CN101333104A - 超塑性纳米氧化物掺杂的氧化锌压敏陶瓷材料及制备方法 - Google Patents

超塑性纳米氧化物掺杂的氧化锌压敏陶瓷材料及制备方法 Download PDF

Info

Publication number
CN101333104A
CN101333104A CNA2008100378202A CN200810037820A CN101333104A CN 101333104 A CN101333104 A CN 101333104A CN A2008100378202 A CNA2008100378202 A CN A2008100378202A CN 200810037820 A CN200810037820 A CN 200810037820A CN 101333104 A CN101333104 A CN 101333104A
Authority
CN
China
Prior art keywords
superplasticity
functional additive
sio
zro
zinc oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2008100378202A
Other languages
English (en)
Inventor
施利毅
徐东
钟庆东
吴振红
巫欣欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CNA2008100378202A priority Critical patent/CN101333104A/zh
Publication of CN101333104A publication Critical patent/CN101333104A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种超塑性纳米氧化物掺杂的氧化锌压敏陶瓷材料及制备方法,属功能陶瓷材料制造技术领域。其特征在于氧化锌压敏电阻材料按摩尔百分比包括下述组分:ZnO 94%-98%为主体材料,MnO2、Co2O3、Bi2O3、Cr2O3、Sb2O3各为0.1%-1.0%为压敏功能添加剂,少量ZrO2、Al2O3、Y2O3和SiO2为超塑性功能添加剂,超塑性功能添加剂为纳米级材料。在900-1050℃超塑热压烧结得到压敏陶瓷,电位梯度可提高到1700-2000V/mm。本发明制备的压敏陶瓷可用于制造超高压电力系统的优质避雷器产品,从而减轻设备挂网重量,降低设备成本,增强高压输电网络抵御冰雪灾害的能力。

Description

超塑性纳米氧化物掺杂的氧化锌压敏陶瓷材料及制备方法
技术领域
本发明涉及一种超塑性纳米氧化物掺杂的氧化锌压敏陶瓷材料及制备方法,属功能陶瓷材料制造技术领域。
背景技术
超塑性是细晶陶瓷在高温下的固有属性。陶瓷材料在常温下是脆性材料,由于其结构和键性的原因,滑移系少,位错产生和运动困难,而且有沿晶界分离的倾向,它在本质上是一种脆性材料,在常温下几乎不产生塑性变形。但是,一些细晶陶瓷材料在较高的温度下,可以具有一定的塑性。产生超塑性形变的两个先决条件是:拉伸塑性稳定性,即不产生明显颈缩;有效压制孔穴和晶界分离。晶体材料要具有超塑性由以下几项重要的要求:(1)由于超塑过程受扩散控制,因此实验温度应足够高,以便扩散足够快。实际中,实验温度通常要达到材料熔化温度的一半以上。(2)晶粒尺寸要细小(对于金属材料,通常应<10μm;对于陶瓷材料,通常应<1μm),并且要能保持稳定细晶结构,没有或只有轻微地晶粒生长,以便使得流动应力低于产生孔穴或晶界分离所需要的临界应力。(3)晶粒具有等轴粒状,以便于晶界滑移的发生。与金属相比,陶瓷材料更容易获得细晶结构,在高温下结构更稳定。
避雷器是一种能吸收过电压能量、限制过电压幅值的保护设备。使用时将避雷器安装在被保护设备附近,与被保护设备并联。避雷器的保护特性是输配电设备绝缘配合的基础,性能优良的避雷器能将电力系统中的过电压限制到对绝缘无害的水平。改善避雷器的保护性能,不仅能提高输配电系统的运行可靠性,而且可以降低电气设备绝缘水平,从而减轻设备重量,降低设备成本。氧化锌避雷器是高压、超高压电网及高压电力设备防雷击及闪络事故的关键设备,在高压输电线路、城市地铁直流供电线路以及铁路电网系统中应用广泛。为了配合国内电网向特高电压等级发展的需要,实现避雷器阀片的小型化和轻型化,降低制造成本,开发高电位梯度、性能优良、可靠性高的超高压避雷器产品。
纳米材料从广义上讲是指三维空间尺寸中至少有一维是纳米量级1-100nm的材料,从狭义上讲,则主要包括纳米微粒及由其构成的纳米固体。当物质颗粒小到纳米量级时,表面曲率大或比表面积大,存在于晶粒表面无序排列的原子百分数远大于晶态材料中表面原子所占的百分数。由于纳米材料的独有特性,在氧化锌压敏瓷中掺杂纳米材料,使避雷器的性能明显得以改善。同时,纳米材料具有更加优异的超塑性,再者纳米超塑性功能添加剂的晶粒比普通微米级超塑性功能添加剂的晶粒进一步细化,从而可以降低压敏瓷的超塑性热压烧结温度和烧结时间,实现节能降耗。相对技术先进的国家而言,我国在压敏电阻材料方面发展较慢,其规模性生产是近几年才有所发展,与国际同行业相比存在一定的差距。如日本松下、德国西门子、美国Harris等公司的年产量都超过亿只,而国内产量上亿值的生产厂家很少,只有一两家,而且产品性能落后,对于超低(电位梯度<<200V/mm)或超高电位梯度(电位梯度>>300V/mm)的压敏电阻仍然依赖进口。而日本等国家已经开发出电位梯度高达400V/mm的ZnO压敏电阻片,用于1000kV电力传输的避雷保护。日本的几个大型的电气公司,如东芝、三菱、日立、富士通等,都已经自行开发出电位梯度为300-400V/mm,通流容量高达300J/cm3的MOA阀片。
发明内容
本发明的目的之一是提供一种产品性能良好、生产成本低,可适合于工业化生产的超塑性纳米氧化物掺杂的氧化锌压敏陶瓷材料。
本发明的目的之二是提供一种超塑性纳米氧化物掺杂的氧化锌压敏陶瓷材料的制备方法。
为实现上述目的,本发明采用以下技术方案:
一种超塑性纳米氧化物掺杂的氧化锌压敏陶瓷材料,其特征在于该材料按摩尔百分比包括下述组分:ZnO 94%-98%为主体材料,MnO2、Co2O3、Bi2O3、Cr2O3、Sb2O3各为0.1%-1.0%为压敏功能添加剂,ZrO2 0.2%-1.0%、Al2O3 0.001%-0.01%、Y2O3 0.01%-1.0%和SiO2 0.01%-1.0%为超塑性功能添加剂,超塑性功能添加剂ZrO2、Al2O3、Y2O3和SiO2为纳米级氧化物,ZrO2为30-50nm、Al2O3为50nm、Y2O3为50nm、SiO2为30nm。
一种用于上述的超塑性氧化锌压敏陶瓷材料的制备方法,其特征在于该方法包括如下工艺步骤:
1)按如下摩尔百分比组分进行配料,ZnO 94%-98%为主体材料,MnO2、Co2O3、Bi2O3、Cr2O3、Sb2O3各为0.1%-1.0%为压敏功能添加剂,ZrO20.2%-1.0%、Al2O3 0.001%-0.01%、Y2O30.01%-1.0%和SiO2 0.01%-1.0%为超塑性功能添加剂,超塑性功能添加剂ZrO2、Al2O3、Y2O3和SiO2为纳米级氧化物,ZrO2为30-50nm、Al2O3为50nm、Y2O3为50nm、SiO2为30nm;
2)采用氧化锆球、聚乙烯罐,无水乙醇为球磨介质,氧化锆球:配料粉:无水乙醇的质量比为20∶1∶4,在变频行星式球磨机中湿磨3-8h,转速500-700rpm;球磨好的浆料在70℃烘24h成干粉;
3)采用氧化锆球、聚乙烯罐,在变频行星式球磨机中干磨5-10h,转速500-700rpm,氧化锆球∶粉体质量比为20∶1;干磨后粉体添加2%PVA后压制成形;
4)压制成形的坯体在电阻炉中以5℃/min升温至500-600℃,空气气氛中保温2h,随炉冷却;预处理后的坯体置于超塑压接装置内施加预压力,以5℃/min升温至900-1200℃超塑压接温度并在超塑应变速率10-4-10-2s-1下经3-5min短时间超塑热压烧结,再在900-1050℃空气气氛中保温1-1.5h,随炉冷却,即得超塑性纳米氧化物掺杂的氧化锌压敏陶瓷材料。
本发明通过调整压敏功能添加剂和超塑性纳米功能添加剂的合理比例,结合制备方法制备的超塑性ZnO压敏陶瓷材料,其在900-1050℃超塑热压烧结1-1.5h得到压敏陶瓷,产品具有优异的综合性能,致密度高气孔率低,组织均匀无明显团聚体,电位梯度可提高到1700-2000V/mm,非线性系数为30-50,漏电流为2-20μA。本发明的压敏陶瓷可用于制造超高压电力系统的优质避雷器产品,从而减轻设备挂网重量,降低设备成本,增强高压输电网络抵御冰雪灾害的能力。
具体实施方式
现将本发明的实施例叙述于后。
实施例1
(1)分别称量按摩尔比为ZnO 95.445%,MnO2 0.5%,Co2O3 0.5%,Bi2O3 0.5%,Cr2O3 0.5%,Sb2O3 1.0%,纳米级材料ZrO2 1.0%,Al2O3 0.005%,Y2O3 0.05%,SiO20.5%,进行配料。
(2)采用氧化锆球、聚乙烯罐,无水乙醇为球磨介质,在变频行星式球磨机中湿磨5h,转速500rpm,球∶粉∶无水乙醇的质量比为20∶1∶4。
(3)球磨好的浆料在70℃烘24h成干粉。
(4)采用氧化锆球、聚乙烯罐,在变频行星式球磨机中干磨3h,转速600rpm,球∶粉质量比为20∶1。
(5)干磨后粉体添加2%PVA后压制成形。
(6)压制成形的坯体在电阻炉中以5℃/min升温至500℃,空气气氛中保温2h,随炉冷却。
(7)预处理后的坯体置于超塑压接装置内施加预压力,以5℃/min升温至1050℃超塑压接温度并在超塑应变速率10-410-2s-1下经3-5min短时间超塑热压烧结,再在1050℃空气气氛中保温1.5h,随炉冷却。
本实施例所制作的氧化锌压敏电阻经性能测试,电位梯度达到2000V/mm,漏电流2μA,非线性系数为49。
实施例2
(1)分别称量按摩尔比为ZnO 95.49%,MnO2 0.5%,Co2O3 0.8%,Bi2O3 0.7%,Cr2O30.5%,Sb2O3 1.0%,纳米级材料ZrO2 0.475%,Al2O3 0.01%,Y2O3 0.025%,SiO2 0.5%,进行配料。
(2)采用氧化锆球、聚乙烯罐,无水乙醇为球磨介质,在变频行星式球磨机中湿磨5h,转速600rpm,球∶粉∶无水乙醇的质量比为20∶1∶4。
(3)球磨好的浆料在70℃烘24h成干粉。
(4)采用氧化锆球、聚乙烯罐,在变频行星式球磨机中干磨2h,转速500rpm,球∶粉质量比为20∶1。
(5)干磨后粉体添加2%PVA后压制成形。
(6)压制成形的坯体在电阻炉中以5℃/min升温至500℃,空气气氛中保温2h,随炉冷却。
(7)预处理后的坯体置于超塑压接装置内施加预压力,以5℃/min升温至1000℃超塑压接温度并在超塑应变速率10-4-10-2s-1下经3-5min短时间超塑热压烧结,再在1000℃空气气氛中保温1.25h,随炉冷却。
本实施例所制作的氧化锌压敏电阻经性能测试,电位梯度达到1800V/mm,漏电流4μA,非线性系数为43。
实施例3
(1)分别称量按摩尔比为ZnO 95.29%,MnO2 0.5%,Co2O3 0.8%,Bi2O3 0.7%,Cr2O30.5%,Sb2O3 1.0%,纳米级材料ZrO2 0.38%,Al2O3 0.01%,Y2O3 0.02%,SiO2 0.8%,进行配料。
(2)采用氧化锆球、聚乙烯罐,无水乙醇为球磨介质,在变频行星式球磨机中湿磨5h,转速500rpm,球∶粉∶无水乙醇的质量比为20∶1∶4。
(3)球磨好的浆料在70℃烘24h成干粉。
(4)采用氧化锆球、聚乙烯罐,在变频行星式球磨机中干磨2h,转速500rpm,球∶粉质量比为20∶1。
(5)干磨后粉体添加2%PVA后压制成形。
(6)压制成形的坯体在电阻炉中以5℃/min升温至500℃,空气气氛中保温2h,随炉冷却。
(7)预处理后的坯体置于超塑压接装置内施加预压力,以5℃/min升温至950℃超塑压接温度并在超塑应变速率10-410-2s-1下经3-5min短时间超塑热压烧结,再在950℃空气气氛中保温1h,随炉冷却。
本实施例所制作的氧化锌压敏电阻经性能测试,电位梯度达到1700V/mm,漏电流13μA,非线性系数为38。

Claims (2)

1.一种超塑性纳米氧化物掺杂的氧化锌压敏陶瓷材料,其特征在于该材料按摩尔百分比包括下述组分:ZnO 94%-98%为主体材料,MnO2、Co2O3、Bi2O3、Cr2O3、Sb2O3各为0.1%-1.0%为压敏功能添加剂,ZrO20.2%-1.0%、Al2O3 0.001%-0.01%、Y2O3 0.01%-1.0%和SiO2 0.01%-1.0%为超塑性功能添加剂,超塑性功能添加剂ZrO2、Al2O3、Y2O3和SiO2为纳米级氧化物,ZrO2为30-50nm、Al2O3为50nm、Y2O3为50nm、SiO2为30nm。
2.一种用于权利要求1所述的超塑性氧化锌压敏陶瓷材料的制备方法,其特征在于该方法包括如下工艺步骤:
1)按如下摩尔百分比组分进行配料,ZnO 94%-98%为主体材料,MnO2、Co2O3、Bi2O3、Cr2O3、Sb2O3各为0.1%-1.0%为压敏功能添加剂,ZrO2 0.2%-1.0%、Al2O3 0.001%-0.01%、Y2O3 0.01%-1.0%和SiO2 0.01%-1.0%为超塑性功能添加剂,超塑性功能添加剂ZrO2、Al2O3、Y2O3和SiO2为纳米级氧化物,ZrO2为30-50nm、Al2O3为50nm、Y2O3为50nm、SiO2为30nm;
2)采用氧化锆球、聚乙烯罐,无水乙醇为球磨介质,氧化锆球∶配料粉∶无水乙醇的质量比为20∶1∶4,在变频行星式球磨机中湿磨3-8h,转速500-700rpm;球磨好的浆料在70℃烘24h成干粉;
3)采用氧化锆球、聚乙烯罐,在变频行星式球磨机中干磨5-10h,转速500-700rpm,氧化锆球∶粉体质量比为20∶1;干磨后粉体添加2%PVA后压制成形;
4)压制成形的坯体在电阻炉中以5℃/min升温至500-600℃,空气气氛中保温2h,随炉冷却;预处理后的坯体置于超塑压接装置内施加预压力,以5℃/min升温至900-1200℃超塑压接温度并在超塑应变速率10-4-10-2s-1下经3-5min短时间超塑热压烧结,再在900-1050℃空气气氛中保温1-1.5h,随炉冷却,即得超塑性纳米氧化物掺杂的氧化锌压敏陶瓷材料。
CNA2008100378202A 2008-05-20 2008-05-20 超塑性纳米氧化物掺杂的氧化锌压敏陶瓷材料及制备方法 Pending CN101333104A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNA2008100378202A CN101333104A (zh) 2008-05-20 2008-05-20 超塑性纳米氧化物掺杂的氧化锌压敏陶瓷材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA2008100378202A CN101333104A (zh) 2008-05-20 2008-05-20 超塑性纳米氧化物掺杂的氧化锌压敏陶瓷材料及制备方法

Publications (1)

Publication Number Publication Date
CN101333104A true CN101333104A (zh) 2008-12-31

Family

ID=40196026

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2008100378202A Pending CN101333104A (zh) 2008-05-20 2008-05-20 超塑性纳米氧化物掺杂的氧化锌压敏陶瓷材料及制备方法

Country Status (1)

Country Link
CN (1) CN101333104A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103396116A (zh) * 2013-08-13 2013-11-20 广东风华高新科技股份有限公司 氧化锌压敏电阻生料、其制备方法及压敏电阻器
RU2514085C2 (ru) * 2012-06-20 2014-04-27 Закрытое акционерное общество "Научно-производственная фирма "Магнетон Варистор" Керамический материал для варисторов на основе оксида цинка
RU2564430C2 (ru) * 2014-07-31 2015-09-27 Федеральное государственное бюджетное учреждение науки Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева Кольского научного центра Российской академии наук (ИХТРЭМС КНЦ РАН) Способ получения варисторной керамики на основе оксида цинка
CN105198402A (zh) * 2015-09-15 2015-12-30 苏州亿馨源光电科技有限公司 一种纳米氧化锌压敏电阻材料及其制备方法
CN106747406A (zh) * 2017-02-14 2017-05-31 爱普科斯电子元器件(珠海保税区)有限公司 无铅高绝缘陶瓷涂层氧化锌避雷器阀片及其制备方法
CN111320472A (zh) * 2020-03-18 2020-06-23 新疆大学 采用Nd、Zr离子复合施主掺杂制备ZnO压敏电阻陶瓷的方法
CN112335001A (zh) * 2018-07-04 2021-02-05 Tdk电子股份有限公司 陶瓷材料、压敏电阻以及制造该陶瓷材料和压敏电阻的方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2514085C2 (ru) * 2012-06-20 2014-04-27 Закрытое акционерное общество "Научно-производственная фирма "Магнетон Варистор" Керамический материал для варисторов на основе оксида цинка
CN103396116A (zh) * 2013-08-13 2013-11-20 广东风华高新科技股份有限公司 氧化锌压敏电阻生料、其制备方法及压敏电阻器
CN103396116B (zh) * 2013-08-13 2014-10-01 广东风华高新科技股份有限公司 氧化锌压敏电阻生料、其制备方法及压敏电阻器
RU2564430C2 (ru) * 2014-07-31 2015-09-27 Федеральное государственное бюджетное учреждение науки Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева Кольского научного центра Российской академии наук (ИХТРЭМС КНЦ РАН) Способ получения варисторной керамики на основе оксида цинка
CN105198402A (zh) * 2015-09-15 2015-12-30 苏州亿馨源光电科技有限公司 一种纳米氧化锌压敏电阻材料及其制备方法
CN105198402B (zh) * 2015-09-15 2018-01-02 湖南双创部落信息咨询服务有限责任公司 一种纳米氧化锌压敏电阻材料及其制备方法
CN106747406A (zh) * 2017-02-14 2017-05-31 爱普科斯电子元器件(珠海保税区)有限公司 无铅高绝缘陶瓷涂层氧化锌避雷器阀片及其制备方法
CN112335001A (zh) * 2018-07-04 2021-02-05 Tdk电子股份有限公司 陶瓷材料、压敏电阻以及制造该陶瓷材料和压敏电阻的方法
US11557410B2 (en) 2018-07-04 2023-01-17 Tdk Electronics Ag Ceramic material, varistor, and method for producing the ceramic material and the varistor
CN112335001B (zh) * 2018-07-04 2023-10-24 Tdk电子股份有限公司 陶瓷材料、压敏电阻以及制造该陶瓷材料和压敏电阻的方法
CN111320472A (zh) * 2020-03-18 2020-06-23 新疆大学 采用Nd、Zr离子复合施主掺杂制备ZnO压敏电阻陶瓷的方法

Similar Documents

Publication Publication Date Title
CN101333104A (zh) 超塑性纳米氧化物掺杂的氧化锌压敏陶瓷材料及制备方法
CN101383208B (zh) 一种高电压梯度氧化锌压敏电阻阀片的制备方法
CN100485827C (zh) 一种低温烧结制备高电位梯度氧化锌压敏电阻的方法
CN102557610B (zh) 高电位梯度氧化锌压敏电阻片及其制法和应用
CN101279843B (zh) 超塑性氧化锌压敏陶瓷材料及制备方法
CN101786874B (zh) 一种制备低残压ZnO压敏电阻陶瓷的工艺方法
CN101279844A (zh) 复合稀土氧化物掺杂的氧化锌压敏陶瓷材料
CN101700976A (zh) 一种高压避雷器用非线性电阻片的配方及其制造方法
CN104944935A (zh) 一种氧化锌压敏电阻陶瓷及其制备方法
CN102515741A (zh) 一种氧化锌压敏电阻材料及其制备方法
CN101702358B (zh) 一种高压压敏电阻及其制备方法
CN105016721A (zh) 采用铝、镓和钇离子共同掺杂制备ZnO压敏电阻陶瓷的方法
CN105645948A (zh) 高电压梯度、低泄露电流压敏电阻陶瓷材料的制备方法
CN101823874A (zh) 一种高非线性稀土氧化物掺杂的氧化锌压敏陶瓷材料
CN104557016B (zh) 一种高非线性玻璃料掺杂的氧化锌压敏陶瓷材料
CN105622086A (zh) 制备高梯度氧化锌压敏电阻陶瓷的方法
CN108546111A (zh) 一种高电压梯度、低残压、低泄露电流的氧化锌压敏电阻陶瓷及其制备方法
CN101698597A (zh) 一种高梯度非线性电阻片的原料配方及其制造方法
CN111161932B (zh) 一种配电网防雷环形氧化锌电阻片及其制备方法
CN110423110B (zh) 一种超高非线性ZnO-Bi2O3基压敏陶瓷及其制备方法
CN101265083A (zh) 稀土硝酸盐掺杂的氧化锌压敏陶瓷材料及其制备方法
CN110922182A (zh) 高梯度、低泄漏电流陶瓷的制备方法
CN111233461A (zh) 高耐受浪涌电流SnO2压敏电阻陶瓷的方法
CN110862257A (zh) 一种石墨陶瓷合闸电阻及其制备方法
CN105601268A (zh) 一种综合电气性能优良的氧化锌压敏电阻陶瓷的配方

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20081231