RU2514085C2 - Керамический материал для варисторов на основе оксида цинка - Google Patents

Керамический материал для варисторов на основе оксида цинка Download PDF

Info

Publication number
RU2514085C2
RU2514085C2 RU2012127304/03A RU2012127304A RU2514085C2 RU 2514085 C2 RU2514085 C2 RU 2514085C2 RU 2012127304/03 A RU2012127304/03 A RU 2012127304/03A RU 2012127304 A RU2012127304 A RU 2012127304A RU 2514085 C2 RU2514085 C2 RU 2514085C2
Authority
RU
Russia
Prior art keywords
varistors
zinc oxide
varistor
additives
zro
Prior art date
Application number
RU2012127304/03A
Other languages
English (en)
Other versions
RU2012127304A (ru
Inventor
Дарина Борисовна Пинская
Ирина Викторовна Жуковская
Татьяна Юрьевна Синельщикова
Игорь Владимирович Саенко
Original Assignee
Закрытое акционерное общество "Научно-производственная фирма "Магнетон Варистор"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Закрытое акционерное общество "Научно-производственная фирма "Магнетон Варистор" filed Critical Закрытое акционерное общество "Научно-производственная фирма "Магнетон Варистор"
Priority to RU2012127304/03A priority Critical patent/RU2514085C2/ru
Publication of RU2012127304A publication Critical patent/RU2012127304A/ru
Application granted granted Critical
Publication of RU2514085C2 publication Critical patent/RU2514085C2/ru

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

Изобретение относится к электронной технике, в частности к полупроводниковым керамическим материалам, и может быть использовано при производстве варисторов на основе оксида цинка. Сущность изобретения заключается в том, что керамический материал для варисторов на основе оксида цинка включает добавки оксидов Bi, Sb, Mn, Со, Si, Cr, Al, Zr, Y и дополнительно содержит оксид бора при следующем соотношении компонентов, мол.%: ZnO 94,00÷98,00, MnO2 0,20÷0,75, Co2O3 0,50÷1,00, Bi2O3 0,50÷1,60, Cr2O3 0,10÷0,50, Sb2O3 0,50÷1,50, B2O3 0,01÷0,13, Al2O3 0,005÷0,02, SiO2 0,03÷0,10, ZrO2 0,01÷0,20, Y2O3 0,01÷0,20. Концентрации добавок ZrO2:Y2O3 соотносятся как 1:1÷1:3. Технический результат изобретения - обеспечение возможности применения варисторов на основе такого материала в высокоэнергетических цепях, содержащих элементы с малым запасом электрической прочности, за счет повышения допустимой рассеиваемой варистором энергии при снижении коэффициента защиты варистора благодаря снижению токов утечки. 2 табл.

Description

Изобретение относится к электронной технике, в частности к полупроводниковым керамическим материалам, и может быть использовано при производстве варисторов на основе оксида цинка.
Варисторы на основе оксида цинка являются керамическими полупроводниковыми устройствами с высоконелинейной характеристикой ток-напряжение, схожей с характеристикой встречно-параллельно соединенных диодов Зенера, но с большими возможностями поглощения энергии электрических импульсов.
Несмотря на то, что варисторы широко применяются уже несколько десятилетий, «рецептура» варисторной керамики постоянно меняется. Это обусловлено возникновением новых задач, связанных с защитой электрооборудования от импульсных перенапряжений. Одной из них является защита мощных, относительно низковольтных, электрических машин, питающихся от полупроводниковых преобразователей, содержащих транзисторы и тиристоры. Последние имеют гораздо меньший запас электрической прочности, чем электроизоляция, и требуют минимизации напряжения, остающегося при воздействии импульсов.
Нелинейные свойства варисторов формируются в процессе спекания керамики, благодаря формированию структуры, представляющей собой полупроводящие зерена ZnO, окруженные электроизоляционными прослойками. Энергетические барьеры на границах зерен образуются благодаря добавкам таких оксидов, как Bi, Sb, Со, Cr, Mn, Si, Al, В и др.
Добавки можно условно разделить на две группы - влияющие преимущественно на структурообразование материала и влияющие на его электрические характеристики. К первой относятся Bi2O3, Sb2O3, SiO2, Cr2O3, ко второй - Со2О3, Mn2O3, Al2O3, B2O3. Некоторые добавки относятся к обеим группам, проявляя себя как в формировании структуры варисторной керамики, так и в определении электрических характеристик. К ним относятся оксиды редкоземельных элементов, в частности Y2O3 и ZrO2.
Известен материал для варисторов на основе оксида цинка («Microstructures and characteristics of deep trap levels in ZnO varistors doped with Y2O3», Sci China Ser E-Tech Sci, 2009, 52(12): 3668-3673), содержащий добавки оксидов Bi, Sb, Со, Cr, Mn, Si и дополнительно вводимую трехокись иттрия (Y2O3) с концентрацией до 3 мол. %.
Аналогичный материал для варисторов на основе оксида цинка («Microstructural and electrical characteristics of Y2O3 doped ZnO-Bi2O3-based varistor ceramics», Journal of the European Ceramic Society, 21 (2001), c.1875-1878), содержащий добавки оксидов Bi, Sb, Co, Cr, Mn, Si, Ni и дополнительно вводимую трехокись иттрия (Y2O3) с концентрацией до 0,9 мол. %.
В обоих источниках сообщается, что введение добавки Y2O3 приводит к ингибированию роста зерен оксида цинка и созданию дополнительных глубоких центров на границах зерен оксида цинка, что обуславливает повышенный градиент напряжения и увеличенный ток утечки варистора.
Известен материал для варисторов на основе оксида цинка («Microstructure and electrical properties of Zno-ZrO2-Bi2O33О4 varistors», Journal of the European Ceramic Society, 24 (2004), c.2537-2546), содержащий добавки оксидов Bi, Co, Cr, Mn и дополнительно вводимую двуокись циркония (ZrO2) с концентрацией до 10 мол. %.
Введение добавки (ZrO2), так же как и в предыдущих случаях, приводит к ингибированию роста зерен оксида цинка и созданию дополнительных глубоких центров на границах зерен оксида цинка, однако, характер глубоких уровней отличается от характера уровней в случае легирования Y2O3, но также обуславливает повышенный градиент напряжения и увеличенный ток утечки варистора.
Таким образом, особенностью всех вышеприведенных материалов, в которые раздельно вводили Y2O3 и ZrO2, является повышенный, по сравнению с материалами без оксидов иттрия и циркония, градиент напряжения и увеличенный ток утечки. Эта особенность обуславливает недостатки таких материалов, как варисторные, заключающиеся в том, что:
- увеличение градиента напряжения приводит к уменьшению толщины, а значит и объема варистора и допустимой поглощаемой энергии импульса перенапряжения, что неприемлемо при защите мощных и сверхмощных потребителей электроэнергии;
- увеличение тока утечки приводит к необходимости увеличения отношения остающегося напряжения к максимальному рабочему напряжению, так называемого коэффициента защиты, К3.
Известен материал для варисторов на основе оксида цинка (Патент №CN 101279843 (А), опубл. 20. 05. 2008., «Superplastic zinc oxide pressure-sensitive ceramic material and preparation thereof»), содержащий добавки оксидов Bi, Sb, Co, Cr, Mn, Si, Al, В и дополнительно вводимые двуокись циркония (ZrO2) и трехокись иттрия (Y2O3) с небольшой концентрацией.
Известен материал для варисторов на основе оксида цинка (Патент №CN 101704668 (А), опубл. 2009.12.03., «ZnO ceramic resistor and preparation method»), содержащий добавки оксидов Bi, Sb, Co, Cr, Mn, Si, Al, B, Ti и дополнительно вводимые двуокись циркония (ZrO2) и трехокись иттрия (Y2O3) с концентрацией от 0,2 до 10,0 мол. %.
Совместное введение добавок Y2O3 и ZrO2 с концентрациями, приведенными в этих технических решениях, позволяет уменьшать размеры зерен материала и соответственно увеличивать градиент напряжения варистора. Уменьшение размеров зерен материала приводит к уменьшению объема варистора на единицу напряжения и соответственно к уменьшению допустимой рассеиваемой варистором энергии, что ограничивает их применение только объектами малых энергий.
Известен материал (патент CN №101333104 «Zinc oxide voltage-sensitive ceramic materials doped by superplasticity nanometer oxide and preparation method», МПК C04B 35/453, C04B 35/622, H01C 7/10), опубл. 31.12.2008), являющийся наиболее близким к заявляемому и выбранный в качестве прототипа. Такой материал содержит 94÷98% ZnO - основного компонента - и 0,1÷1,0% МnO2, Со2О3, Вi2O3, Сr2O3 и Sb2О3, выступающих в качестве добавок, обеспечивающих нелинейность вольт-амперной характеристики, а также небольшое количество ZrO2, Аl2О3, Y2O3 и SiO2, выступающих в качестве сверхпластических функциональных добавок в виде наночастиц. Концентрация вводимых Y2О3 и ZrO2 составляет 0,1÷1,0 мол.% и 0,2÷1,0 мол.%, соответственно.
Такой материал позволяет увеличить градиент напряжения до 1700÷2000 В/мм и сделать варисторы в 10 раз более тонкими, при этом токи утечки, как и вся вольт-амперная характеристика, незначительно отличаются от характеристик известных коммерческих варисторов. Достоинство таких варисторов заключается в уменьшении веса собранных на них высоковольтных ограничителей перенапряжения (ОПН), что позволяет снизить затраты на оборудование и повысить стойкость линий электропередач к обледенению и налипанию снега.
Однако это достоинство может иметь весьма ограниченное применение - только в низкоэнергетических цепях, так как уменьшение объема варисторов в ОПН должно приводить к значительному перегреву таких варисторов при поглощении мощных импульсов перенапряжения и их тепловому пробою.
Относительно большой уровень тока утечки таких варисторов, как и у известных коммерческих, не позволяет снизить коэффициент защиты, как того требует защита мощных и сверхмощных потребителей электроэнергии, питающихся от полупроводниковых преобразователей.
Задачей заявляемого изобретения является создание материала для варисторов, позволяющего достичь технического результата, заключающегося в обеспечении возможности применения варисторов на основе такого материала в высокоэнергетических цепях, содержащих элементы с малым запасом электрической прочности, за счет повышения допустимой рассеиваемой варистором энергии при снижении коэффициента защиты варистора благодаря снижению токов утечки.
Сущность изобретения заключается в том, что керамический материал для варисторов на основе оксида цинка, включающий добавки оксидов Bi, Sb, Mn, Co, Si, Cr, Al, Zr, Y, дополнительно содержит оксид В, а концентрация оксида Zr относится к концентрации оксида Y как 1:1÷1:3 при следующем соотношении компонентов, мол.%;
ZnO 94,000÷98,00
МnO2 0,200÷0,75
СO2O3 0,500÷1,00
Bi2O3 0,500÷1,60
Сr2О3 0,100÷0,50
Sb2O3 0,500÷1,50
В2O3 0,010÷0,13
Al2O3 0,005÷0,02
SiO2 0,030÷0,10
ZrO2 0,010÷0,20
Y2O3 0,010÷0,20
Предлагаемое техническое решение направлено на уменьшение тока утечки варисторной керамики, что позволяет снизить отношение остающегося напряжения при прохождении импульса через варистор к максимальному допустимому рабочему напряжению варистора, так называемый коэффициент защиты (Кз). Концентрация добавок оксидов иттрия и циркония обеспечивает такие условия, что образуемые такими добавками центры на границах зерен и межзеренной фазы варисторной керамики позволяли создать такой континиум энергетических уровней, которые максимально компенсировали бы друг друга и ловушки, связанные с собственными дефектами оксида цинка, снижая концентрацию равновесных носителей тока до минимума. При этом уменьшается ток утечки, что приводит к уменьшению коэффициента защиты.
Модель двойного барьера Шоттки, наиболее адекватно описывающая вольт-амперную характеристику варистора в области более высоких значений напряженности электрического поля, указывает на существенный вклад в ток утечки процессов диффузии и дрейфа неосновных носителей тока. Компенсация полупроводника глубокими ловушками, как известно, позволяет значительно уменьшить концентрацию неосновных носителей в нем. Наличие нескольких типов ловушек, отличающихся энергией активации и сечением захвата электронов, предопределяет то, что получение неслучайного результата в достижении максимальной компенсации возможно в определенном диапазоне концентраций вводимой примеси и при определенном соотношении компонентов.
Отличительной особенностью заявляемого материала является то, что концентрация добавок циркония и иттрия, создающих глубокие уровни вблизи границы зерно ZnO - межзеренная фаза, относительно невелика и находится в достаточно ограниченном диапазоне и в определенном соотношении. А именно, концентрация оксидов циркония и иттрия составляет 0,01÷0,2 мол.% в соотношении 1:1÷1:3, соответственно. Кроме того, дополнительно вводится оксид бора, создающий мелкие уровни акцепторного типа. Совокупность таких добавок и в таком количестве и соотношении обеспечивает максимально возможную компенсацию акцепторных и донорных уровней оксида цинка с учетом наличия других примесных уровней и уровней, создаваемых собственными дефектами ZnO.
Предлагаемый материал получают по следующей технологии.
Все исходные добавки, взятые в необходимых соотношениях, тщательно перемешивают в шаровой мельнице яшмовыми мелющими телами в дистиллированной воде в течение 20-24 часов. Полученную жидкую смесь вливают в работающий ротационно-пульсационный смеситель, где в водной среде происходит смешение добавок с мелкодисперсным оксидом цинка. Время смешения 15÷20 мин. Полученную смесь высушивают, протирают через металлическое сито, добавив связки, и прессуют в цилиндрические заготовки варисторов при удельном давлении 0,4÷0,7 т/см2. Заготовки обжигают на воздухе при температуре 1200÷1250°С в течение 2÷4 часов. Для получения варисторов на торцевые поверхности полученных изделий наносят алюминиевые электроды методом электродугового напыления.
Заявляемое изобретение поясняют примеры, приведенные в таблицах 1 и 2.
Свойства материала иллюстрируют следующие параметры, значения которых соответствуют среднему по 5÷10 образцам варисторов от партии:
Uкл - классификационное напряжение при плотности тока 0,07 мА/см2;
Екл - градиент классификационного напряжении при плотности тока 0,07 мА/см2;
Wуд - максимальная удельная энергия, рассеиваемая материалом без потери электрической прочности (расчетная величина для импульса с амплитудой 35 А/см2 и длительностью 2 мс);
Jут - плотность тока утечки, мкА/см2 (ток утечки определялся при напряжении ниже классификационного:
- Jут0,75 - плотность тока при напряжении 0,75 Uкл;
- Jут0,90 - плотность тока при напряжении 0,90 Uкл);
Кз - коэффициент защиты - отношение остающегося напряжения при прохождении импульса с плотностью тока 35 А/см2 к максимальному допустимому постоянному рабочему напряжению.
Кз определяся экспериментально путем измерения остающегося напряжения при прохождении через варистор прямоугольного импульса тока с указанной плотностью, длительностью 2 мс и деления этого значения на напряжение, при котором мощность, выделяемая на варисторе в стационарном режиме при температуре окружающей среды 115±5°С, достигала максимально допустимой - 40 мВт/см3.
Описание примеров
Приведем две группы примеров заявляемых составов. Первая - составы с содержанием ZnO, близким к минимальному в заявляемых пределах. Такие составы обеспечивают получение варисторов (при температуре спекания около 1250оС) с градиентом классификационного напряжения, Екл ,около 1800 В/см и удельной энергией, Wуд, порядка 155 Дж/см3. Вторая - составы с содержанием ZnO, близким к максимальному в заявляемых пределах. Такие составы обеспечивают получение варисторов с градиентом классификационного напряжения, Екл ,около 1900 В/см и удельной энергией, Wуд, порядка 150 Дж/см3 при той же температуре спекания.
Первая группа примеров приведена в таблице 1, вторая - в таблице 2. Отметим, что соотношение добавок, суммарная концентрация которых приведена в третьем столбце таблиц, не влияет существенно на токи утечки, их температурную зависимость и коэффициент защиты, так как они в минимальной степени связаны с образованием центров, создающих глубокие уровни на границах зерен.
Пример №1 показывает значения параметров нелегированного предлагаемыми добавками материала (приведен для сравнения).
Примеры №2 и №3 показывают значения параметров материала для минимального и максимального уровня легирования Y2O3 и ZrO2, представленного в прототипе.
Примеры №4÷№16 показывают, что при увеличении уровня легирования Y2O3 и ZrO2 в отсутствие В2O3 происходит уменьшение тока утечки и коэффициента защиты. При этом минимального значения эти параметры достигают в примере №12.
Примеры №17-№25 показывают, что для составов первой группы дополнительное введение В2О3 в материалы, соответствующие примерам №11-№13, позволяет еще в большей степени уменьшить токи утечки и снизить Кз.
В таблице 2 также пример №26 показывает значения параметров нелегированного предлагаемыми добавками материала (приведен для сравнения), а примеры №27 и №28 показывают значения параметров материала для минимального и максимального уровней легирования Y2O3 и ZrO2, представленных в прототипе.
Примеры №29÷№41 показывают, что при увеличении уровня легирования Y2O3 и ZrO2 в отсутствие В2O3 происходит вначале уменьшение тока утечки и коэффициента защит, а при дальнейшем некоторое увеличение при общем уровне более низком, чем у нелегированного иттрием и цирконием материала и прототипа. Примеры №42÷№50 показывают, что дополнительное введение В2О3 в материалы, соответствующие примерам №36÷№38, позволяет еще в большей степени уменьшить токи утечки и снизить Кз.
Примеры с №19 по №25 из первой группы составов и с №43 по №50 из второй группы составов показывают, что по сравнению с материалом прототипа и нелигированной керамикой (примеры 1 и 26) предлагаемый материал имеет на порядок меньшие токи утечки и на 20-25% более низкие коэффициенты защиты.
Таким образом, предлагаемый материал позволяет создавать на его основе варисторные энергопоглотители, способные защитить от перенапряжений электрические машины мощностью в десятки мегаватт при их экстренном отключении, не допуская скачка напряжения более чем в 1,5 раза.
Figure 00000001
Figure 00000002

Claims (1)

  1. Керамический материал для варисторов на основе оксида цинка, включающий добавки оксидов Bi, Sb, Mn, Co, Si, Cr, Al, Zr, Y, отличающийся тем, что он дополнительно содержит оксид В, а концентрация оксида Zr относится к концентрации оксида Y как 1:1÷1:3 при следующем соотношении компонентов, мол.%:
    ZnO 94,000÷98,00 MnO2 0,200÷0,75 CO2O3 0,500÷1,00 Bi2O3 0,500÷1,60 Cr2O3 0,100÷0,50 Sb2O3 0,500÷1,50 B2O3 0,010÷0,13 Al2O3 0,005÷0,02 SiO2 0,030÷0,10 ZrO2 0,010÷0,20 Y2O3 0,010÷0,20
RU2012127304/03A 2012-06-20 2012-06-20 Керамический материал для варисторов на основе оксида цинка RU2514085C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012127304/03A RU2514085C2 (ru) 2012-06-20 2012-06-20 Керамический материал для варисторов на основе оксида цинка

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012127304/03A RU2514085C2 (ru) 2012-06-20 2012-06-20 Керамический материал для варисторов на основе оксида цинка

Publications (2)

Publication Number Publication Date
RU2012127304A RU2012127304A (ru) 2013-12-27
RU2514085C2 true RU2514085C2 (ru) 2014-04-27

Family

ID=49786065

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012127304/03A RU2514085C2 (ru) 2012-06-20 2012-06-20 Керамический материал для варисторов на основе оксида цинка

Country Status (1)

Country Link
RU (1) RU2514085C2 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2568444C1 (ru) * 2014-11-27 2015-11-20 Федеральное государственное бюджетное учреждение науки Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева Кольского научного центра Российской академии наук (ИХТРЭМС КНЦ РАН) Оксидно-цинковая варисторная керамика
RU2637260C2 (ru) * 2015-12-09 2017-12-01 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский технологический университет " Керамический материал для варисторов
RU2678072C2 (ru) * 2014-05-05 2019-01-22 Джонсон Энд Джонсон Конзьюмер Компаниз, Инк. Порошковый оксид цинка с допирующими добавками ионов марганца, железа и меди
RU2712822C1 (ru) * 2019-04-26 2020-01-31 Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр "Кольский научный центр Российской академии наук" (ФИЦ КНЦ РАН) Высоковольтная оксидно-цинковая варисторная керамика

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111217599A (zh) * 2018-11-26 2020-06-02 西安恒翔电子新材料有限公司 一种多晶半导体材料及其制备方法
CN112794714B (zh) * 2021-04-14 2021-07-20 湖南防灾科技有限公司 一种氧化锌电阻片及其制备方法与调控其电位梯度及通流能力的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1042086A1 (ru) * 1982-03-23 1983-09-15 Предприятие П/Я А-3481 Резистивный материал дл варисторов и способ его получени
SU1749922A1 (ru) * 1990-07-23 1992-07-23 Днепропетровский государственный университет им.300-летия воссоединения Украины с Россией Способ изготовлени оксидно-цинковых варисторов
US5739742A (en) * 1995-08-31 1998-04-14 Matsushita Electric Industrial Co., Ltd. Zinc oxide ceramics and method for producing the same and zinc oxide varistors
CN101333104A (zh) * 2008-05-20 2008-12-31 上海大学 超塑性纳米氧化物掺杂的氧化锌压敏陶瓷材料及制备方法
RU2010140145A (ru) * 2009-10-01 2012-04-10 Абб Текнолоджи Аг (Ch) Материал для варистора высокой напряженности поля

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1042086A1 (ru) * 1982-03-23 1983-09-15 Предприятие П/Я А-3481 Резистивный материал дл варисторов и способ его получени
SU1749922A1 (ru) * 1990-07-23 1992-07-23 Днепропетровский государственный университет им.300-летия воссоединения Украины с Россией Способ изготовлени оксидно-цинковых варисторов
US5739742A (en) * 1995-08-31 1998-04-14 Matsushita Electric Industrial Co., Ltd. Zinc oxide ceramics and method for producing the same and zinc oxide varistors
CN101333104A (zh) * 2008-05-20 2008-12-31 上海大学 超塑性纳米氧化物掺杂的氧化锌压敏陶瓷材料及制备方法
RU2010140145A (ru) * 2009-10-01 2012-04-10 Абб Текнолоджи Аг (Ch) Материал для варистора высокой напряженности поля

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2678072C2 (ru) * 2014-05-05 2019-01-22 Джонсон Энд Джонсон Конзьюмер Компаниз, Инк. Порошковый оксид цинка с допирующими добавками ионов марганца, железа и меди
RU2568444C1 (ru) * 2014-11-27 2015-11-20 Федеральное государственное бюджетное учреждение науки Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева Кольского научного центра Российской академии наук (ИХТРЭМС КНЦ РАН) Оксидно-цинковая варисторная керамика
RU2637260C2 (ru) * 2015-12-09 2017-12-01 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский технологический университет " Керамический материал для варисторов
RU2712822C1 (ru) * 2019-04-26 2020-01-31 Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр "Кольский научный центр Российской академии наук" (ФИЦ КНЦ РАН) Высоковольтная оксидно-цинковая варисторная керамика

Also Published As

Publication number Publication date
RU2012127304A (ru) 2013-12-27

Similar Documents

Publication Publication Date Title
RU2514085C2 (ru) Керамический материал для варисторов на основе оксида цинка
Zhao et al. Tailoring the high-impulse current discharge capability of ZnO varistor ceramics by doping with Ga2O3
Meng et al. Electrical properties of ZnO varistor ceramics modified by rare earth-yttrium and gallium dopants
EP2857374A1 (en) Method for manufacturing varistor ceramics and varistors having low leakage current
Meng et al. Tailoring electrical properties of multiple dopant-based ZnO varistor by doping with yttrium, gallium, and indium
Nahm Nonlinear behavior of Tb4O7-modified ZnO-Pr6O11-based ceramics with high breakdown field
Meng et al. Low-residual-voltage ZnO varistor ceramics improved by multiple doping with gallium and indium
Ahmed et al. The effect of doping with some rare earth oxides on electrical features of ZnO varistor
Nahm Nonlinear properties and stability against DC accelerated aging stress of praseodymium oxide-based ZnO varistors by Er2O3 doping
Nahm et al. Electrical properties and DC-accelerated aging behavior of ZnO–Pr6O11–CoO–Cr2O3–Dy2O3-based varistor ceramics
Nahm Pulse aging behavior of ZnO–Pr6O11–CoO–Cr2O3–Dy2O3 varistor ceramics with sintering time
KR101617547B1 (ko) ZnO계 바리스터 조성물
Nahm Effect of sintering temperature on varistor properties of Zn–V–Mn–Nb–Tb oxide ceramics
Kulawik et al. Electrical and microstructural characterization of doped ZnO based multilayer varistors
Ke et al. Influence of rare-earth doping on the electrical properties of high voltage gradient ZnO varistors
Nahm et al. Effect of sintering time on electrical properties and stability against DC accelerated aging of Y2O3-doped ZnO-Pr6O11-based varistor ceramics
Abdullah et al. Optimization Of Impurities “Bi2O3, Nb2O5, MnO2, Co3O4, Cr2O3, NiO, Ce2O3, and La2O3” to Improve the ZnO Based Varistor Nonlinearity
Ganesh A Review of zinc oxide varistors for surge arrester
Wang et al. Electrical properties of Pr6O11-doped WO3 capacitor–varistor ceramics
Nahm Influence of Mn doping on microstructure and DC-accelerated aging behaviors of ZnO–V2O5-based varistors
KR101166049B1 (ko) ZnO계 바리스터 조성물
Yang et al. Effect of Doped Sb 2 O 3 on the Electrical Properties of TiO 2-Based Ceramics with the Dual Function of a Varistor–Capacitor
Lee et al. Electrical properties and microstructure of ZnO varistor with high surge protective characteristics
Lin et al. Electrical properties and degradation phenomena of glass-doped ZnO chip varistors
He et al. Aging characteristics and mechanisms of ZnO nonlinear varistors

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20150621