro?Leu?Ser?Ala
405 410 415
Ser?Glu?Ile?Leu?Ala?Leu?Phe?Arg?Phe?Leu?Gly?Glu?Gly?Tyr?Arg?Leu
420 425 430
Ser?Cys?Leu?Tyr?Arg?Cys?Gln?Asp?Ala?Leu?Asp?Val?Tyr?Asn?Lys?Leu
435 440 445
Pro?His?Lys?His?Tyr?His?Thr?Gly?Trp?Val?Leu?Ser?Gln?Ile?Gly?Arg
450 455 460
Ala?Tyr?Phe?Glu?Met?Val?Asp?Tyr?Leu?Glu?Ala?Asp?His?Ala?Phe?Gly
465 470 475 480
Leu?Ala?Arg?Leu?Ala?Ser?Pro?Tyr?Ser?Leu?Glu?Gly?Met?Asp?Val?Tyr
485 490 495
Ser?Thr?Val?Leu?Phe?His?Leu?Lys?Glu?Asp?Met?Lys?Leu?Ser?Tyr?Leu
500 505 510
Ala?Gln?Val?Leu?Val?Ser?Thr?Asp?Arg?Leu?Ala?Pro?Gln?Ser?Trp?Cys
515 520 525
Ala?Met?Gly?Asn?Cys?Tyr?Ser?Leu?Gln?Lys?Asp?His?Glu?Thr?Ala?Leu
530 535 540
Lys?Asn?Phe?Gln?Arg?Ala?Val?Gln?Leu?Asn?Pro?Arg?Phe?Ala?Tyr?Gly
545 550 555 560
His?Thr?Leu?Cys?Gly?His?Glu?Tyr?Val?Ala?Leu?Glu?Asp?Phe?Glu?Asn
565 570 575
Ala?Ile?Lys?Ser?Tyr?Gln?Ser?Ala?Leu?Arg?Val?Asp?Ala?Arg?His?Tyr
580 585 590
Asn?Ala?Trp?Tyr?Gly?Leu?Gly?Met?Ile?Tyr?Leu?Arg?Gln?Glu?Lys?Phe
595 600 605
Glu?Phe?Ser?Glu?His?His?Phe?Arg?Met?Ala?Leu?Gly?Ile?Asn?Pro?Gln
610 615 620
Ser?Ser?Val?Ile?Met?Ser?Tyr?Leu?Gly?Thr?Ala?Leu?His?Ala?Leu?Lys
625 630 635 640
Lys?Asn?Glu?Glu?Ala?Leu?Glu?Val?Met?Glu?Leu?Ala?Ile?Val?Ala?Asp
645 650 655
Lys?Lys?Asn?Pro?Leu?Pro?Met?Tyr?Gln?Lys?Ala?Asn?Ile?Leu?Val?Ser
660 665 670
Thr?Glu?Ser?Phe?Asp?Ala?Ala?Leu?Glu?Val?Leu?Glu?Glu?Leu?Lys?Glu
675 680 685
His?Ala?Pro?Arg?Glu?Ser?Ser?Val?Tyr?Ala?Leu?Met?Gly?Arg?Ile?Tyr
690 695 700
Lys?Arg?Arg?Asn?Met?Tyr?Asp?Lys?Ala?Met?Leu?His?Phe?Gly?Val?Ala
705 710 715 720
Leu?Asp?Leu?Lys?Pro?Ser?Ala?Thr?Asp?Val?Ala?Thr?Ile?Lys?Ala?Ala
725 730 735
Ile?Glu?Lys?Leu?His?Val?Pro?Asp?Glu?Met?Glu?Asp?Glu?Leu
740 745 750
<210>139
<211>1998
<212>DNA
<213> schizosaccharomyces pombe (Schizosaccharomyces pombe)
<400>139
atgacagatc?gattgaaatg?tttaatatgg?tattgcattg?ataatcagaa?ttatgataat 60
tcaatttttt?attcagaacg?tttacatgca?attgaagatt?caaacgagag?tttgtatctt 120
ttggcatatt?cgcatttcct?aaacctcgat?tacaatattg?tatacgactt?attagataga 180
gtaattagtc?atgttccttg?cacatactta?tttgcaagga?ccagccttat?tttaggcaga 240
tataaacaag?gaataagtgc?tgtggaggcc?tgtcgatcga?attggcgctc?cattcagcca 300
aacataaatg?actcaattag?cagtcgtgga?catccagatg?cctcttgcat?gcttgatgtt 360
ttgggtacta?tgtataaaaa?ggcagggttc?ctcaaaaaag?ctacagattg?ttttgtagaa 420
gctgtctcca?ttaacccata?taatttctct?gctttccaga?atttaactgc?aataggcgtg 480
ccactcgatg?ctaataatgt?atttgttatt?ccaccctacc?ttacggcaat?gaagggtttt 540
gaaaaatctc?aaacgaatgc?tacagcttcg?gtaccagaac?cgtctttttt?gaagaaaagt 600
aaagagtctt?cctcatcttc?caacaagttt?tcggtttctg?aatcgatagc?aaatagttat 660
tcaaactcat?ccatttcagc?atttactaag?tggtttgata?gggttgacgc?ttctgagctt 720
ccaggaagtg?agaaggaacg?acatcaaagc?ttgaaattac?aatctcaatc?tcagactagc 780
aaaaaccttt?tggctttcaa?tgatgctcaa?aaagctgatt?ctaacaatag?ggatacgtct 840
ttaaaatccc?actttgtgga?acctagaacc?caagcattaa?gaccaggagc?tcgtttaaca 900
tataaattac?gcgaagcgag?aagttctaaa?agaggagaga?gcacacctca?aagcttccgc 960
gaagaggaca?ataatttgat?ggaattacta?aagttattcg?gtaagggtgt?ttacctgctc 1020
gcccagtata?agttacgaga?ggctttaaat?tgtttccaaa?gcttgcccat?cgaacagcaa 1080
aatacacctt?ttgttcttgc?aaagcttgga?ataacctact?ttgaactggt?tgattacgaa 1140
aaatctgaag?aagtgtttca?aaaattaagg?gacttgtcgc?cttcacgtgt?caaagatatg 1200
gaagtctttt?caactgcact?ttggcatttg?caaaagtctg?ttcctttatc?ttaccttgcc 1260
catgaaactt?tggaaactaa?tccttattcc?ccagaatcat?ggtgcattct?tgctaattgc 1320
ttctcacttc?aacgtgaaca?ctcgcaggca?ttaaaatgta?ttaatagagc?tattcaattg 1380
gatccaactt?ttgaatatgc?ttatacgctt?caagggcacg?agcattctgc?aaacgaagaa 1440
tacgaaaaat?cgaaaacatc?tttccgcaaa?gcaattagag?taaatgttcg?acattacaat 1500
gcatggtatg?gcctgggaat?ggtttattta?aaaacagggc?gaaatgatca?agcagacttt 1560
cattttcaac?gtgctgcaga?gatcaatcct?aacaactctg?tactcatcac?ttgtattggt 1620
atgatttacg?aacgctgcaa?agattacaaa?aaagcacttg?atttttatga?tcgggcatgt 1680
aaactggatg?aaaagtcttc?gcttgccagg?ttcaagaaag?ccaaagtgct?tattttatta 1740
catgatcacg?ataaagcact?cgttgaattg?gaacaattaa?aggcaattgc?gccagatgaa 1800
gcaaatgttc?attttttgct?cggcaaaatt?ttcaagcaaa?tgcggaaaaa?aaatttagcc 1860
ttaaagcact?tcactatagc?atggaactta?gacggcaagg?ctacgcatat?tattaaggaa 1920
tcgattgaaa?atctggatat?tcccgaagaa?aatttgttaa?ctgaaacagg?tgaaatttat 1980
aggaatctgg?aaacttaa 1998
<210>140
<211>665
<212>PRT
<213> schizosaccharomyces pombe
<400>140
Met?Thr?Asp?Arg?Leu?Lys?Cys?Leu?Ile?Trp?Tyr?Cys?Ile?Asp?Asn?Gln
1 5 10 15
Asn?Tyr?Asp?Asn?Ser?Ile?Phe?Tyr?Ser?Glu?Arg?Leu?His?Ala?Ile?Glu
20 25 30
Asp?Ser?Asn?Glu?Ser?Leu?Tyr?Leu?Leu?Ala?Tyr?Ser?His?Phe?Leu?Asn
35 40 45
Leu?Asp?Tyr?Asn?Ile?Val?Tyr?Asp?Leu?Leu?Asp?Arg?Val?Ile?Ser?His
50 55 60
Val?Pro?Cys?Thr?Tyr?Leu?Phe?Ala?Arg?Thr?Ser?Leu?Ile?Leu?Gly?Arg
65 70 75 80
Tyr?Lys?Gln?Gly?Ile?Ser?Ala?Val?Glu?Ala?Cys?Arg?Ser?Asn?Trp?Arg
85 90 95
Ser?Ile?Gln?Pro?Asn?Ile?Asn?Asp?Ser?Ile?Ser?Ser?Arg?Gly?His?Pro
100 105 110
Asp?Ala?Ser?Cys?Met?Leu?Asp?Val?Leu?Gly?Thr?Met?Tyr?Lys?Lys?Ala
115 120 125
Gly?Phe?Leu?Lys?Lys?Ala?Thr?Asp?Cys?Phe?Val?Glu?Ala?Val?Ser?Ile
130 135 140
Asn?Pro?Tyr?Asn?Phe?Ser?Ala?Phe?Gln?Asn?Leu?Thr?Ala?Ile?Gly?Val
145 150 155 160
Pro?Leu?Asp?Ala?Asn?Asn?Val?Phe?Val?Ile?Pro?Pro?Tyr?Leu?Thr?Ala
165 170 175
Met?Lys?Gly?Phe?Glu?Lys?Ser?Gln?Thr?Asn?Ala?Thr?Ala?Ser?Val?Pro
180 185 190
Glu?Pro?Ser?Phe?Leu?Lys?Lys?Ser?Lys?Glu?Ser?Ser?Ser?Ser?Ser?Asn
195 200 205
Lys?Phe?Ser?Val?Ser?Glu?Ser?Ile?Ala?Asn?Ser?Tyr?Ser?Asn?Ser?Ser
210 215 220
Ile?Ser?Ala?Phe?Thr?Lys?Trp?Phe?Asp?Arg?Val?Asp?Ala?Ser?Glu?Leu
225 230 235 240
Pro?Gly?Ser?Glu?Lys?Glu?Arg?His?Gln?Ser?Leu?Lys?Leu?Gln?Ser?Gln
245 250 255
Ser?Gln?Thr?Ser?Lys?Asn?Leu?Leu?Ala?Phe?Asn?Asp?Ala?Gln?Lys?Ala
260 265 270
Asp?Ser?Asn?Asn?Arg?Asp?Thr?Ser?Leu?Lys?Ser?His?Phe?Val?Glu?Pro
275 280 285
Arg?Thr?Gln?Ala?Leu?Arg?Pro?Gly?Ala?Arg?Leu?Thr?Tyr?Lys?Leu?Arg
290 295 300
Glu?Ala?Arg?Ser?Ser?Lys?Arg?Gly?Glu?Ser?Thr?Pro?Gln?Ser?Phe?Arg
305 310 315 320
Glu?Glu?Asp?Asn?Asn?Leu?Met?Glu?Leu?Leu?Lys?Leu?Phe?Gly?Lys?Gly
325 330 335
Val?Tyr?Leu?Leu?Ala?Gln?Tyr?Lys?Leu?Arg?Glu?Ala?Leu?Asn?Cys?Phe
340 345 350
Gln?Ser?Leu?Pro?Ile?Glu?Gln?Gln?Asn?Thr?Pro?Phe?Val?Leu?Ala?Lys
355 360 365
Leu?Gly?Ile?Thr?Tyr?Phe?Glu?Leu?Val?Asp?Tyr?Glu?Lys?Ser?Glu?Glu
370 375 380
Val?Phe?Gln?Lys?Leu?Arg?Asp?Leu?Ser?Pro?Ser?Arg?Val?Lys?Asp?Met
385 390 395 400
Glu?Val?Phe?Ser?Thr?Ala?Leu?Trp?His?Leu?Gln?Lys?Ser?Val?Pro?Leu
405 410 415
Ser?Tyr?Leu?Ala?His?Glu?Thr?Leu?Glu?Thr?Asn?Pro?Tyr?Ser?Pro?Glu
420 425 430
Ser?Trp?Cys?Ile?Leu?Ala?Asn?Cys?Phe?Ser?Leu?Gln?Arg?Glu?His?Ser
435 440 445
Gln?Ala?Leu?Lys?Cys?Ile?Asn?Arg?Ala?Ile?Gln?Leu?Asp?Pro?Thr?Phe
450 455 460
Glu?Tyr?Ala?Tyr?Thr?Leu?Gln?Gly?His?Glu?His?Ser?Ala?Asn?Glu?Glu
465 470 475 480
Tyr?Glu?Lys?Ser?Lys?Thr?Ser?Phe?Arg?Lys?Ala?Ile?Arg?Val?Asn?Val
485 490 495
Arg?His?Tyr?Asn?Ala?Trp?Tyr?Gly?Leu?Gly?Met?Val?Tyr?Leu?Lys?Thr
500 505 510
Gly?Arg?Asn?Asp?Gln?Ala?Asp?Phe?His?Phe?Gln?Arg?Ala?Ala?Glu?Ile
515 520 525
Asn?Pro?Asn?Asn?Ser?Val?Leu?Ile?Thr?Cys?Ile?Gly?Met?Ile?Tyr?Glu
530 535 540
Arg?Cys?Lys?Asp?Tyr?Lys?Lys?Ala?Leu?Asp?Phe?Tyr?Asp?Arg?Ala?Cys
545 550 555 560
Lys?Leu?Asp?Glu?Lys?Ser?Ser?Leu?Ala?Arg?Phe?Lys?Lys?Ala?Lys?Val
565 570 575
Leu?Ile?Leu?Leu?His?Asp?His?Asp?Lys?Ala?Leu?Val?Glu?Leu?Glu?Gln
580 585 590
Leu?Lys?Ala?Ile?Ala?Pro?Asp?Glu?Ala?Asn?Val?His?Phe?Leu?Leu?Gly
595 600 605
Lys?Ile?Phe?Lys?Gln?Met?Arg?Lys?Lys?Asn?Leu?Ala?Leu?Lys?His?Phe
610 615 620
Thr?Ile?Ala?Trp?Asn?Leu?Asp?Gly?Lys?Ala?Thr?His?Ile?Ile?Lys?Glu
625 630 635 640
Ser?Ile?Glu?Asn?Leu?Asp?Ile?Pro?Glu?Glu?Asn?Leu?Leu?Thr?Glu?Thr
645 650 655
Gly?Glu?Ile?Tyr?Arg?Asn?Leu?Glu?Thr
660 665
<210>141
<211>2421
<212>DNA
<213> aspergillus niger (Aspergillus niger)
<400>141
atgactccgt?ccacatcaca?tatttcgagc?cagctaaggc?agctgatata?ttaccatctt 60
gacaacaacc?ttgctcggaa?cgcgctgttc?cttgccggtc?gtttacacgc?ctacgaacct 120
cggacgtcgg?aagcttcgta?cctattagct?ctgtgttacc?tacaaaatgg?tcaggtgaaa 180
gcagcatggg?aaactagcaa?gcattttggg?tcgaggggtg?cgcatcttgg?atgttcttac 240
gtctacgcgc?aggcttgtct?tgacctcggg?aaatatacgg?acggtattaa?cgcgctagag 300
cgaagtaagg?gacaatggac?ttcgcgaaac?cactggaata?aacacagtga?gacgcgacga 360
caacacttgc?cggatgctgc?ggcagtttta?tgtttgcaag?gaaaattatg?gcaggcacac 420
aaggaacaca?acaaggctgt?ggagtgttac?gctgcagctt?taaagctgaa?tcccttcatg 480
tgggatgcat?tcttgaatct?gtgcgaaact?ggtgttgatt?tgcgtgtttc?aaacatatat 540
aagatgagcc?cggaattgta?cagcatggta?tcgtctgctg?cgctcgaaga?tgttgaatcc 600
caggttctac?ctccggacgg?tccactccag?acacaagtta?acccaaatcc?gagcttggac 660
ccgttcactg?ccggtacgac?tcgcagcgat?tcgacctcta?ctcacgggag?ctcagctttg 720
tgggaaaagt?tgaatggaag?cacagttagt?gtggcatctt?caggaacagg?accgcatctt 780
ccgcgggaag?gcatggagac?tcctggtggc?caaagtagcg?aatctgatga?tccacgtgta 840
accaacggta?atggcacaga?tgtttttgag?ccgccgctag?cccctgcaaa?gaagaatcga 900
acgatccaaa?caataggcgg?cgatcatccg?atggatcccc?cgccaaagat?gcggccaacc 960
ggtattcgac?cgaggacccg?aaccaaattc?gagtcagatg?aaggtcatac?tgagagagac 1020
gcgggcatgg?gtcacaggtt?aggcgatcgg?aaacgaacgg?tctctggaca?agttgcgcat 1080
ccgtcggtac?cgcattcaac?cgaccaaggt?gtcgggcaac?ggcgaagtgt?acgtctcttt 1140
aaccagataa?agccatcaac?gaacaaaata?tctagcacgg?cattaggagt?gaaagagggc 1200
cgggaggtga?aaaaggtgag?aactacgggg?aataaggcgc?gcacaacaac?aagctcaaat 1260
gtgggccgtg?ttgttagcgg?caacaatcga?cgacacgctg?gggagatcca?tgacggagac 1320
agcaaagaat?accgtggaac?atcttcaaca?tcaaatggct?ctcagaacgc?atcgtctaag 1380
ctcgctatat?ctgagcggac?caaatcggtt?gaagccttgg?cttggatttt?ggacttgttt 1440
ttcaagatag?cctccggcta?tttctgtctc?agccggtaca?aatgctccga?tgctatccag 1500
attttcagct?ctctatccca?gggccaacgg?gagacaccgt?gggttcttgc?tcaaattgga 1560
cgagcttact?acgagcaagc?aatgtataca?gaggccgaga?aatactttgt?ccgggtgaag 1620
gccatggcgc?cttcccggtt?agaagatatg?gagatctact?cgacggttct?ttggcatttg 1680
aagaatgatg?tcgaacttgc?ttacctggcc?catgagttaa?tggatgtcga?tcgcttatca 1740
ccagaagctt?ggtgtgctgt?cggtaactcg?ttctcacacc?agcgggacca?cgatcaagct 1800
ctgaagtgct?tcaagcgtgc?cactcaattg?gatcctcatt?tcgcgtatgg?gttcacgcta 1860
cagggccatg?agtatgttgc?caacgaggaa?tatgacaagg?cattggatgc?ctatagaagc 1920
ggcatcaacg?cggacagtcg?acattataat?gcctggtacg?ggctgggaac?ggtctacgat 1980
aagatgggca?aacttgactt?tgctgaacag?cacttccgta?atgcggccaa?gattaatcct 2040
tctaatgctg?ttttaatatg?ctgcattggc?ttggtcttag?agaagatgaa?caatccgaag 2100
tcagcgttga?tccagtacaa?cagggcctgc?accctcgcgc?ctcattctgt?tcttgctcga 2160
ttccgaaaag?cccgtgcgtt?gatgaaattg?caggatctca?agtcagcgct?tacggagctg 2220
aaggttctga?aggacatggc?gccggatgag?gcaaacgttc?attacctcct?gggcaaactg 2280
tataagatgc?ttcgtgacaa?gggaaatgcc?attaagcact?tcacaactgc?attaaacctt 2340
gatcccaagg?cggcgcagta?catcaaagat?gcaatggaag?cccttgacga?cgatgaagag 2400
gatgaagaag?atatggcgtg?a 2421
<210>142
<211>806
<212>PRT
<213> aspergillus niger
<400>142
Met?Thr?Pro?Ser?Thr?Ser?His?Ile?Ser?Ser?Gln?Leu?Arg?Gln?Leu?Ile
1 5 10 15
Tyr?Tyr?His?Leu?Asp?Asn?Asn?Leu?Ala?Arg?Asn?Ala?Leu?Phe?Leu?Ala
20 25 30
Gly?Arg?Leu?His?Ala?Tyr?Glu?Pro?Arg?Thr?Ser?Glu?Ala?Ser?Tyr?Leu
35 40 45
Leu?Ala?Leu?Cys?Tyr?Leu?Gln?Asn?Gly?Gln?Val?Lys?Ala?Ala?Trp?Glu
50 55 60
Thr?Ser?Lys?His?Phe?Gly?Ser?Arg?Gly?Ala?His?Leu?Gly?Cys?Ser?Tyr
65 70 75 80
Val?Tyr?Ala?Gln?Ala?Cys?Leu?Asp?Leu?Gly?Lys?Tyr?Thr?Asp?Gly?Ile
85 90 95
Asn?Ala?Leu?Glu?Arg?Ser?Lys?Gly?Gln?Trp?Thr?Ser?Arg?Asn?His?Trp
100 105 110
Asn?Lys?His?Ser?Glu?Thr?Arg?Arg?Gln?His?Leu?Pro?Asp?Ala?Ala?Ala
115 120 125
Val?Leu?Cys?Leu?Gln?Gly?Lys?Leu?Trp?Gln?Ala?His?Lys?Glu?His?Asn
130 135 140
Lys?Ala?Val?Glu?Cys?Tyr?Ala?Ala?Ala?Leu?Lys?Leu?Asn?Pro?Phe?Met
145 150 155 160
Trp?Asp?Ala?Phe?Leu?Asn?Leu?Cys?Glu?Thr?Gly?Val?Asp?Leu?Arg?Val
165 170 175
Ser?Asn?Ile?Tyr?Lys?Met?Ser?Pro?Glu?Leu?Tyr?Ser?Met?Val?Ser?Ser
180 185 190
Ala?Ala?Leu?Glu?Asp?Val?Glu?Ser?Gln?Val?Leu?Pro?Pro?Asp?Gly?Pro
195 200 205
Leu?Gln?Thr?Gln?Val?Asn?Pro?Asn?Pro?Ser?Leu?Asp?Pro?Phe?Thr?Ala
210 215 220
Gly?Thr?Thr?Arg?Ser?Asp?Ser?Thr?Ser?Thr?His?Gly?Ser?Ser?Ala?Leu
225 230 235 240
Trp?Glu?Lys?Leu?Asn?Gly?Ser?Thr?Val?Ser?Val?Ala?Ser?Ser?Gly?Thr
245 250 255
Gly?Pro?His?Leu?Pro?Arg?Glu?Gly?Met?Glu?Thr?Pro?Gly?Gly?Gln?Ser
260 265 270
Ser?Glu?Ser?Asp?Asp?Pro?Arg?Val?Thr?Asn?Gly?Asn?Gly?Thr?Asp?Val
275 280 285
Phe?Glu?Pro?Pro?Leu?Ala?Pro?Ala?Lys?Lys?Asn?Arg?Thr?Ile?Gln?Thr
290 295 300
Ile?Gly?Gly?Asp?His?Pro?Met?Asp?Pro?Pro?Pro?Lys?Met?Arg?Pro?Thr
305 310 315 320
Gly?Ile?Arg?Pro?Arg?Thr?Arg?Thr?Lys?Phe?Glu?Ser?Asp?Glu?Gly?His
325 330 335
Thr?Glu?Arg?Asp?Ala?Gly?Met?Gly?His?Arg?Leu?Gly?Asp?Arg?Lys?Arg
340 345 350
Thr?Val?Ser?Gly?Gln?Val?Ala?His?Pro?Ser?Val?Pro?His?Ser?Thr?Asp
355 360 365
Gln?Gly?Val?Gly?Gln?Arg?Arg?Ser?Val?Arg?Leu?Phe?Asn?Gln?Ile?Lys
370 375 380
Pro?Ser?Thr?Asn?Lys?Ile?Ser?Ser?Thr?Ala?Leu?Gly?Val?Lys?Glu?Gly
385 390 395 400
Arg?Glu?Val?Lys?Lys?Val?Arg?Thr?Thr?Gly?Asn?Lys?Ala?Arg?Thr?Thr
405 410 415
Thr?Ser?Ser?Asn?Val?Gly?Arg?Val?Val?Ser?Gly?Asn?Asn?Arg?Arg?His
420 425 430
Ala?Gly?Glu?Ile?His?Asp?Gly?Asp?Ser?Lys?Glu?Tyr?Arg?Gly?Thr?Ser
435 440 445
Ser?Thr?Ser?Asn?Gly?Ser?Gln?Asn?Ala?Ser?Ser?Lys?Leu?Ala?Ile?Ser
450 455 460
Glu?Arg?Thr?Lys?Ser?Val?Glu?Ala?Leu?Ala?Trp?Ile?Leu?Asp?Leu?Phe
465 470 475 480
Phe?Lys?Ile?Ala?Ser?Gly?Tyr?Phe?Cys?Leu?Ser?Arg?Tyr?Lys?Cys?Ser
485 490 495
Asp?Ala?Ile?Gln?Ile?Phe?Ser?Ser?Leu?Ser?Gln?Gly?Gln?Arg?Glu?Thr
500 505 510
Pro?Trp?Val?Leu?Ala?Gln?Ile?Gly?Arg?Ala?Tyr?Tyr?Glu?Gln?Ala?Met
515 520 525
Tyr?Thr?Glu?Ala?Glu?Lys?Tyr?Phe?Val?Arg?Val?Lys?Ala?Met?Ala?Pro
530 535 540
Ser?Arg?Leu?Glu?Asp?Met?Glu?Ile?Tyr?Ser?Thr?Val?Leu?Trp?His?Leu
545 550 555 560
Lys?Asn?Asp?Val?Glu?Leu?Ala?Tyr?Leu?Ala?His?Glu?Leu?Met?Asp?Val
565 570 575
Asp?Arg?Leu?Ser?Pro?Glu?Ala?Trp?Cys?Ala?Val?Gly?Asn?Ser?Phe?Ser
580 585 590
His?Gln?Arg?Asp?His?Asp?Gln?Ala?Leu?Lys?Cys?Phe?Lys?Arg?Ala?Thr
595 600 605
Gln?Leu?Asp?Pro?His?Phe?Ala?Tyr?Gly?Phe?Thr?Leu?Gln?Gly?His?Glu
610 615 620
Tyr?Val?Ala?Asn?Glu?Glu?Tyr?Asp?Lys?Ala?Leu?Asp?Ala?Tyr?Arg?Ser
625 630 635 640
Gly?Ile?Asn?Ala?Asp?Ser?Arg?His?Tyr?Asn?Ala?Trp?Tyr?Gly?Leu?Gly
645 650 655
Thr?Val?Tyr?Asp?Lys?Met?Gly?Lys?Leu?Asp?Phe?Ala?Glu?Gln?His?Phe
660 665 670
Arg?Asn?Ala?Ala?Lys?Ile?Asn?Pro?Ser?Asn?Ala?Val?Leu?Ile?Cys?Cys
675 680 685
Ile?Gly?Leu?Val?Leu?Glu?Lys?Met?Asn?Asn?Pro?Lys?Ser?Ala?Leu?Ile
690 695 700
Gln?Tyr?Asn?Arg?Ala?Cys?Thr?Leu?Ala?Pro?His?Ser?Val?Leu?Ala?Arg
705 710 715 720
Phe?Arg?Lys?Ala?Arg?Ala?Leu?Met?Lys?Leu?Gln?Asp?Leu?Lys?Ser?Ala
725 730 735
Leu?Thr?Glu?Leu?Lys?Val?Leu?Lys?Asp?Met?Ala?Pro?Asp?Glu?Ala?Asn
740 745 750
Val?His?Tyr?Leu?Leu?Gly?Lys?Leu?Tyr?Lys?Met?Leu?Arg?Asp?Lys?Gly
755 760 765
Asn?Ala?Ile?Lys?His?Phe?Thr?Thr?Ala?Leu?Asn?Leu?Asp?Pro?Lys?Ala
770 775 780
Ala?Gln?Tyr?Ile?Lys?Asp?Ala?Met?Glu?Ala?Leu?Asp?Asp?Asp?Glu?Glu
785 790 795 800
Asp?Glu?Glu?Asp?Met?Ala
805
<210>143
<211>2472
<212>DNA
<213> people (Homo sapiens)
<400>143
atgacggtgc?tgcaggaacc?cgtccaggct?gctatatggc?aagcactaaa?ccactatgct 60
taccgagatg?cggttttcct?cgcagaacgc?ctttatgcag?aagtacactc?agaagaagcc 120
ttgtttttac?tggcaacctg?ttattaccgc?tcaggaaagg?catataaagc?atatagactc 180
ttgaaaggac?acagttgtac?tacaccgcaa?tgcaaatacc?tgcttgcaaa?atgttgtgtt 240
gatctcagca?agcttgcaga?aggggaacaa?atcttatctg?gtggagtgtt?taataagcag 300
aaaagccatg?atgatattgt?tactgagttt?ggtgattcag?cttgctttac?tctttcattg 360
ttgggacatg?tatattgcaa?gacagatcgg?cttgccaaag?gatcagaatg?ttaccaaaag 420
agccttagtt?taaatccttt?cctctggtct?ccctttgaat?cattatgtga?aataggtgaa 480
aagccagatc?ctgaccaaac?atttaaattc?acatctttac?agaactttag?caactgtctg 540
cccaactctt?gcacaacaca?agtacctaat?catagtttat?ctcacagaca?gcctgagaca 600
gttcttacgg?aaacacccca?ggacacaatt?gaattaaaca?gattgaattt?agaatcttcc 660
aattcaaagt?actccttgaa?tacagattcc?tcagtgtctt?atattgattc?agctgtaatt 720
tcacctgata?ctgtcccact?gggaacagga?acttccatat?tatctaaaca?ggttcaaaat 780
aaaccaaaaa?ctggtcgaag?tttattagga?ggaccagcag?ctcttagtcc?attaacccca 840
agttttggga?ttttgccatt?agaaacccca?agtcctggag?atggatccta?tttacaaaac 900
tacactaata?cacctcctgt?aattgatgtg?ccatccaccg?gagccccttc?aaaaaagtct 960
gttgccagaa?tcggccaaac?tggaacaaag?tctgtcttct?cacagagtgg?aaatagccga 1020
gaggtaactc?caattcttgc?acaaacacaa?agttctggtc?cacaaacaag?tacaacacct 1080
caggtattga?gccccactat?tacatctccc?ccaaacgcac?tacctcgaag?aagttcacga 1140
ctctttacta?gtgacagctc?cacaaccaag?gagaatagca?aaaaattaaa?aatgaagttt 1200
ccacctaaaa?tcccaaacag?aaaaacaaaa?agtaaaacta?ataaaggagg?aataactcaa 1260
cctaacataa?atgatagcct?ggaaattaca?aaattggact?cttccatcat?ttcagaaggg 1320
aaaatatcca?caatcacacc?tcagattcag?gcctttaatc?tacaaaaagc?agcagcaggt 1380
ttgatgagcc?ttcttcgtga?aatggggaaa?ggttatttag?ctttgtgttc?atacaactgc 1440
aaagaagcta?taaatatttt?gagccatcta?ccttctcacc?actacaatac?tggttgggta 1500
ctgtgccaaa?ttggaagggc?ctattttgaa?ctttcagagt?acatgcaagc?tgaaagaata 1560
ttctcagagg?ttagaaggat?tgagaattat?agagttgaag?gcatggagat?ctactctaca 1620
acactttggc?atcttcaaaa?agatgttgct?ctttcagttc?tgtcaaaaga?cttaacagac 1680
atggataaaa?attcgccaga?ggcctggtgt?gctgcaggga?actgtttcag?tctgcaacgg 1740
gaacatgata?ttgcaattaa?attcttccag?agagctatcc?aagttgatcc?aaattacgct 1800
tatgcctata?ctctattagg?gcatgagttt?gtcttaactg?aagaattgga?caaagcatta 1860
gcttgttttc?gaaatgctat?cagagtcaat?cctagacatt?ataatgcatg?gtatggttta 1920
ggaatgattt?attacaagca?agaaaaattc?agccttgcag?aaatgcattt?ccaaaaagcg 1980
cttgatatca?accctcaaag?ttcagtttta?ctttgccaca?ttggagtagt?tcaacatgca 2040
ctgaaaaaat?cagagaaggc?tttggatacc?ctaaacaaag?ccattgtcat?tgatcccaag 2100
aaccctctat?gcaaatttca?cagagcctca?gttttatttc?gaaatgaaaa?atataagtct 2160
gctttacaag?aacttgaaga?attgaaacaa?attgttccca?aagaatccct?cgtttacttc 2220
ttaataggaa?aggtttacaa?gaagttaggt?caaacgcacc?tcgccctgat?gaatttctct 2280
tgggctatgg?atttagatcc?taaaggagcc?aataaccaga?ttaaagaggc?aattgataag 2340
cgttatcttc?cagatgatga?ggagccaata?acccaagaag?aacagatcat?gggaacagat 2400
gaatcccagg?agagcagcat?gacagatgcg?gatgacacac?aacttcatgc?agctgaaagt 2460
gatgaatttt?aa 2472
<210>144
<211>824
<212>PRT
<213> people
<400>144
Met?Thr?Val?Leu?Gln?Glu?Pro?Val?Gln?Ala?Ala?Ile?Trp?Gln?Ala?Leu
1 5 10 15
Asn?His?Tyr?Ala?Tyr?Arg?Asp?Ala?Val?Phe?Leu?Ala?Glu?Arg?Leu?Tyr
20 25 30
Ala?Glu?Val?His?Ser?Glu?Glu?Ala?Leu?Phe?Leu?Leu?Ala?Thr?Cys?Tyr
35 40 45
Tyr?Arg?Ser?Gly?Lys?Ala?Tyr?Lys?Ala?Tyr?Arg?Leu?Leu?Lys?Gly?His
50 55 60
Ser?Cys?Thr?Thr?Pro?Gln?Cys?Lys?Tyr?Leu?Leu?Ala?Lys?Cys?Cys?Val
65 70 75 80
Asp?Leu?Ser?Lys?Leu?Ala?Glu?Gly?Glu?Gln?Ile?Leu?Ser?Gly?Gly?Val
85 90 95
Phe?Asn?Lys?Gln?Lys?Ser?His?Asp?Asp?Ile?Val?Thr?Glu?Phe?Gly?Asp
100 105 110
Ser?Ala?Cys?Phe?Thr?Leu?Ser?Leu?Leu?Gly?His?Val?Tyr?Cys?Lys?Thr
115 120 125
Asp?Arg?Leu?Ala?Lys?Gly?Ser?Glu?Cys?Tyr?Gln?Lys?Ser?Leu?Ser?Leu
130 135 140
Asn?Pro?Phe?Leu?Trp?Ser?Pro?Phe?Glu?Ser?Leu?Cys?Glu?Ile?Gly?Glu
145 150 155 160
Lys?Pro?Asp?Pro?Asp?Gln?Thr?Phe?Lys?Phe?Thr?Ser?Leu?Gln?Asn?Phe
165 170 175
Ser?Asn?Cys?Leu?Pro?Asn?Ser?Cys?Thr?Thr?Gln?Val?Pro?Asn?His?Ser
180 185 190
Leu?Ser?His?Arg?Gln?Pro?Glu?Thr?Val?Leu?Thr?Glu?Thr?Pro?Gln?Asp
195 200 205
Thr?Ile?Glu?Leu?Asn?Arg?Leu?Asn?Leu?Glu?Ser?Ser?Asn?Ser?Lys?Tyr
210 215 220
Ser?Leu?Asn?Thr?Asp?Ser?Ser?Val?Ser?Tyr?Ile?Asp?Ser?Ala?Val?Ile
225 230 235 240
Ser?Pro?Asp?Thr?Val?Pro?Leu?Gly?Thr?Gly?Thr?Ser?Ile?Leu?Ser?Lys
245 250 255
Gln?Val?Gln?Asn?Lys?Pro?Lys?Thr?Gly?Arg?Ser?Leu?Leu?Gly?Gly?Pro
260 265 270
Ala?Ala?Leu?Ser?Pro?Leu?Thr?Pro?Ser?Phe?Gly?Ile?Leu?Pro?Leu?Glu
275 280 285
Thr?Pro?Ser?Pro?Gly?Asp?Gly?Ser?Tyr?Leu?Gln?Asn?Tyr?Thr?Asn?Thr
290 295 300
Pro?Pro?Val?Ile?Asp?Val?Pro?Ser?Thr?Gly?Ala?Pro?Ser?Lys?Lys?Ser
305 310 315 320
Val?Ala?Arg?Ile?Gly?Gln?Thr?Gly?Thr?Lys?Ser?Val?Phe?Ser?Gln?Ser
325 330 335
Gly?Asn?Ser?Arg?Glu?Val?Thr?Pro?Ile?Leu?Ala?Gln?Thr?Gln?Ser?Ser
340 345 350
Gly?Pro?Gln?Thr?Ser?Thr?Thr?Pro?Gln?Val?Leu?Ser?Pro?Thr?Ile?Thr
355 360 365
Ser?Pro?Pro?Asn?Ala?Leu?Pro?Arg?Arg?Ser?Ser?Arg?Leu?Phe?Thr?Ser
370 375 380
Asp?Ser?Ser?Thr?Thr?Lys?Glu?Asn?Ser?Lys?Lys?Leu?Lys?Met?Lys?Phe
385 390 395 400
Pro?Pro?Lys?Ile?Pro?Asn?Arg?Lys?Thr?Lys?Ser?Lys?Thr?Asn?Lys?Gly
405 410 415
Gly?Ile?Thr?Gln?Pro?Asn?Ile?Asn?Asp?Ser?Leu?Glu?Ile?Thr?Lys?Leu
420 425 430
Asp?Ser?Ser?Ile?Ile?Ser?Glu?Gly?Lys?Ile?Ser?Thr?Ile?Thr?Pro?Gln
435 440 445
Ile?Gln?Ala?Phe?Asn?Leu?Gln?Lys?Ala?Ala?Ala?Ala?Gly?Leu?Met?Ser
450 455 460
Leu?Leu?Arg?Glu?Met?Gly?Lys?Gly?Tyr?Leu?Ala?Leu?Cys?Ser?Tyr?Asn
465 470 475 480
Cys?Lys?Glu?Ala?Ile?Asn?Ile?Leu?Ser?His?Leu?Pro?Ser?His?His?Tyr
485 490 495
Asn?Thr?Gly?Trp?Val?Leu?Cys?Gln?Ile?Gly?Arg?Ala?Tyr?Phe?Glu?Leu
500 505 510
Ser?Glu?Tyr?Met?Gln?Ala?Glu?Arg?Ile?Phe?Ser?Glu?Val?Arg?Arg?Ile
515 520 525
Glu?Asn?Tyr?Arg?Val?Glu?Gly?Met?Glu?Ile?Tyr?Ser?Thr?Thr?Leu?Trp
530 535 540
His?Leu?Gln?Lys?Asp?Val?Ala?Leu?Ser?Val?Leu?Ser?Lys?Asp?Leu?Thr
545 550 555 560
Asp?Met?Asp?Lys?Asn?Ser?Pro?Glu?Ala?Trp?Cys?Ala?Ala?Gly?Asn?Cys
565 570 575
Phe?Ser?Leu?Gln?Arg?Glu?His?Asp?Ile?Ala?Ile?Lys?Phe?Phe?Gln?Arg
580 585 590
Ala?Ile?Gln?Val?Asp?Pro?Asn?Tyr?Ala?Tyr?Ala?Tyr?Thr?Leu?Leu?Gly
595 600 605
His?Glu?Phe?Val?Leu?Thr?Glu?Glu?Leu?Asp?Lys?Ala?Leu?Ala?Cys?Phe
610 615 620
Arg?Asn?Ala?Ile?Arg?Val?Asn?Pro?Arg?His?Tyr?Asn?Ala?Trp?Tyr?Gly
625 630 635 640
Leu?Gly?Met?Ile?Tyr?Tyr?Lys?Gln?Glu?Lys?Phe?Ser?Leu?Ala?Glu?Met
645 650 655
His?Phe?Gln?Lys?Ala?Leu?Asp?Ile?Asn?Pro?Gln?Ser?Ser?Val?Leu?Leu
660 665 670
Cys?His?Ile?Gly?Val?Val?Gln?His?Ala?Leu?Lys?Lys?Ser?Glu?Lys?Ala
675 680 685
Leu?Asp?Thr?Leu?Asn?Lys?Ala?Ile?Val?Ile?Asp?Pro?Lys?Asn?Pro?Leu
690 695 700
Cys?Lys?Phe?His?Arg?Ala?Ser?Val?Leu?Phe?Ala?Asn?Glu?Lys?Tyr?Lys
705 710 715 720
Ser?Ala?Leu?Gln?Glu?Leu?Glu?Glu?Leu?Lys?Gln?Ile?Val?Pro?Lys?Glu
725 730 735
Ser?Leu?Val?Tyr?Phe?Leu?Ile?Gly?Lys?Val?Tyr?Lys?Lys?Leu?Gly?Gln
740 745 750
Thr?His?Leu?Ala?Leu?Met?Asn?Phe?Ser?Trp?Ala?Met?Asp?Leu?Asp?Pro
755 760 765
Lys?Gly?Ala?Asn?Asn?Gln?Ile?Lys?Glu?Ala?Ile?Asp?Lys?Arg?Tyr?Leu
770 775 780
Pro?Asp?Asp?Glu?Glu?Pro?Ile?Thr?Gln?Glu?Glu?Gln?Ile?Met?Gly?Thr
785 790 795 800
Asp?Glu?Ser?Gln?Glu?Ser?Ser?Met?Thr?Asp?Ala?Asp?Asp?Thr?Gln?Leu
805 810 815
His?Ala?Ala?Glu?Ser?Asp?Glu?Phe
820
<210>145
<211>783
<212>DNA
<213> sugarcane
<220>
<221>misc_feature
<222>(780)..(783)
<223>n is a, c, g, or t
<400>145
atggaaaccc?taatggtgga?ccgcgtccac?agcagcctcc?gcctcttcat?gcaccgcaac 60
gccgtattcc?tctgcgagcg?cctctgcgcg?cagttcccct?ccgagaccaa?tgtgcaattg 120
ttagcgacct?gctacctcca?caacaatcag?ccatatgctg?cataccacat?tttgaaaggg 180
aagaagctgc?eggagtcccg?gtacttgttt?gctacatcat?gctttcgaat?gaacctcttg 240
cgtgaagcag?aagaaactct?atgtccagtc?aatgaaccaa?acatggaggt?tccaagtgga 300
gcaacaggac?actacctcct?tggagtgatt?tacaggtgca?caggcagaat?ttcagctgca 360
gctgaacaat?ttacacaagc?gttgactcta?gatcctcttt?tatgggcggc?atatgaggaa 420
ttgtgtatat?taggtattgc?tgaagatact?gatgagtgtt?ttagtgaatc?gactgctcta 480
cgtctccagc?aggaacacac?atccacggcc?actctggtga?agtcgaactt?cgccaatgaa 540
aatcgagttc?tatcatccag?ggtctctgca?aatcttgggg?atattagtcc?taagcaaatc 600
aaacagcttc?atgctaacaa?catagcagaa?gtatctggct?atcctcatgt?aagaccaact 660
gcattgcatg?tgcagaacag?ttcaacctct?aatgtagcac?agtttgacac?cccatcacca 720
actgcagcac?agacttctag?tatcatgcca?ccaccactct?ttaggaatgt?ccatgcttan 780
nnn 783
<210>146
<211>259
<212>PRT
<213> sugarcane
<400>146
Met?Glu?Thr?Leu?Met?Val?Asp?Arg?Val?His?Ser?Ser?Leu?Arg?Leu?Phe
1 5 10 15
Met?His?Arg?Asn?Ala?Val?Phe?Leu?Cys?Glu?Arg?Leu?Cys?Ala?Gln?Phe
20 25 30
Pro?Ser?Glu?Thr?Asn?Val?Gln?Leu?Leu?Ala?Thr?Cys?Tyr?Leu?His?Asn
35 40 45
Asn?Gln?Pro?Tyr?Ala?Ala?Tyr?His?Ile?Leu?Lys?Gly?Lys?Lys?Leu?Pro
50 55 60
Glu?Ser?Arg?Tyr?Leu?Phe?Ala?Thr?Ser?Cys?Phe?Arg?Met?Asn?Leu?Leu
65 70 75 80
Arg?Glu?Ala?Glu?Glu?Thr?Leu?Cys?Pro?Val?Asn?Glu?Pro?Asn?Met?Glu
85 90 95
Val?Pro?Ser?Gly?Ala?Thr?Gly?His?Tyr?Leu?Leu?Gly?Val?Ile?Tyr?Arg
100 105 110
Cys?Thr?Gly?Arg?Ile?Ser?Ala?Ala?Ala?Glu?Gln?Phe?Thr?Gln?Ala?Leu
115 120 125
Thr?Leu?Asp?Pro?Leu?Leu?Trp?Ala?Ala?Tyr?Glu?Glu?Leu?Cys?Ile?Leu
130 135 140
Gly?Ile?Ala?Glu?Asp?Thr?Asp?Glu?Cys?Phe?Ser?Glu?Ser?Thr?Ala?Leu
145 150 155 160
Arg?Leu?Gln?Gln?Glu?His?Thr?Ser?Thr?Ala?Thr?Leu?Val?Lys?Ser?Asn
165 170 175
Phe?Ala?Asn?Glu?Asn?Arg?Val?Leu?Ser?Ser?Arg?Val?Ser?Ala?Asn?Leu
180 185 190
Gly?Asp?Ile?Ser?Pro?Lys?Gln?Ile?Lys?Gln?Leu?His?Ala?Asn?Asn?Ile
195 200 205
Ala?Glu?Val?Ser?Gly?Tyr?Pro?His?Val?Arg?Pro?Thr?Ala?Leu?His?Val
210 215 220
Gln?Asn?Ser?Ser?Thr?Ser?Asn?Val?Ala?Gln?Phe?Asp?Thr?Pro?Ser?Pro
225 230 235 240
Thr?Ala?Ala?Gln?Thr?Ser?Ser?Ile?Met?Pro?Pro?Pro?Leu?Phe?Arg?Asn
245 250 255
Val?His?Ala
<210>147
<211>1314
<212>DNA
<213> sugarcane
<220>
<221>misc_feature
<222>(416)..(416)
<223>n is a, c, g, or t
<220>
<221>misc_feature
<222>(881)..(881)
<223>n is a, c, g, or t
<400>147
attcaaattc?aaatacctgg?ggtttggagg?gaatggtaca?ggttattcgt?cagggaaatt 60
gcgagtaaac?tcgtccacac?catcaaaatg?gtgttaacca?ccatacgttc?cgtgcaagtt 120
aggaaaggaa?aaccacgggc?tacagaaaat?tttgatgaag?gaagtagata?tgaagtcatt 180
gatgaaatgt?ggacagacaa?tatatcagga?acttcatctt?ctgtaagtac?agctgatgga 240
agatcctttg?agcaagataa?agctgaacga?attctgttgc?aagactccaa?attggcactt 300
ggtattaggg?agatattggg?acttgtccga?acactcggtg?aaggttgtag?gctttcttgc 360
ttgtttaagt?gccatgaagc?cttggaagtc?tacagaagac?tccctgagac?ccattntagc 420
actggatgga?gcatatgcca?ggttggtaag?gcatatttcg?aattagttga?ttatttggaa 480
gctgatcgtt?actttgaatt?ggcacaccga?ctgtcgcctt?gtacgcttga?tggaatggac 540
atctattcta?ctgttcttta?tcatctgaat?gaggaaatga?gactaagcta?ccttgctcaa 600
gagcttattt?ccattgatcg?actatctcct?caagcatggt?gtgcagtggg?caattgcttt 660
gccttgagga?aagatcatga?gactgctttg?aagaattttc?aacgttcggt?acagcttgac 720
tcaagatttg?catatgctca?cactctatgt?ggtcatgagt?attctgcatt?ggaggattat 780
gagaatagta?tcaaattcta?ccggtgtgca?ctgcaggtag?atgaaaggca?ctacaatgcc 840
tggtatggcc?ttggggtggt?gtatcttcgc?caggaaaagt?ntgagtttgc?tgagcatcat 900
ttcagaaggg?catttcagat?aaatcctcgc?tcttctgttc?tcatgtgcta?tcttgggatg 960
gcgttgcatt?ctcttaagag?gaaggaggag?gcattggaaa?tgatggagaa?agctatagca 1020
gctgataaga?agaatccact?gcccaagtat?cagaaggcct?taatccttct?aggtcttcag 1080
aagtatcaag?aagctctgga?tgagttggag?cggctaaagg?agattgcacc?tcatgagagc 1140
agtatgtatg?cactgatggg?aaagatttac?aagcaactca?atatccttga?caaagctgtt 1200
ttctgctttg?gcattgccct?ggatttgaaa?cctcctgctg?ctgatcttgc?tataattaag 1260
tccgcaatgg?agaaagtaca?tctccctgat?gaactgatgg?aggatgacct?gtaa 1314
<210>148
<211>437
<212>PRT
<213> sugarcane
<220>
<221> is uncertain
<222>(139)..(139)
<223>Xaa can be any natural amino acid
<220>
<221> is uncertain
<222>(294)..(294)
<223>Xaa can be any natural amino acid
<400>148
Ile?Gln?Ile?Gln?Ile?Pro?Gly?Val?Trp?Arg?Glu?Trp?Tyr?Arg?Leu?Phe
1 5 10 15
Val?Arg?Glu?Ile?Ala?Ser?Lys?Leu?Val?His?Thr?Ile?Lys?Met?Val?Leu
20 25 30
Thr?Thr?Ile?Arg?Ser?Val?Gln?Val?Arg?Lys?Gly?Lys?Pro?Arg?Ala?Thr
35 40 45
Glu?Asn?Phe?Asp?Glu?Gly?Ser?Arg?Tyr?Glu?Val?Ile?Asp?Glu?Met?Trp
50 55 60
Thr?Asp?Asn?Ile?Ser?Gly?Thr?Ser?Ser?Ser?Val?Ser?Thr?Ala?Asp?Gly
65 70 75 80
Arg?Ser?Phe?Glu?Gln?Asp?Lys?Ala?Glu?Arg?Ile?Leu?Leu?Gln?Asp?Ser
85 90 95
Lys?Leu?Ala?Leu?Gly?Ile?Arg?Glu?Ile?Leu?Gly?Leu?Val?Arg?Thr?Leu
100 105 110
Gly?Glu?Gly?Cys?Arg?Leu?Ser?Cys?Leu?Phe?Lys?Cys?His?Glu?Ala?Leu
115 120 125
Glu?Val?Tyr?Arg?Arg?Leu?Pro?Glu?Thr?His?Xaa?Ser?Thr?Gly?Trp?Ser
130 135 140
Ile?Cys?Gln?Val?Gly?Lys?Ala?Tyr?Phe?Glu?Leu?Val?Asp?Tyr?Leu?Glu
145 150 155 160
Ala?Asp?Arg?Tyr?Phe?Glu?Leu?Ala?His?Arg?Leu?Ser?Pro?Cys?Thr?Leu
165 170 175
Asp?Gly?Met?Asp?Ile?Tyr?Ser?Thr?Val?Leu?Tyr?His?Leu?Asn?Glu?Glu
180 185 190
Met?Arg?Leu?Ser?Tyr?Leu?Ala?Gln?Glu?Leu?Ile?Ser?Ile?Asp?Arg?Leu
195 200 205
Ser?Pro?Gln?Ala?Trp?Cys?Ala?Val?Gly?Asn?Cys?Phe?Ala?Leu?Arg?Lys
210 215 220
Asp?His?Glu?Thr?Ala?Leu?Lys?Asn?Phe?Gln?Arg?Ser?Val?Gln?Leu?Asp
225 230 235 240
Ser?Arg?Phe?Ala?Tyr?Ala?His?Thr?Leu?Cys?Gly?His?Glu?Tyr?Ser?Ala
245 250 255
Leu?Glu?Asp?Tyr?Glu?Asn?Ser?Ile?Lys?Phe?Tyr?Arg?Cys?Ala?Leu?Gln
260 265 270
Val?Asp?Glu?Arg?His?Tyr?Asn?Ala?Trp?Tyr?Gly?Leu?Gly?Val?Val?Tyr
275 280 285
Leu?Arg?Gln?Glu?Lys?Xaa?Glu?Phe?Ala?Glu?His?His?Phe?Arg?Arg?Ala
290 295 300
Phe?Gln?Ile?Asn?Pro?Arg?Ser?Ser?Val?Leu?Met?Cys?Tyr?Leu?Gly?Met
305 310 315 320
Ala?Leu?His?Ser?Leu?Lys?Arg?Lys?Glu?Glu?Ala?Leu?Glu?Met?Met?Glu
325 330 335
Lys?Ala?Ile?Ala?Ala?Asp?Lys?Lys?Asn?Pro?Leu?Pro?Lys?Tyr?Gln?Lys
340 345 350
Ala?Leu?Ile?Leu?Leu?Gly?Leu?Gln?Lys?Tyr?Gln?Glu?Ala?Leu?Asp?Glu
355 360 365
Leu?Glu?Arg?Leu?Lys?Glu?Ile?Ala?Pro?His?Glu?Ser?Ser?Met?Tyr?Ala
370 375 380
Leu?Met?Gly?Lys?Ile?Tyr?Lys?Gln?Leu?Asn?Ile?Leu?Asp?Lys?Ala?Val
385 390 395 400
Phe?Cys?Phe?Gly?Ile?Ala?Leu?Asp?Leu?Lys?Pro?Pro?Ala?Ala?Asp?Leu
405 410 415
Ala?Ile?Ile?Lys?Ser?Ala?Met?Glu?Lys?Val?His?Leu?Pro?Asp?Glu?Leu
420 425 430
Met?Glu?Asp?Asp?Leu
435
<210>149
<211>54
<212>DNA
<213> artificial sequence
<220>
<223> primer: prm00778
<400>149
ggggacaagt?ttgtacaaaa?aagcaggctt?cacaatgcaa?caactgtcaa?cttc 54
<210>150
<211>49
<212>DNA
<213> artificial sequence
<220>
<223> primer: prm00779
<400>150
ggggaccact?ttgtacaaga?aagctgggtt?ggagtagcta?tggtttcac 49
<210>151
<211>1042
<212>DNA
<213> rice
<400>151
ggggagttag?gaaccttgac?atacaaccaa?tgataccatt?ttttttcaag?cagctagagg 60
tacagaggtt?catatttttt?agatggctca?ttagtgatat?tttagtcaaa?aatttcagaa 120
gtacggccac?gggtgatggc?ctgaactaat?attttattcg?aggtgccgct?acatcatcgt 180
ctaaagtaca?cgcaagattc?aacggaaaaa?agaaaccgat?cgatcgagat?cagttagtta 240
atgaaataac?tagatcaact?catgtcgtca?aaaacaaaag?atgctcatct?atggacaaca 300
cacgctgatg?attcgatcat?caaacaaagg?tggtagtagt?agtaaagcgt?atcgtgtttc 360
tcatcagaaa?gaagaattaa?agaaaaaact?aatcccgtct?cgcgagccag?agaaaattcc 420
ctacaaaagc?cactcctttg?atttgacatg?caaaagcaag?gctccactcc?tctactaccc 480
tacaactaca?caacactgtc?tctctatctc?caaaggcagt?agctgtattg?gcttccagct 540
tttcctctct?acctctaatg?atagcttgga?gcaagttcaa?tagtatagct?aactactagc 600
tctaattcat?ctataatcaa?tctaatagct?tattcataca?atagttatat?actacattat 660
taatatctgg?tcccatctat?catacacact?gagtctgtgc?tatagctgac?tacaaatctg 720
tagcccgctg?ctcttctctc?ttcatttatc?ttcttaaaat?atatttgcag?ctggcttatg 780
gcttatagct?tgatattgag?agggagagga?gtgagagcta?gctcagctca?gctcaaggta 840
aacaacaagg?cacactcttc?ctacctcttc?tccggttctt?cctttttcct?ctttctcttc 900
gtccaagaac?ttcacctcaa?tagctcgagc?tacggcctaa?cttttgcgtt?gcgcaggaga 960
gctcgatcgc?tgcaccaata?cttcactgga?gatcgcctag?ctgcagctag?ctagcttatc 1020
ctgcgtgtct?tgagcttctc?tc 1042
<210>152
<211>951
<212>DNA
<213> rice
<400>152
atggatccgg?tcacggcatc?aatacacggt?caccatcttc?ctccaccgtt?caacacccgc 60
gacttccatc?accatctcca?gcagcagcag?caccagctgc?atctcaagac?cgaggatgac 120
caaggcggcg?gcactccggg?tgtcttcggc?agccgcggca?ccaagcgcga?ccacgacgac 180
gacgagaaca?gtggcaacgg?ccatggaagc?ggtggtgacg?gcggtgacct?cgcgctggta 240
cccccctcgg?gtggcgggcc?ggacggcgcc?gggagcgaga?gcgccacgcg?ccgcccgagg 300
ggacgcccgg?cggggtccaa?gaacaagccg?aagccaccga?tcatcatcac?cagggacagc 360
gccaacacgc?tccggacgca?tgtcatggag?gtggccggcg?gctgcgacat?ctccgagagc 420
atcaccacgt?tcgcgcgacg?ccggcagcgc?ggggtttgcg?tgctcagcgg?cgccggcacc 480
gtcactaacg?tcacgctgcg?gcagcccgca?tcgcagggag?cggtcgttgc?gctccacggc 540
cggttcgaga?tactctccct?ctccggctcc?ttcctcccgc?cgcccgcccc?gccggaggcc 600
acggggctca?ccgtctacct?ggccggaggc?cagggccagg?tcgtgggcgg?cagcgtcgtc 660
ggcgcgctga?ccgcggctgg?gcctgtggtg?ataatggcgg?cgtcttttgc?gaacgcggtg 720
tacgagcggc?tgccgttgga?ggacgacgag?ctactggcgg?ctcaagggca?agccgacagc 780
gctgggttgc?tcgccgcggg?gcagcaagcg?gcgcagctcg?ccggcggggc?cgtcgatcca 840
agcctcttcc?aaggactacc?accaaaccta?ctcggaaacg?tgcagctgcc?gccggaagcc 900
gcctacggat?ggaaccctgg?cgccggcggt?ggccgcccgg?cgccgttctg?a 951
<210>153
<211>316
<212>PRT
<213> rice
<400>153
Met?Asp?Pro?Val?Thr?Ala?Ser?Ile?His?Gly?His?His?Leu?Pro?Pro?Pro
1 5 10 15
Phe?Asn?Thr?Arg?Asp?Phe?His?His?His?Leu?Gln?Gln?Gln?Gln?His?Gln
20 25 30
Leu?His?Leu?Lys?Thr?Glu?Asp?Asp?Gln?Gly?Gly?Gly?Thr?Pro?Gly?Val
35 40 45
Phe?Gly?Ser?Arg?Gly?Thr?Lys?Arg?Asp?His?Asp?Asp?Asp?Glu?Asn?Ser
50 55 60
Gly?Asn?Gly?His?Gly?Ser?Gly?Gly?Asp?Gly?Gly?Asp?Leu?Ala?Leu?Val
65 70 75 80
Pro?Pro?Ser?Gly?Gly?Gly?Pro?Asp?Gly?Ala?Gly?Ser?Glu?Ser?Ala?Thr
85 90 95
Arg?Arg?Pro?Arg?Gly?Arg?Pro?Ala?Gly?Ser?Lys?Asn?Lys?Pro?Lys?Pro
100 105 110
Pro?Ile?Ile?Ile?Thr?Arg?Asp?Ser?Ala?Asn?Thr?Leu?Arg?Thr?His?Val
115 120 125
Met?Glu?Val?Ala?Gly?Gly?Cys?Asp?Ile?Ser?Glu?Ser?Ile?Thr?Thr?Phe
130 135 140
Ala?Arg?Arg?Arg?Gln?Arg?Gly?Val?Cys?Val?Leu?Ser?Gly?Ala?Gly?Thr
145 150 155 160
Val?Thr?Asn?Val?Thr?Leu?Arg?Gln?Pro?Ala?Ser?Gln?Gly?Ala?Val?Val
165 170 175
Ala?Leu?His?Gly?Arg?Phe?Glu?Ile?Leu?Ser?Leu?Ser?Gly?Ser?Phe?Leu
180 185 190
Pro?Pro?Pro?Ala?Pro?Pro?Glu?Ala?Thr?Gly?Leu?Thr?Val?Tyr?Leu?Ala
195 200 205
Gly?Gly?Gln?Gly?Gln?Val?Val?Gly?Gly?Ser?Val?Val?Gly?Ala?Leu?Thr
210 215 220
Ala?Ala?Gly?Pro?Val?Val?Ile?Met?Ala?Ala?Ser?Phe?Ala?Asn?Ala?Val
225 230 235 240
Tyr?Glu?Arg?Leu?Pro?Leu?Glu?Asp?Asp?Glu?Leu?Leu?Ala?Ala?Gln?Gly
245 250 255
Gln?Ala?Asp?Ser?Ala?Gly?Leu?Leu?Ala?Ala?Gly?Gln?Gln?Ala?Ala?Gln
260 265 270
Leu?Ala?Gly?Gly?Ala?Val?Asp?Pro?Ser?Leu?Phe?Gln?Gly?Leu?Pro?Pro
275 280 285
Asn?Leu?Leu?Gly?Asn?Val?Gln?Leu?Pro?Pro?Glu?Ala?Ala?Tyr?Gly?Trp
290 295 300
Asn?Pro?Gly?Ala?Gly?Gly?Gly?Arg?Pro?Ala?Pro?Phe
305 310 315
<210>154
<211>918
<212>DNA
<213> rice
<400>154
atggcaggtc?tcgacctcgg?caccgccgcg?acgcgctacg?tccaccagct?ccaccacctc 60
caccccgacc?tccagctgca?gcacagctac?gccaagcagc?acgagccgtc?cgacgacgac 120
cccaacggca?gcggcggcgg?cggcaacagc?aacggcgggc?cgtacgggga?ccatgacggc 180
gggtcctcgt?cgtcaggccc?tgccaccgac?ggcgcggtcg?gcgggcccgg?cgacgtggtg 240
gcgcgccggc?cgcgggggcg?cccgcctggc?tccaagaaca?agccgaagcc?gccggtgatc 300
atcacgcggg?agagcgccaa?cacgctgcgc?gcccacatcc?tggaggtcgg?gagcggctgc 360
gacgtgttcg?agtgcgtctc?cacgtacgcg?cgccggcggc?agcgcggcgt?gtgcgtgctg 420
agcggcagcg?gcgtggtcac?caacgtgacg?ctgcgtcagc?cgtcggcgcc?cgcgggcgcc 480
gtcgtgtcgc?tgcacgggag?gttcgagatc?ctgtcgctct?cgggctcctt?cctcccgccg 540
ccggctcccc?ccggcgccac?cagcctcacc?atcttcctcg?ccgggggcca?gggacaggtc 600
gtcggcggca?acgtcgtcgg?cgcgctctac?gccgcgggcc?cggtcatcgt?catcgcggcg 660
tccttcgcca?acgtcgccta?cgagcgcctc?ccactggagg?aggaggaggc?gccgccgccg 720
caggccggcc?tgcagatgca?gcagcccggc?ggcggcgccg?atgctggtgg?catgggtggc 780
gcgttcccgc?cggacccgtc?tgccgccggc?ctcccgttct?tcaacctgcc?gctcaacaac 840
atgcccggtg?gcggcggctc?acagctccct?cccggcgccg?acggccatgg?ctgggccggc 900
gcacggccac?cgttctga 918
<210>155
<211>305
<212>PRT
<213> rice
<400>155
Met?Ala?Gly?Leu?Asp?Leu?Gly?Thr?Ala?Ala?Thr?Arg?Tyr?Val?His?Gln
1 5 10 15
Leu?His?His?Leu?His?Pro?Asp?Leu?Gln?Leu?Gln?His?Ser?Tyr?Ala?Lys
20 25 30
Gln?His?Glu?Pro?Ser?Asp?Asp?Asp?Pro?Asn?Gly?Ser?Gly?Gly?Gly?Gly
35 40 45
Asn?Ser?Asn?Gly?Gly?Pro?Tyr?Gly?Asp?His?Asp?Gly?Gly?Ser?Ser?Ser
50 55 60
Ser?Gly?Pro?Ala?Thr?Agp?Gly?Ala?Val?Gly?Gly?Pro?Gly?Asp?Val?Val
65 70 75 80
Ala?Arg?Arg?Pro?Arg?Gly?Arg?Pro?Pro?Gly?Ser?Lys?Asn?Lys?Pro?Lys
85 90 95
Pro?Pro?Val?Ile?Ile?Thr?Arg?Glu?Ser?Ala?Asn?Thr?Leu?Arg?Ala?His
100 105 110
Ile?Leu?Glu?Val?Gly?Ser?Gly?Cys?Asp?Val?Phe?Glu?Cys?Val?Ser?Thr
115 120 125
Tyr?Ala?Arg?Arg?Arg?Gln?Arg?Gly?Val?Cys?Val?Leu?Ser?Gly?Ser?Gly
130 135 140
Val?Val?Thr?Asn?Val?Thr?Leu?Arg?Gln?Pro?Ser?Ala?Pro?Ala?Gly?Ala
145 150 155 160
Val?Val?Ser?Leu?His?Gly?Arg?Phe?Glu?Ile?Leu?Ser?Leu?Ser?Gly?Ser
165 170 175
Phe?Leu?Pro?Pro?Pro?Ala?Pro?Pro?Gly?Ala?Thr?Ser?Leu?Thr?Ile?Phe
180 185 190
Leu?Ala?Gly?Gly?Gln?Gly?Gln?Val?Val?Gly?Gly?Asn?Val?Val?Gly?Ala
195 200 205
Leu?Tyr?Ala?Ala?Gly?Pro?Val?Ile?Val?Ile?Ala?Ala?Ser?Phe?Ala?Asn
210 215 220
Val?Ala?Tyr?Glu?Arg?Leu?Pro?Leu?Glu?Glu?Glu?Glu?Ala?Pro?Pro?Pro
225 230 235 240
Gln?Ala?Gly?Leu?Gln?Met?Gln?Gln?Pro?Gly?Gly?Gly?Ala?Asp?Ala?Gly
245 250 255
Gly?Met?Gly?Gly?Ala?Phe?Pro?Pro?Asp?Pro?Ser?Ala?Ala?Gly?Leu?Pro
260 265 270
Phe?Phe?Asn?Leu?Pro?Leu?Asn?Asn?Met?Pro?Gly?Gly?Gly?Gly?Ser?Gln
275 280 285
Leu?Pro?Pro?Gly?Ala?Asp?Gly?His?Gly?Trp?Ala?Gly?Ala?Arg?Pro?Pro
290 295 300
Phe
305
<210>156
<211>906
<212>DNA
<213> Root or stem of Littleleaf Indianmulberry (Lotus corniculatus)
<400>156
atggatccat?tatcagcaca?cggccactct?cttcctcctc?cttttctcca?tctgcaccac 60
caacaccaac?accagcagca?gcatcagcag?catcagttcc?actctttaca?gcagcagcaa 120
accccagcag?aagatgaaca?gagtggaagc?agcggcggca?tcaaaaggga?acgcgatgaa 180
aacaacaaca?gccatgacgg?caaagaaggc?tccggaggcg?gaggcgaaag?cgagaattca 240
agaagacctc?gaggaaggcc?cgccggatcg?aagaacaagc?ctaagccgcc?catcatcatc 300
acccgcgaca?gcgccaacgc?acttaagacc?cacgtcatgg?aggtcgccga?cggctgcgac 360
atcgtcgaca?gcgtctccaa?ctttgcaaga?cgccgccagc?gcggcgtctg?catcatgagc 420
ggcactggaa?ccgtcaccaa?cgtcactctc?aggcagccag?cttcttccgg?cgctgttgtc 480
accctccacg?gaaggtttga?gattctctcc?ctggcaggat?cgttcctgcc?gccgcctgct 540
ccaccggcag?catcaggttt?gaccatttac?ttggctggtg?gacaagggca?ggttgttgga 600
ggaagtgttg?tgggagctct?cattgcttcg?ggacctgtgg?ttatcatggc?agcttcgttc 660
agcaacgctg?cgtatgagag?gcttcctttg?gaagatgagg?acccttcatt?ggcaatgcaa 720
ggaggttcaa?tgggttcacc?acccggtggt?agtggtggtg?gtggtggagt?tggtcagcaa 780
cagcagcaac?agcttttagg?ggatgcaact?gccccacttt?ttcatggttt?gcctccgaat 840
cttctcaatt?ctgttcagat?gccaaactcc?gataacttct?ggccatctgg?ccgctctcct 900
tactga 906
<210>157
<211>301
<212>PRT
<213> Root or stem of Littleleaf Indianmulberry
<400>157
Met?Asp?Pro?Leu?Ser?Ala?His?Gly?His?Ser?Leu?Pro?Pro?Pro?Phe?Leu
1 5 10 15
His?Leu?His?His?Gln?His?Gln?His?Gln?Gln?Gln?His?Gln?Gln?His?Gln
20 25 30
Phe?His?Ser?Leu?Gln?Gln?Gln?Gln?Thr?Pro?Ala?Glu?Asp?Glu?Gln?Ser
35 40 45
Gly?Ser?Ser?Gly?Gly?Ile?Lys?Arg?Glu?Arg?Asp?Glu?Asn?Asn?Asn?Ser
50 55 60
His?Asp?Gly?Lys?Glu?Gly?Ser?Gly?Gly?Gly?Gly?Glu?Ser?Glu?Asn?Ser
65 70 75 80
Arg?Arg?Pro?Arg?Gly?Arg?Pro?Ala?Gly?Ser?Lys?Asn?Lys?Pro?Lys?Pro
85 90 95
Pro?Ile?Ile?Ile?Thr?Arg?Asp?Ser?Ala?Asn?Ala?Leu?Lys?Thr?His?Val
100 105 110
Met?Glu?Val?Ala?Asp?Gly?Cys?Asp?Ile?Val?Asp?Ser?Val?Ser?Asn?Phe
115 120 125
Ala?Arg?Arg?Arg?Gln?Arg?Gly?Val?Cys?Ile?Met?Ser?Gly?Thr?Gly?Thr
130 135 140
Val?Thr?Asn?Val?Thr?Leu?Arg?Gln?Pro?Ala?Ser?Ser?Gly?Ala?Val?Val
145 150 155 160
Thr?Leu?His?Gly?Arg?Phe?Glu?Ile?Leu?Ser?Leu?Ala?Gly?Ser?Phe?Leu
165 170 175
Pro?Pro?Pro?Ala?Pro?Pro?Ala?Ala?Ser?Gly?Leu?Thr?Ile?Tyr?Leu?Ala
180 185 190
Gly?Gly?Gln?Gly?Gln?Val?Val?Gly?Gly?Ser?Val?Val?Gly?Ala?Leu?Ile
195 200 205
Ala?Ser?Gly?Pro?Val?Val?Ile?Met?Ala?Ala?Ser?Phe?Ser?Asn?Ala?Ala
210 215 220
Tyr?Glu?Arg?Leu?Pro?Leu?Glu?Asp?Glu?Asp?Pro?Ser?Leu?Ala?Met?Gln
225 230 235 240
Gly?Gly?Ser?Met?Gly?Ser?Pro?Pro?Gly?Gly?Ser?Gly?Gly?Gly?Gly?Gly
245 250 255
Val?Gly?Gln?Gln?Gln?Gln?Gln?Gln?Leu?Leu?Gly?Asp?Ala?Thr?Ala?Pro
260 265 270
Leu?Phe?His?Gly?Leu?Pro?Pro?Asn?Leu?Leu?Asn?Ser?Val?Gln?Met?Pro
275 280 285
Asn?Ser?Asp?Asn?Phe?Trp?Pro?Ser?Gly?Arg?Ser?Pro?Tyr
290 295 300
<210>158
<211>1020
<212>DNA
<213> Arabidopis thaliana
<400>158
atggatccag?ttcaatctca?tggatcacaa?agctctcttc?ctcctccttt?ccatgctaga 60
gatttccaat?tacatcttca?acaacaacaa?caacatcaac?aacaacatca?acaacaacaa 120
caacaacagt?tctttctcca?ccatcatcag?caaccacaaa?gaaaccttga?tcaagatcac 180
gagcagcaag?gagggtcaat?attgaataga?tctatcaaga?tggatcgcga?agagacaagc 240
gataacatgg?acaacatcgc?taataccaac?agcggtagcg?aaggtaaaga?gatgagttta 300
cacggaggag?aaggaggaag?cggtggtgga?ggaagtggag?aacagatgac?aagaaggcca 360
agaggaagac?cagcaggatc?caagaacaaa?cctaaagctc?caataatcat?aacaagagac 420
agcgcaaacg?cgcttcgaac?tcacgtcatg?gagataggag?acggatgtga?catagttgac 480
tgtatggcta?cgttcgctag?acgccgccaa?agaggcgttt?gcgttatgag?cggtacagga 540
agcgttacta?acgtcactat?acgtcagcct?ggatcgccac?ctggctcggt?ggttagcctt 600
cacggccggt?ttgaaatcct?ctctctttcg?ggatctttct?tgcctccgcc?tgcgccgcct 660
gcagccaccg?gactaagcgt?ttacctagcc?ggaggacaag?ggcaggtcgt?tggaggtagt 720
gtggtgggac?ctttgttgtg?ttcgggtcct?gtggtggtta?tggcggcttc?ttttagcaat 780
gcggcgtacg?aaaggctgcc?tttggaagaa?gatgagatgc?agacgccagt?tcaaggaggc 840
ggtggaggag?gaggaggtgg?tggtggaatg?ggatctcccc?cgatgatggg?acagcaacaa 900
gctatggcag?ctatggcggc?ggctcaagga?ctaccaccga?atcttcttgg?ttcggttcag 960
ttgccaccgc?cacaacagaa?tgatcagcag?tattggtcta?cgggtcggcc?accgtattga 1020
<210>159
<211>339
<212>PRT
<213> Arabidopis thaliana
<400>159
Met?Asp?Pro?Val?Gln?Ser?His?Gly?Ser?Gln?Ser?Ser?Leu?Pro?Pro?Pro
1 5 10 15
Phe?His?Ala?Arg?Asp?Phe?Gln?Leu?His?Leu?Gln?Gln?Gln?Gln?Gln?His
20 25 30
Gln?Gln?Gln?His?Gln?Gln?Gln?Gln?Gln?Gln?Gln?Phe?Phe?Leu?His?His
35 40 45
His?Gln?Gln?Pro?Gln?Arg?Asn?Leu?Asp?Gln?Asp?His?Glu?Gln?Gln?Gly
50 55 60
Gly?Ser?Ile?Leu?Asn?Arg?Ser?Ile?Lys?Met?Asp?Arg?Glu?Glu?Thr?Ser
65 70 75 80
Asp?Asn?Met?Asp?Asn?Ile?Ala?Asn?Thr?Asn?Ser?Gly?Ser?Glu?Gly?Lys
85 90 95
Glu?Met?Ser?Leu?His?Gly?Gly?Glu?Gly?Gly?Ser?Gly?Gly?Gly?Gly?Ser
100 105 110
Gly?Glu?Gln?Met?Thr?Arg?Arg?Pro?Arg?Gly?Arg?Pro?Ala?Gly?Ser?Lys
115 120 125
Asn?Lys?Pro?Lys?Ala?Pro?Ile?Ile?Ile?Thr?Arg?Asp?Ser?Ala?Asn?Ala
130 135 140
Leu?Arg?Thr?His?Val?Met?Glu?Ile?Gly?Asp?Gly?Cys?Asp?Ile?Val?Asp
145 150 155 160
Cys?Met?Ala?Thr?Phe?Ala?Arg?Arg?Arg?Gln?Arg?Gly?Val?Cys?Val?Met
165 170 175
Ser?Gly?Thr?Gly?Ser?Val?Thr?Asn?Val?Thr?Ile?Arg?Gln?Pro?Gly?Ser
180 185 190
Pro?Pro?Gly?Ser?Val?Val?Ser?Leu?His?Gly?Arg?Phe?Glu?Ile?Leu?Ser
195 200 205
Leu?Ser?Gly?Ssr?Phe?Leu?Pro?Pro?Pro?Ala?Pro?Pro?Ala?Ala?Thr?Gly
210 215 220
Leu?Ser?Val?Tyr?Leu?Ala?Gly?Gly?Gln?Gly?Gln?Val?Val?Gly?Gly?Ser
225 230 235 240
Val?Val?Gly?Pro?Leu?Leu?Cys?Ser?Gly?Pro?Val?Val?Val?Met?Ala?Ala
245 250 255
Ser?Phe?Ser?Asn?Ala?Ala?Tyr?Glu?Arg?Leu?Pro?Leu?Glu?Glu?Asp?Glu
260 265 270
Met?Gln?Thr?Pro?Val?Gln?Gly?Gly?Gly?Gly?Gly?Gly?Gly?Gly?Gly?Gly
275 280 285
Gly?Met?Gly?Ser?Pro?Pro?Met?Met?Gly?Gln?Gln?Gln?Ala?Met?Ala?Ala
290 295 300
Met?Ala?Ala?Ala?Gln?Gly?Leu?Pro?Pro?Asn?Leu?Leu?Gly?Ser?Val?Gln
305 310 315 320
Leu?Pro?Pro?Pro?Gln?Gln?Asn?Asp?Gln?Gln?Tyr?Trp?Ser?Thr?Gly?Arg
325 330 335
Pro?Pro?Tyr
<210>160
<211>975
<212>DNA
<213> Arabidopis thaliana
<400>160
atggatccag?tacaatctca?tggatcacaa?agctctctac?ctcctccttt?ccacgcaaga 60
gactttcaat?tacatcttca?acaacagcaa?caagagttct?tcctccacca?tcaccagcaa 120
caaagaaacc?aaaccgatgg?tgaccaacaa?ggaggatcag?gaggaaaccg?acaaatcaag 180
atggatcgtg?aagagacaag?cgacaacata?gacaacatag?ctaacaacag?cggtagtgaa 240
ggtaaagaca?tagatataca?cggtggttca?ggagaaggag?gtggtggctc?cggaggagat 300
catcagatga?caagaagacc?aagaggaaga?ccagcgggat?ccaagaacaa?accaaaacca 360
ccgattatca?tcacacggga?cagcgcaaac?gcgcttagaa?cccacgtgat?ggagatcgga 420
gatggctgcg?acttagtcga?aagcgttgcc?acttttgcac?gaagacgcca?acgcggcgtt 480
tgcgttatga?gcggtactgg?aaatgttact?aacgtcacta?tacgtcagcc?tggatctcat 540
ccttctcctg?gctcggtagt?tagtcttcac?ggaaggttcg?agattctatc?tctctcagga 600
tcttttctcc?ctcctccggc?tcctcctaca?gccaccggat?tgagtgttta?cctcgctgga 660
ggacaaggac?aggtggttgg?aggaagcgta?gttggtccgt?tgttatgtgc?tggtcctgtc 720
gttgtcatgg?ctgcgtcttt?tagcaatgcg?gcgtacgaaa?ggttgccttt?agaggaagat 780
gagatgcaga?cgccggttca?tggcggagga?ggaggaggat?cattggagtc?gccgccaatg 840
atgggacaac?aactgcaaca?tcagcaacaa?gctatgtcag?gtcatcaagg?gttaccacct 900
aatcttcttg?gttcggttca?gttgcagcag?caacatgatc?agtcttattg?gtcaacggga 960
cgaccaccgt?attga 975
<210>161
<211>324
<212>PRT
<213> Arabidopis thaliana
<400>161
Met?Asp?Pro?Val?Gln?Ser?His?Gly?Ser?Gln?Ser?Ser?Leu?Pro?Pro?Pro
1 5 10 15
Phe?His?Ala?Arg?Asp?Phe?Gln?Leu?His?Leu?Gln?Gln?Gln?Gln?Gln?Glu
20 25 30
Phe?Phe?Leu?His?His?His?Gln?Gln?Gln?Arg?Asn?Gln?Thr?Asp?Gly?Asp
35 40 45
Gln?Gln?Gly?Gly?Ser?Gly?Gly?Asn?Arg?Gln?Ile?Lys?Met?Asp?Arg?Glu
50 55 60
Glu?Thr?Ser?Asp?Asn?Ile?Asp?Asn?Ile?Ala?Asn?Asn?Ser?Gly?Ser?Glu
65 70 75 80
Gly?Lys?Asp?Ile?Asp?Ile?His?Gly?Gly?Ser?Gly?Glu?Gly?Gly?Gly?Gly
85 90 95
Ser?Gly?Gly?Asp?His?Gln?Met?Thr?Arg?Arg?Pro?Arg?Gly?Arg?Pro?Ala
100 105 110
Gly?Ser?Lys?Asn?Lys?Pro?Lys?Pro?Pro?Ile?Ile?Ile?Thr?Arg?Asp?Ser
115 120 125
Ala?Asn?Ala?Leu?Arg?Thr?His?Val?Met?Glu?Ile?Gly?Asp?Gly?Cys?Asp
130 135 140
Leu?Val?Glu?Ser?Val?Ala?Thr?Phe?Ala?Arg?Arg?Arg?Gln?Arg?Gly?Val
145 150 155 160
Cys?Val?Met?Ser?Gly?Thr?Gly?Asn?Val?Thr?Asn?Val?Thr?Ile?Arg?Gln
165 170 175
Pro?Gly?Ser?His?Pro?Ser?Pro?Gly?Ser?Val?Val?Ser?Leu?His?Gly?Arg
180 185 190
Phe?Glu?Ile?Leu?Ser?Leu?Ser?Gly?Ser?Phe?Leu?Pro?Pro?Pro?Ala?Pro
195 200 205
Pro?Thr?Ala?Thr?Gly?Leu?Ser?Val?Tyr?Leu?Ala?Gly?Gly?Gln?Gly?Gln
210 215 220
Val?Val?Gly?Gly?Ser?Val?Val?Gly?Pro?Leu?Leu?Cys?Ala?Gly?Pro?Val
225 230 235 240
Val?Val?Met?Ala?Ala?Ser?Phe?Ser?Asn?Ala?Ala?Tyr?Glu?Arg?Leu?Pro
245 250 255
Leu?Glu?Glu?Asp?Glu?Met?Gln?Thr?Pro?Val?His?Gly?Gly?Gly?Gly?Gly
260 265 270
Gly?Ser?Leu?Glu?Ser?Pro?Pro?Met?Met?Gly?Gln?Gln?Leu?Gln?His?Gln
275 280 285
Gln?Gln?Ala?Met?Ser?Gly?His?Gln?Gly?Leu?Pro?Pro?Asn?Leu?Leu?Gly
290 295 300
Ser?Val?Gln?Leu?Gln?Gln?Gln?His?Asp?Gln?Ser?Tyr?Trp?Ser?Thr?Gly
305 310 315 320
Arg?Pro?Pro?Tyr
<210>162
<211>954
<212>DNA
<213> Arabidopis thaliana
<400>162
atggatcagg?tctctcgctc?tcttcctcca?ccttttctct?caagagatct?ccatcttcac 60
ccacaccatc?aattccagca?tcagcagcag?cagcagcaac?agaatcacgg?ccacgatata 120
gaccagcacc?gaatcggtgg?gctaaaacgt?gaccgagatg?ctgatatcga?tcccaacgag 180
cactcttcag?ccggaaaaga?tcaaagtact?cctggctccg?gtggagaaag?cggcggcgga 240
ggaggaggag?ataatcacat?cacgagaagg?ccacgtggca?gaccagcggg?atctaagaac 300
aaaccaaaac?cgccaatcat?catcactcga?gacagcgcaa?acgctctcaa?atctcatgtc 360
atggaagtag?caaacggatg?tgacgtcatg?gaaagtgtca?ccgtcttcgc?tcgccgtcgc 420
caacgtggca?tctgcgtttt?gagcggaaac?ggcgccgtta?ccaacgttac?cataagacaa 480
ccagcttcag?tacctggtgg?tggctcatct?gtcgttaact?tacacggacg?tttcgagatt 540
ctttctctct?cgggatcatt?ccttcctcct?ccggctccac?cagctgcgtc?aggtctaacg 600
atttacttag?ccggtggtca?gggacaggtt?gttggaggaa?gcgtggttgg?tccactcatg 660
gcttcaggac?ctgtagtgat?tatggcagct?tcgtttggaa?acgctgcgta?tgagagactg 720
ccgttggagg?aagacgatca?agaagagcaa?acagctggag?cggttgctaa?taatatcgat 780
ggaaacgcaa?caatgggtgg?tggaacgcaa?acgcaaactc?agacgcagca?gcaacagcaa 840
caacagttga?tgcaagatcc?gacgtcgttt?atacaagggt?tgcctccgaa?tcttatgaat 900
tctgttcaat?tgccagctga?agcttattgg?ggaactccga?gaccatcttt?ctaa 954
<210>163
<211>317
<212>PRT
<213> Arabidopis thaliana
<400>163
Met?Asp?Gln?Val?Ser?Arg?Ser?Leu?Pro?Pro?Pro?Phe?Leu?Ser?Arg?Asp
1 5 10 15
Leu?His?Leu?His?Pro?His?His?Gln?Phe?Gln?His?Gln?Gln?Gln?Gln?Gln
20 25 30
Gln?Gln?Asn?His?Gly?His?Asp?Ile?Asp?Gln?His?Arg?Ile?Gly?Gly?Leu
35 40 45
Lys?Arg?Asp?Arg?Asp?Ala?Asp?Ile?Asp?Pro?Asn?Glu?His?Ser?Ser?Ala
50 55 60
Gly?Lys?Asp?Gln?Ser?Thr?Pro?Gly?Ser?Gly?Gly?Glu?Ser?Gly?Gly?Gly
65 70 75 80
Gly?Gly?Gly?Asp?Asn?His?Ile?Thr?Arg?Arg?Pro?Arg?Gly?Arg?Pro?Ala
85 90 95
Gly?Ser?Lys?Asn?Lys?Pro?Lys?Pro?Pro?Ile?Ile?Ile?Thr?Arg?Asp?Ser
100 105 110
Ala?Asn?Ala?Leu?Lys?Ser?His?Val?Met?Glu?Val?Ala?Asn?Gly?Cys?Asp
115 120 125
Val?Met?Glu?Ser?Val?Thr?Val?Phe?Ala?Arg?Arg?Arg?Gln?Arg?Gly?Ile
130 135 140
Cys?Val?Leu?Ser?Gly?Asn?Gly?Ala?Val?Thr?Asn?Val?Thr?Ile?Arg?Gln
145 150 155 160
Pro?Ala?Ser?Val?Pro?Gly?Gly?Gly?Ser?Ser?Val?Val?Asn?Leu?His?Gly
165 170 175
Arg?Phe?Glu?Ile?Leu?Ser?Leu?Ser?Gly?Ser?Phe?Leu?Pro?Pro?Pro?Ala
180 185 190
Pro?Pro?Ala?Ala?Ser?Gly?Leu?Thr?Ile?Tyr?Leu?Ala?Gly?Gly?Gln?Gly
195 200 205
Gln?Val?Val?Gly?Gly?Ser?Val?Val?Gly?Pro?Leu?Met?Ala?Ser?Gly?Pro
210 215 220
Val?Val?Ile?Met?Ala?Ala?Ser?Phe?Gly?Asn?Ala?Ala?Tyr?Glu?Arg?Leu
225 230 235 240
Pro?Leu?Glu?Glu?Asp?Asp?Gln?Glu?Glu?Gln?Thr?Ala?Gly?Ala?Val?Ala
245 250 255
Asn?Asn?Ile?Asp?Gly?Asn?Ala?Thr?Met?Gly?Gly?Gly?Thr?Gln?Thr?Gln
260 265 270
Thr?Gln?Thr?Gln?Gln?Gln?Gln?Gln?Gln?Gln?Leu?Met?Gln?Asp?Pro?Thr
275 280 285
Ser?Phe?Ile?Gln?Gly?Leu?Pro?Pro?Asn?Leu?Met?Asn?Ser?Val?Gln?Leu
290 295 300
Pro?Ala?Glu?Ala?Tyr?Trp?Gly?Thr?Pro?Arg?Pro?Ser?Phe
305 310 315
<210>164
<211>798
<212>DNA
<213> Arabidopis thaliana
<400>164
atggatgagg?tatctcgttc?tcatacaccg?caatttctat?caagtgatca?tcagcactat 60
caccatcaaa?acgctggacg?acaaaaacgc?ggcagagaag?aagaaggagt?tgaacccaac 120
aatatagggg?aagacctagc?cacctttcct?tccggagaag?agaatatcaa?gaagagaagg 180
ccacgtggca?gacctgctgg?ttccaagaac?aaacccaaag?caccaatcat?agtcactcgc 240
gactccgcga?acgccttcag?atgtcacgtc?atggagataa?ccaacgcctg?cgatgtaatg 300
gaaagcctag?ccgtcttcgc?tagacgccgt?cagcgtggcg?tttgcgtctt?gaccggaaac 360
ggggccgtta?caaacgtcac?cgttagacaa?cctggcggag?gcgtcgtcag?tttacacgga 420
cggtttgaga?ttctttctct?ctcgggttcg?tttcttcctc?caccggcacc?accagctgcg 480
tctggtttaa?aggtttactt?agccggtggt?caaggtcaag?tgatcggagg?cagtgtggtg 540
ggaccgctta?cggcatcaag?tccggtggtc?gttatggcag?cttcatttgg?aaacgcatct 600
tacgagaggc?tgccactaga?ggaggaggag?gaaactgaaa?gagaaataga?tggaaacgcg 660
gctagggcga?ttggaacgca?aacgcagaaa?cagttaatgc?aagatgcgac?atcgtttatt 720
gggtcgccgt?cgaatttaat?taactctgtt?tcgttgccag?gtgaagctta?ttggggaacg 780
caacgaccgt?ctttctaa 798
<210>165
<211>265
<212>PRT
<213> Arabidopis thaliana
<400>165
Met?Asp?Glu?Val?Ser?Arg?Ser?His?Thr?Pro?Gln?Phe?Leu?Ser?Ser?Asp
1 5 10 15
His?Gln?His?Tyr?His?His?Gln?Asn?Ala?Gly?Arg?Gln?Lys?Arg?Gly?Arg
20 25 30
Glu?Glu?Glu?Gly?Val?Glu?Pro?Asn?Asn?Ile?Gly?Glu?Asp?Leu?Ala?Thr
35 40 45
Phe?Pro?Ser?Gly?Glu?Glu?Asn?Ile?Lys?Lys?Arg?Arg?Pro?Arg?Gly?Arg
50 55 60
Pro?Ala?Gly?Ser?Lys?Asn?Lys?Pro?Lys?Ala?Pro?Ile?Ile?Val?Thr?Arg
65 70 75 80
Asp?Ser?Ala?Asn?Ala?Phe?Arg?Cys?His?Val?Met?Glu?Ile?Thr?Asn?Ala
85 90 95
Cys?Asp?Val?Met?Glu?Ser?Leu?Ala?Val?Phe?Ala?Arg?Arg?Arg?Gln?Arg
100 105 110
Gly?Val?Cys?Val?Leu?Thr?Gly?Asn?Gly?Ala?Val?Thr?Asn?Val?Thr?Val
115 120 125
Arg?Gln?Pro?Gly?Gly?Gly?Val?Val?Ser?Leu?His?Gly?Arg?Phe?Glu?Ile
130 135 140
Leu?Ser?Leu?Ser?Gly?Ser?Phe?Leu?Pro?Pro?Pro?Ala?Pro?Pro?Ala?Ala
145 150 155 160
Ser?Gly?Leu?Lys?Val?Tyr?Leu?Ala?Gly?Gly?Gln?Gly?Gln?Val?Ile?Gly
165 170 175
Gly?Ser?Val?Val?Gly?Pro?Leu?Thr?Ala?Ser?Ser?Pro?Val?Val?Val?Met
180 185 190
Ala?Ala?Ser?Phe?Gly?Asn?Ala?Ser?Tyr?Glu?Arg?Leu?Pro?Leu?Glu?Glu
195 200 205
Glu?Glu?Glu?Thr?Glu?Arg?Glu?Ile?Asp?Gly?Asn?Ala?Ala?Arg?Ala?Ile
210 215 220
Gly?Thr?Gln?Thr?Gln?Lys?Gln?Leu?Met?Gln?Asp?Ala?Thr?Ser?Phe?Ile
225 230 235 240
Gly?Ser?Pro?Ser?Asn?Leu?Ile?Asn?Ser?Val?Ser?Leu?Pro?Gly?Glu?Ala
245 250 255
Tyr?Trp?Gly?Thr?Gln?Arg?Pro?Ser?Phe
260 265
<210>166
<211>933
<212>DNA
<213> Arabidopis thaliana
<400>166
atggcgaatc?cttggtgggt?agggaatgtt?gcgatcggtg?gagttgagag?tccagtgacg 60
tcatcagctc?cttctttgca?ccacagaaac?agtaacaaca?acaacccacc?gactatgact 120
cgttcggatc?caagattgga?ccatgacttc?accaccaaca?acagtggaag?ccctaatacc 180
cagactcaga?gccaagaaga?acagaacagc?agagacgagc?aaccagctgt?tgaacccgga 240
tccggatccg?ggtctacggg?tcgtcgtcct?agaggtagac?ctcctggttc?caagaacaaa 300
ccaaagagtc?cagttgttgt?taccaaagaa?agccctaact?ctctccagag?ccatgttctt 360
gagattgcta?cgggagctga?cgtggcggaa?agcttaaacg?cctttgctcg?tagacgcggc 420
cggggcgttt?cggtgctgag?cggtagtggt?ttggttacta?atgttactct?gcgtcagcct 480
gctgcatccg?gtggagttgt?tagtttacgt?ggtcagtttg?agatcttgtc?tatgtgtggg 540
gcttttcttc?ctacgtctgg?ctctcctgct?gcagccgctg?gtttaaccat?ttacttagct 600
ggagctcaag?gtcaagttgt?gggaggtgga?gttgctggcc?cgcttattgc?ctctggaccc 660
gttattgtga?tagctgctac?gttttgcaat?gccacttatg?agaggttacc?gattgaggaa 720
gaacaacagc?aagagcagcc?gcttcaacta?gaagatggga?agaagcagaa?agaagagaat 780
gatgataacg?agagtgggaa?taacggaaac?gaaggatcga?tgcagccgcc?gatgtataat 840
atgcctccta?attttatccc?aaatggtcat?caaatggctc?aacacgacgt?gtattggggt 900
ggtcctccgc?ctcgtgctcc?tccttcgtat?tga 933
<210>167
<211>310
<212>PRT
<213> Arabidopis thaliana
<400>167
Met?Ala?Asn?Pro?Trp?Trp?Val?Gly?Asn?Val?Ala?Ile?Gly?Gly?Val?Glu
1 5 10 15
Ser?Pro?Val?Thr?Ser?Ser?Ala?Pro?Ser?Leu?His?His?Arg?Asn?Ser?Asn
20 25 30
Asn?Asn?Asn?Pro?Pro?Thr?Met?Thr?Arg?Ser?Asp?Pro?Arg?Leu?Asp?His
35 40 45
Asp?Phe?Thr?Thr?Asn?Asn?Ser?Gly?Ser?Pro?Asn?Thr?Gln?Thr?Gln?Ser
50 55 60
Gln?Glu?Glu?Gln?Asn?Ser?Arg?Asp?Glu?Gln?Pro?Ala?Val?Glu?Pro?Gly
65 70 75 80
Ser?Gly?Ser?Gly?Ser?Thr?Gly?Arg?Arg?Pro?Arg?Gly?Arg?Pro?Pro?Gly
85 90 95
Ser?Lys?Asn?Lys?Pro?Lys?Ser?Pro?Val?Val?Val?Thr?Lys?Glu?Ser?Pro
100 105 110
Asn?Ser?Leu?Gln?Ser?His?Val?Leu?Glu?Ile?Ala?Thr?Gly?Ala?Asp?Val
115 120 125
Ala?Glu?Ser?Leu?Asn?Ala?Phe?Ala?Arg?Arg?Arg?Gly?Arg?Gly?Val?Ser
130 135 140
Val?Leu?Ser?Gly?Ser?Gly?Leu?Val?Thr?Asn?Val?Thr?Leu?Arg?Gln?Pro
145 150 155 160
Ala?Ala?Ser?Gly?Gly?Val?Val?Ser?Leu?Arg?Gly?Gln?Phe?Glu?Ile?Leu
165 170 175
Ser?Met?Cys?Gly?Ala?Phe?Leu?Pro?Thr?Ser?Gly?Ser?Pro?Ala?Ala?Ala
180 185 190
Ala?Gly?Leu?Thr?Ile?Tyr?Leu?Ala?Gly?Ala?Gln?Gly?Gln?Val?Val?Gly
195 200 205
Gly?Gly?Val?Ala?Gly?Pro?Leu?Ile?Ala?Ser?Gly?Pro?Val?Ile?Val?Ile
210 215 220
Ala?Ala?Thr?Phe?Cys?Asn?Ala?Thr?Tyr?Glu?Arg?Leu?Pro?Ile?Glu?Glu
225 230 235 240
Glu?Gln?Gln?Gln?Glu?Gln?Pro?Leu?Gln?Leu?Glu?Asp?Gly?Lys?Lys?Gln
245 250 255
Lys?Glu?Glu?Asn?Asp?Asp?Asn?Glu?Ser?Gly?Asn?Asn?Gly?Asn?Glu?Gly
260 265 270
Ser?Met?Gln?Pro?Pro?Met?Tyr?Asn?Met?Pro?Pro?Asn?Phe?Ile?Pro?Asn
275 280 285
Gly?His?Gln?Met?Ala?Gln?His?Asp?Val?Tyr?Trp?Gly?Gly?Pro?Pro?Pro
290 295 300
Arg?Ala?Pro?Pro?Ser?Tyr
305 310
<210>168
<211>987
<212>DNA
<213> rice
<400>168
atggatccgg?tgacggcggc?ggcggcgcat?gggggtgggc?accaccacca?ccaccacttc 60
ggagcgccac?cggtggcggc?gttccaccac?cacccgttcc?accacggcgg?cggggcgcac 120
tacccggcgg?cgttccagca?gtttcaggag?gagcagcagc?agcttgtggc?ggcggcggcg 180
gcggctggtg?ggatggcgaa?gcaggagctg?gtggatgaga?gcaacaacac?catcaacagc 240
ggcgggagca?acgggagcgg?cggggaggag?cagaggcagc?agtccgggga?ggagcagcac 300
cagcaagggg?cggcggcgcc?ggtggtgatc?cggcgtccca?ggggccgccc?cgccggctcc 360
aagaacaagc?ccaagcctcc?ggtcatcatc?acgcgcgaca?gcgccagcgc?gctgcgggcg 420
cacgtcctcg?aggtcgcctc?cgggtgcgac?ctcgtcgaca?gcgtcgccac?gttcgcgcgc 480
cgccgccagg?tcggtgtctg?cgtgctcagc?gccaccggcg?ccgtcaccaa?cgtctccgtc 540
cggcagcccg?gcgcgggccc?cggcgccgtc?gtcaacctca?ccggccgctt?cgacatcctc 600
tcgctgtccg?gctccttcct?cccgccgccg?gcgcctccct?ccgccaccgg?cctcaccgtc 660
tacgtctccg?gcggccaggg?gcaggtcgtg?ggcggcacgg?tcgccggacc?gctcatcgcc 720
gtcggccccg?tcgtcatcat?ggccgcctcg?ttcgggaacg?ccgcctacga?gcgcctcccg 780
ctcgaggacg?acgagccgcc?gcagcacatg?gcgggcggcg?gccagtcctc?gccgccgccg 840
ccgccgctgc?cattaccacc?acaccagcag?ccgattcttc?aagaccatct?gccacacaac 900
ctgatgaacg?gaatccacct?ccccggcgac?gccgcctacg?gctggaccag?cggcggcggc 960
ggcggcggcc?gcgcggcgcc?gtactga 987
<210>169
<211>328
<212>PRT
<213> rice
<400>169
Met?Asp?Pro?Val?Thr?Ala?Ala?Ala?Ala?His?Gly?Gly?Gly?His?His?His
1 5 10 15
His?His?His?Phe?Gly?Ala?Pro?Pro?Val?Ala?Ala?Phe?His?His?His?Pro
20 25 30
Phe?His?His?Gly?Gly?Gly?Ala?His?Tyr?Pro?Ala?Ala?Phe?Gln?Gln?Phe
35 40 45
Gln?Glu?Glu?Gln?Gln?Gln?Leu?Val?Ala?Ala?Ala?Ala?Ala?Ala?Gly?Gly
50 55 60
Met?Ala?Lys?Gln?Glu?Leu?Val?Asp?Glu?Ser?Asn?Asn?Thr?Ile?Asn?Ser
65 70 75 80
Gly?Gly?Ser?Asn?Gly?Ser?Gly?Gly?Glu?Glu?Gln?Arg?Gln?Gln?Ser?Gly
85 90 95
Glu?Glu?Gln?His?Gln?Gln?Gly?Ala?Ala?Ala?Pro?Val?Val?Ile?Arg?Arg
100 105 110
Pro?Arg?Gly?Arg?Pro?Ala?Gly?Ser?Lys?Asn?Lys?Pro?Lys?Pro?Pro?Val
115 120 125
Ile?Ile?Thr?Arg?Asp?Ser?Ala?Ser?Ala?Leu?Arg?Ala?His?Val?Leu?Glu
130 135 140
Val?Ala?Ser?Gly?Cys?Asp?Leu?Val?Asp?Ser?Val?Ala?Thr?Phe?Ala?Arg
145 150 155 160
Arg?Arg?Gln?Val?Gly?Val?Cys?Val?Leu?Ser?Ala?Thr?Gly?Ala?Val?Thr
165 170 175
Asn?Val?Ser?Val?Arg?Gln?Pro?Gly?Ala?Gly?Pro?Gly?Ala?Val?Val?Asn
180 185 190
Leu?Thr?Gly?Arg?Phe?Asp?Ile?Leu?Ser?Leu?Ser?Gly?Ser?Phe?Leu?Pro
195 200 205
Pro?Pro?Ala?Pro?Pro?Ser?Ala?Thr?Gly?Leu?Thr?Val?Tyr?Val?Ser?Gly
210 215 220
Gly?Gln?Gly?Gln?Val?Val?Gly?Gly?Thr?Val?Ala?Gly?Pro?Leu?Ile?Ala
225 230 235 240
Val?Gly?Pro?Val?Val?Ile?Met?Ala?Ala?Ser?Phe?Gly?Asn?Ala?Ala?Tyr
245 250 255
Glu?Arg?Leu?Pro?Leu?Glu?Asp?Asp?Glu?Pro?Pro?Gln?His?Met?Ala?Gly
260 265 270
Gly?Gly?Gln?Ser?Ser?Pro?Pro?Pro?Pro?Pro?Leu?Pro?Leu?Pro?Pro?His
275 280 285
Gln?Gln?Pro?Ile?Leu?Gln?Asp?His?Leu?Pro?His?Asn?Leu?Met?Asn?Gly
290 295 300
Ile?His?Leu?Pro?Gly?Asp?Ala?Ala?Tyr?Gly?Trp?Thr?Ser?Gly?Gly?Gly
305 310 315 320
Gly?Gly?Gly?Arg?Ala?Ala?Pro?Tyr
325
<210>170
<211>777
<212>DNA
<213> rice
<400>170
atggggagca?tcgacggcca?ctcgctgcag?cagcatcagg?ggtactccca?cggcggcggc 60
gcgggaggga?gcaacgagga?ggaggaggcg?tcgccgccgc?ccggcggtgg?ctcggctacg 120
gggtcggcgg?gccgccggcc?gagggggagg?ccgccgggct?ccaagaacaa?gccgaagccg 180
cccgtcgtgg?tgacgcggga?gagccccaac?gcgatgcgtt?cccacgtgct?ggagatcgcc 240
agcggcgccg?acatcgtcga?ggccatcgcg?ggcttctccc?gccgcaggca?gcgcggcgtc 300
tccgtgctca?gcgggagcgg?cgccgtcacc?aacgtcacgc?tccggcagcc?cgcggggact 360
ggggccgccg?ccgtcgcgct?gcgggggagg?ttcgagatat?tgtccatgtc?tggcgccttc 420
ctcccggcgc?cggcgccgcc?aggggccacg?gggctcgccg?tgtacctcgc?cggcgggcag 480
gggcaggtgg?tgggtgggag?cgtcatgggg?gagctgatcg?cgtcgggccc?cgtcatggtg 540
atcgcggcca?cgttcggcaa?cgccacgtac?gagaggctgc?cgctggacca?ggaaggcgag 600
gagggcgccg?tgctgtccgg?gtcggagggc?gccgccgcgc?agatggagca?gcagagcagc 660
ggaggcgccg?tcgtgccccc?gccgatgtac?gccgccgtcc?agcagacgcc?gccgcacgac 720
atgttcgggc?agtgggggca?tgcagcggtg?gctcggccgc?cgccgacatc?gttctag 777
<210>171
<211>258
<212>PRT
<213> rice
<400>171
Met?Gly?Ser?Ile?Asp?Gly?His?Ser?Leu?Gln?Gln?His?Gln?Gly?Tyr?Ser
1 5 10 15
His?Gly?Gly?Gly?Ala?Gly?Gly?Ser?Asn?Glu?Glu?Glu?Glu?Ala?Ser?Pro
20 25 30
Pro?Pro?Gly?Gly?Gly?Ser?Ala?Thr?Gly?Ser?Ala?Gly?Arg?Arg?Pro?Arg
35 40 45
Gly?Arg?Pro?Pro?Gly?Ser?Lys?Asn?Lys?Pro?Lys?Pro?Pro?Val?Val?Val
50 55 60
Thr?Arg?Glu?Ser?Pro?Asn?Ala?Met?Arg?Ser?His?Val?Leu?Glu?Ile?Ala
65 70 75 80
Ser?Gly?Ala?Asp?Ile?Val?Glu?Ala?Ile?Ala?Gly?Phe?Ser?Arg?Arg?Arg
85 90 95
Gln?Arg?Gly?Val?Ser?Val?Leu?Ser?Gly?Ser?Gly?Ala?Val?Thr?Asn?Val
100 105 110
Thr?Leu?Arg?Gln?Pro?Ala?Gly?Thr?Gly?Ala?Ala?Ala?Val?Ala?Leu?Arg
115 120 125
Gly?Arg?Phe?Glu?Ile?Leu?Ser?Met?Ser?Gly?Ala?Phe?Leu?Pro?Ala?Pro
130 135 140
Ala?Pro?Pro?Gly?Ala?Thr?Gly?Leu?Ala?Val?Tyr?Leu?Ala?Gly?Gly?Gln
145 150 155 160
Gly?Gln?Val?Val?Gly?Gly?Ser?Val?Met?Gly?Glu?Leu?Ile?Ala?Ser?Gly
165 170 175
Pro?Val?Met?Val?Ile?Ala?Ala?Thr?Phe?Gly?Asn?Ala?Thr?Tyr?Glu?Arg
180 185 190
Leu?Pro?Leu?Asp?Gln?Glu?Gly?Glu?Glu?Gly?Ala?Val?Leu?Ser?Gly?Ser
195 200 205
Glu?Gly?Ala?Ala?Ala?Gln?Met?Glu?Gln?Gln?Ser?Ser?Gly?Gly?Ala?Val
210 215 220
Val?Pro?Pro?Pro?Met?Tyr?Ala?Ala?Val?Gln?Gln?Thr?Pro?Pro?His?Asp
225 230 235 240
Met?Phe?Gly?Gln?Trp?Gly?His?Ala?Ala?Val?Ala?Arg?Pro?Pro?Pro?Thr
245 250 255
Ser?Phe
<210>172
<211>798
<212>DNA
<213> tomato
<400>172
atggctggtt?tggacttagg?ttccgcttct?catcatcgtt?ttctccctcg?tcatctccac 60
gatcctcaag?acgatgaaat?caatcgcaac?aacactcaat?tttccgatga?tgacaacaac 120
aacaacgata?acaataacaa?taatagcccc?ggggtagcac?gtagacctag?aggtcgtccc 180
gcggggtcca?aaaataagcc?taagcctccc?gtgatcataa?cacgggagag?cgctaacgcg 240
ctccgtgcgc?atattttaga?agtgagtagc?ggacatgatg?tctttgaatc?agttgctact 300
tatgctagaa?aaagacaaag?aggaatttgc?atactgagcg?ggagcggtac?ggtgaataac 360
gtcaccatac?ggcagccaca?ggctgccggt?tctgtggtga?cgttacacgg?aagattcgag 420
atattatctt?tatccggatc?tttcctacca?ccacccgctc?cccctggggc?caccagctta 480
acgatttatt?tagcgggtgg?tcaaggtcaa?gttgttggtg?gaaacgttgt?gggtgcgcta 540
attgcatcag?gaccggttat?tgttattgct?tcgtcattta?ctaatgttgc?ttatgagaga 600
ttgcctttgg?atgaagaaaa?tgagtcaatt?cagatgcagc?aacaaggaca?aagtggtaat 660
tttgctgatc?catctaatat?tggattacct?tttcttaatt?tgccattaaa?catgccaaat 720
ggtggtggtc?aactacaatt?ggaaagtgga?ggaggtgaag?gttggaatgg?aaacacaaca 780
aacaggccac?aatattag 798
<210>173
<211>265
<212>PRT
<213> tomato
<400>173
Met?Ala?Gly?Leu?Asp?Leu?Gly?Ser?Ala?Ser?His?His?Arg?Phe?Leu?Pro
1 5 10 15
Arg?His?Leu?His?Asp?Pro?Gln?Asp?Asp?Glu?Ile?Asn?Arg?Asn?Asn?Thr
20 25 30
Gln?Phe?Ser?Asp?Asp?Asp?Asn?Asn?Asn?Asn?Asp?Asn?Asn?Asn?Asn?Asn
35 40 45
Ser?Pro?Gly?Val?Ala?Arg?Arg?Pro?Arg?Gly?Arg?Pro?Ala?Gly?Ser?Lys
50 55 60
Asn?Lys?Pro?Lys?Pro?Pro?Val?Ile?Ile?Thr?Arg?Glu?Ser?Ala?Asn?Ala
65 70 75 80
Leu?Arg?Ala?His?Ile?Leu?Glu?Val?Ser?Ser?Gly?His?Asp?Val?Phe?Glu
85 90 95
Ser?Val?Ala?Thr?Tyr?Ala?Arg?Lys?Arg?Gln?Arg?Gly?Ile?Cys?Ile?Leu
100 105 110
Ser?Gly?Ser?Gly?Thr?Val?Asn?Asn?Val?Thr?Ile?Arg?Gln?Pro?Gln?Ala
115 120 125
Ala?Gly?Ser?Val?Val?Thr?Leu?His?Gly?Arg?Phe?Glu?Ile?Leu?Ser?Leu
130 135 140
Ser?Gly?Ser?Phe?Leu?Pro?Pro?Pro?Ala?Pro?Pro?Gly?Ala?Thr?Ser?Leu
145 150 155 160
Thr?Ile?Tyr?Leu?Ala?Gly?Gly?Gln?Gly?Gln?Val?Val?Gly?Gly?Asn?Val
165 170 175
Val?Gly?Ala?Leu?Ile?Ala?Ser?Gly?Pro?Val?Ile?Val?Ile?Ala?Ser?Ser
180 185 190
Phe?Thr?Asn?Val?Ala?Tyr?Glu?Arg?Leu?Pro?Leu?Asp?Glu?Glu?Asn?Glu
195 200 205
Ser?Ile?Gln?Met?Gln?Gln?Gln?Gly?Gln?Ser?Gly?Asn?Phe?Ala?Asp?Pro
210 215 220
Ser?Asn?Ile?Gly?Leu?Pro?Phe?Leu?Asn?Leu?Pro?Leu?Asn?Met?Pro?Asn
225 230 235 240
Gly?Gly?Gly?Gln?Leu?Gln?Leu?Glu?Ser?Gly?Gly?Gly?Glu?Gly?Trp?Asn
245 250 255
Gly?Asn?Thr?Thr?Asn?Arg?Pro?Gln?Tyr
260 265
<210>174
<211>813
<212>DNA
<213> Arabidopis thaliana
<400>174
atggaactta?acagatctga?agcagacgaa?gcaaaggccg?agaccactcc?caccggtgga 60
gccaccagct?cagccacagc?ctctggctct?tcctccggac?gtcgtccacg?tggtcgtcct 120
gcaggttcca?aaaacaaacc?caaacctccg?acgattataa?ctagagatag?tcctaacgtc 180
cttagatcac?acgttcttga?agtcacctcc?ggttcggaca?tatccgaggc?agtctccacc 240
tacgccactc?gtcgcggctg?cggcgtttgc?attataagcg?gcacgggtgc?ggtcactaac 300
gtcacgatac?ggcaacctgc?ggctccggct?ggtggaggtg?tgattaccct?gcatggtcgg 360
tttgacattt?tgtctttgac?cggtactgcg?cttccaccgc?ctgcaccacc?gggagcagga 420
ggtttgacgg?tgtatctagc?cggaggtcaa?ggacaagttg?taggagggaa?tgtggctggt 480
tcgttaattg?cttcgggacc?ggtagtgttg?atggctgctt?cttttgcaaa?cgcagtttat 540
gataggttac?cgattgaaga?ggaagaaacc?ccaccgccga?gaaccaccgg?ggtgcagcag 600
cagcagccgg?aggcgtctca?gtcgtcggag?gttacgggga?gtggggccca?ggcgtgtgag 660
tcaaacctcc?aaggtggaaa?tggtggagga?ggtgttgctt?tctacaatct?tggaatgaat 720
atgaacaatt?ttcaattctc?cgggggagat?atttacggta?tgagcggcgg?tagcggagga 780
ggtggtggcg?gtgcgactag?acccgcgttt?tag 813
<210>175
<211>270
<212>PRT
<213> Arabidopis thaliana
<400>175
Met?Glu?Leu?Asn?Arg?Ser?Glu?Ala?Asp?Glu?Ala?Lys?Ala?Glu?Thr?Thr
1 5 10 15
Pro?Thr?Gly?Gly?Ala?Thr?Ser?Ser?Ala?Thr?Ala?Ser?Gly?Ser?Ser?Ser
20 25 30
Gly?Arg?Arg?Pro?Arg?Gly?Arg?Pro?Ala?Gly?Ser?Lys?Asn?Lys?Pro?Lys
35 40 45
Pro?Pro?Thr?Ile?Ile?Thr?Arg?Asp?Ser?Pro?Asn?Val?Leu?Arg?Ser?His
50 55 60
Val?Leu?Glu?Val?Thr?Ser?Gly?Ser?Asp?Ile?Ser?Glu?Ala?Val?Ser?Thr
65 70 75 80
Tyr?Ala?Thr?Arg?Arg?Gly?Cys?Gly?Val?Cys IleIle?Ser?Gly?Thr?Gly
85 90 95
Ala?Val?Thr?Asn?Val?Thr?Ile?Arg?Gln?Pro?Ala?Ala?Pro?Ala?Gly?Gly
100 105 110
Gly?Val?Ile?Thr?Leu?His?Gly?Arg?Phe?Asp?Ile?Leu?Ser?Leu?Thr?Gly
115 120 125
Thr?Ala?Leu?Pro?Pro?Pro?Ala?Pro?Pro?Gly?Ala?Gly?Gly?Leu?Thr?Val
130 135 140
Tyr?Leu?Ala?Gly?Gly?Gln?Gly?Gln?Val?Val?Gly?Gly?Asn?Val?Ala?Gly
145 150 155 160
Ser?Leu?Ile?Ala?Ser?Gly?Pro?Val?Val?Leu?Met?Ala?Ala?Ser?Phe?Ala
165 170 175
Asn?Ala?Val?Tyr?Asp?Arg?Leu?Pro?Ile?Glu?Glu?Glu?Glu?Thr?Pro?Pro
180 185 190
Pro?Arg?Thr?Thr?Gly?Val?Gln?Gln?Gln?Gln?Pro?Glu?Ala?Ser?Gln?Ser
195 200 205
Ser?Glu?Val?Thr?Gly?Ser?Gly?Ala?Gln?Ala?Cys?Glu?Ser?Asn?Leu?Gln
210 215 220
Gly?Gly?Asn?Gly?Gly?Gly?Gly?Val?Ala?Phe?Tyr?Asn?Lan?Gly?Met?Asn
225 230 235 240
Met?Asn?Asn?Phe?Gln?Phe?Ser?Gly?Gly?Asp?Ile?Tyr?Gly?Met?Ser?Gly
245 250 255
Gly?Ser?Gly?Gly?Gly?Gly?Gly?Gly?Ala?Thr?Arg?Pro?Ala?Phe
260 265 270
<210>176
<211>948
<212>DNA
<213> Arabidopis thaliana
<400>176
atggcgaatc?catggtggac?aggacaagtg?aacctatccg?gcctcgaaac?gacgccgcct 60
ggttcctctc?agttaaagaa?accagatctc?cacatctcca?tgaacatggc?catggactca 120
ggtcacaata?atcatcacca?tcaccaagaa?gtcgataaca?acaacaacga?cgacgataga 180
gacaacttga?gtggagacga?ccacgagcca?cgtgaaggag?ccgtagaagc?ccccacgcgc 240
cgtccacgtg?gacgtcctgc?tggttccaag?aacaaaccaa?agccaccgat?cttcgtcact 300
cgcgattctc?caaatgctct?caagagccat?gtcatggaga?tcgctagtgg?gactgacgtc 360
atcgaaaccc?tagctacttt?tgctaggcgg?cgtcaacgtg?gcatctgcat?cttgagcgga 420
aatggcacag?tggctaacgt?caccctccgt?caaccctcga?ccgctgccgt?tgcggcggct 480
cctggtggtg?cggctgtttt?ggctttacaa?gggaggtttg?agattctttc?tttaaccggt 540
tctttcttgc?caggaccggc?tccacctggt?tccaccggtt?taacgattta?cttagccggt 600
ggtcaaggtc?aggttgttgg?aggaagcgtg?gtgggcccat?tgatggcagc?aggtccggtg 660
atgctgatcg?ccgccacgtt?ctctaacgcg?acttacgaga?gattgccatt?ggaggaggaa 720
gaggcagcag?agagaggcgg?tggtggaggc?agcggaggag?tggttccggg?gcagctcgga 780
ggcggaggtt?cgccactaag?cagcggtgct?ggtggaggcg?acggtaacca?aggacttccg 840
gtgtataata?tgccgggaaa?tcttgtttct?aatggtggca?gtggtggagg?aggacagatg 900
agcggccaag?aagcttatgg?ttgggctcaa?gctaggtcag?gattttaa 948
<210>177
<211>315
<212>PRT
<213> Arabidopis thaliana
<400>177
Met?Ala?Asn?Pro?Trp?Trp?Thr?Gly?Gln?Val?Asn?Leu?Ser?Gly?Leu?Glu
1 5 10 15
Thr?Thr?Pro?Pro?Gly?Ser?Ser?Gln?Leu?Lys?Lys?Pro?Asp?Leu?His?Ile
20 25 30
Ser?Met?Asn?Met?Ala?Met?Asp?Ser?Gly?His?Asn?Asn?His?His?His?His
35 40 45
Gln?Glu?Val?Asp?Asn?Asn?Asn?Asn?Asp?Asp?Asp?Arg?Asp?Asn?Leu?Ser
50 55 60
Gly?Asp?Asp?His?Glu?Pro?Arg?Glu?Gly?Ala?Val?Glu?Ala?Pro?Thr?Arg
65 70 75 80
Arg?Pro?Arg?Gly?Arg?Pro?Ala?Gly?Ser?Lys?Asn?Lys?Pro?Lys?Pro?Pro
85 90 95
Ile?Phe?Val?Thr?Arg?Asp?Ser?Pro?Asn?Ala?Leu?Lys?Ser?His?Val?Met
100 105 110
Glu?Ile?Ala?Ser?Gly?Thr?Asp?Val?Ile?Glu?Thr?Leu?Ala?Thr?Phe?Ala
115 120 125
Arg?Arg?Arg?Gln?Arg?Gly?Ile?Cys?Ile?Leu?Ser?Gly?Asn?Gly?Thr?Val
130 135 140
Ala?Asn?Val?Thr?Leu?Arg?Gln?Pro?Ser?Thr?Ala?Ala?Val?Ala?Ala?Ala
145 150 155 160
Pro?Gly?Gly?Ala?Ala?Val?Leu?Ala?Leu?Gln?Gly?Arg?Phe?Glu?Ile?Leu
165 170 175
Ser?Leu?Thr?Gly?Ser?Phe?Leu?Pro?Gly?Pro?Ala?Pro?Pro?Gly?Ser?Thr
180 185 190
Gly?Leu?Thr?Ile?Tyr?Leu?Ala?Gly?Gly?Gln?Gly?Gln?Val?Val?Gly?Gly
195 200 205
Ser?Val?Val?Gly?Pro?Leu?Met?Ala?Ala?Gly?Pro?Val?Met?Leu?Ile?Ala
210 215 220
Ala?Thr?Phe?Ser?Asn?Ala?Thr?Tyr?Glu?Arg?Leu?Pro?Leu?Glu?Glu?Glu
225 230 235 240
Glu?Ala?Ala?Glu?Arg?Gly?Gly?Gly?Gly?Gly?Ser?Gly?Gly?Val?Val?Pro
245 250 255
Gly?Gln?Leu?Gly?Gly?Gly?Gly?Ser?Pro?Leu?Ser?Ser?Gly?Ala?Gly?Gly
260 265 270
Gly?Asp?Gly?Asn?Gln?Gly?Leu?Pro?Val?Tyr?Asn?Met?Pro?Gly?Asn?Leu
275 280 285
Val?Ser?Asn?Gly?Gly?Ser?Gly?Gly?Gly?Gly?Gln?Met?Ser?Gly?Gln?Glu
290 295 300
Ala?Tyr?Gly?Trp?Ala?Gln?Ala?Arg?Ser?Gly?Phe
305 310 315
<210>178
<211>708
<212>DNA
<213> rice
<400>178
atggcgtcca?aggagccaag?cggcgaccac?gaccacgaga?tgaacgggac?cagcgccggg 60
ggcggcgagc?ccaaggacgg?cgcggtggtg?accggccgca?accggcgccc?ccgcggacgg 120
ccgccgggct?ccaagaacaa?gcccaagccg?cccatcttcg?tgacgcggga?cagcccgaac 180
gcgctgcgca?gccacgtcat?ggaggtggcc?ggcggcgccg?atgtcgccga?gtccatcgcg 240
cacttcgcgc?ggcggcggca?gcgcggcgtc?tgcgtgctca?gcggggccgg?caccgtgacc 300
gacgtggccc?tgcgccagcc?ggccgcgccg?agcgccgtgg?tggcgctccg?tgggcggttc 360
gagatcctgt?ccctgacggg?gacgttcctg?ccggggccgg?cgccgccggg?ctccaccggg 420
ctgaccgtgt?acctcgccgg?cgggcagggg?caggtggtgg?gcggcagcgt?ggtggggacg 480
ctcaccgcgg?cggggccggt?catggtgatc?gcctccacct?tcgccaacgc?cacctacgag 540
aggctgccgc?tggatcagga?ggaggaggaa?gcagcggcag?gcggcatgat?ggcgccgccg 600
ccactcatgg?ccggcgccgc?cgatccacta?cttttcggcg?ggggaatgca?cgacgccggg 660
cttgctgcat?ggcaccatgc?ccgccctccg?ccgccgccgc?cctactag 708
<210>179
<211>235
<212>PRT
<213> rice
<400>179
Met?Ala?Ser?Lys?Glu?Pro?Ser?Gly?Asp?His?Asp?His?Glu?Met?Asn?Gly
1 5 10 15
Thr?Ser?Ala?Gly?Gly?Gly?Glu?Pro?Lys?Asp?Gly?Ala?Val?Val?Thr?Gly
20 25 30
Arg?Asn?Arg?Arg?Pro?Arg?Gly?Arg?Pro?Pro?Gly?Ser?Lys?Asn?Lys?Pro
35 40 45
Lys?Pro?Pro?Ile?Phe?Val?Thr?Arg?Asp?Ser?Pro?Asn?Ala?Leu?Arg?Ser
50 55 60
His?Val?Met?Glu?Val?Ala?Gly?Gly?Ala?Asp?Val?Ala?Glu?Ser?Ile?Ala
65 70 75 80
His?Phe?Ala?Arg?Arg?Arg?Gln?Arg?Gly?Val?Cys?Val?Lau?Ser?Gly?Ala
85 90 95
Gly?Thr?Val?Thr?Asp?Val?Ala?Leu?Arg?Gln?Pro?Ala?Ala?Pro?Ser?Ala
100 105 110
Val?Val?Ala?Leu?Arg?Gly?Arg?Phe?Glu?Ile?Leu?Ser?Leu?Thr?Gly?Thr
115 120 125
Phe?Leu?Pro?Gly?Pro?Ala?Pro?Pro?Gly?Ser?Thr?Gly?Leu?Thr?Val?Tyr
130 135 140
Leu?Ala?Gly?Gly?Gln?Gly?Gln?Val?Val?Gly?Gly?Ser?Val?Val?Gly?Thr
145 150 155 160
Leu?Thr?Ala?Ala?Gly?Pro?Val?Met?Val?Ile?Ala?Ser?Thr?Phe?Ala?Asn
165 170 175
Ala?Thr?Tyr?Glu?Arg?Leu?Pro?Leu?Asp?Gln?Glu?Glu?Glu?Glu?Ala?Ala
180 185 190
Ala?Gly?Gly?Met?Met?Ala?Pro?Pro?Pro?Leu?Met?Ala?Gly?Ala?Ala?Asp
195 200 205
Pro?Leu?Leu?Phe?Gly?Gly?Gly?Met?His?Asp?Ala?Gly?Leu?Ala?Ala?Trp
210 215 220
His?His?Ala?Arg?Pro?Pro?Pro?Pro?Pro?Pro?Tyr
225 230 235
<210>180
<211>846
<212>DNA
<213> Arabidopis thaliana
<400>180
atggcaaacc?cttggtggac?gaaccagagt?ggtttagcgg?gcatggtgga?ccattcggtc 60
tcctcaggcc?atcaccaaaa?ccatcaccac?caaagtcttc?ttaccaaagg?agatcttgga 120
atagccatga?atcagagcca?agacaacgac?caagacgaag?aagatgatcc?tagagaagga 180
gccgttgagg?tggtcaaccg?tagaccaaga?ggtagaccac?caggatccaa?aaacaaaccc 240
aaagctccaa?tctttgtgac?aagagacagc?cccaacgcac?tccgtagcca?tgtcttggag 300
atctccgacg?gcagtgacgt?cgccgacaca?atcgctcact?tctcaagacg?caggcaacgc 360
ggcgtttgcg?ttctcagcgg?gacaggctca?gtcgctaacg?tcaccctccg?ccaagccgcc 420
gcaccaggag?gtgtggtctc?tctccaaggc?aggtttgaaa?tcttatcttt?aaccggtgct 480
ttcctccctg?gaccttcccc?acccgggtca?accggtttaa?cggtttactt?agccggggtc 540
cagggtcagg?tcgttggagg?tagcgttgta?ggcccactct?tagccatagg?gtcggtcatg 600
gtgattgctg?ctactttctc?taacgctact?tatgagagat?tgcccatgga?agaagaggaa 660
gacggtggcg?gctcaagaca?gattcacgga?ggcggtgact?caccgcccag?aatcggtagt 720
aacctgcctg?atctatcagg?gatggccggg?ccaggctaca?atatgccgcc?gcatctgatt 780
ccaaatgggg?ctggtcagct?agggcacgaa?ccatatacat?gggtccacgc?aagaccacct 840
tactga 846
<210>181
<211>281
<212>PRT
<213> Arabidopis thaliana
<400>181
Met?Ala?Asn?Pro?Trp?Trp?Thr?Asn?Gln?Ser?Gly?Leu?Ala?Gly?Met?Val
1 5 10 15
Asp?His?Ser?Val?Ser?Ser?Gly?His?His?Gln?Asn?His?His?His?Gln?Ser
20 25 30
Leu?Leu?Thr?Lys?Gly?Asp?Leu?Gly?Ile?Ala?Met?Asn?Gln?Ser?Gln?Asp
35 40 45
Asn?Asp?Gln?Asp?Glu?Glu?Asp?Asp?Pro?Arg?Glu?Gly?Ala?Val?Glu?Val
50 55 60
Val?Asn?Arg?Arg?Pro?Arg?Gly?Arg?Pro?Pro?Gly?Ser?Lys?Asn?Lys?Pro
65 70 75 80
Lys?Ala?Pro?Ile?Phe?Val?Thr?Arg?Asp?Ser?Pro?Asn?Ala?Lau?Arg?Ser
85 90 95
His?Val?Leu?Glu?Ile?Ser?Asp?Gly?Ser?Asp?Val?Ala?Asp?Thr?Ile?Ala
100 105 110
His?Phe?Ser?Arg?Arg?Arg?Gln?Arg?Gly?Val?Cys?Val?Leu?Ser?Gly?Thr
115 120 125
Gly?Ser?Val?Ala?Asn?Val?Thr?Leu?Arg?Gln?Ala?Ala?Ala?Pro?Gly?Gly
130 135 140
Val?Val?Ser?Leu?Gln?Gly?Arg?Phe?Glu?Ile?Leu?Ser?Leu?Thr?Gly?Ala
145 150 155 160
Phe?Leu?Pro?Gly?Pro?Ser?Pro?Pro?Gly?Ser?Thr?Gly?Leu?Thr?Val?Tyr
165 170 175
Leu?Ala?Gly?Val?Gln?Gly?Gln?Val?Val?Gly?Gly?Ser?Val?Val?Gly?Pro
180 185 190
Leu?Leu?Ala?Ile?Gly?Ser?Val?Met?Val?Ile?Ala?Ala?Thr?Phe?Ser?Asn
195 200 205
Ala?Thr?Tyr?Glu?Arg?Leu?Pro?Met?Glu?Glu?Glu?Glu?Asp?Gly?Gly?Gly
210 215 220
Ser?Arg?Gln?Ile?His?Gly?Gly?Gly?Asp?Ser?Pro?Pro?Arg?Ile?Gly?Ser
225 230 235 240
Asn?Leu?Pro?Asp?Leu?Ser?Gly?Met?Ala?Gly?Pro?Gly?Tyr?Asn?Met?Pro
245 250 255
Pro?His?Leu?Ile?Pro?Asn?Gly?Ala?Gly?Gln?Leu?Gly?His?Glu?Pro?Tyr
260 265 270
Thr?Trp?Val?His?Ala?Arg?Pro?Pro?Tyr
275 280
<210>182
<211>879
<212>DNA
<213> Arabidopis thaliana
<400>182
atggctggtc?ttgatctagg?cacagctttt?cgttacgtta?atcaccagct?ccatcgtccc 60
gatctccacc?ttcaccacaa?ttcctcctcc?gatgacgtca?ctcccggagc?cgggatgggt 120
catttcaccg?tcgacgacga?agacaacaac?aacaaccatc?aaggtcttga?cttagcctct 180
ggtggaggat?caggaagctc?tggaggagga?ggaggtcacg?gcgggggagg?agacgtcgtt 240
ggtcgtcgtc?cacgtggcag?accaccggga?tccaagaaca?aaccgaaacc?tccggtaatt 300
atcacgcgcg?agagcgcaaa?cactctaaga?gctcacattc?ttgaagtaac?aaacggctgc 360
gatgttttcg?actgcgttgc?gacttatgct?cgtcggagac?agcgagggat?ctgcgttctg 420
agcggtagcg?gaacggtcac?gaacgtcagc?atacgtcagc?catctgcggc?tggagcggtt 480
gtgacgctac?aaggaacgtt?cgagattctt?tctctctccg?gatcgtttct?tcctcctccg 540
gcacctcccg?gagcaacgag?tttgacaatt?ttcttagccg?gaggacaagg?tcaggtggtt 600
ggaggaagcg?ttgtgggtga?gcttacggcg?gctggaccgg?tgattgtgat?tgcagcttcg 660
tttactaatg?ttgcttatga?gagacttcct?ttagaagaag?atgagcagca?gcaacagctt 720
ggaggaggat?ctaacggcgg?aggtaatttg?tttccggagg?tggcagctgg?aggaggagga 780
ggacttccgt?tctttaattt?accgatgaat?atgcaaccaa?atgtgcaact?tccggtggaa 840
ggttggccgg?ggaattccgg?tggaagaggt?cctttctga 879
<210>183
<211>292
<212>PRT
<213> Arabidopis thaliana
<400>183
Met?Ala?Gly?Leu?Asp?Leu?Gly?Thr?Ala?Phe?Arg?Tyr?Val?Asn?His?Gln
1 5 10 15
Leu?His?Arg?Pro?Asp?Leu?His?Leu?His?His?Asn?Ser?Ser?Ser?Asp?Asp
20 25 30
Val?Thr?Pro?Gly?Ala?Gly?Met?Gly?His?Phe?Thr?Val?Asp?Asp?Glu?Asp
35 40 45
Asn?Asn?Asn?Asn?His?Gln?Gly?Leu?Asp?Leu?Ala?Ser?Gly?Gly?Gly?Ser
50 55 60
Gly?Ser?Ser?Gly?Gly?Gly?Gly?Gly?His?Gly?Gly?Gly?Gly?Asp?Val?Val
65 70 75 80
Gly?Arg?Arg?Pro?Arg?Gly?Arg?Pro?Pro?Gly?Ser?Lys?Asn?Lys?Pro?Lys
85 90 95
Pro?Pro?Val?Ile?Ile?Thr?Arg?Glu?Ser?Ala?Asn?Thr?Leu?Arg?Ala?His
100 105 110
Ile?Leu?Glu?Val?Thr?Asn?Gly?Cys?Asp?Val?Phe?Asp?Cys?Val?Ala?Thr
115 120 125
Tyr?Ala?Arg?Arg?Arg?Gln?Arg?Gly?Ile?Cys?Val?Leu?Ser?Gly?Ser?Gly
130 135 140
Thr?Val?Thr?Asn?Val?Ser?Ile?Arg?Gln?Pro?Ser?Ala?Ala?Gly?Ala?Val
145 150 155 160
Val?Thr?Leu?Gln?Gly?Thr?Phe?Glu?Ile?Leu?Ser?Leu?Ser?Gly?Ser?Phe
165 170 175
Leu?Pro?Pro?Pro?Ala?Pro?Pro?Gly?Ala?Thr?Ser?Leu?Thr?Ile?Phe?Leu
180 185 190
Ala?Gly?Gly?Gln?Gly?Gln?Val?Val?Gly?Gly?Ser?Val?Val?Gly?Glu?Leu
195 200 205
Thr?Ala?Ala?Gly?Pro?Val?Ile?Val?Ile?Ala?Ala?Ser?Phe?Thr?Asn?Val
210 215 220
Ala?Tyr?Glu?Arg?Leu?Pro?Leu?Glu?Glu?Asp?Glu?Gln?Gln?Gln?Gln?Leu
225 230 235 240
Gly?Gly?Gly?Ser?Asn?Gly?Gly?Gly?Asn?Leu?Phe?Pro?Glu?Val?Ala?Ala
245 250 255
Gly?Gly?Gly?Gly?Gly?Leu?Pro?Phe?Phe?Asn?Leu?Pro?Met?Asn?Met?Gln
260 265 270
Pro?Asn?Val?Gln?Leu?Pro?Val?Glu?Gly?Trp?Pro?Gly?Asn?Ser?Gly?Gly
275 280 285
Arg?Gly?Pro?Phe
290
<210>184
<211>918
<212>DNA
<213> rice
<400>184
atggcaggtc?tcgacctcgg?caccgccgcg?acgcgctacg?tccaccagct?ccaccacctc 60
caccccgacc?tccagctgca?gcacagctac?gccaagcagc?acgagccgtc?cgacgacgac 120
cccaacggca?gcggcggcgg?cggcaacagc?aacggcgggc?cgtacgggga?ccatgacggc 180
gggtcctcgt?cgtcaggtcc?tgccaccgac?ggcgcggtcg?gcgggcccgg?cgacgtggtg 240
gcgcgccggc?cgcgggggcg?cccgcctggc?tccaagaaca?agccgaagcc?gccggtgatc 300
atcacgcggg?agagcgccaa?cacgctgcgc?gcccacatcc?tggaggtcgg?gagcggctgc 360
gacgtgttcg?agtgcgtctc?cacgtacgcg?cgccggcggc?agcgcggcgt?gtgcgtgctg 420
agcggcagcg?gcgtggtcac?caacgtgacg?ctgcgtcagc?cgtcggcgcc?cgcgggcgcc 480
gtcgtgtcgc?tgcacgggag?gttcgagatc?ctgtcgctct?cgggctcctt?cctcccgccg 540
ccggctcccc?ccggcgccac?cagcctcacc?atcttcctcg?ccgggggcca?gggacaggtc 600
gtcggcggca?acgtcgtcgg?cgcgctctac?gccgcgggcc?cggtcatcgt?catcgcggcg 660
tccttcgcca?acgtcgccta?cgagcgcctc?ccactggagg?aggaggaggc?gccgccgccg 720
caggccggcc?tgcagatgca?gcagcccggc?ggcggcgccg?atgctggtgg?catgggtggc 780
gcgttcccgc?cggacccgtc?tgccgccggc?ctcccgttct?tcaacctgcc?gctcaacaac 840
atgcccggtg?gcggcggctc?acagctccct?cccggcgccg?acggccatgg?ctgggccggc 900
gcacggccac?cgttctga 918
<210>185
<211>305
<212>PRT
<213> rice
<400>185
Met?Ala?Gly?Leu?Asp?Leu?Gly?Thr?Ala?Ala?Thr?Arg?Tyr?Val?His?Gln
1 5 10 15
Leu?His?His?Leu?His?Pro?Asp?Leu?Gln?Leu?Gln?His?Ser?Tyr?Ala?Lys
20 25 30
Gln?His?Glu?Pro?Ser?Asp?Asp?Asp?Pro?Asn?Gly?Ser?Gly?Gly?Gly?Gly
35 40 45
Asn?Ser?Asn?Gly?Gly?Pro?Tyr?Gly?Asp?His?Asp?Gly?Gly?Ser?Ser?Ser
50 55 60
Ser?Gly?Pro?Ala?Thr?Asp?Gly?Ala?Val?Gly?Gly?Pro?Gly?Asp?Val?Val
65 70 75 80
Ala?Arg?Arg?Pro?Arg?Gly?Arg?Pro?Pro?Gly?Ser?Lys?Asn?Lys?Pro?Lys
85 90 95
Pro?Pro?Val?Ile?Ile?Thr?Arg?Glu?Ser?Ala?Asn?Thr?Leu?Arg?Ala?His
100 105 110
Ile?Leu?Glu?Val?Gly?Ser?Gly?Cys?Asp?Val?Phe?Glu?Cys?Val?Ser?Thr
115 120 125
Tyr?Ala?Arg?Arg?Arg?Gln?Arg?Gly?Val?Cys?Val?Leu?Ser?Gly?Ser?Gly
130 135 140
Val?Val?Thr?Asn?Val?Thr?Leu?Arg?Gln?Pro?Ser?Ala?Pro?Ala?Gly?Ala
145 150 155 160
Val?Val?Ser?Leu?His?Gly?Arg?Phe?Glu?Ile?Leu?Ser?Leu?Ser?Gly?Ser
165 170 175
Phe?Leu?Pro?Pro?Pro?Ala?Pro?Pro?Gly?Ala?Thr?Ser?Leu?Thr?Ile?Phe
180 185 190
Leu?Ala?Gly?Gly?Gln?Gly?Gln?Val?Val?Gly?Gly?Asn?Val?Val?Gly?Ala
195 200 205
Leu?Tyr?Ala?Ala?Gly?Pro?Val?Ile?Val?Ile?Ala?Ala?Ser?Phe?Ala?Asn
210 215 220
Val?Ala?Tyr?Glu?Arg?Leu?Pro?Leu?Glu?Glu?Glu?Glu?Ala?Pro?Pro?Pro
225 230 235 240
Gln?Ala?Gly?Leu?Gln?Met?Gln?Gln?Pro?Gly?Gly?Gly?Ala?Asp?Ala?Gly
245 250 255
Gly?Met?Gly?Gly?Ala?Phe?Pro?Pro?Asp?Pro?Ser?Ala?Ala?Gly?Leu?Pro
260 265 270
Phe?Phe?Asn?Leu?Pro?Leu?Asn?Asn?Met?Pro?Gly?Gly?Gly?Gly?Ser?Gln
275 280 285
Leu?Pro?Pro?Gly?Ala?Asp?Gly?His?Gly?Trp?Ala?Gly?Ala?Arg?Pro?Pro
290 295 300
Phe
305
<210>186
<211>858
<212>DNA
<213> Arabidopis thaliana
<400>186
atggctggtc?tcgatctagg?cacaacttct?cgctacgtcc?acaacgtcga?tggtggcggc 60
ggcggacagt?tcaccaccga?caaccaccac?gaagatgacg?gtggcgctgg?aggaaaccac 120
catcatcacc?atcataatca?taatcaccat?caaggtttag?atttaatagc?ttctaatgat 180
aactctggac?taggcggcgg?tggaggagga?gggagcggtg?acctcgtcat?gcgtcggcca 240
cgtggccgtc?cagctggatc?gaagaacaaa?ccgaagccgc?cggtgattgt?cacgcgcgag 300
agcgcaaaca?ctcttagggc?tcacattctt?gaagttggaa?gtggctgcga?cgttttcgaa 360
tgtatctcca?cttacgctcg?tcggagacag?cgcgggattt?gcgttttatc?cgggacggga 420
accgtcacta?acgtcagcat?ccgtcagcct?acggcggccg?gagctgttgt?gactctgcgg 480
ggtacttttg?agattctttc?cctctccgga?tcttttcttc?cgccacctgc?tcctccaggg 540
gcgactagct?tgacgatatt?cctcgctgga?gctcaaggac?aggtcgtcgg?aggtaacgta 600
gttggtgagt?taatggcggc?ggggccggta?atggtcatgg?cagcgtcttt?tacaaacgtg 660
gcttacgaaa?ggttgccttt?ggacgagcat?gaggagcact?tgcaaagtgg?cggcggcgga 720
ggtggaggga?atatgtactc?ggaagccact?ggcggtggcg?gagggttgcc?tttctttaat 780
ttgccgatga?gtatgcctca?gattggagtt?gaaagttggc?aggggaatca?cgccggcgcc 840
ggtagggctc?cgttttag 858
<210>187
<211>285
<212>PRT
<213> Arabidopis thaliana
<400>187
Met?Ala?Gly?Leu?Asp?Leu?Gly?Thr?Thr?Ser?Arg?Tyr?Val?His?Asn?Val
1 5 10 15
Asp?Gly?Gly?Gly?Gly?Gly?Gln?Phe?Thr?Thr?Asp?Asn?His?His?Glu?Asp
20 25 30
Asp?Gly?Gly?Ala?Gly?Gly?Asn?His?His?His?His?His?His?Asn?His?Asn
35 40 45
His?His?Gln?Gly?Leu?Asp?Leu?Ile?Ala?Ser?Asn?Asp?Asn?Ser?Gly?Leu
50 55 60
Gly?Gly?Gly?Gly?Gly?Gly?Gly?Ser?Gly?Asp?Leu?Val?Met?Arg?Arg?Pro
65 70 75 80
Arg?Gly?Arg?Pro?Ala?Gly?Ser?Lys?Asn?Lys?Pro?Lys?Pro?Pro?Val?Ile
85 90 95
Val?Thr?Arg?Glu?Ser?Ala?Asn?Thr?Leu?Arg?Ala?His?Ile?Leu?Glu?Val
100 105 110
Gly?Ser?Gly?Cys?Asp?Val?Phe?Glu?Cys?Ile?Ser?Thr?Tyr?Ala?Arg?Arg
115 120 125
Arg?Gln?Arg?Gly?Ile?Cys?Val?Leu?Ser?Gly?Thr?Gly?Thr?Val?Thr?Asn
130 135 140
Val?Ser?Ile?Arg?Gln?Pro?Thr?Ala?Ala?Gly?Ala?Val?Val?Thr?Leu?Arg
145 150 155 160
Gly?Thr?Phe?Glu?Ile?Leu?Ser?Leu?Ser?Gly?Ser?Phe?Leu?Pro?Pro?Pro
165 170 175
Ala?Pro?Pro?Gly?Ala?Thr?Ser?Leu?Thr?Ile?Phe?Leu?Ala?Gly?Ala?Gln
180 185 190
Gly?Gln?Val?Val?Gly?Gly?Asn?Val?Val?Gly?Glu?Leu?Met?Ala?Ala?Gly
195 200 205
Pro?Val?Met?Val?Met?Ala?Ala?Ser?Phe?Thr?Asn?Val?Ala?Tyr?Glu?Arg
210 215 220
Leu?Pro?Leu?Asp?Glu?His?Glu?Glu?His?Leu?Gln?Ser?Gly?Gly?Gly?Gly
225 230 235 240
Gly?Gly?Gly?Asn?Met?Tyr?Ser?Glu?Ala?Thr?Gly?Gly?Gly?Gly?Gly?Leu
245 250 255
Pro?Phe?Phe?Asn?Leu?Pro?Met?Ser?Met?Pro?Gln?Ile?Gly?Val?Glu?Ser
260 265 270
Trp?Gln?Gly?Asn?His?Ala?Gly?Ala?Gly?Arg?Ala?Pro?Phe
275 280 285
<210>188
<211>978
<212>DNA
<213> puncture vine clover
<400>188
atggatcaag?tagcacaagg?tcgtcctctt?ccacctccat?ttctcactag?agaccttcat 60
cttcatcctc?accatcaatt?tcacaccaac?caccaaacca?atgaagagga?acaacaaagt 120
ggcaatggga?gcttaagccg?aggccaaaaa?agagaacgaa?acaacgaaga?cggcaacaac 180
actcccaccg?gaggagaagg?aaaagacgac?ggtggtagcg?gaagtgctgg?tggaggaagt 240
ggtggtgaga?tgggaagaag?accaagagga?agaccagcag?gttcgaaaaa?caaaccaaaa 300
ccacctatca?tcatcacgag?ggacagcgcg?aacgcactcc?gatcccacgt?gatggaagtt 360
gcaaatggat?gtgacatcat?ggaaagtgtg?acggtctttg?cgcgaaggag?gcagcgtggt 420
gtctgcatcc?ttagcggaag?tgggaccgtc?acaaacgtga?ctctccgtca?accagcatcg 480
cctggtgcgg?tagtcacact?tcatggaaga?tttgagatat?tatcattatc?tggctctttc 540
ctgccgccgc?ctgctccacc?agcggcgtca?ggattagcca?tatatctagc?tggtggacaa 600
ggacaggtcg?tcggtggtag?cgtggtggga?ccgttgttag?cttccggtcc?ggttgttatc 660
atggcagctt?cctttggaaa?tgctgcttat?gaaaggctac?ctttagaaga?tgaagaaaca 720
ccagtgaatg?tgccaggaaa?tggagggtta?gggtcaccgg?gaaccatggg?aagtcaacaa 780
caacagcagc?agaaccagca?acagcaacaa?cttgtagcag?atcctaatgc?ttcatcactt 840
ttccatggag?ttcctcaaaa?tcttctcaat?tcatgccaat?taccagctga?aggttattgg 900
ggtggaagtg?ctcgtcctcc?ttttttaacc?aaaaatgtta?ttcacttaat?cacttttctc 960
atcatgtttt?tcgtttaa 978
<210>189
<211>325
<212>PRT
<213> puncture vine clover
<400>189
Met?Asp?Gln?Val?Ala?Gln?Gly?Arg?Pro?Leu?Pro?Pro?Pro?Phe?Leu?Thr
1 5 10 15
Arg?Asp?Leu?His?Leu?His?Pro?His?His?Gln?Phe?His?Thr?Asn?His?Gln
20 25 30
Thr?Asn?Glu?Glu?Glu?Gln?Gln?Ser?Gly?Asn?Gly?Ser?Leu?Ser?Arg?Gly
35 40 45
Gln?Lys?Arg?Glu?Arg?Asn?Asn?Glu?Asp?Gly?Asn?Asn?Thr?Pro?Thr?Gly
50 55 60
Gly?Glu?Gly?Lys?Asp?Asp?Gly?Gly?Ser?Gly?Ser?Ala?Gly?Gly?Gly?Ser
65 70 75 80
Gly?Gly?Glu?Met?Gly?Arg?Arg?Pro?Arg?Gly?Arg?Pro?Ala?Gly?Ser?Lys
85 90 95
Asn?Lys?Pro?Lys?Pro?Pro?Ile?Ile?Ile?Thr?Arg?Asp?Ser?Ala?Asn?Ala
100 105 110
Leu?Arg?Ser?His?Val?Met?Glu?Val?Ala?Asn?Gly?Cys?Asp?Ile?Met?Glu
115 120 125
Ser?Val?Thr?Val?Phe?Ala?Arg?Arg?Arg?Gln?Arg?Gly?Val?Cys?Ile?Leu
130 135 140
Ser?Gly?Ser?Gly?Thr?Val?Thr?Asn?Val?Thr?Leu?Arg?Gln?Pro?Ala?Ser
145 150 155 160
Pro?Gly?Ala?Val?Val?Thr?Leu?His?Gly?Arg?Phe?Glu?Ile?Leu?Ser?Leu
165 170 175
Ser?Gly?Ser?Phe?Leu?Pro?Pro?Pro?Ala?Pro?Pro?Ala?Ala?Ser?Gly?Leu
180 185 190
Ala?Ile?Tyr?Leu?Ala?Gly?Gly?Gln?Gly?Gln?Val?Val?Gly?Gly?Ser?Val
195 200 205
Val?Gly?Pro?Leu?Leu?Ala?Ser?Gly?Pro?Val?Val?Ile?Met?Ala?Ala?Ser
210 215 220
Phe?Gly?Asn?Ala?Ala?Tyr?Glu?Arg?Leu?Pro?Leu?Glu?Asp?Glu?Glu?Thr
225 230 235 240
Pro?Val?Asn?Val?Pro?Gly?Asn?Gly?Gly?Leu?Gly?Ser?Pro?Gly?Thr?Met
245 250 255
Gly?Ser?Gln?Gln?Gln?Gln?Gln?Gln?Asn?Gln?Gln?Gln?Gln?Gln?Leu?Val
260 265 270
Ala?Asp?Pro?Asn?Ala?Ser?Ser?Leu?Phe?His?Gly?Val?Pro?Gln?Asn?Leu
275 280 285
Leu?Asn?Ser?Cys?Gln?Leu?Pro?Ala?Glu?Gly?Tyr?Trp?Gly?Gly?Ser?Ala
290 295 300
Arg?Pro?Pro?Phe?Leu?Thr?Lys?Asn?Val?Ile?His?Leu?Ile?Thr?Phe?Leu
305 310 315 320
Ile?Met?Phe?Phe?Val
325
<210>190
<211>6
<212>PRT
<213> artificial sequence
<220>
<223> primitive 1
<220>
<221> variant
<222>(4)..(4)
<223>/ displacement=" Ile "
<400>190
Gln?Gly?Gln?Val?Gly?Gly
1 5
<210>191
<211>15
<212>PRT
<213> artificial sequence
<220>
<223> primitive 2
<400>191
Ile?Leu?Ser?Leu?Ser?Gly?Ser?Phe?Leu?Pro?Pro?Pro?Ala?Pro?Pro
1 5 10 15
<210>192
<211>8
<212>PRT
<213> artificial sequence
<220>
<223> primitive 3
<400>192
Asn?Ala?Thr?Tyr?Glu?Arg?Leu?Pro
1 5
<210>193
<211>12
<212>PRT
<213> artificial sequence
<220>
<223> primitive 4
<400>193
Ser?Phe?Thr?Asn?Val?Ala?Tyr?Glu?Arg?Leu?Pro?Leu
1 5 10
<210>194
<211>42
<212>PRT
<213> artificial sequence
<220>
<223> primitive 5
<400>194
Gly?Arg?Phe?Glu?Ile?Leu?Ser?Leu?Thr?Gly?Ser?Phe?Leu?Pro?Gly?Pro
1 5 10 15
Ala?Pro?Pro?Gly?Ser?Thr?Gly?Leu?Thr?Ile?Tyr?Leu?Ala?Gly?Gly?Gln
20 25 30
Gly?Gln?Val?Val?Gly?Gly?Ser?Val?Val?Gly
35 40
<210>195
<211>654
<212>DNA
<213> rice
<400>195
cttctacatc?ggcttaggtg?tagcaacacg?actttattat?tattattatt?attattatta 60
ttattttaca?aaaatataaa?atagatcagt?ccctcaccac?aagtagagca?agttggtgag 120
ttattgtaaa?gttctacaaa?gctaatttaa?aagttattgc?attaacttat?ttcatattac 180
aaacaagagt?gtcaatggaa?caatgaaaac?catatgacat?actataattt?tgtttttatt 240
attgaaatta?tataattcaa?agagaataaa?tccacatagc?cgtaaagttc?tacatgtggt 300
gcattaccaa?aatatatata?gcttacaaaa?catgacaagc?ttagtttgaa?aaattgcaat 360
ccttatcaca?ttgacacata?aagtgagtga?tgagtcataa?tattattttc?tttgctaccc 420
atcatgtata?tatgatagcc?acaaagttac?tttgatgatg?atatcaaaga?acatttttag 480
gtgcacctaa?cagaatatcc?aaataatatg?actcacttag?atcataatag?agcatcaagt 540
aaaactaaca?ctctaaagca?accgatggga?aagcatctat?aaatagacaa?gcacaatgaa 600
aatcctcatc?atccttcacc?acaattcaaa?tattatagtt?gaagcatagt?agta 654
<210>196
<211>51
<212>DNA
<213> artificial sequence
<220>
<223> primer
<400>196
ggggacaagt?ttgtacaaaa?aagcaggctt?aaacaatgga?tccggtcacg?g 51
<210>197
<211>49
<212>DNA
<213> artificial sequence
<220>
<223> primer
<400>197
ggggaccact?ttgtacaaga?aagctgggtg?gaatcgatcc?atctcagaa 49
<210>198
<211>828
<212>DNA
<213> Arabidopis thaliana
<400>198
atgggtggat?cgatgtcgga?gagagcaagg?caggccaaca?ttcctccact?agcgggaccc 60
ctaaagtgtc?ctcgatgcga?ctccagcaac?actaagttct?gttactacaa?caactataac 120
ctcactcagc?ctcgtcactt?ctgcaaaggt?tgccgtcgct?actggacaca?agggggcgcc 180
ctgagaaacg?tccctgtagg?tggaggctgc?cggaggaata?acaagaaggg?caaaaatgga 240
aatttaaaat?cttcttcttc?ttcgtccaaa?cagtcttcct?cggtcaacgc?tcaaagtcct 300
agctcaggac?agctaaggac?aaatcatcag?ttcccttttt?caccaactct?ttacaatctc 360
actcaactcg?gaggtattgg?tttgaactta?gccgctacta?atggcaacaa?ccaagctcac 420
cagatcggtt?ccagtttgat?gatgagcgat?ctagggtttc?tccatggacg?aaatacttca 480
actccgatga?cgggaaacat?tcatgaaaac?aacaacaata?ataacaatga?aaacaaccta 540
atggcatccg?ttggatcttt?gagccccttt?gctctcttcg?atccaacgac?ggggctatac 600
gctttccaga?acgacggtaa?tatcgggaac?aacgttggga?tatctggctc?ttctacttcc 660
atggttgatt?ctagggttta?tcagacgcct?ccggtgaaga?tggaagaaca?acctaatttg 720
gctaacttgt?ctagaccggt?ctccggtttg?acgtctcctg?ggaatcaaac?aaatcagtac 780
ttttggcctg?gttcggattt?ctcgggtcct?tctaatgatc?tcttgtga 828
<210>199
<211>275
<212>PRT
<213> Arabidopis thaliana
<400>199
Met?Gly?Gly?Ser?Met?Ser?Glu?Arg?Ala?Arg?Gln?Ala?Asn?Ile?Pro?Pro
1 5 10 15
Leu?Ala?Gly?Pro?Leu?Lys?Cys?Pro?Arg?Cys?Asp?Ser?Ser?Asn?Thr?Lys
20 25 30
Phe?Cys?Tyr?Tyr?Asn?Asn?Tyr?Asn?Leu?Thr?Gln?Pro?Arg?His?Phe?Cys
35 40 45
Lys?Gly?Cys?Arg?Arg?Tyr?Trp?Thr?Gln?Gly?Gly?Ala?Leu?Arg?Asn?Val
50 55 60
Pro?Val?Gly?Gly?Gly?Cys?Arg?Arg?Asn?Asn?Lys?Lys?Gly?Lys?Asn?Gly
65 70 75 80
Asn?Leu?Lys?Ser?Ser?Ser?Ser?Ser?Ser?Lys?Gln?Ser?Ser?Ser?Val?Asn
85 90 95
Ala?Gln?Ser?Pro?Ser?Ser?Gly?Gln?Leu?Arg?Thr?Asn?His?Gln?Phe?Pro
100 105 110
Phe?Ser?Pro?Thr?Leu?Tyr?Asn?Leu?Thr?Gln?Leu?Gly?Gly?Ile?Gly?Leu
115 120 125
Asn?Leu?Ala?Ala?Thr?Asn?Gly?Asn?Asn?Gln?Ala?His?Gln?Ile?Gly?Ser
130 135 140
Ser?Leu?Met?Met?Ser?Asp?Leu?Gly?Phe?Leu?His?Gly?Arg?Asn?Thr?Ser
145 150 155 160
Thr?Pro?Met?Thr?Gly?Asn?Ile?His?Glu?Asn?Asn?Asn?Asn?Asn?Asn?Asn
165 170 175
Glu?Asn?Asn?Leu?Met?Ala?Ser?Val?Gly?Ser?Leu?Ser?Pro?Phe?Ala?Leu
180 185 190
Phe?Asp?Pro?Thr?Thr?Gly?Leu?Tyr?Ala?Phe?Gln?Asn?Asp?Gly?Asn?Ile
195 200 205
Gly?Asn?Asn?Val?Gly?Ile?Ser?Gly?Ser?Ser?Thr?Ser?Met?Val?Asp?Ser
210 215 220
Arg?Val?Tyr?Gln?Thr?Pro?Pro?Val?Lys?Met?Glu?Glu?Gln?Pro?Asn?Leu
225 230 235 240
Ala?Asn?Leu?Ser?Arg?Pro?Val?Ser?Gly?Leu?Thr?Ser?Pro?Gly?Asn?Gln
245 250 255
Thr?Asn?Gln?Tyr?Phe?Trp?Pro?Gly?Ser?Asp?Phe?Ser?Gly?Pro?Ser?Asn
260 265 270
Asp?Leu?Leu
275
<210>200
<211>63
<212>PRT
<213> artificial sequence
<220>
<223>DoF structural domain
<400>200
Pro?Leu?Ala?Gly?Pro?Leu?Lys?Cys?Pro?Arg?Cys?Asp?Ser?Ser?Asn?Thr
1 5 10 15
Lys?Phe?Cys?Tyr?Tyr?Asn?Asn?Tyr?Asn?Leu?Thr?Gln?Pro?Arg?His?Phe
20 25 30
Cys?Lys?Gly?Cys?Arg?Arg?Tyr?Trp?Thr?Gln?Gly?Gly?Ala?Leu?Arg?Asn
35 40 45
Val?Pro?Val?Gly?Gly?Gly?Cys?Arg?Arg?Asn?Asn?Lys?Lys?Gly?Lys
50 55 60
<210>201
<211>684
<212>DNA
<213> Arabidopis thaliana
<400>201
atggcggaga?gagcaaggca?ggccaacatt?cctccactag?cgggacccct?aaagtgtcct 60
cgatgcgact?ccagcaacac?taagttctgt?tactacaaca?actataacct?cactcagcct 120
cgtcacttct?gcaaaggttg?ccgtcgctac?tggacacaag?ggggcgccct?gagaaacgtc 180
cctgtaggtg?gaggctgccg?gaggaataac?aagaagggca?aaaatggaaa?tttaaaatct 240
tcttcttctt?cgtccaaaca?gtcttcctcg?gtcaacgctc?aaagtcctag?ctcaggacag 300
ctaaggacaa?atcatcagtt?ccctttttca?ccaactcttt?acaatctcac?tcaactcgga 360
ggtattggtt?tgaacttagc?cgctactaat?ggcaacaacc?aagctcacca?gatcggttcc 420
agtttgatga?tgagcgatct?agggtttctc?catggacgaa?atacttcaac?tccgatgacg 480
ggaaacattc?atgaaaacaa?caacaataat?aacaatgaaa?acaacctaat?ggcatccgtt 540
ggatctttga?gcccctttgc?tctcttcgat?ccaacgacgg?ggctatacgc?tttccagaac 600
gacggtaata?tcgggaacaa?cgttgggata?tctggttctt?ctacttccat?ggttgattct 660
agggtttatc?agacgctccg?gtga 684
<210>202
<211>227
<212>PRT
<213> Arabidopis thaliana
<400>202
Met?Ala?Glu?Arg?Ala?Arg?Gln?Ala?Asn?Ile?Pro?Pro?Leu?Ala?Gly?Pro
1 5 10 15
Leu?Lys?Cys?Pro?Arg?Cys?Asp?Ser?Ser?Asn?Thr?Lys?Phe?Cys?Tyr?Tyr
20 25 30
Asn?Asn?Tyr?Asn?Leu?Thr?Gln?Pro?Arg?His?Phe?Cys?Lys?Gly?Cys?Arg
35 40 45
Arg?Tyr?Trp?Thr?Gln?Gly?Gly?Ala?Leu?Arg?Asn?Val?Pro?Val?Gly?Gly
50 55 60
Gly?Cys?Arg?Arg?Asn?Asn?Lys?Lys?Gly?Lys?Asn?Gly?Asn?Leu?Lys?Ser
65 70 75 80
Ser?Ser?Ser?Ser?Ser?Lys?Gln?Ser?Ser?Ser?Val?Asn?Ala?Gln?Ser?Pro
85 90 95
Ser?Ser?Gly?Gln?Leu?Arg?Thr?Asn?His?Gln?Phe?Pro?Phe?Ser?Pro?Thr
100 105 110
Leu?Tyr?Asn?Leu?Thr?Gln?Leu?Gly?Gly?Ile?Gly?Leu?Asn?Leu?Ala?Ala
115 120 125
Thr?Asn?Gly?Asn?Asn?Gln?Ala?His?Gln?Ile?Gly?Ser?Ser?Leu?Met?Met
130 135 140
Ser?Asp?Leu?Gly?Phe?Leu?His?Gly?Arg?Asn?Thr?Ser?Thr?Pro?Met?Thr
145 150 155 160
Gly?Asn?Ile?His?Glu?Asn?Asn?Asn?Asn?Asn?Asn?Asn?Glu?Asn?Asn?Leu
165 170 175
Met?Ala?Ser?Val?Gly?Ser?Leu?Ser?Pro?Phe?Ala?Leu?Phe?Asp?Pro?Thr
180 185 190
Thr?Gly?Leu?Tyr?Ala?Phe?Gln?Asn?Asp?Gly?Asn?Ile?Gly?Asn?Asn?Val
195 200 205
Gly?Ile?Ser?Gly?Ser?Ser?Thr?Ser?Met?Val?Asp?Ser?Arg?Val?Tyr?Gln
210 215 220
Thr?Leu?Arg
225
<210>203
<211>993
<212>DNA
<213> Arabidopis thaliana
<400>203
atgcctacga?attcgaatca?tcagcatcat?cttcaacacc?agcttaacga?aaatggaagt 60
ataataagtg?gccacggact?agtactctct?caccaacttc?cacctctcca?agcaaaccct 120
aaccctaacc?accaccatgt?cgctacctct?gctggtcttc?cgtcaaggat?gggtggatcg 180
atggcggaga?gagcaaggca?ggccaacatt?cctccactag?cgggacccct?aaagtgtcct 240
cgatgcgact?ccagcaacac?taagttctgt?tactacaaca?actataacct?cactcagcct 300
cgttacttct?gcaaaggttg?ccgtcgctac?tggacacaag?ggggcgccct?gagaaacgtc 360
cctgtaggtg?gaggctgccg?gaggaataac?aagaagggca?aaaatggaaa?tttaaaatct 420
tcttcttctt?cgtccaaaca?gtcttcctcg?gtcaacgctc?aaagtcctag?ctcaggacag 480
ctaaggacaa?atcatcagtt?ccctttttca?ccaactcttt?acaatctcac?tcaactcgga 540
ggtattggtt?tgaacttagc?cgctactaat?ggcaacaacc?aagctcacca?gatcggttcc 600
agtttgatga?tgagcgatct?agggtttctc?catggacgaa?atacttcaac?tccgatgacg 660
ggaaacattc?atgaaaacaa?caacaataat?aacaatgaaa?acaacctaat?ggcatccgtt 720
ggatctttga?gcccctttgc?tctcttcgat?ccaacgacgg?ggctatacgc?tttccagaac 780
gacggtaata?tcgggaacaa?cgttgggata?tctggttctt?ctacttccat?ggttgattct 840
agggtttatc?agacgcctcc?ggtgaagatg?gaagaacaac?ctaatttggc?taacttgtct 900
agaccggtct?ccggtttgac?gtctcctggg?aatcaaacaa?atcaatactt?ttggcctggt 960
tcggatttct?cgggtccttc?taatgatatc?ttg 993
<210>204
<211>331
<212>PRT
<213> Arabidopis thaliana
<400>204
Met?Pro?Thr?Asn?Ser?Asn?His?Gln?His?His?Leu?Gln?His?Gln?Leu?Asn
1 5 10 15
Glu?Asn?Gly?Ser?Ile?Ile?Ser?Gly?His?Gly?Leu?Val?Leu?Ser?His?Gln
20 25 30
Leu?Pro?Pro?Leu?Gln?Ala?Asn?Pro?Asn?Pro?Asn?His?His?His?Val?Ala
35 40 45
Thr?Ser?Ala?Gly?Leu?Pro?Ser?Arg?Met?Gly?Gly?Ser?Met?Ala?Glu?Arg
50 55 60
Ala?Arg?Gln?Ala?Asn?Ile?Pro?Pro?Leu?Ala?Gly?Pro?Leu?Lys?Cys?Pro
65 70 75 80
Arg?Cys?Asp?Ser?Ser?Asn?Thr?Lys?Phe?Cys?Tyr?Tyr?Asn?Asn?Tyr?Asn
85 90 95
Leu?Thr?Gln?Pro?Arg?Tyr?Phe?Cys?Lys?Gly?Cys?Arg?Arg?Tyr?Trp?Thr
100 105 110
Gln?Gly?Gly?Ala?Leu?Arg?Asn?Val?Pro?Val?Gly?Gly?Gly?Cys?Arg?Arg
115 120 125
Asn?Asn?Lys?Lys?Gly?Lys?Asn?Gly?Asn?Leu?Lys?Ser?Ser?Ser?Ser?Ser
130 135 140
Ser?Lys?Gln?Ser?Ser?Ser?Val?Asn?Ala?Gln?Ser?Pro?Ser?Ser?Gly?Gln
145 150 155 160
Leu?Arg?Thr?Asn?His?Gln?Phe?Pro?Phe?Ser?Pro?Thr?Leu?Tyr?Asn?Leu
165 170 175
Thr?Gln?Leu?Gly?Gly?Ile?Gly?Leu?Asn?Leu?Ala?Ala?Thr?Asn?Gly?Asn
180 185 190
Asn?Gln?Ala?His?Gln?Ile?Gly?Ser?Ser?Leu?Met?Met?Ser?Asp?Leu?Gly
195 200 205
Phe?Leu?His?Gly?Arg?Asn?Thr?Ser?Thr?Pro?Met?Thr?Gly?Asn?Ile?His
210 215 220
Glu?Asn?Asn?Asn?Asn?Asn?Asn?Asn?Glu?Asn?Asn?Leu?Met?Ala?Ser?Val
225 230 235 240
Gly?Ser?Leu?Ser?Pro?Phe?Ala?Leu?Phe?Asp?Pro?Thr?Thr?Gly?Leu?Tyr
245 250 255
Ala?Phe?Gln?Asn?Asp?Gly?Asn?Ile?Gly?Asn?Asn?Val?Gly?Ile?Ser?Gly
260 265 270
Ser?Ser?Thr?Ser?Met?Val?Asp?Ser?Arg?Val?Tyr?Gln?Thr?Pro?Pro?Val
275 280 285
Lys?Met?Glu?Glu?Gln?Pro?Asn?Leu?Ala?Asn?Leu?Ser?Arg?Pro?Val?Ser
290 295 300
Gly?Leu?Thr?Ser?Pro?Gly?Asn?Gln?Thr?Asn?Gln?Tyr?Phe?Trp?Pro?Gly
305 310 315 320
Ser?Asp?Phe?Ser?Gly?Pro?Ser?Asn?Asp?Ile?Leu
325 330
<210>205
<211>873
<212>DNA
<213> rice
<400>205
atgattccgg?gcacgcttgc?cgatggcggc?ggcggaggcg?gcgcggtggg?gccggcgaag 60
ccgatgtcga?tgtcggagag?ggcgcggctg?gcgaggatcc?cgctgccgga?gccggggctc 120
aagtgcccgc?gctgcgactc?caccaacacc?aagttctgct?acttcaacaa?ctactccctc 180
tcccagcccc?gccacttctg?ccgcgcctgc?cgccgctact?ggacccgcgg?cggcgcgctc 240
cgcaacgtcc?ccgtcggcgg?cggctaccgc?cgccacgcca?agcgcgccaa?gcccaagccg 300
gcgtccgcgg?cgggctccgc?ctcagccgcc?accaccaccg?ccggctcgac?gccagcgggg 360
tcgacgacga?cgacgacgac?gtcctccacc?tgcgccacgc?ccaacgcgcc?cgccctcccg 420
gcgatgctgg?gcggcaacct?ctccatcctg?ccgccgctgc?tccgcctcgc?cgacttcgac 480
gccatgagcc?tcggctccac?cttctctggc?atggcggcgg?ccgccggcaa?gccaccgccc 540
gtcgacgcgg?ccggctgcta?ctccgtcggc?gccgccaccg?gcctcgagca?atggagacta 600
cagcagatgc?agagcttccc?gttcttccac?gccatggatc?accaggcggc?gatggcggcg 660
ccaccgccgg?caatggcaat?gccggggatg?ttccagctag?gcctagacgg?cgacggccat 720
ggcagcggcg?gcggcgaaga?cggtggagag?ctccaccatg?cgatgccatc?atcgaagaga 780
gaaggctacc?caaggggcat?gtatggcgat?catcacctcg?ctggaggata?cacctcctac 840
tccagtgcaa?ccacaggtaa?ccatctcttg?taa 873
<210>206
<211>290
<212>PRT
<213> rice
<400>206
Met?Ile?Pro?Gly?Thr?Leu?Ala?Asp?Gly?Gly?Gly?Gly?Gly?Gly?Ala?Val
1 5 10 15
Gly?Pro?Ala?Lys?Pro?Met?Ser?Met?Ser?Glu?Arg?Ala?Arg?Leu?Ala?Arg
20 25 30
Ile?Pro?Leu?Pro?Glu?Pro?Gly?Leu?Lys?Cys?Pro?Arg?Cys?Asp?Ser?Thr
35 40 45
Asn?Thr?Lys?Phe?Cys?Tyr?Phe?Asn?Asn?Tyr?Ser?Leu?Ser?Gln?Pro?Arg
50 55 60
His?Phe?Cys?Arg?Ala?Cys?Arg?Arg?Tyr?Trp?Thr?Arg?Gly?Gly?Ala?Leu
65 70 75 80
Arg?Asn?Val?Pro?Val?Gly?Gly?Gly?Tyr?Arg?Arg?His?Ala?Lys?Arg?Ala
85 90 95
Lys?Pro?Lys?Pro?Ala?Ser?Ala?Ala?Gly?Ser?Ala?Ser?Ala?Ala?Thr?Thr
100 105 110
Thr?Ala?Gly?Ser?Thr?Pro?Ala?Gly?Ser?Thr?Thr?Thr?Thr?Thr?Thr?Ser
115 120 125
Ser?Thr?Cys?Ala?Thr?Pro?Asn?Ala?Pro?Ala?Leu?Pro?Ala?Met?Leu?Gly
130 135 140
Gly?Asn?Leu?Ser?Ile?Leu?Pro?Pro?Leu?Leu?Arg?Leu?Ala?Asp?Phe?Asp
145 150 155 160
Ala?Met?Ser?Leu?Gly?Ser?Thr?Phe?Ser?Gly?Met?Ala?Ala?Ala?Ala?Gly
165 170 175
Lys?Pro?Pro?Pro?Val?Asp?Ala?Ala?Gly?Cys?Tyr?Ser?Val?Gly?Ala?Ala
180 185 190
Thr?Gly?Leu?Glu?Gln?Trp?Arg?Leu?Gln?Gln?Met?Gln?Ser?Phe?Pro?Phe
195 200 205
Phe?His?Ala?Met?Asp?His?Gln?Ala?Ala?Met?Ala?Ala?Pro?Pro?Pro?Ala
210 215 220
Met?Ala?Met?Pro?Gly?Met?Phe?Gln?Leu?Gly?Leu?Asp?Gly?Asp?Gly?His
225 230 235 240
Gly?Ser?Gly?Gly?Gly?Glu?Asp?Gly?Gly?Glu?Leu?His?His?Ala?Met?Pro
245 250 255
Ser?Ser?Lys?Arg?Glu?Gly?Tyr?Pro?Arg?Gly?Met?Tyr?Gly?Asp?His?His
260 265 270
Leu?Ala?Gly?Gly?Tyr?Thr?Ser?Tyr?Ser?Ser?Ala?Thr?Thr?Gly?Asn?His
275 280 285
Leu?Leu
290
<210>207
<211>1068
<212>DNA
<213> rice
<400>207
atgccgccgc?atcacggcgg?cctcatggcg?cctcggcctg?acatggtagc?agcggccgtc 60
gcggcgagcg?gcggcggcgg?tggcggcggc?ggcccgaccg?gcggcacggc?ggtgcggccg 120
ggctcgatga?cggaacgggc?tcggctggcg?aagatcccgc?agccggagcc?ggggctcaag 180
tgcccgcgct?gcgagtccac?caacaccaag?ttctgctact?tcaacaacta?ctcgctctcg 240
cagccgcgcc?acttctgcaa?gacgtgccgc?cgctactgga?cgcgcggcgg?agcgctccgc 300
aacgtccccg?tcggcggcgg?gtgccgccgc?aacaagcgca?ccaagtcgtc?caagtcgtcc 360
tcgtcgacgt?cggccgccgg?ctcggcctcc?gccaccggcg?gcacgtcgtc?gtccacatcg 420
tcgaccgcca?cgggtggcag?cagcagcgcc?gcggcggccg?cggcgatgat?gccgccgcag 480
gcgcagctgc?cgttcctggc?ctcgttgcac?cacccgctcg?gcggcggcga?tcactacagc 540
tccggtgcgt?ccaggctagg?gtttcccgga?ttgagctcgc?tggatcccgt?cgactaccag 600
ctcggcggcg?gcgccgccgc?cgccgccgcc?atcgggctag?agcagtggcg?cctcccgcag 660
atacagcaat?tccccttctt?gagccgcaac?gacgccatgc?cgccgccaat?gtccggcatt 720
tacccgttcg?acgcggaggc?cgccgccgac?gccgccggct?tcgccggcca?gttgctggcc 780
ggcaccaagg?tgcccggctc?gtcgggcctg?atcacgcagc?tcgcatccgt?caagatggag 840
gacagcaacg?ctcagtccgc?ggcgatgaac?agctcgccga?gggagttctt?gggcctcccc 900
ggcaacctcc?aattctgggg?cggtggcaac?ggcgcgggac?ccggcggcaa?tggagacggc 960
gccaccggcg?gcagcggcgc?cggtgtcgct?ccgggaggcg?gcggcagcgg?cggcggatgg 1020
gctgatctct?ccggattcaa?ctcgtcgtcg?tcggggaaca?tactgtga 1068
<210>208
<211>355
<212>PRT
<213> rice
<400>208
Met?Pro?Pro?His?His?Gly?Gly?Leu?Met?Ala?Pro?Arg?Pro?Asp?Met?Val
1 5 10 15
Ala?Ala?Ala?Val?Ala?Ala?Ser?Gly?Gly?Gly?Gly?Gly?Gly?Gly?Gly?Pro
20 25 30
Thr?Gly?Gly?Thr?Ala?Val?Arg?Pro?Gly?Ser?Met?Thr?Glu?Arg?Ala?Arg
35 40 45
Leu?Ala?Lys?Ile?Pro?Gln?Pro?Glu?Pro?Gly?Leu?Lys?Cys?Pro?Arg?Cys
50 55 60
Glu?Ser?Thr?Asn?Thr?Lys?Phe?Cys?Tyr?Phe?Asn?Asn?Tyr?Ser?Leu?Ser
65 70 75 80
Gln?Pro?Arg?His?Phe?Cys?Lys?Thr?Cys?Arg?Arg?Tyr?Trp?Thr?Arg?Gly
85 90 95
Gly?Ala?Leu?Arg?Asn?Val?Pro?Val?Gly?Gly?Gly?Cys?Arg?Arg?Asn?Lys
100 105 110
Arg?Thr?Lys?Ser?Ser?Lys?Ser?Ser?Ser?Ser?Thr?Ser?Ala?Ala?Gly?Ser
115 120 125
Ala?Ser?Ala?Thr?Gly?Gly?Thr?Ser?Ser?Ser?Thr?Ser?Ser?Thr?Ala?Thr
130 135 140
Gly?Gly?Ser?Ser?Ser?Ala?Ala?Ala?Ala?Ala?Ala?Met?Met?Pro?Pro?Gln
145 150 155 160
Ala?Gln?Leu?Pro?Phe?Leu?Ala?Ser?Leu?His?His?Pro?Leu?Gly?Gly?Gly
165 170 175
Asp?His?Tyr?Ser?Ser?Gly?Ala?Ser?Arg?Leu?Gly?Phe?Pro?Gly?Leu?Ser
180 185 190
Ser?Leu?Asp?Pro?Val?Asp?Tyr?Gln?Leu?Gly?Gly?Gly?Ala?Ala?Ala?Ala
195 200 205
Ala?Ala?Ile?Gly?Leu?Glu?Gln?Trp?Arg?Leu?Pro?Gln?Ile?Gln?Gln?Phe
210 215 220
Pro?Phe?Leu?Ser?Arg?Asn?Asp?Ala?Met?Pro?Pro?Pro?Met?Ser?Gly?Ile
225 230 235 240
Tyr?Pro?Phe?Asp?Ala?Glu?Ala?Ala?Ala?Asp?Ala?Ala?Gly?Phe?Ala?Gly
245 250 255
Gln?Leu?Leu?Ala?Gly?Thr?Lys?Val?Pro?Gly?Ser?Ser?Gly?Leu?Ile?Thr
260 265 270
Gln?Leu?Ala?Ser?Val?Lys?Met?Glu?Asp?Ser?Asn?Ala?Gln?Ser?Ala?Ala
275 280 285
Met?Asn?Ser?Ser?Pro?Arg?Glu?Phe?Leu?Gly?Leu?Pro?Gly?Asn?Leu?Gln
290 295 300
Phe?Trp?Gly?Gly?Gly?Asn?Gly?Ala?Gly?Pro?Gly?Gly?Asn?Gly?Asp?Gly
305 310 315 320
Ala?Thr?Gly?Gly?Ser?Gly?Ala?Gly?Val?Ala?Pro?Gly?Gly?Gly?Gly?Ser
325 330 335
Gly?Gly?Gly?Trp?Ala?Asp?Leu?Ser?Gly?Phe?Asn?Ser?Ser?Ser?Ser?Gly
340 345 350
Asn?Ile?Leu
355
<210>209
<211>1000
<212>DNA
<213> common wheat
<400>209
ctcctagctc?gtcgacaagc?atgcccacaa?agccactgat?aacaagcgca?tagcagcgca 60
cgctctctta?tagtagaatg?ttctgaactc?cacaccagcc?catgcaagac?ttccagtcca 120
tcccgggcct?cgccgggcgg?ctgttcggcg?gcgcggccgc?ggcagacatc?cggcgcgtgc 180
agggcccggc?gtcccggtgc?ggcgtgttct?cgcaggcggc?gtccgcgcag?ccggaggcgg 240
ccgtcaagtg?cccgcggtgc?gagtccacca?acaccaagtt?ctgctactac?aacaactaca 300
acctgtcgca?gccgcgccac?ttctgcaaga?gctgccgccg?gtactggacc?aagggcggcg 360
tcctccgcaa?cgtccccgtc?ggcggcggct?gccgcaaggc?caagcgcagc?tcctcgtcgg 420
cgtccgcacc?gtcgacgccc?gcggccacgg?acgccaagag?ccagcggcgc?gcgtccgcgt 480
cgtcctcctc?ccgctccaac?agcggcagcg?gcagcgccag?ccccacggcc?gctgcggaag 540
agacgacgac?aacggagacc?gagccccctc?ctccgcccac?gccgtcgtcc?aactccaact 600
ccaacgcggt?ctccttcgcc?aaccgcatga?cgaactaccc?cttcgcggca?gacgtgccac 660
ctctggcgcc?gatattcgcc?gaccaggccg?ccgcgctcgc?gtccctcttc?gcgccgcctc 720
ctccaccgcc?tctcccggtg?ttcagcttct?cggcggagcc?caagatggag?gaggcgatcg 780
ggtcactgct?gctcccgggg?caggaggcgt?cgcaggagcc?agaggagccc?acctgcacct 840
ccaccgtcgc?ggacatggcg?ccgttcatgt?cgctggacgc?ggggatcttc?gagctcggcg 900
acgcgtcgcc?ggccgattac?tggaacggcg?ggagctgctg?gacggacgtc?caggacccgt 960
ccgtctacct?accctagttt?ggcttagttc?ctcatcacga 1000
<210>210
<211>291
<212>PRT
<213> common wheat
<400>210
Met?Gln?Asp?Phe?Gln?Ser?Ile?Pro?Gly?Leu?Ala?Gly?Arg?Leu?Phe?Gly
1 5 10 15
Gly?Ala?Ala?Ala?Ala?Asp?Ile?Arg?Arg?Val?Gln?Gly?Pro?Ala?Ser?Arg
20 25 30
Cys?Gly?Val?Phe?Ser?Gln?Ala?Ala?Ser?Ala?Gln?Pro?Glu?Ala?Ala?Val
35 40 45
Lys?Cys?Pro?Arg?Cys?Glu?Ser?Thr?Asn?Thr?Lys?Phe?Cys?Tyr?Tyr?Asn
50 55 60
Asn?Tyr?Asn?Leu?Sar?Gln?Pro?Arg?His?Phe?Cys?Lys?Ser?Cys?Arg?Arg
65 70 75 80
Tyr?Trp?Thr?Lys?Gly?Gly?Val?Leu?Arg?Asn?Val?Pro?Val?Gly?Gly?Gly
85 90 95
Cys?Arg?Lys?Ala?Lys?Arg?Ser?Ser?Ser?Ser?Ala?Ser?Ala?Pro?Ser?Thr
100 105 110
Pro?Ala?Ala?Thr?Asp?Ala?Lys?Ser?Gln?Arg?Arg?Ala?Ser?Ala?Ser?Ser
115 120 125
Ser?Ser?Arg?Ser?Asn?Ser?Gly?Ser?Gly?Ser?Ala?Ser?Pro?Thr?Ala?Ala
130 135 140
Ala?Glu?Glu?Thr?Thr?Thr?Thr?Glu?Thr?Glu?Pro?Pro?Pro?Pro?Pro?Thr
145 150 155 160
Pro?Ser?Ser?Asn?Ser?Asn?Ser?Asn?Ala?Val?Ser?Phe?Ala?Asn?Arg?Met
165 170 175
Thr?Asn?Tyr?Pro?Phe?Ala?Ala?Asp?Val?Pro?Pro?Leu?Ala?Pro?Ile?Phe
180 185 190
Ala?Asp?Gln?Ala?Ala?Ala?Leu?Ala?Ser?Leu?Phe?Ala?Pro?Pro?Pro?Pro
195 200 205
Pro?Pro?Leu?Pro?Val?Phe?Ser?Phe?Ser?Ala?Glu?Pro?Lys?Met?Glu?Glu
210 215 220
Ala?Ile?Gly?Ser?Leu?Leu?Leu?Pro?Gly?Gln?Glu?Ala?Ser?Gln?Glu?Pro
225 230 235 240
Glu?Glu?Pro?Thr?Cys?Thr?Ser?Thr?Val?Ala?Asp?Met?Ala?Pro?Phe?Met
245 250 255
Ser?Leu?Asp?Ala?Gly?Ile?Phe?Glu?Leu?Gly?Asp?Ala?Ser?Pro?Ala?Asp
260 265 270
Tyr?Trp?Asn?Gly?Gly?Ser?Cys?Trp?Thr?Asp?Val?Gln?Asp?Pro?Ser?Val
275 280 285
Tyr?Leu?Pro
290
<210>211
<211>1230
<212>DNA
<213> Zea mays
<400>211
aggtggtggc?gggggacagg?ttgggggccc?cgccaagccc?atgtccatgg?cggagcgcgc 60
gcgcctcgcg?aggatcccac?tgccggagcc?gggactcaag?tgcccgcgct?gcgactcaac 120
caacaccaag?ttctgctact?tcaacaacta?ctccctcacg?cagccgcgcc?acttctgccg 180
ggcctgccgc?cgctactgga?cgcgtggcgg?cgcgctccgc?aacgtgccgg?tcggtggcgg 240
ataccgccgc?cacgccaagc?gcgccaagcc?caagcagcag?cagcagcacg?cggccgccgg 300
gaccggagct?gccaacggcg?cgatgcagca?gcctcccgct?gggtctatgg?cgtcgtcggc 360
cgccgcctgc?accgcgacca?cgacgatgac?gaccaacgcg?ctggacgccg?ggcccggcgg 420
catgctgccc?atgctgccgc?cgctcgtccg?cctagcagac?ttcgacgcaa?tgagcctcgg 480
ctccagcttc?tccgggatat?cgtccatggg?gaagcccgga?tccatcggcg?cggcctgcta 540
cccgcactct?gtcggcgggc?tggagcagtg?gagggtgcag?cagatgcaga?gcttcccgtt 600
cttgcatgcg?atggaccagg?gcccgctggg?gccacctctg?gccatggcga?tggcggcgcc 660
aggagggatg?ttccagctag?gtctagacac?caccagtgat?aacagccgtg?gcggtggcgg 720
cggcggctgc?ggcgaagacg?ggtcgtctgc?gggagaggcg?ctccatatga?tgcaagcagc 780
caccaagagg?gagagctacc?cggcaccacc?aagagccatg?tacggcgacc?aacaccacaa 840
tcacctcgct?gctgctggtg?gctacacttc?ctattccacc?aatgctgctg?caggtaacca 900
tctcttgtaa?tggccggccg?atcgatcgat?cgagagctca?acaattcaag?tgtcctgcta 960
tagctagcta?ctacgacgtc?gtgctacgat?cgtatcggtt?tcggttcgtt?cctacaaata 1020
tagcctagag?atagagtgtc?tctgtctgtg?tgatcgatgg?tattgttatg?atcatataga 1080
aaagaccagt?gtagcatgca?tgcacttgtt?gcaatgtttg?ctttcaagaa?gaaactggag 1140
ggaggagagg?ctcggtttgg?atgctgatca?tgcacaaata?ttactagtgt?ctacagctgc 1200
tacttcatta?taaaaaaaaa?aaaaaaaaaa 1230
<210>212
<211>302
<212>PRT
<213> Zea mays
<400>212
Gly?Gly?Gly?Gly?Gly?Gln?Val?Gly?Gly?Pro?Ala?Lys?Pro?Met?Ser?Met
1 5 10 15
Ala?Glu?Arg?Ala?Arg?Leu?Ala?Arg?Ile?Pro?Leu?Pro?Glu?Pro?Gly?Leu
20 25 30
Lys?Cys?Pro?Arg?Cys?Asp?Ser?Thr?Asn?Thr?Lys?Phe?Cys?Tyr?Phe?Asn
35 40 45
Asn?Tyr?Ser?Leu?Thr?Gln?Pro?Arg?His?Phe?Cys?Arg?Ala?Cys?Arg?Arg
50 55 60
Tyr?Trp?Thr?Arg?Gly?Gly?Ala?Leu?Arg?Asn?Val?Pro?Val?Gly?Gly?Gly
65 70 75 80
Tyr?Arg?Arg?His?Ala?Lys?Arg?Ala?Lys?Pro?Lys?Gln?Gln?Gln?Gln?His
85 90 95
Ala?Ala?Ala?Gly?Thr?Gly?Ala?Ala?Asn?Gly?Ala?Met?Gln?Gln?Pro?Pro
100 105 110
Ala?Gly?Ser?Met?Ala?Ser?Ser?Ala?Ala?Ala?Cys?Thr?Ala?Thr?Thr?Thr
115 120 125
Met?Thr?Thr?Asn?Ala?Leu?Asp?Ala?Gly?Pro?Gly?Gly?Met?Leu?Pro?Met
130 135 140
Leu?Pro?Pro?Leu?Val?Arg?Leu?Ala?Asp?Phe?Asp?Ala?Met?Ser?Leu?Gly
145 150 155 160
Ser?Ser?Phe?Ser?Gly?Ile?Ser?Ser?Met?Gly?Lys?Pro?Gly?Ser?Ile?Gly
165 170 175
Ala?Ala?Cys?Tyr?Pro?His?Ser?Val?Gly?Gly?Leu?Glu?Gln?Trp?Arg?Val
180 185 190
Gln?Gln?Met?Gln?Ser?Phe?Pro?Phe?Leu?His?Ala?Met?Asp?Gln?Gly?Pro
195 200 205
Leu?Gly?Pro?Pro?Leu?Ala?Met?Ala?Met?Ala?Ala?Pro?Gly?Gly?Met?Phe
210 215 220
Gln?Leu?Gly?Leu?Asp?Thr?Thr?Ser?Asp?Asn?Ser?Arg?Gly?Gly?Gly?Gly
225 230 235 240
Gly?Gly?Cys?Gly?Glu?Asp?Gly?Ser?Ser?Ala?Gly?Glu?Ala?Leu?His?Met
245 250 255
Met?Gln?Ala?Ala?Thr?Lys?Arg?Glu?Ser?Tyr?Pro?Ala?Pro?Pro?Arg?Ala
260 265 270
Met?Tyr?Gly?Asp?Gln?His?His?Asn?His?Leu?Ala?Ala?Ala?Gly?Gly?Tyr
275 280 285
Thr?Ser?Tyr?Ser?Thr?Asn?Ala?Ala?Ala?Gly?Asn?His?Leu?Leu
290 295 300
<210>213
<211>1243
<212>DNA
<213> potato
<400>213
gaggacttat?caaccttttt?atataaaaga?gataaagatc?aaagagatca?aagaaagaaa 60
atcatggttt?tctcatcttt?tcctgtgtat?ctagatcatc?ccaatttgca?tcagttacaa 120
cagccagacg?gccatcaaca?aggaaatact?gggctggaga?atccaactct?gcagccccca 180
cctatgcagg?tgggggctag?tccgggctca?atcagaccag?gttctatggt?ggatcgagcc 240
cggttagcta?agattccact?accggaagct?ggattaaagt?gtccaaggtg?tgattcaaca 300
aacacaaagt?tctgctactt?caacaactac?aacctttccc?aaccaagaca?cttctgcaag 360
acctgtcgcc?ggtactggac?tagagggggc?gccttgagaa?gcgtgccggt?aggaggagga 420
tgccggagga?acaagagaag?caaaagtaat?aacaacaaca?acagctcaaa?gacagctggc 480
agtaatgtca?atactaatac?tattgcttcc?ggtacttcaa?caagtgcaag?tccttcaagc 540
tgcagcacgg?aaataatgaa?tggtcgccat?cacttctctc?atgagcaacc?accgcagtta 600
actcctctca?tggctgcttt?ccaaaatctt?aatcatcact?atggcggatt?tcaacctcct 660
cctttggttt?caacacacca?tgggaatgga?accggcgcgc?ttggtcatca?tcatgaaatg 720
ggatttcaaa?tagggagtag?tactaatact?aacaatttac?ctgtaccccc?aggaggagga 780
tctgatcatc?agtggagatt?accatctttg?gcagcaaaca?caaatttgta?cccttttcaa 840
cacggtactg?atcaaggaat?tcatgaatca?tcatctgtta?acaataataa?tattaatgct 900
catgatgacc?aagggttaaa?ttcgaccaaa?cagtttttgg?gaacaatgga?aaataatact 960
aatcaatatt?ggggtggaaa?cgcatggaca?gggttttctg?gattaaactc?atcttcttca 1020
gcaagccatc?tactttgatt?tcattcatgt?aagtcaattt?gtgtacttga?ctctcaacga 1080
ttaaaatgtt?gtatgtgttg?ggaggggggt?ctaaattaga?tatatagtat?actgggggca 1140
tgtttaagtc?tttgttattc?catggtcatt?atcaccactt?gtaattttac?tggatgtttt 1200
ttttttataa?cttaggtgtg?tgaagttgta?ttgtgagttt?taa 1243
<210>214
<211>324
<212>PRT
<213> potato
<400>214
Met?Val?Phe?Ser?Ser?Phe?Pro?Val?Tyr?Leu?Asp?His?Pro?Asn?Leu?His
1 5 10 15
Gln?Leu?Gln?Gln?Pro?Asp?Gly?His?Gln?Gln?Gly?Asn?Thr?Gly?Leu?Glu
20 25 30
Asn?Pro?Thr?Leu?Gln?Pro?Pro?Pro?Met?Gln?Val?Gly?Ala?Ser?Pro?Gly
35 40 45
Ser?Ile?Arg?Pro?Gly?Ser?Met?Val?Asp?Arg?Ala?Arg?Leu?Ala?Lys?Ile
50 55 60
Pro?Leu?Pro?Glu?Ala?Gly?Leu?Lys?Cys?Pro?Arg?Cys?Asp?Ser?Thr?Asn
65 70 75 80
Thr?Lys?Phe?Cys?Tyr?Phe?Asn?Asn?Tyr?Asn?Leu?Ser?Gln?Pro?Arg?His
85 90 95
Phe?Cys?Lys?Thr?Cys?Arg?Arg?Tyr?Trp?Thr?Arg?Gly?Gly?Ala?Leu?Arg
100 105 110
Ser?Val?Pro?Val?Gly?Gly?Gly?Cys?Arg?Arg?Asn?Lys?Arg?Ser?Lys?Ser
115 120 125
Asn?Asn?Asn?Asn?Asn?Ser?Ser?Lys?Thr?Ala?Gly?Ser?Asn?Val?Asn?Thr
130 135 140
Asn?Thr?Ile?Ala?Ser?GlV?Thr?Ser?Thr?Ser?Ala?Ser?Pro?Ser?Ser?Cys
145 150 155 160
Ser?Thr?Glu?Ile?Met?Asn?Gly?Arg?His?His?Phe?Ser?His?Glu?Gln?Pro
165 170 175
Pro?Gln?Leu?Thr?Pro?Leu?Met?Ala?Ala?Phe?Gln?Asn?Leu?Asn?His?His
180 185 190
Tyr?Gly?Gly?Phe?Gln?Pro?Pro?Pro?Leu?Val?Ser?Thr?His?His?Gly?Asn
195 200 205
Gly?Thr?Gly?Ala?Leu?Gly?His?His?His?Glu?Met?Gly?Phe?Gln?Ile?Gly
210 215 220
Ser?Ser?Thr?Asn?Thr?Asn?Asn?Leu?Pro?Val?Pro?Pro?Gly?Gly?Gly?Ser
225 230 235 240
Asp?His?Gln?Trp?Arg?Leu?Pro?Ser?Leu?Ala?Ala?Asn?Thr?Asn?Leu?Tyr
245 250 255
Pro?Phe?Gln?His?Gly?Thr?Asp?Gln?Gly?Ile?His?Glu?Ser?Ser?Ser?Val
260 265 270
Asn?Asn?Asn?Asn?Ile?Asn?Ala?His?Asp?Asp?Gln?Gly?Leu?Asn?Ser?Thr
275 280 285
Lys?Gln?Phe?Leu?Gly?Thr?Met?Glu?Asn?Asn?Thr?Asn?Gln?Tyr?Trp?Gly
290 295 300
Gly?Asn?Ala?Trp?Thr?Gly?Phe?Ser?Gly?Leu?Asn?Ser?Ser?Ser?Ser?Ala
305 310 315 320
Ser?His?Leu?Leu
<210>215
<211>996
<212>PRT
<213> Arabidopis thaliana
<400>215
Ala?Thr?Gly?Cys?Cys?Thr?Ala?Cys?Gly?Ala?Ala?Thr?Thr?Cys?Gly?Ala
1 5 10 15
Ala?Thr?Cys?Ala?Thr?Cys?Ala?Gly?Cys?Ala?Thr?Cys?Ala?Thr?Cys?Thr
20 25 30
Thr?Cys?Ala?Ala?Cys?Ala?Cys?Cys?Ala?Gly?Cys?Thr?Thr?Ala?Ala?Cys
35 40 45
Gly?Ala?Ala?Ala?Ala?Thr?Gly?Gly?Ala?Ala?Gly?Thr?Ala?Thr?Ala?Ala
50 55 60
Thr?Ala?Ala?Gly?Thr?Gly?Gly?Cys?Cys?Ala?Cys?Gly?Gly?Ala?Cys?Thr
65 70 75 80
Ala?Gly?Thr?Ala?Cys?Thr?Cys?Thr?Cys?Thr?Cys?Ala?Cys?Cys?Ala?Ala
85 90 95
Cys?Thr?Thr?Cys?Cys?Ala?Cys?Cys?Thr?Cys?Thr?Cys?Cys?Ala?Ala?Gly
100 105 110
Cys?Ala?Ala?Ala?Cys?Cys?Cys?Thr?Ala?Ala?Cys?Cys?Cys?Thr?Ala?Ala
115 120 125
Cys?Cys?Ala?Cys?Cys?Ala?Cys?Cys?Ala?Thr?Gly?Thr?Cys?Gly?Cys?Thr
130 135 140
Ala?Cys?Cys?Thr?Cys?Thr?Gly?Cys?Thr?Gly?Gly?Thr?Cys?Thr?Thr?Cys
145 150 155 160
Cys?Gly?Thr?Cys?Ala?Ala?Gly?Gly?Ala?Thr?Gly?Gly?Gly?Thr?Gly?Gly
165 170 175
Ala?Thr?Cys?Gly?Ala?Thr?Gly?Gly?Cys?Gly?Gly?Ala?Gly?Ala?Gly?Ala
180 185 190
Gly?Cys?Ala?Ala?Gly?Gly?Cys?Ala?Gly?Gly?Cys?Cys?Ala?Ala?Cys?Ala
195 200 205
Thr?Thr?Cys?Cys?Thr?Cys?Cys?Ala?Cys?Thr?Ala?Gly?Cys?Gly?Gly?Gly
210 215 220
Ala?Cys?Cys?Cys?Cys?Thr?Ala?Ala?Ala?Gly?Thr?Gly?Thr?Cys?Cys?Thr
225 230 235 240
Cys?Gly?Ala?Thr?Gly?Cys?Gly?Ala?Cys?Thr?Cys?Cys?Ala?Gly?Cys?Ala
245 250 255
Ala?Cys?Ala?Cys?Thr?Ala?Ala?Gly?Thr?Thr?Cys?Thr?Gly?Thr?Thr?Ala
260 265 270
Cys?Thr?Ala?Cys?Ala?Ala?Cys?Ala?Ala?Cys?Thr?Ala?Thr?Ala?Ala?Cys
275 280 285
Cys?Thr?Cys?Ala?Cys?Thr?Cys?Ala?Gly?Cys?Cys?Thr?Cys?Gly?Thr?Cys
290 295 300
Ala?Cys?Thr?Thr?Cys?Thr?Gly?Cys?Ala?Ala?Ala?Gly?Gly?Thr?Thr?Gly
305 310 315 320
Cys?Cys?Gly?Thr?Cys?Gly?Cys?Thr?Ala?Cys?Thr?Gly?Gly?Ala?Cys?Ala
325 330 335
Cys?Ala?Ala?Gly?Gly?Gly?Gly?Gly?Cys?Gly?Cys?Cys?Cys?Thr?Gly?Ala
340 345 350
Gly?Ala?Ala?Ala?Cys?Gly?Thr?Cys?Cys?Cys?Thr?Gly?Thr?Ala?Gly?Gly
355 360 365
Thr?Gly?Gly?Ala?Gly?Gly?Cys?Thr?Gly?Cys?Cys?Gly?Gly?Ala?Gly?Gly
370 375 380
Ala?Ala?Thr?Ala?Ala?Cys?Ala?Ala?Gly?Ala?Ala?Gly?Gly?Gly?Cys?Ala
385 390 395 400
Ala?Ala?Ala?Ala?Thr?Gly?Gly?Ala?Ala?Ala?Thr?Thr?Thr?Ala?Ala?Ala
405 410 415
Ala?Thr?Cys?Thr?Thr?Cys?Thr?Thr?Cys?Thr?Thr?Cys?Thr?Thr?Cys?Gly
420 425 430
Thr?Cys?Cys?Ala?Ala?Ala?Cys?Ala?Gly?Thr?Cys?Thr?Thr?Cys?Cys?Thr
435 440 445
Cys?Gly?Gly?Thr?Cys?Ala?Ala?Cys?Gly?Cys?Thr?Cys?Ala?Ala?Ala?Gly
450 455 460
Thr?Cys?Cys?Thr?Ala?Gly?Cys?Thr?Cys?Ala?Gly?Gly?Ala?Cys?Ala?Gly
465 470 475 480
Cys?Thr?Ala?Ala?Gly?Gly?Ala?Cys?Ala?Ala?Ala?Thr?Cys?Ala?Thr?Cys
485 490 495
Ala?Gly?Thr?Thr?Cys?Cys?Cys?Thr?Thr?Thr?Thr?Thr?Cys?Ala?Cys?Cys
500 505 510
Ala?Ala?Cys?Thr?Cys?Thr?Thr?Thr?Ala?Cys?Ala?Ala?Thr?Cys?Thr?Cys
515 520 525
Ala?Cys?Thr?Cys?Ala?Ala?Cys?Thr?Cys?Gly?Gly?Ala?Gly?Gly?Thr?Ala
530 535 540
Thr?Thr?Gly?Gly?Thr?Thr?Thr?Gly?Ala?Ala?Cys?Thr?Thr?Ala?Gly?Cys
545 550 555 560
Cys?Gly?Cys?Thr?Ala?Cys?Thr?Ala?Ala?Thr?Gly?Gly?Cys?Ala?Ala?Cys
565 570 575
Ala?Ala?Cys?Cys?Ala?Ala?Gly?Cys?Thr?Cys?Ala?Cys?Cys?Ala?Gly?Ala
580 585 590
Thr?Cys?Gly?Gly?Thr?Thr?Cys?Cys?Ala?Gly?Thr?Thr?Thr?Gly?Ala?Thr
595 600 605
Gly?Ala?Thr?Gly?Ala?Gly?Cys?Gly?Ala?Thr?Cys?Thr?Ala?Gly?Gly?Gly
610 615 620
Thr?Thr?Thr?Cys?Thr?Cys?Cys?Ala?Thr?Gly?Gly?Ala?Cys?Gly?Ala?Ala
625 630 635 640
Ala?Thr?Ala?Cys?Thr?Thr?Cys?Ala?Ala?Cys?Thr?Cys?Cys?Gly?Ala?Thr
645 650 655
Gly?Ala?Cys?Gly?Gly?Gly?Ala?Ala?Ala?Cys?Ala?Thr?Thr?Cys?Ala?Thr
660 665 670
Gly?Ala?Ala?Ala?Ala?Cys?Ala?Ala?Cys?Ala?Ala?Cys?Ala?Ala?Thr?Ala
675 680 685
Ala?Thr?Ala?Ala?Cys?Ala?Ala?Thr?Gly?Ala?Ala?Ala?Ala?Cys?Ala?Ala
690 695 700
Cys?Cys?Thr?Ala?Ala?Thr?Gly?Gly?Cys?Ala?Thr?Cys?Cys?Gly?Thr?Thr
705 710 715 720
Gly?Gly?Ala?Thr?Cys?Thr?Thr?Thr?Gly?Ala?Gly?Cys?Cys?Cys?Cys?Thr
725 730 735
Thr?Thr?Gly?Cys?Thr?Cys?Thr?Cys?Thr?Thr?Cys?Gly?Ala?Thr?Cys?Cys
740 745 750
Ala?Ala?Cys?Gly?Ala?Cys?Gly?Gly?Gly?Gly?Cys?Thr?Ala?Thr?Ala?Cys
755 760 765
Gly?Cys?Thr?Thr?Thr?Cys?Cys?Ala?Gly?Ala?Ala?Cys?Gly?Ala?Cys?Gly
770 775 780
Gly?Thr?Ala?Ala?Thr?Ala?Thr?Cys?Gly?Gly?Gly?Ala?Ala?Cys?Ala?Ala
785 790 795 800
Cys?Gly?Thr?Thr?Gly?Gly?Gly?Ala?Thr?Ala?Thr?Cys?Thr?Gly?Gly?Thr
805 810 815
Thr?Cys?Thr?Thr?Cys?Thr?Ala?Cys?Thr?Thr?Cys?Cys?Ala?Thr?Gly?Gly
820 825 830
Thr?Thr?Gly?Ala?Thr?Thr?Cys?Thr?Ala?Gly?Gly?Gly?Thr?Thr?Thr?Ala
835 840 845
Thr?Cys?Ala?Gly?Ala?Cys?Gly?Cys?Cys?Thr?Cys?Cys?Gly?Gly?Thr?Gly
850 855 860
Ala?Ala?Gly?Ala?Thr?Gly?Gly?Ala?Ala?Gly?Ala?Ala?Cys?Ala?Ala?Cys
865 870 875 880
Cys?Thr?Ala?Ala?Thr?Thr?Thr?Gly?Gly?Cys?Thr?Ala?Ala?Cys?Thr?Thr
885 890 895
Gly?Thr?Cys?Thr?Ala?Gly?Ala?Cys?Cys?Gly?Gly?Thr?Cys?Thr?Cys?Cys
900 905 910
Gly?Gly?Thr?Thr?Thr?Gly?Ala?Cys?Gly?Thr?Cys?Thr?Cys?Cys?Thr?Gly
915 920 925
Gly?Gly?Ala?Ala?Thr?Cys?Ala?Ala?Ala?Cys?Ala?Ala?Ala?Thr?Cys?Ala
930 935 940
Gly?Thr?Ala?Cys?Thr?Thr?Thr?Thr?Gly?Gly?Cys?Cys?Thr?Gly?Gly?Thr
945 950 955 960
Thr?Cys?Gly?Gly?Ala?Thr?Thr?Thr?Cys?Thr?Cys?Gly?Gly?Gly?Thr?Cys
965 970 975
Cys?Thr?Thr?Cys?Thr?Ala?Ala?Thr?Gly?Ala?Thr?Cys?Thr?Cys?Thr?Thr
980 985 990
Gly?Thr?Gly?Ala
995
<210>216
<211>275
<212>PRT
<213> Arabidopis thaliana
<400>216
Met?Gly?Gly?Ser?Met?Ala?Glu?Arg?Ala?Arg?Gln?Ala?Asn?Ile?Pro?Pro
1 5 10 15
Leu?Ala?Gly?Pro?Leu?Lys?Cys?Pro?Arg?Cys?Asp?Ser?Ser?Asn?Thr?Lys
20 25 30
Phe?Cys?Tyr?Tyr?Asn?Asn?Tyr?Asn?Leu?Thr?Gln?Pro?Arg?His?Phe?Cys
35 40 45
Lys?Gly?Cys?Arg?Arg?Tyr?Trp?Thr?Gln?Gly?Gly?Ala?Leu?Arg?Asn?Val
50 55 60
Pro?Val?Gly?Gly?Gly?Cys?Arg?Arg?Asn?Asn?Lys?Lys?Gly?Lys?Asn?Gly
65 70 75 80
Asn?Leu?Lys?Ser?Ser?Ser?Ser?Ser?Ser?Lys?Gln?Ser?Ser?Ser?Val?Asn
85 90 95
Ala?Gln?Ser?Pro?Ser?Ser?Gly?Gln?Leu?Arg?Thr?Asn?His?Gln?Phe?Pro
100 105 110
Phe?Ser?Pro?Thr?Leu?Tyr?Asn?Leu?Thr?Gln?Leu?Gly?Gly?Ile?Gly?Leu
115 120 125
Asn?Leu?Ala?Ala?Thr?Asn?Gly?Asn?Asn?Gln?Ala?His?Gln?Ile?Gly?Ser
130 135 140
Ser?Leu?Met?Met?Ser?Asp?Leu?Gly?Phe?Leu?His?Gly?Arg?Asn?Thr?Ser
145 150 155 160
Thr?Pro?Met?Thr?Gly?Asn?Ile?His?Glu?Asn?Asn?Asn?Asn?Asn?Asn?Asn
165 170 175
Glu?Asn?Asn?Leu?Met?Ala?Ser?Val?Gly?Ser?Leu?Ser?Pro?Phe?Ala?Leu
180 185 190
Phe?Asp?Pro?Thr?Thr?Gly?Leu?Tyr?Ala?Phe?Gln?Asn?Asp?Gly?Asn?Ile
195 200 205
Gly?Asn?Asn?Val?Gly?Ile?Ser?Gly?Ser?Ser?Thr?Ser?Met?Val?Asp?Ser
210 215 220
Arg?Val?Tyr?Gln?Thr?Pro?Pro?Val?Lys?Met?Glu?Glu?Gln?Pro?Asn?Leu
225 230 235 240
Ala?Asn?Leu?Ser?Arg?Pro?Val?Ser?Gly?Leu?Thr?Ser?Pro?Gly?Asn?Gln
245 250 255
Thr?Asn?Gln?Tyr?Phe?Trp?Pro?Gly?Ser?Asp?Phe?Ser?Gly?Pro?Ser?Asn
260 265 270
Asp?Leu?Leu
275
<210>217
<211>993
<212>DNA
<213> Arabidopis thaliana
<400>217
atggttttct?cctccatcca?agcctatctt?gattcatcca?actggcaaca?ggctcctccg 60
agcaattata?atcatgacgg?aacaggcgcc?tcagcaaatg?gaggtcatgt?tcttcgtcct 120
cagctgcagc?cacagcagca?gccacagcag?cagccgcatc?ctaatgggag?cgggggcgga 180
ggtggaggtg?gaggcggctc?gatccgagca?ggatcaatgg?tggacagagc?aagacaagca 240
aacgtagcct?tgccagaagc?agcactgaaa?tgtccgagat?gcgaatccac?caacaccaag 300
ttctgctact?tcaacaacta?cagcctcact?caaccacgcc?acttctgcaa?gacctgccgg 360
agatactgga?cacgtggcgg?agctctccgc?aacgtcccag?tcggcggtgg?ctgccggaga 420
aacaggcgta?ccaaaagcaa?cagcaacaac?aacaataaca?gcactgctac?tagcaataac 480
accagtttct?cctccgggaa?tgcatccacc?atcagcacga?ttctctcctc?ccactatgga 540
ggaaaccaag?agagtatctt?aagccagatt?ttgtctccgg?cgaggctaat?gaatcctact 600
tacaatcatc?tcggagatct?cacaagtaat?acaaaaacag?acaacaacat?gagcttgttg 660
aactatggag?gattgagtca?agacttgagg?tcaatccaca?tgggagcttc?tggtggctcg 720
cttatgagct?gtgttgatga?atggagatcg?gcgtcttatc?atcagcagtc?aagtatgggc 780
ggtgggaact?tggaggattc?ttctaatcct?aatccatccg?caaatgggtt?ttactctttt 840
gagtcgccga?ggataacttc?agcgtcaatc?tcttctgctt?tagcatcgca?gttttcttcg 900
gttaaagttg?aagataatcc?ttacaaatgg?gttaatgtca?atggtaattg?ctcttcctgg 960
aatgatcttt?ctgctttcgg?ctcttctcgt?tga 993
<210>218
<211>330
<212>PRT
<213> Arabidopis thaliana
<400>218
Met?Val?Phe?Ser?Ser?Ile?Gln?Ala?Tyr?Leu?Asp?Ser?Ser?Asn?Trp?Gln
1 5 10 15
Gln?Ala?Pro?Pro?Ser?Asn?Tyr?Asn?His?Asp?Gly?Thr?Gly?Ala?Ser?Ala
20 25 30
Asn?Gly?Gly?His?Val?Leu?Arg?Pro?Gln?Leu?Gln?Pro?Gln?Gln?Gln?Pro
35 40 45
Gln?Gln?Gln?Pro?His?Pro?Asn?Gly?Ser?Gly?Gly?Gly?Gly?Gly?Gly?Gly
50 55 60
Gly?Gly?Ser?Ile?Arg?Ala?Gly?Ser?Met?Val?Asp?Arg?Ala?Arg?Gln?Ala
65 70 75 80
Asn?Val?Ala?Leu?Pro?Glu?Ala?Ala?Leu?Lys?Cys?Pro?Arg?Cys?Glu?Ser
85 90 95
Thr?Asn?Thr?Lys?Phe?Cys?Tyr?Phe?Asn?Asn?Tyr?Ser?Leu?Thr?Gln?Pro
100 105 110
Arg?His?Phe?Cys?Lys?Thr?Cys?Arg?Arg?Tyr?Trp?Thr?Arg?Gly?Gly?Ala
115 120 125
Leu?Arg?Asn?Val?Pro?Val?Gly?Gly?Gly?Cys?Arg?Arg?Asn?Arg?Arg?Thr
130 135 140
Lys?Ser?Asn?Ser?Asn?Asn?Asn?Asn?Asn?Ser?Thr?Ala?Thr?Ser?Asn?Asn
145 150 155 160
Thr?Ser?Phe?Ser?Ser?Gly?Asn?Ala?Ser?Thr?Ile?Ser?Thr?Ile?Leu?Ser
165 170 175
Ser?His?Tyr?Gly?Gly?Asn?Gln?Glu?Ser?Ile?Leu?Ser?Gln?Ile?Leu?Ser
180 185 190
Pro?Ala?Arg?Leu?Met?Asn?Pro?Thr?Tyr?Asn?His?Leu?Gly?Asp?Leu?Thr
195 200 205
Ser?Asn?Thr?Lys?Thr?Asp?Asn?Asn?Met?Ser?Leu?Leu?Asn?Tyr?Gly?Gly
210 215 220
Leu?Ser?Gln?Asp?Leu?Arg?Ser?Ile?His?Met?Gly?Ala?Ser?Gly?Gly?Ser
225 230 235 240
Leu?Met?Ser?Cys?Val?Asp?Glu?Trp?Arg?Ser?Ala?Ser?Tyr?His?Gln?Gln
245 250 255
Ser?Ser?Met?Gly?Gly?Gly?Asn?Leu?Glu?Asp?Ser?Ser?Asn?Pro?Asn?Pro
260 265 270
Ser?Ala?Asn?Gly?Phe?Tyr?Ser?Phe?Glu?Ser?Pro?Arg?Ile?Thr?Ser?Ala
275 280 285
Ser?Ile?Ser?Ser?Ala?Leu?Ala?Ser?Gln?Phe?Ser?Ser?Val?Lys?Val?Glu
290 295 300
Asp?Asn?Pro?Tyr?Lys?Trp?Val?Asn?Val?Asn?Gly?Asn?Cys?Ser?Ser?Trp
305 310 315 320
Asn?Asp?Leu?Ser?Ala?Phe?Gly?Ser?Ser?Arg
325 330
<210>219
<211>972
<212>DNA
<213> Arabidopis thaliana
<400>219
atggttttct?catctcttcc?agtgaatcag?ttcgattccc?aaaattggca?gcagcaaggg 60
aaccaacatc?agctagaatg?tgtcacaact?gaccagaacc?ctaataatta?cttacggcag 120
ctctcatcac?caccgacttc?tcaggttgca?ggttcgagtc?aagctagagt?gaattcaatg 180
gtggaacgtg?ctcggatcgc?aaaagtccca?ttgcctgaag?cagctctaaa?ttgccctaga 240
tgtgactcaa?ccaatactaa?gttctgttac?ttcaataact?atagccttac?tcaacctcgc 300
catttctgca?aaacatgtcg?tcgctattgg?acacgtggcg?gttccttgag?gaatgttcct 360
gttggaggag?gctttaggag?gaacaagaga?agcaaatcca?gatcgaaatc?tacggtcgtg 420
gtctcgactg?ataatactac?tagtacttca?tcacttactt?ctcgcccaag?ttactcaaac 480
cctagcaagt?ttcatagcta?cggtcaaatc?ccggagttta?attccaactt?gcccatcttg 540
cctcctctcc?aaagccttgg?agattacaat?tcaagcaaca?ctggattaga?ttttggtgga 600
actcaaataa?gcaacatgat?aagtggtatg?agttctagtg?gtgggatctt?ggatgcatgg 660
agaatacctc?catcacaaca?agctcagcaa?ttccctttct?tgatcaacac?taccggattg 720
gtgcaatctt?caaacgcgtt?atatccatta?ctagaaggcg?gggttagcgc?cacgcaaaca 780
agaaatgtga?aggcggaaga?gaatgatcag?gatcggggta?gggatgggga?tggagtgaat 840
aacttatcaa?gaaacttttt?gggtaatatc?aacataaact?caggcaggaa?cgaggaatac 900
acatcatggg?gaggtaacag?ttcttggacc?ggtttcacct?ccaacaactc?aacaggccat 960
ctctcattct?aa 972
<210>220
<211>323
<212>PRT
<213> Arabidopis thaliana
<400>220
Met?Val?Phe?Ser?Ser?Leu?Pro?Val?Asn?Gln?Phe?Asp?Ser?Gln?Asn?Trp
1 5 10 15
Gln?Gln?Gln?Gly?Asn?Gln?His?Gln?Leu?Glu?Cys?Val?Thr?Thr?Asp?Gln
20 25 30
Asn?Pro?Asn?Asn?Tyr?Leu?Arg?Gln?Leu?Ser?Ser?Pro?Pro?Thr?Ser?Gln
35 40 45
Val?Ala?Gly?Ser?Ser?Gln?Ala?Arg?Val?Asn?Ser?Met?Val?Glu?Arg?Ala
50 55 60
Arg?Ile?Ala?Lys?Val?Pro?Leu?Pro?Glu?Ala?Ala?Leu?Asn?Cys?Pro?Arg
65 70 75 80
Cys?Asp?Ser?Thr?Asn?Thr?Lys?Phe?Cys?Tyr?Phe?Asn?Asn?Tyr?Ser?Leu
85 90 95
Thr?Gln?Pro?Arg?His?Phe?Cys?Lys?Thr?Cys?Arg?Arg?Tyr?Trp?Thr?Arg
100 105 110
Gly?Gly?Ser?Leu?Arg?Asn?Val?Pro?Val?Gly?Gly?Gly?Phe?Arg?Arg?Asn
115 120 125
Lys?Arg?Ser?Lys?Ser?Arg?Ser?Lys?Ser?Thr?Val?Val?Val?Ser?Thr?Asp
130 135 140
Asn?Thr?Thr?Ser?Thr?Ser?Ser?Leu?Thr?Ser?Arg?Pro?Ser?Tyr?Ser?Asn
145 150 155 160
Pro?Ser?Lys?Phe?His?Ser?Tyr?Gly?Gln?Ile?Pro?Glu?Phe?Asn?Ser?Asn
165 170 175
Leu?Pro?Ile?Leu?Pro?Pro?Leu?Gln?Ser?Leu?Gly?Asp?Tyr?Asn?Ser?Ser
180 185 190
Asn?Thr?Gly?Leu?Asp?Phe?Gly?Gly?Thr?Gln?Ile?Ser?Asn?Met?Ile?Ser
195 200 205
Gly?Met?Ser?Ser?Ser?Gly?Gly?Ile?Leu?Asp?Ala?Trp?Arg?Ile?Pro?Pro
210 215 220
Ser?Gln?Gln?Ala?Gln?Gln?Phe?Pro?Phe?Leu?Ile?Asn?Thr?Thr?Gly?Leu
225 230 235 240
Val?Gln?Ser?Ser?Asn?Ala?Leu?Tyr?Pro?Leu?Leu?Glu?Gly?Gly?Val?Ser
245 250 255
Ala?Thr?Gln?Thr?Arg?Asn?Val?Lys?Ala?Glu?Glu?Asn?Asp?Gln?Asp?Arg
260 265 270
Gly?Arg?Asp?Gly?Asp?Gly?Val?Asn?Asn?Leu?Ser?Arg?Asn?Phe?Leu?Gly
275 280 285
Asn?Ile?Asn?Ile?Asn?Ser?Gly?Arg?Asn?Glu?Glu?Tyr?Thr?Ser?Trp?Gly
290 295 300
Gly?Asn?Ser?Ser?Trp?Thr?Gly?Phe?Thr?Ser?Asn?Asn?Ser?Thr?Gly?His
305 310 315 320
Leu?Ser?Phe
<210>221
<211>1200
<212>DNA
<213> Arabidopis thaliana
<400>221
atggtttttt?cttcatttcc?tacttatcct?gatcattcat?caaactggca?acaacaacat 60
caaccaatca?caaccaccgt?tggattcacg?ggaaataaca?tcaaccaaca?gtttcttcct 120
caccatcccc?tcccaccgca?acagcaacaa?acgcctccgc?agcttcacca?caacaacggt 180
aacggcggag?tcgctgttcc?cggtggacct?ggcgggttaa?tccgaccagg?ttcgatggcg 240
gaaagagcaa?ggctagccaa?cataccatta?cctgaaacag?ccttgaagtg?tccaagatgt 300
gactcaacta?acaccaaatt?ctgttacttc?aacaactaca?gtctcactca?acctcgccac 360
ttctgcaaag?catgccgtcg?ttactggaca?cgtggcggtg?ctctaaggag?cgttcccgtc 420
ggtggcggtt?gccgtagaaa?caaaagaacc?aaaaacagca?gcggtggagg?tggcggtagc 480
accagtagcg?gtaacagcaa?gtcacaagac?agcgccacga?gcaacgacca?ataccaccac 540
cgagccatgg?ctaacaatca?gatgggacca?ccttcttcgt?catcgtctct?aagctcgttg 600
ctgtcttctt?acaacgcagg?gttaatcccc?ggacatgatc?ataacagcaa?taacaacaac 660
atacttggac?ttggatcatc?tttgcctcct?cttaagctta?tgcctccttt?agacttcaca 720
gacaacttca?ccttacaata?cggtgccgtt?tcagctcctt?cttatcatat?aggcggtgga 780
agcagtggag?gagcggcggc?tcttttaaac?ggttttgacc?agtggagatt?cccggcaaca 840
aaccaacttc?ctttaggcgg?tttagacccg?tttgatcaac?aacatcaaat?ggagcagcag 900
aatccaggtt?acggattggt?taccgggtcg?ggtcagtatc?gacctaagaa?cattttccat 960
aaccttatct?cctcttcttc?gtctgcttca?tcagctatgg?ttacagccac?cgcgtcgcaa 1020
ttagcttcag?tgaaaatgga?agatagtaac?aatcagctca?acttgtctag?acaacttttt 1080
ggagacgaac?aacagctctg?gaatattcat?ggcgctgctg?cagcatccac?cgcagctgca 1140
acaagttcgt?ggagtgaagt?ctctaataat?ttcagttctt?cttctactag?caatatataa 1200
<210>222
<211>399
<212>PRT
<213> Arabidopis thaliana
<400>222
Met?Val?Phe?Ser?Ser?Phe?Pro?Thr?Tyr?Pro?Asp?His?Ser?Ser?Asn?Trp
1 5 10 15
Gln?Gln?Gln?His?Gln?Pro?Ile?Thr?Thr?Thr?Val?Gly?Phe?Thr?Gly?Asn
20 25 30
Asn?Ile?Asn?Gln?Gln?Phe?Leu?Pro?His?His?Pro?Leu?Pro?Pro?Gln?Gln
35 40 45
Gln?Gln?Thr?Pro?Pro?Gln?Leu?His?His?Asn?Asn?Gly?Asn?Gly?Gly?Val
50 55 60
Ala?Val?Pro?Gly?Gly?Pro?Gly?Gly?Leu?Ile?Arg?Pro?Gly?Ser?Met?Ala
65 70 75 80
Glu?Arg?Ala?Arg?Leu?Ala?Asn?Ile?Pro?Leu?Pro?Glu?Thr?Ala?Leu?Lys
85 90 95
Cys?Pro?Arg?Cys?Asp?Ser?Thr?Asn?Thr?Lys?Phe?Cys?Tyr?Phe?Asn?Asn
100 105 110
Tyr?Ser?Leu?Thr?Gln?Pro?Arg?His?Phe?Cys?Lys?Ala?Cys?Arg?Arg?Tyr
115 120 125
Trp?Thr?Arg?Gly?Gly?Ala?Leu?Arg?Ser?Val?Pro?Val?Gly?Gly?Gly?Cys
130 135 140
Arg?Arg?Asn?Lys?Arg?Thr?Lys?Asn?Ser?Ser?Gly?Gly?Gly?Gly?Gly?Ser
145 150 155 160
Thr?Ser?Ser?Gly?Asn?Ser?Lys?Ser?Gln?Asp?Ser?Ala?Thr?Ser?Asn?Asp
165 170 175
Gln?Tyr?His?His?Arg?Ala?Met?Ala?Asn?Asn?Gln?Met?Gly?Pro?Pro?Ser
180 185 190
Ser?Ser?Ser?Ser?Leu?Ser?Ser?Leu?Leu?Ser?Ser?Tyr?Asn?Ala?Gly?Leu
195 200 205
Ile?Pro?Gly?His?Asp?His?Asn?Ser?Asn?Asn?Asn?Asn?Ile?Leu?Gly?Leu
210 215 220
Gly?Ser?Ser?Leu?Pro?Pro?Leu?Lys?Leu?Met?Pro?Pro?Leu?Asp?Phe?Thr
225 230 235 240
Asp?Asn?Phe?Thr?Leu?Gln?Tyr?Gly?Ala?Val?Ser?Ala?Pro?Ser?Tyr?His
245 250 255
Ile?Gly?Gly?Gly?Ser?Ser?Gly?Gly?Ala?Ala?Ala?Leu?Leu?Asn?Gly?Phe
260 265 270
Asp?Gln?Trp?Arg?Phe?Pro?Ala?Thr?Asn?Gln?Leu?Pro?Leu?Gly?Gly?Leu
275 280 285
Asp?Pro?Phe?Asp?Gln?Gln?His?Gln?Met?Glu?Gln?Gln?Asn?Pro?Gly?Tyr
290 295 300
Gly?Leu?Val?Thr?Gly?Ser?Gly?Gln?Tyr?Arg?Pro?Lys?Asn?Ile?Phe?His
305 310 315 320
Asn?Leu?Ile?Ser?Ser?Ser?Ser?Ser?Ala?Ser?Ser?Ala?Met?Val?Thr?Ala
325 330 335
Thr?Ala?Ser?Gln?Leu?Ala?Ser?Val?Lys?Met?Glu?Asp?Ser?Asn?Asn?Gln
340 345 350
Leu?Asn?Leu?Ser?Arg?Gln?Leu?Phe?Gly?Asp?Glu?Gln?Gln?Leu?Trp?Asn
355 360 365
Ile?His?Gly?Ala?Ala?Ala?Ala?Ser?Thr?Ala?Ala?Ala?Thr?Ser?Ser?Trp
370 375 380
Ser?Glu?Val?Ser?Asn?Asn?Phe?Ser?Ser?Ser?Ser?Thr?Ser?Asn?Ile
385 390 395
<210>223
<211>52
<212>DNA
<213> artificial sequence
<220>
<223> primer: prm07315
<400>223
ggggacaagt?ttgtacaaaa?aagcaggctt?aaacaatggg?tggatcgatg?gc 52
<210>224
<211>50
<212>DNA
<213> artificial sequence
<220>
<223> primer: prm07316
<400>224
ggggaccact?ttgtacaaga?aagctgggtc?gttaatgatc?cgacaaaaca 50
<210>225
<211>2193
<212>DNA
<213> rice
<400>225
aatccgaaaa?gtttctgcac?cgttttcacc?ccctaactaa?caatataggg?aacgtgtgct 60
aaatataaaa?tgagacctta?tatatgtagc?gctgataact?agaactatgc?aagaaaaact 120
catccaccta?ctttagtggc?aatcgggcta?aataaaaaag?agtcgctaca?ctagtttcgt 180
tttccttagt?aattaagtgg?gaaaatgaaa?tcattattgc?ttagaatata?cgttcacatc 240
tctgtcatga?agttaaatta?ttcgaggtag?ccataattgt?catcaaactc?ttcttgaata 300
aaaaaatctt?tctagctgaa?ctcaatgggt?aaagagagag?atttttttta?aaaaaataga 360
atgaagatat?tctgaacgta?ttggcaaaga?tttaaacata?taattatata?attttatagt 420
ttgtgcattc?gtcatatcgc?acatcattaa?ggacatgtct?tactccatcc?caatttttat 480
ttagtaatta?aagacaattg?acttattttt?attatttatc?ttttttcgat?tagatgcaag 540
gtacttacgc?acacactttg?tgctcatgtg?catgtgtgag?tgcacctcct?caatacacgt 600
tcaactagca?acacatctct?aatatcactc?gcctatttaa?tacatttagg?tagcaatatc 660
tgaattcaag?cactccacca?tcaccagacc?acttttaata?atatctaaaa?tacaaaaaat 720
aattttacag?aatagcatga?aaagtatgaa?acgaactatt?taggtttttc?acatacaaaa 780
aaaaaaagaa?ttttgctcgt?gcgcgagcgc?caatctccca?tattgggcac?acaggcaaca 840
acagagtggc?tgcccacaga?acaacccaca?aaaaacgatg?atctaacgga?ggacagcaag 900
tccgcaacaa?ccttttaaca?gcaggctttg?cggccaggag?agaggaggag?aggcaaagaa 960
aaccaagcat?cctcctcctc?ccatctataa?attcctcccc?ccttttcccc?tctctatata 1020
ggaggcatcc?aagccaagaa?gagggagagc?accaaggaca?cgcgactagc?agaagccgag 1080
cgaccgcctt?cttcgatcca?tatcttccgg?tcgagttctt?ggtcgatctc?ttccctcctc 1140
cacctcctcc?tcacagggta?tgtgcccttc?ggttgttctt?ggatttattg?ttctaggttg 1200
tgtagtacgg?gcgttgatgt?taggaaaggg?gatctgtatc?tgtgatgatt?cctgttcttg 1260
gatttgggat?agaggggttc?ttgatgttgc?atgttatcgg?ttcggtttga?ttagtagtat 1320
ggttttcaat?cgtctggaga?gctctatgga?aatgaaatgg?tttagggtac?ggaatcttgc 1380
gattttgtga?gtaccttttg?tttgaggtaa?aatcagagca?ccggtgattt?tgcttggtgt 1440
aataaaagta?cggttgtttg?gtcctcgatt?ctggtagtga?tgcttctcga?tttgacgaag 1500
ctatcctttg?tttattccct?attgaacaaa?aataatccaa?ctttgaagac?ggtcccgttg 1560
atgagattga?atgattgatt?cttaagcctg?tccaaaattt?cgcagctggc?ttgtttagat 1620
acagtagtcc?ccatcacgaa?attcatggaa?acagttataa?tcctcaggaa?caggggattc 1680
cctgttcttc?cgatttgctt?tagtcccaga?attttttttc?ccaaatatct?taaaaagtca 1740
ctttctggtt?cagttcaatg?aattgattgc?tacaaataat?gcttttatag?cgttatccta 1800
gctgtagttc?agttaatagg?taatacccct?atagtttagt?caggagaaga?acttatccga 1860
tttctgatct?ccatttttaa?ttatatgaaa?tgaactgtag?cataagcagt?attcatttgg 1920
attatttttt?ttattagctc?tcaccccttc?attattctga?gctgaaagtc?tggcatgaac 1980
tgtcctcaat?tttgttttca?aattcacatc?gattatctat?gcattatcct?cttgtatcta 2040
cctgtagaag?tttctttttg?gttattcctt?gactgcttga?ttacagaaag?aaatttatga 2100
agctgtaatc?gggatagtta?tactgcttgt?tcttatgatt?catttccttt?gtgcagttct 2160
tggtgtagct?tgccactttc?accagcaaag?ttc 2193
<210>226
<211>1344
<212>DNA
<213> Arabidopis thaliana
<220>
<221>misc_feature
<222>(196)..(196)
<223>n is a, c, g, or t
<220>
<221>misc_feature
<222>(461)..(461)
<223>n is a, c, g, or t
<400>226
atgatgatgg?agactagaga?tccagctatt?aagcttttcg?gtatgaaaat?cccttttccg 60
tcggtttttg?aatcggcagt?tacggtggag?gatgacgaag?aagatgactg?gagcggcgga 120
gatgacaaat?caccagagaa?ggtaactcca?gagttatcag?ataagaacaa?caacaactgt 180
aacgacaaca?gttttnacaa?ttcgaaaccc?gaaaccttgg?acaaagagga?agcgacatca 240
actgatcaga?tagagagtag?tgacacgcct?gaggataatc?agcagacgac?acctgatggt 300
aaaaccctaa?agaaaccgac?taagattcta?ccgtgtccga?gatgcaaaag?catggagacc 360
aagttctgtt?attacaacaa?ctacaacata?aaccagcctc?gtcatttctg?caaggcttgt 420
cagagatatt?ggactgctgg?agggactatg?aggaatgttc?ntgtgggggc?aggacgtcgt 480
aagaacaaaa?gcttatcttc?tcattaccgt?cacatcacta?tttccgaggc?tcttgaggct 540
gcgaggcttg?acccgggctt?acaggcaaac?acaagggtct?tgagttttgg?tctcgaagct 600
cagcagcagc?acgttgctgc?tcccatgaca?cctgtgatga?agctacaaga?agatcaaaag 660
gtctcaaacg?gtgctaggaa?caggtttcac?gggttagcgg?atcaacggct?tgtagctcgg 720
gtagagaatg?gagatgattg?ctcaagcgga?tcctctgtga?ccacctctaa?caatcactca 780
gtggatgaat?caagagcaca?aagcggcagt?gttgttgaag?cacaaatgaa?caacaacaac 840
aataacatga?atggttatgc?ttgcatccca?ggtgttccat?ggccttacac?gtggaatcca 900
gcgatgcctc?caccaggttt?ttacccgcct?ccagggtatc?caatgccgtt?ttacccttac 960
tggaccatcc?caatgctacc?accgcatcaa?tcctcatcgc?ctataagcca?aaagtgttca 1020
aatacaaact?ctccgactct?cggaaagcat?ccgagagatg?aaggatcatc?gaaaaaggac 1080
aacgagacag?agcgaaaaca?gaaggccggg?tgcgttctgg?tcccgaaaac?gttgagaata 1140
gatgatccta?acgaagcagc?aaagagctcg?atatggacaa?cattgggaat?caagaacgag 1200
gcgatgtgca?aagccggtgg?tatgttcaaa?gggtttgatc?ataagacaaa?gatgtataac 1260
aacgacaaag?ctgagaactc?ccctgttctt?tctgctaacc?ctgctgctct?atcaagatca 1320
cacaatttcc?atgaacagat?ttag 1344
<210>227
<211>447
<212>PRT
<213> Arabidopis thaliana
<220>
<221> is uncertain
<222>(66)..(66)
<223>Xaa can be any natural amino acid
<220>
<221> is uncertain
<222>(154)..(154)
<223>Xaa can be any natural amino acid
<400>227
Met?Met?Met?Glu?Thr?Arg?Asp?Pro?Ala?Ile?Lys?Leu?Phe?Gly?Met?Lys
1 5 10 15
Ile?Pro?Phe?Pro?Ser?Val?Phe?Glu?Ser?Ala?Val?Thr?Val?Glu?Asp?Asp
20 25 30
Glu?Glu?Asp?Asp?Trp?Ser?Gly?Gly?Asp?Asp?Lys?Ser?Pro?Glu?Lys?Val
35 40 45
Thr?Pro?Glu?Leu?Ser?Asp?Lys?Asn?Asn?Asn?Asn?Cys?Asn?Asp?Asn?Ser
50 55 60
Phe?Xaa?Asn?Ser?Lys?Pro?Glu?Thr?Leu?Asp?Lys?Glu?Glu?Ala?Thr?Ser
65 70 75 80
Thr?Asp?Gln?Ile?Glu?Ser?Ser?Asp?Thr?Pro?Glu?Asp?Asn?Gln?Gln?Thr
85 90 95
Thr?Pro?Asp?Gly?Lys?Thr?Leu?Lys?Lys?Pro?Thr?Lys?Ile?Leu?Pro?Cys
100 105 110
Pro?Arg?Cys?Lys?Ser?Met?Glu?Thr?Lys?Phe?Cys?Tyr?Tyr?Asn?Asn?Tyr
115 120 125
Asn?Ile?Asn?Gln?Pro?Arg?His?Phe?Cys?Lys?Ala?Cys?Gln?Arg?Tyr?Trp
130 135 140
Thr?Ala?Gly?Gly?Thr?Met?Arg?Asn?Val?Xaa?Val?Gly?Ala?Gly?Arg?Arg
145 150 155 160
Lys?Asn?Lys?Ser?Leu?Ser?Ser?His?Tyr?Arg?His?Ile?Thr?Ile?Ser?Glu
165 170 175
Ala?Leu?Glu?Ala?Ala?Arg?Leu?Asp?Pro?Gly?Leu?Gln?Ala?Asn?Thr?Arg
180 185 190
Val?Leu?Ser?Phe?Gly?Leu?Glu?Ala?Gln?Gln?Gln?His?Val?Ala?Ala?Pro
195 200 205
Met?Thr?Pro?Val?Met?Lys?Leu?Gln?Glu?Asp?Gln?Lys?Val?Ser?Asn?Gly
210 215 220
Ala?Arg?Asn?Arg?Phe?His?Gly?Leu?Ala?Asp?Gln?Arg?Leu?Val?Ala?Arg
225 230 235 240
Val?Glu?Asn?Gly?Asp?Asp?Cys?Ser?Ser?Gly?Ser?Ser?Val?Thr?Thr?Ser
245 250 255
Asn?Asn?His?Ser?Val?Asp?Glu?Ser?Arg?Ala?Gln?Ser?Gly?Ser?Val?Val
260 265 270
Glu?Ala?Gln?Met?Asn?Asn?Asn?Asn?Asn?Asn?Met?Asn?Gly?Tyr?Ala?Cys
275 280 285
Ile?Pro?Gly?Val?Pro?Trp?Pro?Tyr?Thr?Trp?Asn?Pro?Ala?Met?Pro?Pro
290 295 300
Pro?Gly?Phe?Tyr?Pro?Pro?Pro?Gly?Tyr?Pro?Met?Pro?Phe?Tyr?Pro?Tyr
305 310 315 320
Trp?Thr?Ile?Pro?Met?Leu?Pro?Pro?His?Gln?Ser?Ser?Ser?Pro?Ile?Ser
325 330 335
Gln?Lys?Cys?Ser?Asn?Thr?Asn?Ser?Pro?Thr?Leu?Gly?Lys?His?Pro?Arg
340 345 350
Asp?Glu?Gly?Ser?Ser?Lys?Lys?Asp?Asn?Glu?Thr?Glu?Arg?Lys?Gln?Lys
355 360 365
Ala?Gly?Cys?Val?Leu?Val?Pro?Lys?Thr?Leu?Arg?Ile?Asp?Asp?Pro?Asn
370 375 380
Glu?Ala?Ala?Lys?Ser?Ser?Ile?Trp?Thr?Thr?Leu?Gly?Ile?Lys?Asn?Glu
385 390 395 400
Ala?Met?Cys?Lys?Ala?Gly?Gly?Met?Phe?Lys?Gly?Phe?Asp?His?Lys?Thr
405 410 415
Lys?Met?Tyr?Asn?Asn?Asp?Lys?Ala?Glu?Asn?Ser?Pro?Val?Leu?Ser?Ala
420 425 430
Asn?Pro?Ala?Ala?Leu?Ser?Arg?Ser?His?Asn?Phe?His?Glu?Gln?Ile
435 440 445
<210>228
<211>63
<212>PRT
<213> artificial sequence
<220>
<223>DOF structural domain
<220>
<221> is uncertain
<222>(50)..(50)
<223>Xaa can be any natural amino acid
<400>228
Lys?Pro?Thr?Lys?Ile?Leu?Pro?Cys?Pro?Arg?Cys?Lys?Ser?Met?Glu?Thr
1 5 10 15
Lys?Phe?Cys?Tyr?Tyr?Asn?Asn?Tyr?Asn?Ile?Asn?Gln?Pro?Arg?His?Phe
20 25 30
Cys?Lys?Ala?Cys?Gln?Arg?Tyr?Trp?Thr?Ala?Gly?Gly?Thr?Met?Arg?Asn
35 40 45
Val?Xaa?Val?Gly?Ala?Gly?Arg?Arg?Lys?Asn?Lys?Ser?Leu?Ser?Ser
50 55 60
<210>229
<211>11
<212>PRT
<213> artificial sequence
<220>
<223> primitive 1
<400>229
Lys?Ala?Leu?Lys?Lys?Pro?Asp?Lys?Ile?Leu?Pro
1 5 10
<210>230
<211>14
<212>PRT
<213> artificial sequence
<220>
<223> primitive 2
<400>230
Asp?Asp?Pro?Gly?Ile?Lys?Leu?Phe?Gly?Lys?Thr?Ile?Pro?Phe
1 5 10
<210>231
<211>11
<212>PRT
<213> artificial sequence
<220>
<223> primitive 3
<400>231
Ser?Pro?Thr?Leu?Gly?Lys?His?Ser?Arg?Asp?Glu
1 5 10
<210>232
<211>16
<212>PRT
<213> artificial sequence
<220>
<223> primitive 4
<400>232
Leu?Gln?Ala?Asn?Pro?Ala?Ala?Leu?Ser?Arg?Ser?Gln?Asn?Phe?Gln?Glu
1 5 10 15
<210>233
<211>32
<212>PRT
<213> artificial sequence
<220>
<223> primitive 5
<400>233
Lys?Gly?Glu?Gly?Cys?Leu?Trp?Val?Pro?Lys?Thr?Leu?Arg?Ile?Asp?Asp
1 5 10 15
Pro?Asp?Glu?Ala?Ala?Lys?Ser?Ser?Ile?Trp?Thr?Thr?Leu?Gly?Ile?Lys
20 25 30
<210>234
<211>1263
<212>DNA
<213> rice
<400>234
atgaacaacg?ttgaagagaa?agcagcatca?gactcaaaag?atgaaaatga?aaagacagca 60
aatgatgaat?caggccagga?caaagtactt?aagaagccag?ataagattct?cccttgccct 120
cggtgcaaca?gtatggacac?aaagttttgt?tattacaaca?actacaatgt?taatcaaccc 180
aggcacttct?gtaagaactg?ccaaaggtat?tggactgccg?ggggaaccat?gagaaatgta 240
cctgttggtg?ctgggaggcg?caaaagcaag?agctcatcgt?tgcactaccg?tcacttactg 300
atggcccctg?attgcatgat?ggggtctaga?gtggaaatat?ccaagtcaat?gaaccctgaa 360
gctttcgcat?ctgcgcattc?gacccctata?caaccaattg?gcagaaacga?aacagttctc 420
aaatttgggc?ctgaggtgcc?actctgtgaa?tcgatggcat?cagtgctgaa?cattcaggag 480
cagaatggaa?ccaatgctgc?agcagtacca?acgggtgaaa?atcaggaaga?taactcttgc 540
atctcttcaa?tcacatcaca?caacgtgtta?cctgaaaatg?cagcccaagt?tgacaagaac 600
agcacgccgg?tgtattgcaa?cggagtcggc?ccagtgccgc?agtactacct?tggagctcct 660
tacatgtacc?catggaacat?aggatggaac?aacgttccta?tgatggtgcc?aggtacaagc 720
atgccagagt?ctgcttccca?atctgagagc?tgcagcacca?gttcagctcc?atggatgaac 780
atgaactccc?ccatgatgcc?ggttgcctcg?aggctttctg?caccaccatt?tccataccct 840
ctagtgccac?ctgcactatg?gggttgctta?tccagctggc?cggccacggc?atggaacata 900
ccgtggatca?gaacgaatgg?cggctgcatg?tctccatcgt?cgtcgagcaa?cagcagctgt 960
tcaggcaatg?gctcccctct?ggggaagcat?tccagggact?cctctctccc?actgaaggag 1020
gacaaggagg?agaaatcact?gtgggttccc?aagacgctcc?gcatcgacga?tcccgacgag 1080
gcggcgaaga?gctccatctg?ggccaccctg?gggatcaagc?ctggagaccc?tggcatcttc 1140
aagccgttcc?agtccaaagg?tgagagcaaa?ggccaagcag?catcagagac?tcgtcctgct 1200
cgtgctctta?aggcaaaccc?agctgcattg?tcgcggtcgc?agtcgttcca?ggagacttct 1260
tga 1263
<210>235
<211>420
<212>PRT
<213> rice
<400>235
Met?Asn?Asn?Val?Glu?Glu?Lys?Ala?Ala?Ser?Asp?Ser?Lys?Asp?Glu?Asn
1 5 10 15
Glu?Lys?Thr?Ala?Asn?Asp?Glu?Ser?Gly?Gln?Asp?Lys?Val?Leu?Lys?Lys
20 25 30
Pro?Asp?Lys?Ile?Leu?Pro?Cys?Pro?Arg?Cys?Asn?Ser?Met?Asp?Thr?Lys
35 40 45
Phe?Cys?Tyr?Tyr?Asn?Asn?Tyr?Asn?Val?Asn?Gln?Pro?Arg?His?Phe?Cys
50 55 60
Lys?Asn?Cys?Gln?Arg?Tyr?Trp?Thr?Ala?Gly?Gly?Thr?Met?Arg?Asn?Val
65 70 75 80
Pro?Val?Gly?Ala?Gly?Arg?Arg?Lys?Ser?Lys?Ser?Ser?Ser?Leu?His?Tyr
85 90 95
Arg?His?Leu?Leu?Met?Ala?Pro?Asp?Cys?Met?Met?Gly?Ser?Arg?Val?Glu
100 105 110
Ile?Ser?Lys?Ser?Met?Asn?Pro?Glu?Ala?Phe?Ala?Ser?Ala?His?Ser?Thr
115 120 125
Pro?Ile?Gln?Pro?Ile?Gly?Arg?Asn?Glu?Thr?Val?Leu?Lys?Phe?Gly?Pro
130 135 140
Glu?Val?Pro?Leu?Cys?Glu?Ser?Met?Ala?Ser?Val?Leu?Asn?Ile?Gln?Glu
145 150 155 160
Gln?Asn?Gly?Thr?Asn?Ala?Ala?Ala?Val?Pro?Thr?Gly?Glu?Asn?Gln?Glu
165 170 175
Asp?Asn?Ser?Cys?Ile?Ser?Ser?Ile?Thr?Ser?His?Asn?Val?Leu?Pro?Glu
180 185 190
Asn?Ala?Ala?Gln?Val?Asp?Lys?Asn?Ser?Thr?Pro?Val?Tyr?Cys?Asn?Gly
195 200 205
Val?Gly?Pro?Val?Pro?Gln?Tyr?Tyr?Leu?Gly?Ala?Pro?Tyr?Met?Tyr?Pro
210 215 220
Trp?Asn?Ile?Gly?Trp?Asn?Asn?Val?Pro?Met?Met?Val?Pro?Gly?Thr?Ser
225 230 235 240
Met?Pro?Glu?Ser?Ala?Ser?Gln?Ser?Glu?Ser?Cys?Ser?Thr?Ser?Ser?Ala
245 250 255
Pro?Trp?Met?Asn?Met?Asn?Ser?Pro?Met?Met?Pro?Val?Ala?Ser?Arg?Leu
260 265 270
Ser?Ala?Pro?Pro?Phe?Pro?Tyr?Pro?Leu?Val?Pro?Pro?Ala?Leu?Trp?Gly
275 280 285
Cys?Leu?Ser?Ser?Trp?Pro?Ala?Thr?Ala?Trp?Asn?Ile?Pro?Trp?Ile?Arg
290 295 300
Thr?Asn?Gly?Gly?Cys?Met?Ser?Pro?Ser?Ser?Ser?Ser?Asn?Ser?Ser?Cys
305 310 315 320
Ser?Gly?Asn?Gly?Ser?Pro?Leu?Gly?Lys?His?Ser?Arg?Asp?Ser?Ser?Leu
325 330 335
Pro?Leu?Lys?Glu?Asp?Lys?Glu?Glu?Lys?Ser?Leu?Trp?Val?Pro?Lys?Thr
340 345 350
Leu?Arg?Ile?Asp?Asp?Pro?Asp?Glu?Ala?Ala?Lys?Ser?Ser?Ile?Trp?Ala
355 360 365
Thr?Leu?Gly?Ile?Lys?Pro?Gly?Asp?Pro?Gly?Ile?Phe?Lys?Pro?Phe?Gln
370 375 380
Ser?Lys?Gly?Glu?Ser?Lys?Gly?Gln?Ala?Ala?Ser?Glu?Thr?Arg?Pro?Ala
385 390 395 400
Arg?Ala?Leu?Lys?Ala?Asn?Pro?Ala?Ala?Leu?Ser?Arg?Ser?Gln?Ser?Phe
405 410 415
Gln?Glu?Thr?Ser
420
<210>236
<211>1365
<212>DNA
<213> rice
<400>236
atgcctaatt?taggaaatgg?tgtaaaaacc?aataatgact?tacctttagt?ctcagacaag 60
cttttgattg?tcaaaggtat?tcctttttgt?cccaacaata?gtaagaaaaa?tgatttacaa 120
ggcatcagca?gaccggatgg?aagaatagaa?atcgattcca?tgactgagga?tgttaagact 180
gagcctgatg?gatctgtccc?tgagaagata?ctcaagaagc?cagataagat?tctgccatgt 240
ccacgctgca?atagcatgga?aacaaagttc?tgctacttca?acaactacaa?tgttcaccag 300
cccaggcact?tctgcaggaa?ctgccaaaga?tattggaccg?ctggtggagc?tatgaggaat 360
gtcccagttg?gtgctggaag?acgcagaaat?aagcatgtgt?caaaatactg?tcaggcgatg 420
atgacgtgca?ataatactgt?agctcctgga?gatgtttctg?atgtggttca?ccatcaggtt 480
attacacatg?gatcttctct?ccttccagca?acactgaagg?aaaatgaaac?acctacagaa 540
ttcatatcag?aagtaccacc?atgtaagtct?tcagcttcaa?tccttgatat?tggagagccg 600
aatgatactg?accttgttcc?cttggcctct?ggtgataaca?aggaagaaaa?atcatgtgca 660
tcttctgtgg?tagtatccag?ctgttcagag?aatctgatgc?cagataatgc?aattatgaaa 720
gagccaaaca?acaggtcagg?atgttgtaat?ggtgtggcat?tgcctttccc?tactggacct 780
gctttggtgc?tcccctggag?tcttggatgg?aacagtgttg?ctctcatgcc?agctacccag 840
tgctcgatgc?agcccgttct?tgggttaaaa?gatgggatac?cctgcccgcc?ttcatggcca 900
ccgcaactga?tggtgccggc?cccaggaatc?tgtactcctg?ttgttccaat?ccctcttgtg 960
ccacctctgt?ggagctgctt?ccctggctgg?cctaatggaa?tgtggaatgc?acaatgccct 1020
ggaggtaata?ctactgtgct?gccgtcaacc?gctccaaaca?aaatttcttg?ttcaggaagc 1080
agttctctgg?tgttgggaaa?gcattcaaga?gaagaaagct?tgcaggaaga?agagaagacg 1140
agaaattact?tatgggtacc?taaaactctt?aggattgatg?atccagctga?ggctgcaaag 1200
agttcaatct?gggcgaccct?tggcatcaag?cctgacgata?aaggcatatt?caagtctttc 1260
cagccaaatg?ttgcgaaaaa?tggcacggca?ccagaatcgc?ctcaggctct?gcaggccaat 1320
ccagcagcat?tttcgcgttc?tcaatcgttt?caagagacga?cttga 1365
<210>237
<211>454
<212>PRT
<213> rice
<400>237
Met?Pro?Asn?Leu?Gly?Asn?Gly?Val?Lys?Thr?Asn?Asn?Asp?Leu?Pro?Leu
1 5 10 15
Val?Ser?Asp?Lys?Leu?Leu?Ile?Val?Lys?Gly?Ile?Pro?Phe?Cys?Pro?Asn
20 25 30
Asn?Ser?Lys?Lys?Asn?Asp?Leu?Gln?Gly?Ile?Ser?Arg?Pro?Asp?Gly?Arg
35 40 45
Ile?Glu?Ile?Asp?Ser?Met?Thr?Glu?Asp?Val?Lys?Thr?Glu?Pro?Asp?Gly
50 55 60
Ser?Val?Pro?Glu?Lys?Ile?Leu?Lys?Lys?Pro?Asp?Lys?Ile?Leu?Pro?Cys
65 70 75 80
Pro?Arg?Cys?Asn?Ser?Met?Glu?Thr?Lys?Phe?Cys?Tyr?Phe?Asn?Asn?Tyr
85 90 95
Asn?Val?His?Gln?Pro?Arg?His?Phe?Cys?Arg?Asn?Cys?Gln?Arg?Tyr?Trp
100 105 110
Thr?Ala?Gly?Gly?Ala?Met?Arg?Asn?Val?Pro?Val?Gly?Ala?Gly?Arg?Arg
115 120 125
Arg?Asn?Lys?His?Val?Ser?Lys?Tyr?Cys?Gln?Ala?Met?Met?Thr?Cys?Asn
130 135 140
Asn?Thr?Val?Ala?Pro?Gly?Asp?Val?Ser?Asp?Val?Val?His?His?Gln?Val
145 150 155 160
Ile?Thr?His?Gly?Ser?Ser?Leu?Leu?Pro?Ala?Thr?Leu?Lys?Glu?Asn?Glu
165 170 175
Thr?Pro?Thr?Glu?Phe?Ile?Ser?Glu?Val?Pro?Pro?Cys?Lys?Ser?Ser?Ala
180 185 190
Ser?Ile?Leu?Asp?Ile?Gly?Glu?Pro?Asn?Asp?Thr?Asp?Leu?Val?Pro?Leu
195 200 205
Ala?Ser?Gly?Asp?Asn?Lys?Glu?Glu?Lys?Ser?Cys?Ala?Ser?Ser?Val?Val
210 215 220
Val?Ser?Ser?Cys?Ser?Glu?Asn?Leu?Met?Pro?Asp?Asn?Ala?Ile?Met?Lys
225 230 235 240
Glu?Pro?Asn?Asn?Arg?Ser?Gly?Cys?Cys?Asn?Gly?Val?Ala?Leu?Pro?Phe
245 250 255
Pro?Thr?Gly?Pro?Ala?Leu?Val?Leu?Pro?Trp?Ser?Leu?Gly?Trp?Asn?Ser
260 265 270
Val?Ala?Leu?Met?Pro?Ala?Thr?Gln?Cys?Ser?Met?Gln?Pro?Val?Leu?Gly
275 280 285
Leu?Lys?Asp?Gly?Ile?Pro?Cys?Pro?Pro?Ser?Trp?Pro?Pro?Gln?Leu?Met
290 295 300
Val?Pro?Ala?Pro?Gly?Ile?Cys?Thr?Pro?Val?Val?Pro?Ile?Pro?Leu?Val
305 310 315 320
Pro?Pro?Leu?Trp?Ser?Cys?Phe?Pro?Gly?Trp?Pro?Asn?Gly?Met?Trp?Asn
325 330 335
Ala?Gln?Cys?Pro?Gly?Gly?Asn?Thr?Thr?Val?Leu?Pro?Ser?Thr?Ala?Pro
340 345 350
Asn?Lys?Ile?Ser?Cys?Ser?Gly?Ser?Ser?Ser?Leu?Val?Leu?Gly?Lys?His
355 360 365
Ser?Arg?Glu?Glu?Ser?Leu?Gln?Glu?Glu?Glu?Lys?Thr?Arg?Asn?Tyr?Leu
370 375 380
Trp?Val?Pro?Lys?Thr?Leu?Arg?Ile?Asp?Asp?Pro?Ala?Glu?Ala?Ala?Lys
385 390 395 400
Ser?Ser?Ile?Trp?Ala?Thr?Leu?Gly?Ile?Lys?Pro?Asp?Asp?Lys?Gly?Ile
405 410 415
Phe?Lys?Ser?Phe?Gln?Pro?Asn?Val?Ala?Lys?Asn?Gly?Thr?Ala?Pro?Glu
420 425 430
Ser?Pro?Gln?Ala?Leu?Gln?Ala?Asn?Pro?Ala?Ala?Phe?Ser?Arg?Ser?Gln
435 440 445
Ser?Phe?Gln?Glu?Thr?Thr
450
<210>238
<211>1461
<212>DNA
<213> rice
<400>238
atgggagggg?gtggtaagtg?caaaagaggg?aaaagaggaa?agattgcagc?caagcgaaga 60
aggggccagt?gttgcagcag?cagcagcagc?agcggaggcg?caagaagacg?agctagagag 120
agagaatcag?aggagagctt?gggtgagatg?ggtgagtgca?gaggaggagg?aggaggagga 180
gatgggctga?tcaagctgtt?cgggaagacg?atcccggtgc?agccggatgc?caaggatgtt 240
cagcagcata?gtggcagtag?cagcagctca?accgaatccg?acgtccaaga?aaccgccgct 300
gtcgccgtcg?ccgacccctc?cccgcggtcg?gaggtcgtcg?acggcgagag?cccgccgcag 360
ccgggcggcg?aggcggcgag?ccatcagcag?cagcagaagg?agatgaagct?gaagaagccg 420
gacaagatcc?tgccatgccc?gcggtgcagc?agcatggaca?ccaagttctg?ctacttcaac 480
aactacaacg?tcaaccagcc?tcgccacttc?tgcaagcact?gccagcgcta?ctggaccgcc 540
ggcggcgcca?tgcgcaacgt?ccccgtcggc?gccggccgcc?gcaagaacaa?gaacgccacc 600
gccgccgccc?acttcctcca?ccgcgtccgc?gcctgcgccg?ccgccgccgc?catgcccgcg 660
gcgccccacg?acgccaccaa?cgccaccgtg?ctcagcttcg?gcggcggcgg?aggcggacac 720
gacgcgccgc?cggtcaccct?ggacctcgcc?gacaagatga?cgcgcctcgg?caaggagggg 780
ctcgtcgccc?atgcccggaa?cgccgacgcc?gccgccgcgt?gcagcgaggt?gtcgagcaac 840
agggacgacg?agcagatcgg?caacactgta?gcaaaacctg?caaacgggtt?gcagcagcat 900
cctcctcctc?ctcatcatca?tcatcattca?gccatgaacg?gtggcggcat?ctggccctac 960
tacacctcgg?ggatcgcgat?cccgatatac?ccggcggcgc?cggcgtactg?gggctgcatg 1020
attccacctc?ctggagcttg?gagcctccca?tggccggcca?cagtccagtc?tcaggccatc 1080
tcatcatcat?caccacctac?aagtgctaca?ccttcagtct?cctccttcac?actaggcaag 1140
catcccagag?agggtggtga?tcatgaggca?agagatcacc?atggcaatgg?taaagtgtgg 1200
gtgccgaaga?cgatccggat?cgacaacgcc?gacgaggttg?cccggagctc?aatccggtca 1260
ctcttcgcct?tcagaggcgg?cgacaaggcg?gatgataaca?acgacgacga?tggcaccggc 1320
gtgcacaagc?tcgccaccac?ggtgttcgag?ccaaagaggg?acagcaagac?ggcgaaacat 1380
ccggcgatca?cgagcttgcc?gctcttgcac?accaaccccg?tcgcgcttac?ccgatccgcg 1440
accttccagg?agggatcttg?a 1461
<210>239
<211>486
<212>PRT
<213> rice
<400>239
Met?Gly?Gly?Gly?Gly?Lys?Cys?Lys?Arg?Gly?Lys?Arg?Gly?Lys?Ile?Ala
1 5 10 15
Ala?Lys?Arg?Arg?Arg?Gly?Gln?Cys?Cys?Ser?Ser?Ser?Ser?Ser?Ser?Gly
20 25 30
Gly?Ala?Arg?Arg?Arg?Ala?Arg?Glu?Arg?Glu?Ser?Glu?Glu?Ser?Leu?Gly
35 40 45
Glu?Met?Gly?Glu?Cys?Arg?Gly?Gly?Gly?Gly?Gly?Gly?Asp?Gly?Leu?Ile
50 55 60
Lys?Leu?Phe?Gly?Lys?Thr?Ile?Pro?Val?Gln?Pro?Asp?Ala?Lys?Asp?Val
65 70 75 80
Gln?Gln?His?Ser?Gly?Ser?Ser?Ser?Ser?Ser?Thr?Glu?Ser?Asp?Val?Gln
85 90 95
Glu?Thr?Ala?Ala?Val?Ala?Val?Ala?Asp?Pro?Ser?Pro?Arg?Ser?Glu?Val
100 105 110
Val?Asp?Gly?Glu?Ser?Pro?Pro?Gln?Pro?Gly?Gly?Glu?Ala?Ala?Ser?His
115 120 125
Gln?Gln?Gln?Gln?Lys?Glu?Met?Lys?Leu?Lys?Lys?Pro?Asp?Lys?Ile?Leu
130 135 140
Pro?Cys?Pro?Arg?Cys?Ser?Ser?Met?Asp?Thr?Lys?Phe?Cys?Tyr?Phe?Asn
145 150 155 160
Asn?Tyr?Asn?Val?Asn?Gln?Pro?Arg?His?Phe?Cys?Lys?His?Cys?Gln?Arg
165 170 175
Tyr?Trp?Thr?Ala?Gly?Gly?Ala?Met?Arg?Asn?Val?Pro?Val?Gly?Ala?Gly
180 185 190
Arg?Arg?Lys?Asn?Lys?Asn?Ala?Thr?Ala?Ala?Ala?His?Phe?Leu?His?Arg
195 200 205
Val?Arg?Ala?Cys?Ala?Ala?Ala?Ala?Ala?Met?Pro?Ala?Ala?Pro?His?Asp
210 215 220
Ala?Thr?Asn?Ala?Thr?Val?Leu?Ser?Phe?Gly?Gly?Gly?Gly?Gly?Gly?His
225 230 235 240
Asp?Ala?Pro?Pro?Val?Thr?Leu?Asp?Leu?Ala?Asp?Lys?Met?Thr?Arg?Leu
245 250 255
Gly?Lys?Glu?Gly?Leu?Val?Ala?His?Ala?Arg?Asn?Ala?Asp?Ala?Ala?Ala
260 265 270
Ala?Cys?Ser?Glu?Val?Ser?Ser?Asn?Arg?Asp?Asp?Glu?Gln?Ile?Gly?Asn
275 280 285
Thr?Val?Ala?Lys?Pro?Ala?Asn?Gly?Leu?Gln?Gln?His?Pro?Pro?Pro?Pro
290 295 300
His?His?His?His?His?Ser?Ala?Met?Asn?Gly?Gly?Gly?Ile?Trp?Pro?Tyr
305 310 315 320
Tyr?Thr?Ser?Gly?Ile?Ala?Ile?Pro?Ile?Tyr?Pro?Ala?Ala?Pro?Ala?Tyr
325 330 335
Trp?Gly?Cys?Met?Ile?Pro?Pro?Pro?Gly?Ala?Trp?Ser?Leu?Pro?Trp?Pro
340 345 350
Ala?Thr?Val?Gln?Ser?Gln?Ala?Ile?Ser?Ser?Ser?Ser?Pro?Pro?Thr?Ser
355 360 365
Ala?Thr?Pro?Ser?Val?Ser?Ser?Phe?Thr?Leu?Gly?Lys?His?Pro?Arg?Glu
370 375 380
Gly?Gly?Asp?His?Glu?Ala?Arg?Asp?His?His?Gly?Asn?Gly?Lys?Val?Trp
385 390 395 400
Val?Pro?Lys?Thr?Ile?Arg?Ile?Asp?Asn?Ala?Asp?Glu?Val?Ala?Arg?Ser
405 410 415
Ser?Ile?Arg?Ser?Leu?Phe?Ala?Phe?Arg?Gly?Gly?Asp?Lys?Ala?Asp?Asp
420 425 430
Asn?Asn?Asp?Asp?Asp?Gly?Thr?Gly?Val?His?Lys?Leu?Ala?Thr?Thr?Val
435 440 445
Phe?Glu?Pro?Lys?Arg?Asp?Ser?Lys?Thr?Ala?Lys?His?Pro?Ala?Ile?Thr
450 455 460
Ser?Leu?Pro?Leu?Leu?His?Thr?Asn?Pro?Val?Ala?Leu?Thr?Arg?Ser?Ala
465 470 475 480
Thr?Phe?Gln?Glu?Gly?Ser
485
<210>240
<211>1461
<212>DNA
<213> rice
<400>240
atgggagggg?gtggtaagtg?caaaagaggg?aaaagaggaa?agattgcagc?caagcgaaga 60
aggggccagt?gttgcagcag?cagcagcagc?agcggaggcg?caagaagacg?agctagagag 120
agagaatcag?aggagagctt?gggtgagatg?ggtgagtgca?gaggaggagg?aggaggagga 180
gatgggctga?tcaagctgtt?cgggaagacg?atcccggtgc?agccggatgc?caaggatgtt 240
cagcagcata?gtggcagtag?cagcagctca?accgaatccg?acgtccaaga?aaccgccgct 300
gtcgccgtcg?ccgacccctc?cccgcggtcg?gaggtcgtcg?acggcgagag?cccgccgcag 360
ccgggcggcg?aggcggcgag?ccatcagcag?cagcagaagg?agatgaagct?gaagaagccg 420
gacaagatcc?tgccatgccc?gcggtgcagc?agcatggaca?ccaagttctg?ctacttcaac 480
aactacaacg?tcaaccagcc?tcgccacttc?tgcaagcact?gccagcgcta?ctggaccgcc 540
ggcggcgcca?tgcgcaacgt?ccccgtcggc?gccggccgcc?gcaagaacaa?gaacgccacc 600
gccgccgccc?acttcctcca?ccgcgtccgc?gcctgcgccg?ccgccgccgc?catgcccgcg 660
gcgccccacg?acgccaccaa?cgccaccgtg?ctcagcttcg?gcggcggcgg?aggcggacac 720
gacgcgccgc?cggtcaccct?ggacctcgcc?gacaagatga?cgcgcctcgg?caaggagggg 780
ctcgtcgccc?atgcccggaa?cgccgacgcc?gccgccgcgt?gcagcgaggt?gtcgagcaac 840
agggacgacg?agcagatcgg?caacactgta?gcaaaacctg?caaacgggtt?gcagcagcat 900
cctcctcctc?ctcatcatca?tcatcattca?gccatgaacg?gtggcggcat?ctggccctac 960
tacacctcgg?ggatcgcgat?cccgatatac?ccggcggcgc?cggcgtactg?gggctgcatg 1020
attccacctc?ctggagcttg?gagcctccca?tggccggcca?cagtccagtc?tcaggccatc 1080
tcatcatcat?caccacctac?aagtgctaca?ccttcagtct?cctccttcac?actaggcaag 1140
catcccagag?agggtggtga?tcatgaggca?agagatcacc?atggcaatgg?taaagtgtgg 1200
gtgccgaaga?cgatccggat?cgacaacgcc?gacgaggttg?cccggagctc?aatccggtca 1260
ctcttcgcct?tcagaggcgg?cgacaaggcg?gatgataaca?acgacgacga?tggcaccggc 1320
gtgcacaagc?tcgccaccac?ggtgttcgag?ccaaagaggg?acagcaagac?ggcgaaacat 1380
ccggcgatca?cgagcttgcc?gctcttgcac?accaaccccg?tcgcgcttac?ccgatccgcg 1440
accttccagg?agggatcttg?a 1461
<210>241
<211>440
<212>PRT
<213> rice
<400>241
Met?Gly?Glu?Cys?Lys?Val?Gly?Gly?Gly?Gly?Gly?Gly?Gly?Asp?Cys?Leu
1 5 10 15
Ile?Lys?Leu?Phe?Gly?Lys?Thr?Ile?Pro?Val?Pro?Glu?Pro?Gly?Ala?Cys
20 25 30
Ala?Ala?Gly?Asp?Val?Asp?Lys?Asp?Leu?Gln?His?Ser?Gly?Ser?Ser?Thr
35 40 45
Thr?Glu?Pro?Lys?Thr?Gln?Glu?Asn?Thr?Val?Gln?Asp?Ser?Thr?Ser?Pro
50 55 60
Pro?Pro?Gln?Pro?Glu?Val?Val?Asp?Thr?Glu?Asp?Ser?Ser?Ala?Asp?Lys
65 70 75 80
Asn?Ser?Ser?Glu?Asn?Gln?Gln?Gln?Gln?Gly?Asp?Thr?Ala?Asn?Gln?Lys
85 90 95
Glu?Lys?Leu?Lys?Lys?Pro?Asp?Lys?Ile?Leu?Pro?Cys?Pro?Arg?Cys?Ser
100 105 110
Ser?Met?Asp?Thr?Lys?Phe?Cys?Tyr?Tyr?Asn?Asn?Tyr?Asn?Ile?Asn?Gln
115 120 125
Pro?Arg?His?Phe?Cys?Lys?Asn?Cys?Gln?Arg?Tyr?Trp?Thr?Ala?Gly?Gly
130 135 140
Ala?Met?Arg?Asn?Val?Pro?Val?Gly?Ala?Gly?Arg?Arg?Lys?Ser?Lys?Ser
145 150 155 160
Val?Ser?Ala?Ala?Ser?His?Phe?Leu?Gln?Arg?Val?Arg?Ala?Ala?Leu?Pro
165 170 175
Gly?Asp?Pro?Pro?Leu?Tyr?Ala?Pro?Val?Lys?Thr?Asn?Gly?Thr?Val?Leu
180 185 190
Ser?Phe?Gly?Ser?Asp?Leu?Ser?Thr?Leu?Asp?Leu?Thr?Glu?Gln?Met?Lys
195 200 205
His?Leu?Lys?Asp?Lys?Phe?Ile?Pro?Thr?Thr?Gly?Ile?Lys?Asn?Thr?Asp
210 215 220
Glu?Met?Pro?Val?Gly?Leu?Cys?Ala?Glu?Gly?Leu?Ser?Lys?Thr?Glu?Glu
225 230 235 240
Ser?Asn?Gln?Thr?Asn?Leu?Lys?Glu?Lys?Val?Ser?Ala?Asp?Arg?Ser?Pro
245 250 255
Asn?Val?Ala?Gln?His?Pro?Cys?Met?Asn?Gly?Gly?Ala?Met?Trp?Pro?Phe
260 265 270
Gly?Val?Ala?Pro?Pro?Pro?Ala?Tyr?Tyr?Thr?Ser?Ser?Ile?Ala?Ile?Pro
275 280 285
Phe?Tyr?Pro?Ala?Ala?Ala?Ala?Ala?Val?Ala?Ala?Tyr?TrP?Gly?Cys?Met
290 295 300
Val?Pro?Gly?Ala?Trp?Asn?Ala?Pro?Trp?Pro?Pro?Gln?Ser?Gln?Ser?Gln
305 310 315 320
Ser?Val?Ser?Ser?Ser?Ser?Ala?Ala?Ser?Pro?Val?Ser?Thr?Met?Thr?Asn
325 330 335
Cys?Phe?Arg?Leu?Gly?Lys?His?Pro?Arg?Asp?Gly?Asp?Glu?Glu?Leu?Asp
340 345 350
Ser?Lys?Gly?Asn?Gly?Lys?Val?Trp?Val?Pro?Lys?Thr?Val?Arg?Ile?Asp
355 360 365
Asp?Val?Asp?Glu?Val?Ala?Arg?Ser?Ser?Ile?Trp?Ser?Leu?Ile?Gly?Ile
370 375 380
Lys?Gly?Asp?Lys?Val?Gly?Ala?Asp?His?Gly?Arg?Gly?Cys?Lys?Leu?Ala
385 390 395 400
Lys?Val?Phe?Glu?Ser?Lys?Asp?Glu?Ala?Lys?Ala?Ser?Thr?His?Thr?Ala
405 410 415
Ile?Ser?Ser?Leu?Pro?Phe?Met?Gln?Gly?Asn?Pro?Ala?Ala?Leu?Thr?Arg
420 425 430
Ser?Val?Thr?Phe?Gln?Glu?Gly?Ser
435 440
<210>242
<211>1803
<212>DNA
<213> rice
<400>242
acttgtcgga?tctctctctc?tctctctctc?tccctctctc?tctcgcccat?gtaccatctc 60
catggacgac?ctcgccgccg?cctcccctcc?tcacccgccg?ccgccgccgc?cggaatccca 120
cgtgcctccg?cccccgcaga?cgccggagaa?ggattcatgt?gaggatacag?gagacatgag 180
gatcagtgaa?gaaaagccat?gcacagatca?ggagttagat?gctgatcaga?tgaatagttc 240
tagctttaat?agttccagcg?agtgtgagaa?tcaaacacct?agcaatgatg?aaatgactgg 300
atcagagtcc?aaatctgagg?cagctcaaac?agagggtggt?ggatcgagtg?aagagaaggt 360
cctgaagaag?ccagacaaga?tcctgccttg?tcctcgttgc?aacagcatgg?atacaaagtt 420
ctgctactac?aacaactaca?acattaacca?gccaagacat?ttttgcaaga?gttgtcagag 480
atattggacg?gcaggtggaa?gcatgaggaa?cctccctgtt?ggtgctggta?ggcgcaagag 540
taagagctcc?actgcaaatt?accgcagtat?attaatcacg?ggcagcaatc?tagctgctcc 600
tgctggagat?gctcccctct?atcaactctc?tataaaagga?gatcaaacag?caacggcagt 660
taaatttgca?cctgattccc?cactctgtaa?ttccatggcc?tctgtgctga?aaattggaga 720
gcagagtaag?aatgccaagc?ctacctcaac?agcacaaccc?agaaatggag?aaacccagac 780
ctgcccggct?tcaggaacaa?cttcagatag?tccccggaat?gaaccagtta?atggagcagt 840
tagtgggcat?caaaatggaa?ttgttgggca?tagtggagtc?cctcccatgc?atcccatacc 900
atgcttccct?ggtcctcctt?ttgtgtaccc?atggagtcca?gcatggaatg?gcattcctgc 960
catggcacca?ccggtatgca?cagcaccagc?tgaaccagca?aattcttcag?acaatggaag 1020
cacagctagt?gttcagtgga?gcatgccacc?agtgatgccg?gtaccaggat?actttccggt 1080
aattccatct?tcagtttggc?ccttcatttc?tccctggcca?aatggtgcat?ggagctcgcc 1140
atggattcaa?cctaattgca?gcgtgtcagc?ttcatctcct?acaagcacta?gtacatgttc 1200
agacaacggc?tctcctgtcc?taggaaagca?ctccagggac?tccaaaccgc?aaggagatga 1260
caaggcagag?aaaaacttgt?ggattccgaa?aacgcttcgg?atcgatgatc?ctgacgaagc 1320
tgcaaagagc?tcaatctgga?caacccttgg?cattgaacct?ggtgaccgta?gcatgttcag 1380
atcattccag?tcgaaacctg?aaagcaggga?gcagatatcc?ggtgctgcac?gagtcctgca 1440
ggcgaatcca?gcagctctat?ctcgatctca?atctttccag?gagacaacgt?gatgtatatt 1500
gaagaaatcg?tgtgacaatt?gtagaacatg?ttactactat?aatttaagca?agtgctacag 1560
cctgaaggat?gattggcgat?gtaggcgctg?ctgcaaacat?ggaggcagcg?tgatctgtac 1620
tattgaaacc?tgaagagtac?tattcttgac?atttttctat?aatttgcctg?tggagcatgc 1680
accagtctac?tgggttcatg?atcaggctgt?cagcatatgt?tttgttgtac?aataataata 1740
attgttaata?gctttgccta?aaggatactg?atagtattct?gctgatcctt?cagctctgtg 1800
atc 1803
<210>243
<211>476
<212>PRT
<213> rice
<400>243
Met?Asp?Asp?Leu?Ala?Ala?Ala?Ser?Pro?Pro?His?Pro?Pro?Pro?Pro?Pro
1 5 10 15
Pro?Glu?Ser?His?Val?Pro?Pro?Pro?Pro?Gln?Thr?Pro?Glu?Lys?Asp?Ser
20 25 30
Cys?Glu?Asp?Thr?Gly?Asp?Met?Arg?Ile?Ser?Glu?Glu?Lys?Pro?Cys?Thr
35 40 45
Asp?Gln?Glu?Leu?Asp?Ala?Asp?Gln?Met?Asn?Ser?Ser?Ser?Phe?Asn?Ser
50 55 60
Ser?Ser?Glu?Cys?Glu?Asn?Gln?Thr?Pro?Ser?Asn?Asp?Glu?Met?Thr?Gly
65 70 75 80
Ser?Glu?Ser?Lys?Ser?Glu?Ala?Ala?Gln?Thr?Glu?Gly?Gly?Gly?Ser?Ser
85 90 95
Glu?Glu?Lys?Val?Leu?Lys?Lys?Pro?Asp?Lys?Ile?Leu?Pro?Cys?Pro?Arg
100 105 110
Cys?Asn?Ser?Met?Asp?Thr?Lys?Phe?Cys?Tyr?Tyr?Asn?Asn?Tyr?Asn?Ile
115 120 125
Asn?Gln?Pro?Arg?His?Phe?Cys?Lys?Ser?Cys?Gln?Arg?Tyr?Trp?Thr?Ala
130 135 140
Gly?Gly?Ser?Met?Arg?Asn?Leu?Pro?Val?Gly?Ala?Gly?Arg?Arg?Lys?Ser
145 150 155 160
Lys?Ser?Ser?Thr?Ala?Asn?Tyr?Arg?Ser?Ile?Leu?Ile?Thr?Gly?Ser?Asn
165 170 175
Leu?Ala?Ala?Pro?Ala?Gly?Asp?Ala?Pro?Leu?Tyr?Gln?Leu?Ser?Ile?Lys
180 185 190
Gly?Asp?Gln?Thr?Ala?Thr?Ala?Val?Lys?Phe?Ala?Pro?Asp?Ser?Pro?Leu
195 200 205
Cys?Asn?Ser?Met?Ala?Ser?Val?Leu?Lys?Ile?Gly?Glu?Gln?Ser?Lys?Asn
210 215 220
Ala?Lys?Pro?Thr?Ser?Thr?Ala?Gln?Pro?Arg?Asn?Gly?Glu?Thr?Gln?Thr
225 230 235 240
Cys?Pro?Ala?Ser?Gly?Thr?Thr?Ser?Asp?Ser?Pro?Arg?Asn?Glu?Pro?Val
245 250 255
Asn?Gly?Ala?Val?Ser?Gly?His?Gln?Asn?Gly?Ile?Val?Gly?His?Ser?Gly
260 265 270
Val?Pro?Pro?Met?His?Pro?Ile?Pro?Cys?Phe?Pro?Gly?Pro?Pro?Phe?Val
275 280 285
Tyr?Pro?Trp?Ser?Pro?Ala?Trp?Asn?Gly?Ile?Pro?Ala?Met?Ala?Pro?Pro
290 295 300
Val?Cys?Thr?Ala?Pro?Ala?Glu?Pro?Ala?Asn?Ser?Ser?Asp?Asn?Gly?Ser
305 310 315 320
Thr?Ala?Ser?Val?Gln?Trp?Ser?Met?Pro?Pro?Val?Met?Pro?Val?Pro?Gly
325 330 335
Tyr?Phe?Pro?Val?Ile?Pro?Ser?Ser?Val?Trp?Pro?Phe?Ile?Ser?Pro?Trp
340 345 350
Pro?Asn?Gly?Ala?Trp?Ser?Ser?Pro?Trp?Ile?Gln?Pro?Asn?Cys?Ser?Val
355 360 365
Ser?Ala?Ser?Ser?Pro?Thr?Ser?Thr?Ser?Thr?Cys?Ser?Asp?Asn?Gly?Ser
370 375 380
Pro?Val?Leu?Gly?Lys?His?Ser?Arg?Asp?Ser?Lys?Pro?Gln?Gly?Asp?Asp
385 390 395 400
Lys?Ala?Glu?Lys?Asn?Leu?Trp?Ile?Pro?Lys?Thr?Leu?Arg?Ile?Asp?Asp
405 410 415
Pro?Asp?Glu?Ala?Ala?Lys?Ser?Ser?Ile?Trp?Thr?Thr?Leu?Gly?Ile?Glu
420 425 430
Pro?Gly?Asp?Arg?Ser?Met?Phe?Arg?Ser?Phe?Gln?Ser?Lys?Pro?Glu?Ser
435 440 445
Arg?Glu?Gln?Ile?Ser?Gly?Ala?Ala?Arg?Val?Leu?Gln?Ala?Asn?Pro?Ala
450 455 460
Ala?Leu?Ser?Arg?Ser?Gln?Ser?Phe?Gln?Glu?Thr?Thr
465 470 475
<210>244
<211>1817
<212>DNA
<213> barley
<400>244
ctagacatga?ttgccaagct?cgaaaataac?cctcacaaag?ggaacaaaac?tggtaccggg 60
ccccccctcg?aggtcgacaa?ggtcggtgtc?catgccccct?ccccctcctc?ctttgtgttc 120
ttgtgtatga?aatcccggga?attttgattg?gtttctaata?gagcctgtga?aaaaaaaaaa 180
ggccatttcg?aggcctgctt?tctttggctt?tggagccgat?catggcgacg?agtcgtgttt 240
ggtctagtca?tcaggtctta?agcatggagt?tccctgcctg?ttttgggagg?tactagtaag 300
cgctaagcag?gcaggtttag?cttccattag?caagggaatt?tcgcctttgc?tggtctctaa 360
taataatagc?agtttcaaca?gttttagtat?tgcatgatct?agtcgtctga?acatctggac 420
ttctgaaaga?caggcctttc?taggttatta?tcttgcctct?tttaataggt?cgttttcgcg 480
tgctcccaag?gattttgctg?aaagtggcta?ctgatatgtg?ttgccgtaac?ctactggact 540
tcagaagttc?agatgcgtcc?gactctgagt?acatcaccca?ctgcaaatca?aagcaccata 600
gcttcttttt?ttcattaaca?agatataaga?actgggaata?tgaacaaact?ttgtcaaatt 660
ttacacttgg?gtcagatggg?ggaaagcatg?ttgtaatcac?cggtcaataa?cccgaatatt 720
acaccgtgtt?tgtggacctc?taattcacaa?caaaattatt?tcaaagttag?actatatata 780
tatacaagga?actcatcgag?attttctgaa?tgtttacagg?accttcagca?cagaggaagc 840
accacggctg?aaccgaaagt?acaagaaagc?gccccacagg?actccacggg?ctcgcctccg 900
cagccggagg?ttgtggacgt?cgaggatcca?tctgctgtca?agaactcagc?agcagatcaa 960
caagaagaag?aagaagaaca?gggtgacacg?gccaaccaga?aggagaagct?caagaagcct 1020
gacaagatcc?tgccctgccc?acgctgtagc?agcatggaca?ccaagttctg?ctactacaac 1080
aactacaaca?tcaaccagcc?gcgccacttc?tgcaagaact?gccagaggta?ctggacggcc 1140
ggcggggcca?tgcgcaacgt?gcccgtgggc?gcgggccgcc?gcaagagcaa?gagcatatcg 1200
gcagcgtccc?acttccttca?gaggataagg?gccgctctgc?ccggtgatcc?tctctgcacc 1260
ccggtcaaca?ctaacggcac?ggtgctcagc?ttcggctccg?acgcatccac?cttggacgtc 1320
gtctcagaac?agatgaagca?catgaaggag?ctcagctcag?taacccggac?cgagaacacc 1380
gatgccccgt?cagtagggtc?ttgtgctgaa?ggatgggcaa?agggagaaga?gtcgagccag 1440
atgaactcga?gggagagagt?tgcagcagat?agatcgccaa?attttgcgca?gcacccgtgc 1500
atgaacgggg?cagccatgtg?gccattcagt?tgtgcaccat?cgcctgccta?tttcacccca 1560
aacgtagcaa?ttccattcta?tccagctgct?gctgctgcct?actggggctg?catggttccg 1620
ggagcctgga?acactccatg?gcagccgcag?ccgcagccgc?agtctcagtg?tcaatctagc 1680
tcaccaccta?gtgccgcttc?tccggtatca?acaatgtcca?gttgcttcca?atcccggaag 1740
catcctagag?atggtgatga?ggaaagagat?accaagggta?atggcaaggt?gtgggtgccc 1800
aagacgatcg?agtcgac 1817
<210>245
<211>270
<212>PRT
<213> barley
<400>245
Leu?Lys?Lys?Pro?Asp?Lys?Ile?Leu?Pro?Cys?Pro?Arg?Cys?Ser?Ser?Met
1 5 10 15
Asp?Thr?Lys?Phe?Cys?Tyr?Tyr?Asn?Asn?Tyr?Asn?Ile?Asn?Gln?Pro?Arg
20 25 30
His?Phe?Cys?Lys?Asn?Cys?Gln?Arg?Tyr?Trp?Thr?Ala?Gly?Gly?Ala?Met
35 40 45
Arg?Asn?Val?Pro?Val?Gly?Ala?Gly?Arg?Arg?Lys?Ser?Lys?Ser?Ile?Ser
50 55 60
Ala?Ala?ger?His?Phe?Leu?Gln?Arg?Ile?Arg?Ala?Ala?Leu?Pro?Gly?Asp
65 70 75 80
Pro?Leu?Cys?Thr?Pro?Val?Asn?Thr?Asn?Gly?Thr?Val?Leu?Ser?Phe?Gly
85 90 95
Ser?Asp?Ala?Ser?Thr?Leu?Asp?Val?Val?Ser?Glu?Gln?Met?Lys?His?Met
100 105 110
Lys?Glu?Leu?Ser?Ser?Val?Thr?Arg?Thr?Glu?Asn?Thr?Asp?Ala?Pro?Ser
115 120 125
Val?Gly?Ser?Cys?Ala?Glu?Gly?Trp?Ala?Lys?Gly?Glu?Glu?Ser?Ser?Gln
130 135 140
Met?Asn?Ser?Arg?Glu?Arg?Val?Ala?Ala?Asp?Arg?Ser?Pro?Asn?Phe?Ala
145 150 155 160
Gln?His?Pro?Cys?Met?Asn?Gly?Ala?Ala?Met?Trp?Pro?Phe?Ser?Cys?Ala
165 170 175
Pro?Ser?Pro?Ala?Tyr?Phe?Thr?Pro?Asn?Val?Ala?Ile?Pro?Phe?Tyr?Pro
180 185 190
Ala?Ala?Ala?Ala?Ala?Tyr?Trp?Gly?Cys?Met?Val?Pro?Gly?Ala?Trp?Asn
195 200 205
Thr?Pro?Trp?Gln?Pro?Gln?Pro?Gln?Pro?Gln?Ser?Gln?Cys?Gln?Ser?Ser
210 215 220
Ser?Pro?Pro?Ser?Ala?Ala?Ser?Pro?Val?Ser?Thr?Met?Ser?Ser?Cys?Phe
225 230 235 240
Gln?Ser?Arg?Lys?His?Pro?Arg?Asp?Gly?Asp?Glu?Glu?Arg?Asp?Thr?Lys
245 250 255
Gly?Asn?Gly?Lys?Val?Trp?Val?Pro?Lys?Thr?Ile?Glu?Ser?Thr
260 265 270
<210>246
<211>1485
<212>DNA
<213> winter squash (Cucurbita maxima)
<400>246
cagctgcaaa?agaggaaact?cttcatgatt?cagaggatta?tgcatgtgta?aaaacagcaa 60
atgaggcgca?catgaatcct?gaagtgttat?caacagatga?aaatgataag?ctcgcaacaa 120
ggaaaactga?gaaagaacag?aatgatgccc?ccaactcgaa?agagaaactg?aagaaaccag 180
ataagatact?tccatgtccc?cgctgcaata?gcatggaaac?caagttttgt?tattataata 240
attataatgt?caatcaacca?cgccattttt?gcaaagcctg?tcaaagatat?tggactgaag 300
gcggtaccat?caggaatgtc?cctgttggag?ctggccgccg?aaaaaacaag?aactcagcct 360
cacactaccg?acacattaca?atctcagagg?ctctccgagc?tgcacaaatt?gatgttccta 420
ttgaggtcaa?ccacctagca?tcaaaaggca?atggacgagt?cctcaatttc?agtgtaagcc 480
cacctgtatg?tgaatctatg?gtcaatgtat?cacatcctgc?agaaagaaag?gtcttgaatg 540
gaacaaggaa?tgaatttgag?ggagccaaag?gaccttgtga?gggtggggaa?actggtgatg 600
attgttctag?tgcatcttca?gtaacaatgt?caagctcaat?gaagaatgga?gccaggaggt 660
tccctcaaga?accacatatg?cagaacatca?atggttttcc?ttctcaaatc?ccatgtcttc 720
ctggtgttcc?ttggccttgt?tcatggactg?caccaatacc?tccaccagcc?ttgtgccctc 780
ctggagttcc?tttatcattc?taccctgcaa?catattggag?ttgcagtgct?tcaggttctt 840
ggaatattcc?ttgggtcact?ccacaaccct?gtcctccaat?ccctggtcca?aattctccga 900
cgctaggcaa?gcattcgaga?gatggcgatg?aactccaggc?tgataattct?gagatgaaag 960
atcctccaaa?acagaaaaat?ggatctgttt?tggttcccaa?aactttaagg?attgatgatc 1020
caaacgaagc?tgctaagagt?tcaatatggg?agacacttgg?tattaagaat?gattcaatca 1080
aagctgttga?tctgtctaat?gttttccaat?caaagggcga?cctaaagagt?aacgtttctg 1140
aagtgttgtc?tccagttttg?caagccaacc?ctgcagcctt?gtcaagatct?cttactttcc 1200
acgagcggtc?gtgaatggta?tttttgattt?tccaggttca?ttgtaaaaga?aatctttaag 1260
ttaagaagct?taagcatgaa?gtggatacaa?gcatcaatct?caagcttctt?ctgctcaaga 1320
agcaatccag?tttttcaaga?atcccggaat?tgttctctct?atagaaagag?tagctgccat 1380
tatcaagcca?tccttttgta?cataacttta?catatgtgaa?taaccgatgt?agagtggcag 1440
ctaaagattc?tcagatgtat?aaaaatgcag?ccaaaagttt?gcttc 1485
<210>247
<211>380
<212>PRT
<213> winter squash
<400>247
Met?Asn?Pro?Glu?Val?Leu?Ser?Thr?Asp?Glu?Asn?Asp?Lys?Leu?Ala?Thr
1 5 10 15
Arg?Lys?Thr?Glu?Lys?Glu?Gln?Asn?Asp?Ala?Pro?Asn?Ser?Lys?Glu?Lys
20 25 30
Leu?Lys?Lys?Pro?Asp?Lys?Ile?Leu?Pro?Cys?Pro?Arg?Cys?Asn?Ser?Met
35 40 45
Glu?Thr?Lys?Phe?Cys?Tyr?Tyr?Asn?Asn?Tyr?Asn?Val?Asn?Gln?Pro?Arg
50 55 60
His?Phe?Cys?Lys?Ala?Cys?Gln?Arg?Tyr?Trp?Thr?Glu?Gly?Gly?Thr?Ile
65 70 75 80
Arg?Asn?Val?Pro?Val?Gly?Ala?Gly?Arg?Arg?Lys?Asn?Lys?Asn?Ser?Ala
85 90 95
Ser?His?Tyr?Arg?His?Ile?Thr?Ile?Ser?Glu?Ala?Leu?Arg?Ala?Ala?Gln
100 105 110
Ile?Asp?Val?Pro?Ile?Glu?Val?Asn?His?Leu?Ala?Ser?Lys?Gly?Asn?Gly
115 120 125
Arg?Val?Leu?Asn?Phe?Ser?Val?Ser?Pro?Pro?Val?Cys?Glu?Ser?Met?Val
130 135 140
Asn?Val?Ser?His?Pro?Ala?Glu?Arg?Lys?Val?Leu?Asn?Gly?Thr?Arg?Asn
145 150 155 160
Glu?Phe?Glu?Gly?Ala?Lys?Gly?Pro?Cys?Glu?Gly?Gly?Glu?Thr?Gly?Asp
165 170 175
Asp?Cys?Ser?Ser?Ala?Ser?Ser?Val?Thr?Met?Ser?Ser?Ser?Met?Lys?Asn
180 185 190
Gly?Ala?Arg?Arg?Phe?Pro?Gln?Glu?Pro?His?Met?Gln?Asn?Ile?Asn?Gly
195 200 205
Phe?Pro?Ser?Gln?Ile?Pro?Cys?Leu?Pro?Gly?Val?Pro?Trp?Pro?Cys?Ser
210 215 220
Trp?Thr?Ala?Pro?Ile?Pro?Pro?Pro?Ala?Leu?Cys?Pro?Pro?Gly?Val?Pro
225 230 235 240
Leu?Ser?Phe?Tyr?Pro?Ala?Thr?Tyr?Trp?Ser?Cys?Ser?Ala?Ser?Gly?Ser
245 250 255
Trp?Asn?Ile?Pro?Trp?Val?Thr?Pro?Gln?Pro?Cys?Pro?Pro?Ile?Pro?Gly
260 265 270
Pro?Asn?Ser?Pro?Thr?Leu?Gly?Lys?His?Ser?Arg?Asp?Gly?Asp?Glu?Leu
275 280 285
Gln?Ala?Asp?Asn?Ser?Glu?Met?Lys?Asp?Pro?Pro?Lys?Gln?Lys?Asn?Gly
290 295 300
Ser?Val?Leu?Val?Pro?Lys?Thr?Leu?Arg?Ile?Asp?Asp?Pro?Asn?Glu?Ala
305 310 315 320
Ala?Lys?Ser?Ser?Ile?Trp?Glu?Thr?Leu?Gly?Ile?Lys?Asn?Asp?Ser?Ile
325 330 335
Lys?Ala?Val?Asp?Leu?Ser?Asn?Val?Phe?Gln?Ser?Lys?Gly?Asp?Leu?Lys
340 345 350
Ser?Asn?Val?Ser?Glu?Val?Leu?Ser?Pro?Val?Leu?Gln?Ala?Asn?Pro?Ala
355 360 365
Ala?Leu?Ser?Arg?Ser?Leu?Thr?Phe?His?Glu?Arg?Ser
370 375 380
<210>248
<211>1191
<212>DNA
<213> Arabidopis thaliana
<400>248
atgtggctct?ctcatctctt?catgtccctc?tctaagctga?cgtgtaattt?ctccattttc 60
tctgtcttta?tggcttgtgg?ctctattggt?atgtctcaag?ttagagatac?tccggttaaa 120
ttgtttggct?ggacaattac?accggtttct?catgatccat?actcttcttc?gtcccatgtt 180
cttcctgatt?cttcctcgtc?ttcctcgtct?tcttctctat?cacttcgacc?acacatgatg 240
aataaccaat?ctgttactga?caatacaagt?cttaagctgt?catctaatct?taacaacgag 300
tcaaaagaaa?catctgagaa?cagtgatgac?caacacagcg?agatcacaac?aattacatcg 360
gaagaagaga?aaacaactga?actgaagaaa?ccagacaaga?ttcttccatg?tccgagatgc 420
aacagcgcag?acaccaaatt?ctgttactac?aacaactaca?acgttaacca?gccacgtcac 480
ttctgtagaa?aatgccagag?gtattggacc?gctggtggat?ccatgaggat?cgtcccggtt 540
ggctcaggcc?gtcgcaagaa?caagggatgg?gtttcttcag?accagtacct?gcacatcact 600
tccgaggata?ctgacaatta?caatagctcc?tcaacaaaga?ttctaagctt?cgagtcttcg 660
gactctttgg?taactgagag?gcctaagcat?caatcaaacg?aagtgaagat?aaacgctgaa 720
cctgtttcac?aagaacccaa?caacttccaa?gggttacttc?ctccccaagc?atcccctgtt 780
tcgcctcctt?ggccttacca?ataccctcca?aaccctagtt?tctaccacat?gcccgtctac 840
tggggctgcg?cgataccggt?ttggtctacc?ctcgacactt?ctacatgtct?tgggaaaagg 900
acaagagacg?aaacttctca?tgaaactgtt?aaagagagta?aaaatgcttt?tgagagaaca 960
agcttgcttt?tggaatctca?gagcatcaaa?aatgaaacaa?gtatggctac?aaataaccat 1020
gtgtggtatc?cagtaccgat?gacccgcgag?aagacacaag?aattcagctt?tttcagtaat 1080
ggagctgaaa?caaagagcag?caacaacaga?ttcgtccctg?aaacgtatct?taacctgcaa 1140
gcaaaccctg?cagccatggc?aagatctatg?aacttcagag?agagcatata?a 1191
<210>249
<211>396
<212>PRT
<213> Arabidopis thaliana
<400>249
Met?Trp?Leu?Ser?His?Leu?Phe?Met?Ser?Leu?Ser?Lys?Leu?Thr?Cys?Asn
1 5 10 15
Phe?Ser?Ile?Phe?Ser?Val?Phe?Met?Ala?Cys?Gly?Ser?Ile?Gly?Met?Ser
20 25 30
Gln?Val?Arg?Asp?Thr?Pro?Val?Lys?Leu?Phe?Gly?Trp?Thr?Ile?Thr?Pro
35 40 45
Val?Ser?His?Asp?Pro?Tyr?Ser?Ser?Ser?Ser?His?Val?Leu?Pro?Asp?Ser
50 55 60
Ser?Ser?Ser?Ser?Ser?Ser?Ser?Ser?Leu?Ser?Leu?Arg?Pro?His?Met?Met
65 70 75 80
Asn?Asn?Gln?Ser?Val?Thr?Asp?Asn?Thr?Ser?Leu?Lys?Leu?Ser?Ser?Asn
85 90 95
Leu?Asn?Asn?Glu?Ser?Lys?Glu?Thr?Ser?Glu?Asn?Ser?Asp?Asp?Gln?His
100 105 110
Ser?Glu?Ile?Thr?Thr?Ile?Thr?Ser?Glu?Glu?Glu?Lys?Thr?Thr?Glu?Leu
115 120 125
Lys?Lys?Pro?Asp?Lys?Ile?Leu?Pro?Cys?Pro?Arg?Cys?Asn?Ser?Ala?Asp
130 135 140
Thr?Lys?Phe?Cys?Tyr?Tyr?Asn?Asn?Tyr?Asn?Val?Asn?Gln?Pro?Arg?His
145 150 155 160
Phe?Cys?Arg?Lys?Cys?Gln?Arg?Tyr?Trp?Thr?Ala?Gly?Gly?Ser?Met?Arg
165 170 175
Ile?Val?Pro?Val?Gly?Ser?Gly?Arg?Arg?Lys?Asn?Lys?Gly?Trp?Val?Ser
180 185 190
Ser?Asp?Gln?Tyr?Leu?His?Ile?Thr?Ser?Glu?Asp?Thr?Asp?Asn?Tyr?Asn
195 200 205
Ser?Ser?Ser?Thr?Lys?Ile?Leu?Ser?Phe?Glu?Ser?Ser?Asp?Ser?Leu?Val
210 215 220
Thr?Glu?Arg?Pro?Lys?His?Gln?Ser?Asn?Glu?Val?Lys?Ile?Asn?Ala?Glu
225 230 235 240
Pro?Val?Ser?Gln?Glu?Pro?Asn?Asn?Phe?Gln?Gly?Leu?Leu?Pro?Pro?Gln
245 250 255
Ala?Ser?Pro?Val?Ser?Pro?Pro?Trp?Pro?Tyr?Gln?Tyr?Pro?Pro?Asn?Pro
260 265 270
Ser?Phe?Tyr?His?Met?Pro?Val?Tyr?Trp?Gly?Cys?Ala?Ile?Pro?Val?Trp
275 280 285
Ser?Thr?Leu?Asp?Thr?Ser?Thr?Cys?Leu?Gly?Lys?Arg?Thr?Arg?Asp?Glu
290 295 300
Thr?Ser?His?Glu?Thr?Val?Lys?Glu?Ser?Lys?Asn?Ala?Phe?Glu?Arg?Thr
305 310 315 320
Ser?Leu?Leu?Leu?Glu?Ser?Gln?Ser?Ile?Lys?Asn?Glu?Thr?Ser?Met?Ala
325 330 335
Thr?Asn?Asn?His?Val?Trp?Tyr?Pro?Val?Pro?Met?Thr?Arg?Glu?Lys?Thr
340 345 350
Gln?Glu?Phe?Ser?Phe?Phe?Ser?Asn?Gly?Ala?Glu?Thr?Lys?Ser?Ser?Asn
355 360 365
Asn?Arg?Phe?Val?Pro?Glu?Thr?Tyr?Leu?Asn?Leu?Gln?Ala?Asn?Pro?Ala
370 375 380
Ala?Met?Ala?Arg?Ser?Met?Asn?Phe?Arg?Glu?Ser?Ile
385 390 395
<210>250
<211>1200
<212>DNA
<213> Arabidopis thaliana
<400>250
atgtctaaat?ctagagatac?ggagataaag?ttgtttggga?ggacaatcac?atctctttta 60
gatgtgaatt?gttatgatcc?gtcgtcgttg?tcccctgttc?acgatgtttc?ttctgatcca 120
agcaaggagg?attcgtcttc?ttcttcatct?tcttgttctc?caactattgg?accaatcagg 180
gttccggtta?aaaaaagtga?gcaagagagt?aacaaattca?aagatccata?tatattatcc 240
gatctaaacg?aaccaccaaa?agcagtatct?gagatttcat?caccaagaag?ttccaagaac 300
aactgtgatc?aacagagcga?gatcacaaca?acaactacca?caagtactac?atcaggagag 360
aaatcaacgg?ctctcaagaa?accggacaag?cttattccat?gtcctagatg?tgaaagcgca 420
aacaccaaat?tctgttatta?caacaactac?aacgtgaacc?agccacgtta?cttctgcagg 480
aactgtcaga?ggtattggac?agctggtgga?tctatgagga?acgttcctgt?tggctcaggt 540
cgtcgcaaga?acaaaggatg?gccttcttca?aaccattact?tgcaagtcac?ttctgaggat 600
tgtgataata?ataactcggg?gacgatcctt?agtttcggtt?cttcggagtc?ttcggttaca 660
gagactggta?agcatcagtc?aggtgataca?gcaaagataa?gtgctgattc?agtttctcaa 720
gaaaataaaa?gctaccaagg?gtttcttcct?ccgcaagtaa?tgttacctaa?taattcttct 780
ccttggcctt?accaatggag?tccaacgggt?cctaacgcta?gtttctaccc?tgtccccttc 840
tactggggat?gcacggttcc?gatataccct?acctcagaga?cttcatcatg?tttaggaaaa 900
cggtcaagag?atcaaactga?aggaagaatc?aatgatacta?atacaacaat?aactactaca 960
agagcaagat?tggtctcaga?atctcttaga?atgaatatcg?aagctagtaa?gagcgctgtg 1020
tggtctaagt?taccgacaaa?acccgagaaa?aaaacgcaag?gattcagttt?gttcaatgga 1080
tttgacacaa?agggaaacag?caacagaagt?agcttggtct?ccgaaacttc?tcacagtcta 1140
caagcaaacc?ctgcagcgat?gtctagagct?atgaacttca?gggagagcat?gcaacaataa 1200
<210>251
<211>399
<212>PRT
<213> Arabidopis thaliana
<400>251
Met?Ser?Lys?Ser?Arg?Asp?Thr?Glu?Ile?Lys?Leu?Phe?Gly?Arg?Thr?Ile
1 5 10 15
Thr?Ser?Leu?Leu?Asp?Val?Asn?Cys?Tyr?Asp?Pro?Ser?Ser?Leu?Ser?Pro
20 25 30
Val?His?Asp?Val?Ser?Ser?Asp?Pro?Ser?Lys?Glu?Asp?Ser?Ser?Ser?Ser
35 40 45
Ser?Ser?Ser?Cys?Ser?Pro?Thr?Ile?Gly?Pro?Ile?Arg?Val?Pro?Val?Lys
50 55 60
Lys?Ser?Glu?Gln?Glu?Ser?Asn?Lys?Phe?Lys?Asp?Pro?Tyr?Ile?Leu?Ser
65 70 75 80
Asp?Leu?Asn?Glu?Pro?Pro?Lys?Ala?Val?Ser?Glu?Ile?Ser?Ser?Pro?Arg
85 90 95
Ser?Ser?Lys?Asn?Asn?Cys?Asp?Gln?Gln?Ser?Glu?Ile?Thr?Thr?Thr?Thr
100 105 110
Thr?Thr?Ser?Thr?Thr?Ser?Gly?Glu?Lys?Ser?Thr?Ala?Leu?Lys?Lys?Pro
115 120 125
Asp?Lys?Leu?Ile?Pro?Cys?Pro?Arg?Cys?Glu?Ser?Ala?Asn?Thr?Lys?Phe
130 135 140
Cys?Tyr?Tyr?Asn?Asn?Tyr?Asn?Val?Asn?Gln?Pro?Arg?Tyr?Phe?Cys?Arg
145 150 155 160
Asn?Cys?Gln?Arg?Tyr?Trp?Thr?Ala?Gly?Gly?Ser?Met?Arg?Asn?Val?Pro
165 170 175
Val?Gly?Ser?Gly?Arg?Arg?Lys?Asn?Lys?Gly?Trp?Pro?Ser?Ser?Asn?His
180 185 190
Tyr?Leu?Gln?Val?Thr?Ser?Glu?Asp?Cys?Asp?Asn?Asn?Asn?Ser?Gly?Thr
195 200 205
Ile?Leu?Ser?Phe?Gly?Ser?Ser?Glu?Ser?Ser?Val?Thr?Glu?Thr?Gly?Lys
210 215 220
His?Gln?Ser?Gly?Asp?Thr?Ala?Lys?Ile?Ser?Ala?Asp?Ser?Val?Ser?Gln
225 230 235 240
Glu?Asn?Lys?Ser?Tyr?Gln?Gly?Phe?Leu?Pro?Pro?Gln?Val?Met?Leu?Pro
245 250 255
Asn?Asn?Ser?Ser?Pro?Trp?Pro?Tyr?Gln?Trp?Ser?Pro?Thr?Gly?Pro?Asn
260 265 270
Ala?Ser?Phe?Tyr?Pro?Val?Pro?Phe?Tyr?Trp?Gly?Cys?Thr?Val?Pro?Ile
275 280 285
Tyr?Pro?Thr?Ser?Glu?Thr?Ser?Ser?Cys?Leu?Gly?Lys?Arg?Ser?Arg?Asp
290 295 300
Gln?Thr?Glu?Gly?Arg?Ile?Asn?Asp?Thr?Asn?Thr?Thr?Ile?Thr?Thr?Thr
305 310 315 320
Arg?Ala?Arg?Leu?Val?Ser?Glu?Ser?Lau?Arg?Met?Asn?Ile?Glu?Ala?Ser
325 330 335
Lys?Ser?Ala?Val?Trp?Ser?Lys?Leu?Pro?Thr?Lys?Pro?Glu?Lys?Lys?Thr
340 345 350
Gln?Gly?Phe?Ser?Leu?Phe?Asn?Gly?Phe?Asp?Thr?Lys?Gly?Asn?Ser?Asn
355 360 365
Arg?Ser?Ser?Leu?Val?Ser?Glu?Thr?Ser?His?Ser?Leu?Gln?Ala?Asn?Pro
370 375 380
Ala?Ala?Met?Ser?Arg?Ala?Met?Asn?Phe?Arg?Glu?Ser?Met?Gln?Gln
385 390 395
<210>252
<211>1347
<212>DNA
<213> Arabidopis thaliana
<400>252
atgatgatgg?agactagaga?tccagctatt?aagcttttcg?gtatgaaaat?cccttttccg 60
tcggtttttg?aatcggcagt?tacggtggag?gatgacgaag?aagatgactg?gagcggcgga 120
gatgacaaat?caccagagaa?ggtaactcca?gagttatcag?ataagaacaa?caacaactgt 180
aacgacaaca?gttttaacaa?ttcgaaaccc?gaaaccttgg?acaaagagga?agcgacatca 240
actgatcaga?tagagagtag?tgacacgcct?gaggataatc?agcagacgac?acctgatggt 300
aaaaccctaa?agaaaccgac?taagattcta?ccgtgtccga?gatgcaaaag?catggagacc 360
aagttctgtt?attacaacaa?ctacaacata?aaccagcctc?gtcatttctg?caaggcttgt 420
cagagatatt?ggactgctgg?agggactatg?aggaatgttc?ctgtgggggc?aggacgtcgt 480
aagaacaaaa?gctcatcttc?tcattaccgt?cacatcacta?tttccgaggc?tcttgaggct 540
gcgaggcttg?acccgggctt?acaggcaaac?acaagggtct?tgagttttgg?tctcgaagct 600
cagcagcagc?acgttgctgc?tcccatgaca?cctgtgatga?agctacaaga?agatcaaaag 660
gtctcaaacg?gtgctaggaa?caggtttcac?gggttagcgg?atcaacggct?tgtagctcgg 720
gtagagaatg?gagatgattg?ctcaagcgga?tcctctgtga?ccacctctaa?caatcactca 780
gtggatgaat?caagagcaca?aagcggcagt?gttgttgaag?cacaaatgaa?caacaacaac 840
aacaataaca?tgaatggtta?tgcttgcatc?ccaggtgttc?catggcctta?cacgtggaat 900
ccagcgatgc?ctccaccagg?tttttacccg?cctccagggt?atccaatgcc?gttttaccct 960
tactggacca?tcccaatgct?accaccgcat?caatcctcat?cgcctataag?ccaaaagtgt 1020
tcaaatacaa?actctccgac?tctcggaaag?catccgagag?atgaaggatc?atcgaaaaag 1080
gacaacgaga?cagagcgaaa?acagaaggcc?gggtgcgttc?tggtcccgaa?aacgttgaga 1140
atagatgatc?ctaacgaagc?agcaaagagc?tcgatatgga?caacattggg?aatcaagaac 1200
gaggcgatgt?gcaaagccgg?tggtatgttc?aaagggtttg?atcataagac?aaagatgtat 1260
aacaacgaca?aagctgagaa?ctcccctgtt?ctttctgcta?accctgctgc?tctatcaaga 1320
tcacacaatt?tccatgaaca?gatttag 1347
<210>253
<211>448
<212>PRT
<213> Arabidopis thaliana
<400>253
Met?Met?Met?Glu?Thr?Arg?Asp?Pro?Ala?Ile?Lys?Leu?Phe?Gly?Met?Lys
1 5 10 15
Ile?Pro?Phe?Pro?Ser?Val?Phe?Glu?Ser?Ala?Val?Thr?Val?Glu?Asp?Asp
20 25 30
Glu?Glu?Asp?Asp?Trp?Ser?Gly?Gly?Asp?Asp?Lys?Ser?Pro?Glu?Lys?Val
35 40 45
Thr?Pro?Glu?Leu?Ser?Asp?Lys?Asn?Asn?Asn?Asn?Cys?Asn?Asp?Asn?Ser
50 55 60
Phe?Asn?Asn?Ser?Lys?Pro?Glu?Thr?Leu?Asp?Lys?Glu?Glu?Ala?Thr?Ser
65 70 75 80
Thr?Asp?Gln?Ile?Glu?Ser?Ser?Asp?Thr?Pro?Glu?Asp?Asn?Gln?Gln?Thr
85 90 95
Thr?Pro?Asp?Gly?Lys?Thr?Leu?Lys?Lys?Pro?Thr?Lys?Ile?Leu?Pro?Cys
100 105 110
Pro?Arg?Cys?Lys?Ser?Met?Glu?Thr?Lys?Phe?Cys?Tyr?Tyr?Asn?Asn?Tyr
115 120 125
Asn?Ile?Asn?Gln?Pro?Arg?His?Phe?Cys?Lys?Ala?Cys?Gln?Arg?Tyr?Trp
130 135 140
Thr?Ala?Gly?Gly?Thr?Met?Arg?Asn?Val?Pro?Val?Gly?Ala?Gly?Arg?Arg
145 150 155 160
Lys?Asn?Lys?Ser?Ser?Ser?Ser?His?Tyr?Arg?His?Ile?Thr?Ile?Ser?Glu
165 170 175
Ala?Leu?Glu?Ala?Ala?Arg?Leu?Asp?Pro?Gly?Leu?Gln?Ala?Asn?Thr?Arg
180 185 190
Val?Leu?Ser?Phe?Gly?Leu?Glu?Ala?Gln?Gln?Gln?His?Val?Ala?Ala?Pro
195 200 205
Met?Thr?Pro?Val?Met?Lys?Leu?Gln?Glu?Asp?Gln?Lys?Val?Ser?Asn?Gly
210 215 220
Ala?Arg?Asn?Arg?Phe?His?Gly?Leu?Ala?Asp?Gln?Arg?Leu?Val?Ala?Arg
225 230 235 240
Val?Glu?Asn?Gly?Asp?Asp?Cys?Ser?Ser?Gly?Ser?Ser?Val?Thr?Thr?Ser
245 250 255
Asn?Asn?His?Ser?Val?Asp?Glu?Ser?Arg?Ala?Gln?Ser?Gly?Ser?Val?Val
260 265 270
Glu?Ala?Gln?Met?Asn?Asn?Asn?Asn?Asn?Asn?Asn?Met?Asn?Gly?Tyr?Ala
275 280 285
Cys?Ile?Pro?Gly?Val?Pro?Trp?Pro?Tyr?Thr?Trp?Asn?Pro?Ala?Met?Pro
290 295 300
Pro?Pro?Gly?Phe?Tyr?Pro?Pro?Pro?Gly?Tyr?Pro?Met?Pro?Phe?Tyr?Pro
305 310 315 320
Tyr?Trp?Thr?Ile?Pro?Met?Leu?Pro?Pro?His?Gln?Ser?Ser?Ser?Pro?Ile
325 330 335
Ser?Gln?Lys?Cys?Ser?Asn?Thr?Asn?Ser?Pro?Thr?Leu?Gly?Lys?His?Pro
340 345 350
Arg?Asp?Glu?Gly?Ser?Ser?Lys?Lys?Asp?Asn?Glu?Thr?Glu?Arg?Lys?Gln
355 360 365
Lys?Ala?Gly?Cys?Val?Leu?Val?Pro?Lys?Thr?Leu?Arg?Ile?Asp?Asp?Pro
370 375 380
Asn?Glu?Ala?Ala?Lys?Ser?Ser?Ile?Trp?Thr?Thr?Leu?Gly?Ile?Lys?Asn
385 390 395 400
Glu?Ala?Met?Cys?Lys?Ala?Gly?Gly?Met?Phe?Lys?Gly?Phe?Asp?His?Lys
405 410 415
Thr?Lys?Met?Tyr?Asn?Asn?Asp?Lys?Ala?Glu?Asn?Ser?Pro?Val?Leu?Ser
420 425 430
Ala?Asn?Pro?Ala?Ala?Leu?Ser?Arg?Ser?His?Asn?Phe?His?Glu?Gln?Ile
435 440 445
<210>254
<211>1374
<212>DNA
<213> Arabidopis thaliana
<400>254
atggctgatc?cggcgattaa?gctctttgga?aagacgattc?ctttacctga?gcttggtgtt 60
gttgattctt?cttctagcta?taccggattt?ttaaccgaaa?ctcagattcc?tgttcggtta 120
tcagattcgt?gtaccggcga?tgatgatgat?gaagagatgg?gtgattccgg?tttaggacga 180
gaagaaggtg?atgatgttgg?tgatggtgga?ggagagagcg?agactgataa?aaaggaagaa 240
aaagatagtg?agtgtcagga?agagtcattg?aggaatgaat?ctaatgatgt?tactactact 300
acatcgggta?taactgaaaa?aacggaaaca?acaaaagctg?caaagacgaa?tgaagagtca 360
ggtggtactg?cttgctctca?agaggggaag?ttaaagaaac?ctgataagat?tctaccgtgt 420
ccgcgatgta?acagcatgga?aaccaagttc?tgttactaca?acaactataa?tgttaaccaa 480
cctcgccatt?tctgcaagaa?atgtcagaga?tattggacag?ctggtggaac?gatgaggaat 540
gttccggttg?gtgctgggag?acgtaagaat?aagagtccag?cttctcatta?taaccgtcat 600
gtaagtataa?catctgcgga?agctatgcag?aaggtggcga?gaactgatct?tcaacatcct 660
aatggtgcaa?atcttctcac?ttttggctct?gattctgtgc?tttgtgaatc?tatggcttct 720
ggattgaatc?ttgttgagaa?gtcattgttg?aagacacaaa?ctgtattgca?agaacccaat 780
gaaggcttga?agattacggt?tccgttaaac?cagacaaacg?aagaagctgg?aacagtcagc 840
ccgttaccaa?aagttccatg?ctttccagga?ccaccaccaa?cttggcctta?cgcttggaac 900
ggagtttcgt?ggacgatttt?accgttttac?cctccaccgg?cttactggag?ctgcccgggg 960
gtttcaccgg?gggcatggaa?cagcttcaca?tggatgccac?aacccaattc?accatctggt 1020
tccaatccaa?attctcctac?actaggtaaa?cattcacgtg?acgagaacgc?tgctgaacca 1080
ggaaccgctt?ttgatgaaac?cgagtcactt?ggtagggaga?aaagcaaacc?cgagagatgc 1140
ttgtgggttc?ccaagacgct?gaggattgat?gatccagagg?aagctgctaa?aagttccatc 1200
tgggaaacat?tagggatcaa?aaaagacgaa?aatgcggata?ctttcggagc?tttcagatca 1260
tcaaccaaag?aaaaaagcag?tctttctgaa?ggaagacttc?cgggaagaag?accggagttg 1320
caagcgaatc?ctgctgctct?ttctaggtca?gcaaacttcc?atgagagctc?atag 1374
<210>255
<211>457
<212>PRT
<213> Arabidopis thaliana
<400>255
Met?Ala?Asp?Pro?Ala?Ile?Lys?Leu?Phe?Gly?Lys?Thr?Ile?Pro?Leu?Pro
1 5 10 15
Glu?Leu?Gly?Val?Val?Asp?Ser?Ser?Ser?Ser?Tyr?Thr?Gly?Phe?Leu?Thr
20 25 30
Glu?Thr?Gln?Ile?Pro?Val?Arg?Leu?Ser?Asp?Ser?Cys?Thr?Gly?Asp?Asp
35 40 45
Asp?Asp?Glu?Glu?Met?Gly?Asp?Ser?Gly?Leu?Gly?Arg?Glu?Glu?Gly?Asp
50 55 60
Asp?Val?Gly?Asp?Gly?Gly?Gly?Glu?Ser?Glu?Thr?Asp?Lys?Lys?Glu?Glu
65 70 75 80
Lys?Asp?Ser?Glu?Cys?Gln?Glu?Glu?Ser?Leu?Arg?Asn?Glu?Ser?Asn?Asp
85 90 95
Val?Thr?Thr?Thr?Thr?Ser?Gly?Ile?Thr?Glu?Lys?Thr?Glu?Thr?Thr?Lys
100 105 110
Ala?Ala?Lys?Thr?Asn?Glu?Glu?Ser?Gly?Gly?Thr?Ala?Cys?Ser?Gln?Glu
115 120 125
Gly?Lys?Leu?Lys?Lys?Pro?Asp?Lys?Ile?Leu?Pro?Cys?Pro?Arg?Cys?Asn
130 135 140
Ser?Met?Glu?Thr?Lys?Phe?Cys?Tyr?Tyr?Asn?Asn?Tyr?Asn?Val?Asn?Gln
145 150 155 160
Pro?Arg?His?Phe?Cys?Lys?Lys?Cys?Gln?Arg?Tyr?Trp?Thr?Ala?Gly?Gly
165 170 175
Thr?Met?Arg?Asn?Val?Pro?Val?Gly?Ala?Gly?Arg?Arg?Lys?Asn?Lys?Ser
180 185 190
Pro?Ala?Ser?His?Tyr?Asn?Arg?His?Val?Ser?Ile?Thr?Ser?Ala?Glu?Ala
195 200 205
Met?Gln?Lys?Val?Ala?Arg?Thr?Asp?Leu?Gln?His?Pro?Asn?Gly?Ala?Asn
210 215 220
Leu?Leu?Thr?Phe?Gly?Ser?Asp?Ser?Val?Leu?Cys?Glu?Ser?Met?Ala?Ser
225 230 235 240
Gly?Leu?Asn?Leu?Val?Glu?Lys?Ser?Leu?Leu?Lys?Thr?Gln?Thr?Val?Leu
245 250 255
Gln?Glu?Pro?Asn?Glu?Gly?Leu?Lys?Ile?Thr?Val?Pro?Leu?Asn?Gln?Thr
260 265 270
Asn?Glu?Glu?Ala?Gly?Thr?Val?Ser?Pro?Leu?Pro?Lys?Val?Pro?Cys?Phe
275 280 285
Pro?Gly?Pro?Pro?Pro?Thr?Trp?Pro?Tyr?Ala?Trp?Asn?Gly?Val?Ser?Trp
290 295 300
Thr?Ile?Leu?Pro?Phe?Tyr?Pro?Pro?Pro?Ala?Tyr?Trp?Ser?Cys?Pro?Gly
305 310 315 320
Val?Ser?Pro?Gly?Ala?Trp?Asn?Ser?Phe?Thr?Trp?Met?Pro?Gln?Pro?Asn
325 330 335
Ser?Pro?Ser?Gly?Ser?Asn?Pro?Asn?Ser?Pro?Thr?Leu?Gly?Lys?His?Ser
340 345 350
Arg?Asp?Glu?Asn?Ala?Ala?Glu?Pro?Gly?Thr?Ala?Phe?Asp?Glu?Thr?Glu
355 360 365
Ser?Leu?Gly?Arg?Glu?Lys?Ser?Lys?Pro?Glu?Arg?Cys?Leu?Trp?Val?Pro
370 375 380
Lys?Thr?Leu?Arg?Ile?Asp?Asp?Pro?Glu?Glu?Ala?Ala?Lys?Ser?Ser?Ile
385 390 395 400
Trp?Glu?Thr?Leu?Gly?Ile?Lys?Lys?Asp?Glu?Asn?Ala?Asp?Thr?Phe?Gly
405 410 415
Ala?Phe?Arg?Ser?Ser?Thr?Lys?Glu?Lys?Ser?Ser?Leu?Ser?Glu?Gly?Arg
420 425 430
Leu?Pro?Gly?Arg?Arg?Pro?Glu?Leu?Gln?Ala?Asn?Pro?Ala?Ala?Leu?Ser
435 440 445
Arg?Ser?Ala?Asn?Phe?His?Glu?Ser?Ser
450 455
<210>256
<211>57
<212>DNA
<213> artificial sequence
<220>
<223> primer: prm07303
<400>256
ggggacaagt?ttgtacaaaa?aagcaggctt?aaacaatgat?gatggagact?agagatc 57
<210>257
<211>53
<212>DNA
<213> artificial sequence
<220>
<223> primer: prm07304
<400>257
ggggaccact?ttgtacaaga?aagctgggtc?atatgtaact?ctaaatctgt?tca 53
<210>258
<211>654
<212>DNA
<213> rice
<400>258
cttctacatc?ggcttaggtg?tagcaacacg?actttattat?tattattatt?attattatta 60
ttattttaca?aaaatataaa?atagatcagt?ccctcaccac?aagtagagca?agttggtgag 120
ttattgtaaa?gttctacaaa?gctaatttaa?aagttattgc?attaacttat?ttcatattac 180
aaacaagagt?gtcaatggaa?caatgaaaac?catatgacat?actataattt?tgtttttatt 240
attgaaatta?tataattcaa?agagaataaa?tccacatagc?cgtaaagttc?tacatgtggt 300
gcattaccaa?aatatatata?gcttacaaaa?catgacaagc?ttagtttgaa?aaattgcaat 360
ccttatcaca?ttgacacata?aagtgagtga?tgagtcataa?tattattttc?tttgctaccc 420
atcatgtata?tatgatagcc?acaaagttac?tttgatgatg?atatcaaaga?acatttttag 480
gtgcacctaa?cagaatatcc?aaataatatg?actcacttag?atcataatag?agcatcaagt 540
aaaactaaca?ctctaaagca?accgatggga?aagcatctat?aaatagacaa?gcacaatgaa 600
aatcctcatc?atccttcacc?acaattcaaa?tattatagtt?gaagcatagt?agta 654
<210>259
<211>1828
<212>DNA
<213> rice
<400>259
gcttgagtca?tagggagaaa?acaaatcgat?catatttgac?tcttttccct?ccatctctct 60
taccggcaaa?aaaagtagta?ctggtttata?tgtaaagtaa?gattctttaa?ttatgtgaga 120
tccggcttaa?tgcttttctt?ttgtcacata?tactgcattg?caacaattgc?catatattca 180
cttctgccat?cccattatat?agcaactcaa?gaatggattg?atatatcccc?tattactaat 240
ctagacatgt?taaggctgag?ttgggcagtc?catcttccca?acccaccacc?ttcgtttttc 300
gcgcacatac?ttttcaaact?actaaatggt?gtgtttttta?aaaatatttt?caatacaaaa 360
gttgctttaa?aaaattatat?tgatccattt?ttttaaaaaa?aatagctaat?acttaattaa 420
tcacgtgtta?aaagaccgct?ccgttttgcg?tgcaggaggg?ataggttcac?atcctgcatt 480
accgaacaca?gcctaaatct?tgttgtctag?attcgtagta?ctggatatat?taaatcatgt 540
tctaagttac?tatatactga?gatgaataga?ataagtaaaa?ttagacccac?cttaagtctt 600
gatgaagtta?ctactagctg?cgtttgggag?gacttcccaa?aaaaaaaagt?attagccatt 660
agcacgtgat?taattaagta?ctagtttaaa?aaacttaaaa?aataaattaa?tatgattctc 720
ttaagtaact?ctcctataga?aaacttttac?aaaattacac?cgtttaatag?tttggaaaat 780
atgtcagtaa?aaaataagag?agtagaagtt?atgaaagtta?gaaaaagaat?tgttttagta 840
gtatacagtt?ataaactatt?ccctctgttc?taaaacataa?gggattatgg?atggattcga 900
catgtaccag?taccatgaat?cgaatccaga?caagtttttt?atgcatattt?attctactat 960
aatatatcac?atctgctcta?aatatcttat?atttcgaggt?ggagactgtc?gctatgtttt 1020
tctgcccgtt?gctaagcaca?cgccaccccc?gatgcgggga?cgcctctggc?cttcttgcca 1080
cgataattga?atggaacttc?cacattcaga?ttcgataggt?gaccgtcgac?tccaagtgct 1140
ttgcacaaaa?caactccggc?ctcccggcca?ccagtcacac?gactcacggc?actaccaccc 1200
ctgactccct?gaggcggacc?tgccactgtt?ctgcatgcga?agctatctaa?aattctgaag 1260
caaagaaagc?acagcacatg?ctccgggaca?cgcgccaccc?ggcggaaaag?ggctcggtgt 1320
ggcgatctca?cagccgcata?tcgcatttca?caagccgccc?atctccaccg?gcttcacgag 1380
gctcatcgcg?gcacgaccgc?gcacggaacg?cacgcggccg?acccgcgcgc?ctcgatgcgc 1440
gagcccatcc?gccgcgtcct?ccctttgcct?ttgccgctat?cctctcggtc?gtatcccgtt 1500
tctctgtctt?ttgctccccg?gcgcgcgcca?gttcggagta?ccagcgaaac?ccggacacct 1560
ggtacacctc?cgccggccac?aacgcgtgtc?ccccctacgt?ggccgcgcag?cacatgccca 1620
tgcgcgacac?gtgcacctcc?tcatccaaac?tctcaagtct?caacggtcct?ataaatgcac 1680
ggatagcctc?aagctgctcg?tcacaaggca?agaggcaaga?ggcaagagca?tccgtattaa 1740
ccagcctttt?gagacttgag?agtgtgtgtg?actcgatcca?gcgtagtttc?agttcgtgtg 1800
ttggtgagtg?attccagcca?agtttgcg 1828
<210>260
<211>1243
<212>DNA
<213> rice
<400>260
aaaaccaccg?agggacctga?tctgcaccgg?ttttgatagt?tgagggaccc?gttgtgtctg 60
gttttccgat?cgagggacga?aaatcggatt?cggtgtaaag?ttaagggacc?tcagatgaac 120
ttattccgga?gcatgattgg?gaagggagga?cataaggccc?atgtcgcatg?tgtttggacg 180
gtccagatct?ccagatcact?cagcaggatc?ggccgcgttc?gcgtagcacc?cgcggtttga 240
ttcggcttcc?cgcaaggcgg?cggccggtgg?ccgtgccgcc?gtagcttccg?ccggaagcga 300
gcacgccgcc?gccgccgacc?cggctctgcg?tttgcaccgc?cttgcacgcg?atacatcggg 360
atagatagct?actactctct?ccgtttcaca?atgtaaatca?ttctactatt?ttccacattc 420
atattgatgt?taatgaatat?agacatatat?atctatttag?attcattaac?atcaatatga 480
atgtaggaaa?tgctagaatg?acttacattg?tgaattgtga?aatggacgaa?gtacctacga 540
tggatggatg?caggatcatg?aaagaattaa?tgcaagatcg?tatctgccgc?atgcaaaatc 600
ttactaattg?cgctgcatat?atgcatgaca?gcctgcatgc?gggcgtgtaa?gcgtgttcat 660
ccattaggaa?gtaaccttgt?cattacttat?accagtacta?catactatat?agtattgatt 720
tcatgagcaa?atctacaaaa?ctggaaagca?ataagaaata?cgggactgga?aaagactcaa 780
cattaatcac?caaatatttc?gccttctcca?gcagaatata?tatctctcca?tcttgatcac 840
tgtacacact?gacagtgtac?gcataaacgc?agcagccagc?ttaactgtcg?tctcaccgtc 900
gcacactggc?cttccatctc?aggctagctt?tctcagccac?ccatcgtaca?tgtcaactcg 960
gcgcgcgcac?aggcacaaat?tacgtacaaa?acgcatgacc?aaatcaaaac?caccggagaa 1020
gaatcgctcc?cgcgcgcggc?ggcgacgcgc?acgtacgaac?gcacgcacgc?acgcccaacc 1080
ccacgacacg?atcgcgcgcg?acgccggcga?caccggccgt?ccacccgcgc?cctcacctcg 1140
ccgactataa?atacgtaggc?atctgcttga?tcttgtcatc?catctcacca?ccaaaaaaaa 1200
aaggaaaaaa?aaacaaaaca?caccaagcca?aataaaagcg?aca 1243
<210>261
<211>8
<212>PRT
<213> artificial sequence
<220>
<223> primitive 1
<220>
<221> is uncertain
<222>(2)..(3)
<223>Xaa can be any natural amino acid
<400>261
Phe?Xaa?Xaa?Lys?Tyr?Asn?Phe?Asp
1 5
<210>262
<211>8
<212>PRT
<213> artificial sequence
<220>
<223> primitive 2
<220>
<221> variant
<222>(1)..(1)
<223>/ displacement=" Leu "
<220>
<221> is uncertain
<222>(3)..(3)
<223>Xaa can be any natural amino acid
<400>262
Pro?Leu?Xaa?Gly?Arg?Tyr?Glu?Trp
1 5
<210>263
<211>10
<212>PRT
<213> artificial sequence
<220>
<223> primitive 3
<220>
<221> is uncertain
<222>(2)..(2)
<223>Xaa can be any natural amino acid
<220>
<221> variant
<222>(4)..(4)
<223>/ displacement=" Glu "
<220>
<221> is uncertain
<222>(7)..(9)
<223>Xaa can be any natural amino acid
<400>263
Glu?Xaa?Glu?Asp?Phe?Phe?Xaa?Xaa?Xaa?Glu
1 5 10
<210>264
<211>8
<212>PRT
<213> artificial sequence
<220>
<223> primitive 4
<220>
<221> is uncertain
<222>(2)..(2)
<223>Xaa can be any natural amino acid
<400>264
Tyr?Xaa?Gln?Leu?Arg?Ser?Arg?Arg
1 5
<210>265
<211>9
<212>PRT
<213> artificial sequence
<220>
<223> primitive 5
<220>
<221> variant
<222>(5)..(5)
<223>/ displacement=" Ile "
<220>
<221> variant
<222>(6)..(6)
<223>/ displacement=" Arg "
<220>
<221> is uncertain
<222>(8)..(8)
<223>Xaa can be any natural amino acid
<220>
<221> variant
<222>(9)..(9)
<223>/ displacement=" Arg "
<400>265
Met?Gly?Lys?Tyr?Met?Lys?Lys?Xaa?Lys
1 5
<210>266
<211>8
<212>PRT
<213> artificial sequence
<220>
<223> primitive 6
<220>
<221> is uncertain
<222>(2)..(2)
<223>Xaa can be any natural amino acid
<400>266
Ser?Xaa?Gly?Val?Arg?Thr?Arg?Ala
1 5
<210>267
<211>585
<212>DNA
<213> rice
<400>267
atgggcaagt?acatgcgcaa?ggccaaggtg?gtggtctccg?gcgaggtggt?ggccgccgcc 60
gtcatggagc?tcgccgcggc?gccgctcggg?gtgcgcaccc?gcgcccgctc?cctcgcgctg 120
cagaagaggc?agggcgggga?gtacctcgag?ctcaggagcc?gcaggctcga?gaagctccct 180
cctcccccgc?cgccgccgcc?gaggaggagg?gcgacggctg?cggctgcgac?tgctgatgcg 240
acggcgacgg?agagcgcgga?ggcggaggtg?tcgttcgggg?gggagaacgt?cctcgagctg 300
gaggccatgg?aaaggaatac?cagggagacg?acaccttgca?gcttgatcag?ggaccccgat 360
acgattagca?cccctggatc?taccacaagg?cgcagccact?cgagttctca?ttgcaaggtg 420
caaacacccg?tgcgccacaa?cattattcca?gcatcagcag?agctggaagc?gttcttcgcc 480
gccgaagagc?aacggcaacg?acaggctttc?atcgacaagt?ataactttga?tcctgtgaat 540
gactgccctc?ttcccggccg?atttgaatgg?gtcaagctag?actga 585
<210>268
<211>194
<212>PRT
<213> rice
<400>268
Met?Gly?Lys?Tyr?Met?Arg?Lys?Ala?Lys?Val?Val?Val?Ser?Gly?Glu?Val
1 5 10 15
Val?Ala?Ala?Ala?Val?Met?Glu?Leu?Ala?Ala?Ala?Pro?Leu?Gly?Val?Arg
20 25 30
Thr?Arg?Ala?Arg?Ser?Leu?Ala?Leu?Gln?Lys?Arg?Gln?Gly?Gly?Glu?Tyr
35 40 45
Leu?Glu?Leu?Arg?Ser?Arg?Arg?Leu?Glu?Lys?Leu?Pro?Pro?Pro?Pro?Pro
50 55 60
Pro?Pro?Pro?Arg?Arg?Arg?Ala?Thr?Ala?Ala?Ala?Ala?Thr?Ala?Asp?Ala
65 70 75 80
Thr?Ala?Thr?Glu?Ser?Ala?Glu?Ala?Glu?Val?Ser?Phe?Gly?Gly?Glu?Asn
85 90 95
Val?Leu?Glu?Leu?Glu?Ala?Met?Glu?Arg?Asn?Thr?Arg?Glu?Thr?Thr?Pro
100 105 110
Cys?Ser?Leu?Ile?Arg?Asp?Pro?Asp?Thr?Ile?Ser?Thr?Pro?Gly?Ser?Thr
115 120 125
Thr?Arg?Arg?Ser?His?Ser?Ser?Ser?His?Cys?Lys?Val?Gln?Thr?Pro?Val
130 135 140
Arg?His?Asn?Ile?Ile?Pro?Ala?Ser?Ala?Glu?Leu?Glu?Ala?Phe?Phe?Ala
145 150 155 160
Ala?Glu?Glu?Gln?Arg?Gln?Arg?Gln?Ala?Phe?Ile?Asp?Lys?Tyr?Asn?Phe
165 170 175
Asp?Pro?Val?Asn?Asp?Cys?Pro?Leu?Pro?Gly?Arg?Phe?Glu?Trp?Val?Lys
180 185 190
Leu?Asp
<210>269
<211>573
<212>DNA
<213> Zea mays
<400>269
atgggcaagt?acatgcgcaa?ggccaaggct?tccagcgagg?ttgtcatcat?ggatgtcgcc 60
gccgctccgc?tcggagtccg?cacccgagcg?cgcgccctcg?cgctgcagcg?tctgcaggag 120
caacagacgc?agtgggaaga?aggtgctggc?ggcgagtacc?tggagctaag?gaaccggagg 180
ctcgagaagc?tgccgccgcc?gccggcgacc?actaggaggt?cgggcgggag?gaaagcggca 240
gccgaggccg?ccgcaactaa?ggaggctgag?gcgtcgtacg?gggagaacat?gctcgagttg 300
gaggccatgg?agaggattac?cagggagacg?acgccttgca?gcttgattaa?cacccagatg 360
actagcactc?ctgggtccac?gagatccagc?cactcttgcc?accgcagggt?gaacgctcct 420
ccggtgcacg?ccgtcccaag?ttctagggag?atgaatgagt?acttcgctgc?cgaacagcga 480
cggcaacagc?aggatttcat?tgacaagtac?aacttcgatc?ctgcaaacga?ctgccctctc 540
ccaggcaggt?ttgagtgggt?gaagctagac?tga 573
<210>270
<211>190
<212>PRT
<213> Zea mays
<400>270
Met?Gly?Lys?Tyr?Met?Arg?Lys?Ala?Lys?Ala?Ser?Ser?Glu?Val?Val?Ile
1 5 10 15
Met?Asp?Val?Ala?Ala?Ala?Pro?Leu?Gly?Val?Arg?Thr?Arg?Ala?Arg?Ala
20 25 30
Leu?Ala?Leu?Gln?Arg?Leu?Gln?Glu?Gln?Gln?Thr?Gln?Trp?Glu?Glu?Gly
35 40 45
Ala?Gly?Gly?Glu?Tyr?Leu?Glu?Leu?Arg?Asn?Arg?Arg?Leu?Glu?Lys?Leu
50 55 60
Pro?Pro?Pro?Pro?Ala?Thr?Thr?Arg?Arg?Ser?Gly?Gly?Arg?Lys?Ala?Ala
65 70 75 80
Ala?Glu?Ala?Ala?Ala?Thr?Lys?Glu?Ala?Glu?Ala?Ser?Tyr?Gly?Glu?Asn
85 90 95
Met?Leu?Glu?Leu?Glu?Ala?Met?Glu?Arg?Ile?Thr?Arg?Glu?Thr?Thr?Pro
100 105 110
Cys?Ser?Leu?Ile?Asn?Thr?Gln?Met?Thr?Ser?Thr?Pro?Gly?Ser?Thr?Arg
115 120 125
Ser?Gly?His?Ser?Cys?His?Arg?Arg?Val?Asn?Ala?Pro?Pro?Val?His?Ala
130 135 140
Val?Pro?Ser?Ser?Arg?Glu?Met?Asn?Glu?Tyr?Phe?Ala?Ala?Glu?Gln?Arg
145 150 155 160
Arg?Gln?Gln?Gln?Asp?Phe?Ile?Asp?Lys?Tyr?Asn?Phe?Asp?Pro?Ala?Asn
165 170 175
Asp?Cys?Pro?Leu?Pro?Gly?Arg?Phe?Glu?Trp?Val?Lys?Leu?Asp
180 185 190
<210>271
<211>755
<212>DNA
<213> common wheat
<400>271
atgggcaagt?acatgcgcaa?gcccaaggtc?tccggcgagg?tggccgtcat?ggaggtcgcc 60
gccgcgccgc?taggggtccg?cacccgcgca?cgagcgctcg?cgatgcagag?gcagccgcag 120
ggggcggcgg?tggccaagga?ccagggggag?tacctggagc?tcaggagtcg?gaagctcgag 180
aagctgcccc?cgccgccgcc?ggcggcgagg?aggagggcgg?ccgcggcgga?gcgtgtcgag 240
gccgaggccg?aggccgacga?ggtgtccttc?ggtgagaacg?tgctcgagtc?ggaggccatg 300
gggaggggta?ccagggagac?gacgccctgc?agcttgatta?gggactcggg?aacgataagc 360
actcctggat?ccacaacaag?accgagccac?tcgaattccc?atcgcagggt?gcaagctcca 420
gcgcgccata?ttattccatg?ttcagcagag?atgaatgagt?tcttctctgc?tgcggagcaa 480
ccgcaacagc?aagccttcat?tgacaagtac?aactttgatc?ctgtgaacga?ctgtcctctc 540
ccaggccgat?acgagtgggt?gaagctagac?tgataattct?ccaggaagga?gagcaccatg 600
tacttctccg?ctccctccac?cttagcgtcg?tggtaaaggc?cgccccgtcg?tgtagctttg 660
tttccgttgt?aaaaagaata?gttagctgta?gtagcctcaa?tggcgttaca?tacagagtaa 720
tgctgattac?acctaatcct?caaaccatgt?acgtt 755
<210>272
<211>190
<212>PRT
<213> common wheat
<400>272
Met?Gly?Lys?Tyr?Met?Arg?Lys?Pro?Lys?Val?Ser?Gly?Glu?Val?Ala?Val
1 5 10 15
Met?Glu?Val?Ala?Ala?Ala?Pro?Leu?Gly?Val?Arg?Thr?Arg?Ala?Arg?Ala
20 25 30
Leu?Ala?Met?Gln?Arg?Gln?Pro?Gln?Gly?Ala?Ala?Val?Ala?Lys?Asp?Gln
35 40 45
Gly?Glu?Tyr?Leu?Glu?Leu?Arg?Ser?Arg?Lys?Leu?Glu?Lys?Leu?Pro?Pro
50 55 60
Pro?Pro?Pro?Ala?Ala?Arg?Arg?Arg?Ala?Ala?Ala?Ala?Glu?Arg?Val?Glu
65 70 75 80
Ala?Glu?Ala?Glu?Ala?Asp?Glu?Val?Ser?Phe?Gly?Glu?Asn?Val?Leu?Glu
85 90 95
Ser?Glu?Ala?Met?Gly?Arg?Gly?Thr?Arg?Glu?Thr?Thr?Pro?Cys?Ser?Leu
100 105 110
Ile?Arg?Asp?Ser?Gly?Thr?Ile?Ser?Thr?Pro?Gly?Ser?Thr?Thr?Arg?Pro
115 120 125
Ser?His?Ser?Asn?Ser?His?Arg?Arg?Val?Gln?Ala?Pro?Ala?Arg?His?Ile
130 135 140
Ile?Pro?Cys?Ser?Ala?Glu?Met?Asn?Glu?Phe?Phe?Ser?Ala?Ala?Glu?Gln
145 150 155 160
Pro?Gln?Gln?Gln?Ala?Phe?Ile?Asp?Lys?Tyr?Asn?Phe?Asp?Pro?Val?Asn
165 170 175
Asp?Cys?Pro?Leu?Pro?Gly?Arg?Tyr?Glu?Trp?Val?Lys?Leu?Asp
180 185 190
<210>273
<211>666
<212>DNA
<213> rice
<400>273
atggggaagt?acatgcggaa?ggggaaggtg?tcgggggagg?tggcggtgat?ggaggtgggc 60
ggggcgctgc?tcggcgtccg?cacccgctcc?cgcacgctcg?cgctgcagcg?gacgacctcg 120
tcgcagaagc?cgccggagaa?gggggagggg?gaccccggtg?cgggcgcggg?cgcgggggcg 180
gagtacctcg?agctcaggag?ccggaggctc?gagaagccgc?ctccgcacac?gccgccggcc 240
aaggagaagg?agaccgccag?gagggcttcc?gccgccgccg?ccgccgccgt?gaggatgccg 300
gcggcgccgc?aagcggccga?ggagttcgag?gcggaggtcg?aggtgtcctt?cggcgacaac 360
gttcttgacc?tcgacggcga?cgccatggag?aggagtacca?gggagacaac?gccttgcagt 420
ttaattagga?gctcagaaat?gataagcacc?cctggctcca?caactaaaac?caacacctcg 480
atcagttccc?ggcgcagaat?ggagacctct?gtttgtcgtt?acgttccgag?ttctcttgag 540
atggaagagt?tctttgcagc?tgctgaacaa?cagcaacatc?aggctttcag?agagaggtat 600
aacttctgtc?ctgtgaacga?ctgcccactt?cctggacggt?acgaatggac?aaggctagac 660
tgctag 666
<210>274
<211>221
<212>PRT
<213> rice
<400>274
Met?Gly?Lys?Tyr?Met?Arg?Lys?Gly?Lys?Val?Ser?Gly?Glu?Val?Ala?Val
1 5 10 15
Met?Glu?Val?Gly?Gly?Ala?Leu?Leu?Gly?Val?Arg?Thr?Arg?Ser?Arg?Thr
20 25 30
Lau?Ala?Leu?Gln?Arg?Thr?Thr?Ser?Ser?Gln?Lys?Pro?Pro?Glu?Lys?Gly
35 40 45
Glu?Gly?Asp?Pro?Gly?Ala?Gly?Ala?Gly?Ala?Gly?Ala?Glu?Tyr?Leu?Glu
50 55 60
Leu?Arg?Ser?Arg?Arg?Leu?Glu?Lys?Pro?Pro?Pro?His?Thr?Pro?Pro?Ala
65 70 75 80
Lys?Glu?Lys?Glu?Thr?Ala?Arg?Arg?Ala?Ser?Ala?Ala?Ala?Ala?Ala?Ala
85 90 95
Val?Arg?Met?Pro?Ala?Ala?Pro?Gln?Ala?Ala?Glu?Glu?Phe?Glu?Ala?Glu
100 105 110
Val?Glu?Val?Ser?Phe?Gly?Asp?Asn?Val?Leu?Asp?Leu?Asp?Gly?Asp?Ala
115 120 125
Met?Glu?Arg?Ser?Thr?Arg?Glu?Thr?Thr?Pro?Cys?Ser?Leu?Ile?Arg?Ser
130 135 140
Ser?Glu?Met?Ile?Ser?Thr?Pro?Gly?Ser?Thr?Thr?Lys?Thr?Asn?Thr?Ser
145 150 155 160
Ile?Ser?Ser?Arg?Arg?Arg?Met?Glu?Thr?Ser?Val?Cys?Arg?Tyr?Val?Pro
165 170 175
Ser?Ser?Leu?Glu?Met?Glu?Glu?Phe?Phe?Ala?Ala?Ala?Glu?Gln?Gln?Gln
180 185 190
His?Gln?Ala?Phe?Arg?Glu?Arg?Tyr?Asn?Phe?Cys?Pro?Val?Asn?Asp?Cys
195 200 205
Pro?Leu?Pro?Gly?Arg?Tyr?Glu?Trp?Thr?Arg?Leu?Asp?Cys
210 215 220
<210>275
<211>642
<212>DNA
<213> Zea mays
<400>275
atggggaagt?acatgcgcaa?gggcaaggtg?tccggggagg?tcgccgtcat?ggaggtaccc 60
ggcggcgcgc?tgctcggcgt?ccgcacccgc?tcccgcacgc?tcgcgctgca?gcgcgcgcag 120
aggccgctcg?acaagggcga?cgcggaggac?gccgccgcgg?agtacctcga?gctcaggagc 180
cggaggctcg?agaagccgca?caaggagcat?ccgtcgccgc?ccgcgaccgc?gaccaagagg 240
ggcgccggga?ggaaggccgc?cgccgccgcc?gcggtgcagc?acgtgctgat?gcaggacgag 300
gtcgaggtcg?aggtctcgtt?cggggacaac?gtgcttgact?tggacaccat?ggaaaggagt 360
accagagaga?caacaccgtg?cagcctgatt?aggaacccag?agatgataag?caccccagga 420
tccacaacta?aaagcaaaac?cagcagcaac?tcgacgactt?cccgccgcag?aacggaggaa 480
accccgagct?gccggttcat?accgagctcg?ctcgagatgg?aggagttctt?ctcggcggcc 540
gagcaacagg?agcagcatag?cttcagggag?aagtacaact?tctgtcccgt?gaacgactgt 600
cctctccctg?gccggtacga?atgggcgagg?ctagactgct?ag 642
<210>276
<211>213
<212>PRT
<213> Zea mays
<400>276
Met?Gly?Lys?Tyr?Met?Arg?Lys?Gly?Lys?Val?Ser?Gly?Glu?Val?Ala?Val
1 5 10 15
Met?Glu?Val?Pro?Gly?Gly?Ala?Lau?Leu?Gly?Val?Arg?Thr?Arg?Ser?Arg
20 25 30
Thr?Leu?Ala?Leu?Gln?Arg?Ala?Gln?Arg?Pro?Leu?Asp?Lys?Gly?Asp?Ala
35 40 45
Glu?Asp?Ala?Ala?Ala?Glu?Tyr?Leu?Glu?Leu?Arg?Ser?Arg?Arg?Leu?Glu
50 55 60
Lys?Pro?His?Lys?Glu?His?Pro?Ser?Pro?Pro?Ala?Thr?Ala?Thr?Lys?Arg
65 70 75 80
Gly?Ala?Gly?Arg?Lys?Ala?Ala?Ala?Ala?Ala?Ala?Val?Gln?His?Val?Leu
85 90 95
Met?Gln?Asp?Glu?Val?Glu?Val?Glu?Val?Ser?Phe?Gly?Asp?Asn?Val?Leu
100 105 110
Asp?Leu?Asp?Thr?Met?Glu?Arg?Ser?Thr?Arg?Glu?Thr?Thr?Pro?Cys?Ser
115 120 125
Leu?Ile?Arg?Asn?Pro?Glu?Met?Ile?Ser?Thr?Pro?Gly?Ser?Thr?Thr?Lys
130 135 140
Ser?Lys?Thr?Ser?Ser?Asn?Ser?Thr?Thr?Ser?Arg?Arg?Arg?Thr?Glu?Glu
145 150 155 160
Thr?Pro?Ser?Cys?Arg?Phe?Ile?Pro?Ser?Ser?Leu?Glu?Met?Glu?Glu?Phe
165 170 175
Phe?Ser?Ala?Ala?Glu?Gln?Gln?Glu?Gln?His?Ser?Phe?Arg?Glu?Lys?Tyr
180 185 190
Asn?Phe?Cys?Pro?Val?Asn?Asp?Cys?Pro?Leu?Pro?Gly?Arg?Tyr?Glu?Trp
195 200 205
Ala?Arg?Leu?Asp?Cys
210
<210>277
<211>642
<212>DNA
<213> Chinese sorghum
<400>277
atggggaagt?acatgcgcaa?gggcaaggtg?tccggggagg?tcgccgtcat?ggaggtcccc 60
ggcggcgcgc?tgctcggcgt?ccgcacccgc?tcccgcacgc?tcgcgctgca?gcgcgcgcag 120
aggccgctcg?acaagggcga?cgccgaggac?gccgctgcgg?agtacctcga?gctcaggagc 180
cggaggctcg?agaagccgca?caaggacccg?ttaccgccgc?cgtctgcgcc?tgcgaccaag 240
aggggcgccg?ggaggaaggt?cgccaccgcc?gccgccgccg?ccgcggcgcc?gcacgggctg 300
gcggaggacg?acgtcgaggt?ctccttcggc?gagaacgtgc?tcgacttcga?cgccatggaa 360
aggagtacca?gagagacaac?accgtgcagt?ttgattagga?acccagagat?gataagcacc 420
ccaggatcca?caactaagag?taaaaccagc?aactcgatga?cctcccgtcg?cagaatggaa 480
acctcaatct?gccgtttcat?accaagttcg?catgagatgg?aagagttctt?ctcagcagct 540
gaaaaacagg?agcagcaaag?cttcagggag?aagtataact?tctgtcctgt?gaacgactgt 600
cctcttccgg?gtcggtatga?atgggcgagg?ctagactgct?ag 642
<210>278
<211>213
<212>PRT
<213> Chinese sorghum
<400>278
Met?Gly?Lys?Tyr?Met?Arg?Lys?Gly?Lys?Val?Ser?Gly?Glu?Val?Ala?Val
1 5 10 15
Met?Glu?Val?Pro?Gly?Gly?Ala?Lau?Lau?Gly?Val?Arg?Thr?Arg?Ser?Arg
20 25 30
Thr?Leu?Ala?Lau?Gln?Arg?Ala?Gln?Arg?Pro?Leu?Asp?Lys?Gly?Asp?Ala
35 40 45
Glu?Asp?Ala?Ala?Ala?Glu?Tyr?Leu?Glu?Leu?Arg?Ser?Arg?Arg?Leu?Glu
50 55 60
Lys?Pro?His?Lys?Asp?Pro?Lau?Pro?Pro?Pro?Ser?Ala?Pro?Ala?Thr?Lys
65 70 75 80
Arg?Gly?Ala?Gly?Arg?Lys?Val?Ala?Thr?Ala?Ala?Ala?Ala?Ala?Ala?Ala
85 90 95
Pro?His?Gly?Leu?Ala?Glu?Asp?Asp?Val?Glu?Val?Ser?Phe?Gly?Glu?Asn
100 105 110
Val?Leu?Asp?Phe?Asp?Ala?Met?Glu?Arg?Ser?Thr?Arg?Glu?Thr?Thr?Pro
115 120 125
Cys?Ser?Lau?Ile?Arg?Asn?Pro?Glu?Met?Ile?Ser?Thr?Pro?Gly?Ser?Thr
130 135 140
Thr?Lys?Ser?Lys?Thr?Ser?Asn?Ser?Met?Thr?Ser?Arg?Arg?Arg?Met?Glu
145 150 155 160
Thr?Ser?Ile?Cys?Arg?Phe?Ile?Pro?Ser?Ser?His?Glu?Met?Glu?Glu?Phe
165 170 175
Phe?Ser?Ala?Ala?Glu?Lys?Gln?Glu?Gln?Gln?Ser?Phe?Arg?Glu?Lys?Tyr
180 185 190
Asn?Phe?Cys?Pro?Val?Asn?Asp?Cys?Pro?Leu?Pro?Gly?Arg?Tyr?Glu?Trp
195 200 205
Ala?Arg?Leu?Asp?Cys
210
<210>279
<211>397
<212>DNA
<213> sugarcane
<220>
<221>misc_feature
<222>(342)..(343)
<223>n is a, c, g, or t
<400>279
gtcgacccac?gcgtccggta?cttcgctgct?gaacagcgac?gccaacaaca?ggctttcatt 60
gacaagtaca?actttgatcc?tgtaaatgac?tgccctctcc?caggcaggtt?tgaatgggtg 120
aagctagact?gattgattca?gaggacaaga?gagcagcagc?atggaactca?cctccgctcc 180
ctccaccacc?gcagtgttgt?ggcagaggcg?cataccgtcg?tgttagcttt?gtttctgttg 240
taaaaactta?gtgttagcct?gtagccttaa?ttgtcgtgtg?ttacagtaca?aaactgatgc 300
tgagttacaa?caccctgatc?tgatctgatc?cctcaactca?gnngtaaccc?ttaacagctt 360
attctgtaag?gaaccttacc?cacccttgtt?accagtt 397
<210>280
<211>37
<212>PRT
<213> sugarcane
<400>280
Tyr?Phe?Ala?Ala?Glu?Gln?Arg?Arg?Gln?Gln?Gln?Ala?Phe?Ile?Asp?Lys
1 5 10 15
Tyr?Asn?Phe?Asp?Pro?Val?Asn?Asp?Cys?Pro?Leu?Pro?Gly?Arg?Phe?Glu
20 25 30
Trp?Val?Lys?Leu?Asp
35
<210>281
<211>654
<212>DNA
<213> rice
<400>281
cttctacatc?ggcttaggtg?tagcaacacg?actttattat?tattattatt?attattatta 60
ttattttaca?aaaatataaa?atagatcagt?ccctcaccac?aagtagagca?agttggtgag 120
ttattgtaaa?gttctacaaa?gctaatttaa?aagttattgc?attaacttat?ttcatattac 180
aaacaagagt?gtcaatggaa?caatgaaaac?catatgacat?actataattt?tgtttttatt 240
attgaaatta?tataattcaa?agagaataaa?tccacatagc?cgtaaagttc?tacatgtggt 300
gcattaccaa?aatatatata?gcttacaaaa?catgacaagc?ttagtttgaa?aaattgcaat 360
ccttatcaca?ttgacacata?aagtgagtga?tgagtcataa?tattattttc?tttgctaccc 420
atcatgtata?tatgatagcc?acaaagttac?tttgatgatg?atatcaaaga?acatttttag 480
gtgcacctaa?cagaatatcc?aaataatatg?actcacttag?atcataatag?agcatcaagt 540
aaaactaaca?ctctaaagca?accgatggga?aagcatctat?aaatagacaa?gcacaatgaa 600
aatcctcatc?atccttcacc?acaattcaaa?tattatagtt?gaagcatagt?agta 654
<210>282
<211>1243
<212>DNA
<213> rice
<400>282
aaaaccaccg?agggacctga?tctgcaccgg?ttttgatagt?tgagggaccc?gttgtgtctg 60
gttttccgat?cgagggacga?aaatcggatt?cggtgtaaag?ttaagggacc?tcagatgaac 120
ttattccgga?gcatgattgg?gaagggagga?cataaggccc?atgtcgcatg?tgtttggacg 180
gtccagatct?ccagatcact?cagcaggatc?ggccgcgttc?gcgtagcacc?cgcggtttga 240
ttcggcttcc?cgcaaggcgg?cggccggtgg?ccgtgccgcc?gtagcttccg?ccggaagcga 300
gcacgccgcc?gccgccgacc?cggctctgcg?tttgcaccgc?cttgcacgcg?atacatcggg 360
atagatagct?actactctct?ccgtttcaca?atgtaaatca?ttctactatt?ttccacattc 420
atattgatgt?taatgaatat?agacatatat?atctatttag?attcattaac?atcaatatga 480
atgtaggaaa?tgctagaatg?acttacattg?tgaattgtga?aatggacgaa?gtacctacga 540
tggatggatg?caggatcatg?aaagaattaa?tgcaagatcg?tatctgccgc?atgcaaaatc 600
ttactaattg?cgctgcatat?atgcatgaca?gcctgcatgc?gggcgtgtaa?gcgtgttcat 660
ccattaggaa?gtaaccttgt?cattacttat?accagtacta?catactatat?agtattgatt 720
tcatgagcaa?atctacaaaa?ctggaaagca?ataagaaata?cgggactgga?aaagactcaa 780
cattaatcac?caaatatttc?gccttctcca?gcagaatata?tatctctcca?tcttgatcac 840
tgtacacact?gacagtgtac?gcataaacgc?agcagccagc?ttaactgtcg?tctcaccgtc 900
gcacactggc?cttccatctc?aggctagctt?tctcagccac?ccatcgtaca?tgtcaactcg 960
gcgcgcgcac?aggcacaaat?tacgtacaaa?acgcatgacc?aaatcaaaac?caccggagaa 1020
gaatcgctcc?cgcgcgcggc?ggcgacgcgc?acgtacgaac?gcacgcacgc?acgcccaacc 1080
ccacgacacg?atcgcgcgcg?acgccggcga?caccggccgt?ccacccgcgc?cctcacctcg 1140
ccgactataa?atacgtaggc?atctgcttga?tcttgtcatc?catctcacca?ccaaaaaaaa 1200
aaggaaaaaa?aaacaaaaca?caccaagcca?aataaaagcg?aca 1243
<210>283
<211>315
<212>DNA
<213> tobacco (Nicotiana tabacum)
<400>283
ctgccattct?ttagagggga?tgcttgttta?agaacaaaaa?atatatcact?ttcttttgtt 60
ccaagtcatt?gcgtattttt?ttaaaaatat?ttgttccttc?gtatatttcg?agcttcaatc 120
actttatggt?tctttgtatt?ctggctttgc?tgtaaatcgt?agctaacctt?cttcctagca 180
gaaattatta?atacttggga?tattttttta?gaatcaagta?aattacatat?taccaccaca 240
tcgagctgct?tttaaattca?tattacagcc?atataggctt?gattcatttt?gcaaaatttc 300
caggatattg?acaac 315
<210>284
<211>53
<212>DNA
<213> artificial sequence
<220>
<223> primer: prm00472
<400>284
ggggacaagt?ttgtacaaaa?aagcaggctt?cacaatgggc?aagtacatgc?gca 53
<210>285
<211>53
<212>DNA
<213> artificial sequence
<220>
<223> primer: prm00473
<400>285
ggggaccact?ttgtacaaga?aagctgggtg?gagcagagag?gtccatggtg?ccc 53

Claims (23)

1. for compare the method that increases monocotyledonous seed production and/or increase monocotyledonous growth velocity with corresponding wild-type monocotyledons, the method is included in the expression that regulates nucleic acid in monocotyledons, and optionally selects to have the plant of the growth characteristics of improvement;
The adjusting of wherein said expression realizes by import and express the SYR nucleic acid of the aminoacid sequence of coding SEQ ID NO:2 in plant,
Wherein monocotyledons is sugarcane or cereal.
2. the process of claim 1 wherein that described nucleic acid is the sequence of SEQ ID NO:1.
3. the process of claim 1 wherein that described SYR nucleic acid cross to express in monocotyledons.
4. the method for any one of claims 1 to 3, wherein said SYR nucleic acid is plant origin.
5. the method for claim 4, wherein said SYR nucleic acid is from grass.
6. the method for any one of claims 1 to 3, wherein said SYR nucleic acid is effectively connected with constitutive promoter.
7. the method for claim 6, wherein said constitutive promoter is GOS2 promotor or high mobility group protein promotor.
8. the method for any one of claims 1 to 3, the seed production of wherein said increase is selected from: the harvest index of the seed gross weight of increase, the full seed number of increase, the full rate of seed or increase.
9. the method for any one of claims 1 to 3, the growth velocity of wherein said increase is at least included in the seed production of the increase obtaining in the situation that flowering time do not postpone.
10. the method for any one of claims 1 to 3, described plant wherein grows under non-stress condition.
11. the method for any one of claims 1 to 3, described plant wherein grows under abiotic stress condition.
The method of 12. claims 11, wherein said abiotic stress condition is osmotic stress condition.
13. 1 kinds of constructs, it comprises:
(i) the SYR nucleic acid of the aminoacid sequence of coding SEQ ID NO:2;
(ii) can drive one or more control sequences of the nucleotide sequence expression of (i), this control sequence is GOS2 promotor or high mobility group protein HMGP promotor; Optionally
(iii) transcription termination sequence.
The construct of 14. claims 13, wherein said GOS2 promotor is the promotor being represented by SEQ ID NO:5.
The construct of 15. claims 13, wherein said HMGP promotor is the promotor being represented by SEQ ID NO:33.
16. for generation of comparing the method for the transgenic plant of the output with increase with corresponding wild-type plant, the method comprises:
(a) in plant or vegetable cell, import and express the SYR nucleic acid of the aminoacid sequence of coding SEQ ID NO:2, described nucleic acid is effectively connected with GOS2 promotor or high mobility group protein promotor; With
(b) culturing plants cell under the condition of Promoting plant growth and growth,
Wherein said plant is sugarcane or cereal.
The method of 17. claims 16, wherein said plant is rice, corn, wheat, barley, grain, rye, oat or Chinese sorghum.
The plant of the transgenic plant that 18. methods according to claim 16 or 17 obtain can be gathered in the crops part, and described to gather in the crops part be not propagulum, and the described SYR nucleic acid of gathering in the crops the aminoacid sequence that part comprises coding SEQ ID NO:2.
19. are directed to the transgenic plant that obtain according to the method for claim 16 or 17 and/or derive from the product that can gather in the crops part according to the plant of the transgenic plant of the method acquisition of claim 16 or 17.
SYR nucleic acid/the gene of 20. coding SYR polypeptide or SYR polypeptide are for comparing the purposes that improves seed production with corresponding wild-type plant, wherein said SYR polypeptide is the aminoacid sequence of SEQ ID NO:2, and wherein said plant is sugarcane or cereal.
The purposes of 21. claims 20, wherein said seed production is: one or more in the harvest index of the seed gross weight of increase, the full seed number of increase or increase.
SYR nucleic acid/the gene of 22. coding SYR polypeptide or SYR polypeptide improve the purposes of plant to the resistance of abiotic stress for comparing with corresponding wild-type plant, wherein said SYR polypeptide is the aminoacid sequence of SEQ ID NO:2, and wherein said plant is sugarcane or cereal.
SYR nucleic acid/the gene of 23. coding SYR polypeptide or SYR polypeptide are as the purposes of the molecule marker of the plant seed output increasing, and wherein said SYR polypeptide is the aminoacid sequence of SEQ ID NO:2, and wherein said plant is sugarcane or cereal.
CN200680052158.7A 2005-12-01 2006-11-29 Plants having improved growth characteristics and methods for making same Expired - Fee Related CN101365786B (en)

Applications Claiming Priority (29)

Application Number Priority Date Filing Date Title
EP05111597 2005-12-01
EP05111597.0 2005-12-01
US74235205P 2005-12-05 2005-12-05
EP05111691 2005-12-05
EP05111691.1 2005-12-05
US60/742,352 2005-12-05
EP05111786.9 2005-12-07
EP05111786 2005-12-07
US74890305P 2005-12-08 2005-12-08
US60/748,903 2005-12-08
US74921905P 2005-12-09 2005-12-09
US60/749,219 2005-12-09
EP05111996 2005-12-12
EP05111996.4 2005-12-12
US75014305P 2005-12-14 2005-12-14
US60/750,143 2005-12-14
EP05112562.3 2005-12-21
EP05112562 2005-12-21
US75365005P 2005-12-23 2005-12-23
US60/753,650 2005-12-23
EP05113110.0 2005-12-30
EP05113110 2005-12-30
EP05113111 2005-12-30
EP05113111.8 2005-12-30
US75604206P 2006-01-04 2006-01-04
US75608606P 2006-01-04 2006-01-04
US60/756,042 2006-01-04
US60/756,086 2006-01-04
PCT/US2006/045721 WO2007064724A2 (en) 2005-12-01 2006-11-29 Plants having improved growth characteristics and methods for making the same

Publications (2)

Publication Number Publication Date
CN101365786A CN101365786A (en) 2009-02-11
CN101365786B true CN101365786B (en) 2014-03-05

Family

ID=36129965

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200680052158.7A Expired - Fee Related CN101365786B (en) 2005-12-01 2006-11-29 Plants having improved growth characteristics and methods for making same

Country Status (2)

Country Link
CN (1) CN101365786B (en)
ZA (1) ZA200805634B (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101538322B (en) * 2009-02-27 2011-09-21 中国科学院遗传与发育生物学研究所 Polypeptide with inhibiting transcriptional activation activity of transcription factor, encoding gene thereof and application
EP3143039A1 (en) * 2014-05-12 2017-03-22 The Donald Danforth Plant Science Center Compositions and methods for increasing plant growth and yield
CN105985417B (en) * 2015-01-30 2019-08-30 中国农业科学院作物科学研究所 Application of the growth associated protein GRP2 in regulating plant growth
CN105985420B (en) * 2015-01-30 2019-08-30 中国农业科学院作物科学研究所 Application of the growth associated protein GRP3 in regulating plant growth
CN105985418B (en) * 2015-01-30 2019-08-30 中国农业科学院作物科学研究所 Application of the growth associated protein GRP4 in regulating plant growth
CN105985419B (en) * 2015-01-30 2019-08-30 中国农业科学院作物科学研究所 Application of the growth associated protein GRP1 in regulating plant growth
CN109593775A (en) * 2017-09-30 2019-04-09 中国科学院上海生命科学研究院 A kind of method and its application that the ABA receptor PYL family gene combination improving rice yield knocks out
CN108130328B (en) * 2017-11-28 2021-10-29 上海交通大学 Application of male sterility gene OsDPW3 and rice fertility restoration method
CN109112146B (en) * 2018-07-17 2021-07-13 华中农业大学 Cloning and breeding application of gene qSLWA9 for controlling pod length and grain weight traits of brassica napus
CN110183524B (en) * 2019-06-11 2022-06-14 扬州大学 Gene GmKRP2a for promoting soybean main root elongation, protein and application thereof
CN110628737B (en) * 2019-10-14 2022-06-07 南京农业大学 Related gene for regulating cucumber dwarfing character and application thereof
CN110923243B (en) * 2019-12-18 2021-04-13 华中农业大学 Application of AHL4 in regulation and control of plant lipid metabolism and method for increasing oil content and unsaturated fatty acid content of plant seeds
CN114606332B (en) * 2020-12-09 2023-11-07 北京市农林科学院 SNP locus for judging pulp hardness of watermelon, hf-KASP1 marker and application thereof
CN113150091A (en) * 2021-02-18 2021-07-23 华中农业大学 CsHD2 protein and gene for promoting plant lateral bud growth and application thereof
CN113150092A (en) * 2021-02-18 2021-07-23 华中农业大学 CsHD1 protein related to apical development and dwarfing, gene and application thereof
CN113151295B (en) * 2021-03-04 2023-06-20 浙江理工大学 Rice temperature-sensitive male sterile gene OsFMS1 and application thereof
CN116790621B (en) * 2023-05-17 2024-02-27 广东省农业科学院农业生物基因研究中心 Application of rice OsZF gene in regulating seed size

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001002430A2 (en) * 1999-07-05 2001-01-11 Cropdesign N.V. Arabidopsis thaliana cdc7 and cdc27 homologs
WO2002038599A2 (en) * 2000-11-13 2002-05-16 Universiteit Utrecht A plant development regulating gene and its uses
WO2002079403A2 (en) * 2001-03-30 2002-10-10 Mendel Biotechnology, Inc. Method for modifying plant biomass

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001002430A2 (en) * 1999-07-05 2001-01-11 Cropdesign N.V. Arabidopsis thaliana cdc7 and cdc27 homologs
WO2002038599A2 (en) * 2000-11-13 2002-05-16 Universiteit Utrecht A plant development regulating gene and its uses
WO2002079403A2 (en) * 2001-03-30 2002-10-10 Mendel Biotechnology, Inc. Method for modifying plant biomass

Also Published As

Publication number Publication date
ZA200805634B (en) 2009-10-28
CN101365786A (en) 2009-02-11

Similar Documents

Publication Publication Date Title
CN101365786B (en) Plants having improved growth characteristics and methods for making same
CN101495640B (en) Plants having enhanced yield-related traits and a method formaking the same
KR101662483B1 (en) Plants having enhanced yield-related traits and method for making the same
CN101842489B (en) Plants having enhanced yield-related traits and a method for making the same
KR101647732B1 (en) Plants having enhanced yield-related traits and a method for making the same
KR101105330B1 (en) Plants with modulated expression of NAC transcription factors having enhanced yield-related traits and a method for making the same
CN101952441B (en) Plants having enhanced yield-related traits and a method for making the same
KR20120126061A (en) Plants having enhanced yield-related traits and a method for making the same
CN101583720A (en) Plants having enhanced yield-related traits and a method for method for making the same
KR101754083B1 (en) Plants having enhanced yield-related traits and a method for making the same
CN102027120A (en) Plants having enhanced yield-related traits and a method for making the same
CN101883783A (en) Has plant of enhanced yield correlated character and preparation method thereof
CN101868544A (en) Plants having increased yield-related traits and a method for making the same
BRPI0718977A2 (en) METHOD FOR INCREASING SEED Yield IN PLANTS IN RELATION TO CONTROL PLANTS, CONSTRUCTION, USE OF THE SAME, PLANT, PART OF PLANT OR PLANT CELL, METHOD FOR THE PRODUCTION OF A TRANSGENIC PLANT HAVING INCREASE IN PLANT SEED CONTROL , Transgenic plant, harvestable parts of a plant, products, and use of a nucleic acid
CN101351556B (en) Plants having improved growth characteristics and a method for making the same
CN101605902A (en) Plant and the method for preparing this plant with abiotic stress resistance of enhanced yield correlated character and/or raising
CN101688214A (en) Plant and the method that is used to produce this plant with enhanced yield correlated character
KR101429469B1 (en) Plants with enhanced yield-related traits and producing method thereof
CN101563461A (en) Plants having improved characteristics and a method for making the same
CN101969759A (en) Plants having enhanced yield-related traits and a method for making the same
CN101778942A (en) Plants having enhanced yield-related traits and a method for making the same
CN101595222B (en) Plants having enhanced seed yield-related traits and a method for making the same
CN101668859A (en) Has plant of enhanced yield correlated character and preparation method thereof
CN101541970A (en) Transgenic plants comprising as transgene a class i tcp or clavata 1 (clv1) or cah3 polypeptide having increased seed yield and a method for making the same
KR101261985B1 (en) Plants with modulated expression of NAC transcription factors having enhanced yield-related traits and a method for making the same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140305

Termination date: 20171129