CN101330934A - 一种用于骨再生的可模压的生物材料 - Google Patents

一种用于骨再生的可模压的生物材料 Download PDF

Info

Publication number
CN101330934A
CN101330934A CNA2006800469268A CN200680046926A CN101330934A CN 101330934 A CN101330934 A CN 101330934A CN A2006800469268 A CNA2006800469268 A CN A2006800469268A CN 200680046926 A CN200680046926 A CN 200680046926A CN 101330934 A CN101330934 A CN 101330934A
Authority
CN
China
Prior art keywords
biomaterial
moldable
water
moldable biomaterial
implant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006800469268A
Other languages
English (en)
Other versions
CN101330934B (zh
Inventor
米夏埃多·西德勒
克劳泽·黑勒布兰德
安德烈斯·许茨
萨布里纳·克吕格尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bionet Pharma GmbH
Original Assignee
Scil Technology GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scil Technology GmbH filed Critical Scil Technology GmbH
Publication of CN101330934A publication Critical patent/CN101330934A/zh
Application granted granted Critical
Publication of CN101330934B publication Critical patent/CN101330934B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/502Plasticizers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Abstract

本发明涉及一种可模压的生物材料,其包括颗粒状固体多孔材料和可生物降解的糊状物材料。所述糊状物材料和颗粒状固体多孔材料形成一种用于骨取代或骨增长的基质。在各种实施方案中,所述基质具有高的结构整体性,其不会在植入后立即或短时间内塌陷为无确定形态的无孔物质,其在植入后保持其多孔性,在植入后显示两阶段的降解和/或当被应用于湿润的开放的植入部位时,具有很好地抗洗出能力。活性剂,如骨生长因子,能被添加至本发明的可模压的生物材料中。本发明还提供成套组件、植入物、制备方法以及医学应用。

Description

一种用于骨再生的可模压的生物材料
技术领域
本发明涉及一种可模压的生物材料,其包括微粒状固体多孔材料和可生物降解的糊状物材料。
所述糊状物材料和微粒状固体多孔材料形成用于骨取代或骨增长的基质。在各种实施例中,所述基质具有高度的结构完整性,植入后不会立刻或短时间内塌陷为无确定形态的无孔物质,并在植入后保持多孔性,植入后显示两阶段的降解和/或当该基质应用于湿的开放的移植部位时,具有良好的抗洗出能力。
活性剂,例如骨生长因子,能被添加到本发明的可模压的生物材料中。
本发明还提供了成套组件(kit)、植入体、制备方法以及医学应用。
背景技术
脊柱融合术或脊柱关节固定术(例如,腰部脊柱融合术)通常作为由脊骨退变和不稳而导致慢性下腰疼痛病人的“最终手段”使用。用于治疗由椎间盘开裂或退变、椎间盘塌陷和退变脊椎关节的关节变形而导致的腰痛的一种建议的方法是去除椎间盘而由多孔的装置取代,其允许骨头的生长和相邻椎骨的融合。这种融合技术包括前路腰椎椎间融合术(ALIF)、后路腰椎椎间融合术(PLIF)、除后外侧融合术之外的经椎间孔入路腰椎椎间融合术(TLIF),在后外侧融合术中,融合装置放置在更后外侧而不是取代椎间盘。
源自髂嵴的自体骨移植物是用于脊椎融合术的黄金标准材料。但是,使用回肠作为获得自体骨的部位呈下降趋势是由于病人产生了另外的问题。这些问题包括常规的术后切口疼痛、由于可能形成神经瘤导致的复杂性局部疼痛疾病、感染、术后局部血肿、对骶骨关节的损伤、对骨盆韧带的损伤以及骨盆软组织问题。此外,自体骨移植物具有有限的可获得性和不一致的骨质量。因此,自体移植物的使用将由使用骨替代物结合生长因子的方法取代,所述生长因子例如是包括BMP-2、BMP-7和GDF-5的TGF-β/BMP族的那些生长因子。
这些因子结合下述物质一起使用:胶原质、胶原质和羧甲基纤维素,诸如OP-1(
Figure A20068004692600051
(OP-1植入体)/OP-1灰泥)、
Figure A20068004692600052
(
Figure A20068004692600053
)、胶原复合羟基磷灰石、磷酸钙粘结剂(Bone)、陶瓷化骨、β-TCP、β-TCP/羟基磷灰石复合物(TCP/HA 15∶85,TCP/HA 40∶60)、β-TCP聚合物复合材料,其包括PLA-DX-PEG共聚凝胶,或水凝胶。
WO94/15653公开了包括磷酸三钙(TCP)、TGF-β和胶原质的配方。TCP已被公开作为TGF-β的运送载体。
EP1150726描述了用于诱导新骨生长的成骨海绵体,其包括可再吸收的海绵体材料、成骨因子和矿物微粒。
在PCT/EP2005/006204中,本发明的发明人提供了一种原位硬化的糊状物,其包括增塑剂、不溶于水的聚合物和不溶于水的固体填充物,以及任选的成孔剂,所述成孔剂在与诸如水或体液的水性液体接触后变硬。
但是,传统的融合装置或生物材料存在许多缺点,例如,它们不耐压,需要非生理学的高浓度的骨生长促进物质,如所描述的胶原基材料,伴随产生不需要的副作用的风险。其它复合物(例如,粘结剂)在植入后立即或短时间内塌陷成无确定形态的无孔物质,且不会保持多孔基质的物理完整性。可生物降解的植入体材料,诸如WO03/043673中描述的β-磷酸三钙颗粒或HA纳米悬浮物,当被用于湿润的开放的部位时,如严重出血的环境时,易于被洗出或碎裂。诸如羟基磷灰石的生物材料是非生物降解或部分生物降解,其长时间地保留在体内。
变硬材料的另一个限制因素是硬化过程与应用之间短的时间范围以及缺乏多孔性(参见例如经典磷酸钙粘结剂(CPC),例如
Figure A20068004692600055
(α-BSM,US2005/0089579)、Biocement D和H、
Figure A20068004692600056
Figure A20068004692600057
Figure A20068004692600058
Figure A20068004692600059
Mimics
Figure A200680046926000510
Figure A200680046926000511
Figure A200680046926000512
更多的例子在PCT/EP2005/006204中有描述,该文献通过引用全部并入本文)。大部分这些可获得的CPC配方是由在相互混合时能进行反应并变硬的两种成分组成。在应用前立即将粉末状的成分与水溶液混合以形成可注射的糊状物,有些水溶液包括加速剂或促进剂。这些糊状组合物很难以糊状粘稠度保存超过几小时至一周或多周而不变硬,在大多数情况下,甚至不超过20分钟至约60分钟或达到约15分钟,这取决于发生自固化反应的温度。包括这些含有脱钙骨基质(DBM)的CPC,例如在US2005/0084542中描述的,使用两种无机成分以进行骨水泥反应(cement reaction),在加入生理学的水性流体之后,用于体内的支架形成。
预混合的糊状配方的另一个缺点是必须无菌制备,因为使用常规的最终灭菌方法,如伽玛灭菌,对最终产品进行灭菌是不可能的。因此,一个原因是活性剂的破坏。因而制造是精细且高成本的。
发明内容
总之,尽管有诸如陶瓷化材料的生物材料,如β-TCP、羟基磷灰石或两者的混合物、骨粘合剂、包括基于聚合物的材料,或如上描述的胶原质的存在,但仍有进一步改进生物材料和用于包括脊椎融合、颅颌面再造、关节再造和骨折修复的适应症中提高骨增长的方法的需求。存在对提高生物相容性和生物可降解性的组合物的需求,所述组合物在体内提供多孔支架用于细胞的浸润和迁移以通过骨性结构取代生物材料,同时减轻了机体的负担。优选地,所述组合物应是克服了现有技术中传统融合装置或生物材料存在的如上所述的一个或多个缺点的生物材料或装置。
另一个目的是提供一种改进生物相容性和生物可降解性的组合物,所述组合物被调整至缺损部位,并在体内提供多孔支架用于细胞浸润和骨取代。
本发明的另一个目的是提供原位硬化的生物材料,其适于通过在放入缺损部位后能形成大孔支架的组合物而移植入需要骨增长的受治疗者,所述生物材料在体内硬化。
本发明的另一个目的是提供一种原位硬化的生物材料,其适于通过在放入缺损部位后能形成大孔支架的组合物而移植入需要骨增长的受治疗者,所述生物材料在体内硬化,其中可模压的生物材料不是含钙的粘合剂。
本发明的另一个目的是提供一种原位硬化生物材料,其适于通过在放入缺损部位后能形成大孔支架的组合物而移植入需要骨增长的受治疗者,所述生物材料在体内硬化,且具有改良的多孔性和/或机械强度。
本发明的另一个目的是提供一种原位硬化生物材料,其适于通过在放入缺损部位后能形成大孔支架的组合物而移植入需要骨增长的受治疗者,所述生物材料在体内硬化,其易于制备且显示了改良的储存稳定性。
本发明的另一个目的是提供一种改良的生物相容的和生物可降解的组合物,并持续释放活性剂。
本发明的另一个目的是提供一种改良的生物相容的和生物可降解的组合物,其适于作为允许与传统的装置相比更低剂量的活性剂的传送系统。
本发明的另一个目的是提供一种设计用于诸如长骨融合或脊椎融合的骨融合的改良的骨移植取代物材料。
本发明的另一个目的是提供一种脊椎植入物,其包括一种生骨成分,以促进相邻椎骨之间的骨融合。
本发明的另一个目的是提供一种用于骨增长的改良的骨移植取代物材料,所述骨增长包括上颌面骨增长和牙周再生。
令人惊讶地,本发明的发明人能够提供一种能实现这些目的的可模压的生物材料以及用于生产所述生物材料的相应方法。
于是,本发明的发明人提供一种可模压生物材料,其包括具有平均粒径为100-4000μm的颗粒状固体多孔材料以及可生物降解的糊状物材料。
所述糊状物材料和固体颗粒多孔材料形成一种基质,其尤其有利于骨的取代或增加。所述基质在移植后的至少约两至三天的时间内保持其结构的完整性,并且在植入发生骨取代的生理环境后保持其多孔结构。“结构完成性”是指基本保持被植入基质的形状和大小。这是由于所述两种成分体系,其中所述固体颗粒多孔材料形成具有高机械强度的结构,所述糊状物材料使固体颗粒多孔材料保持在一起。
本发明可模压生物材料的结构完整性与诸如陶瓷化的或纳米结晶羟基磷灰石悬浮物的现有技术组合物的其它糊状物相比,所述现有技术糊状物的结构在植入后立即或在短时间内塌陷为无确定形态的无孔物质。本发明的可模压生物材料的基质的优点还在于在植入后保持其多孔性,这对于骨取代或骨增长过程很重要。
本发明的可模压生物材料是一种双成分体系,其在移植后在体内显示为两阶段降解,即,每一种组分,颗粒状固体多孔材料和可生物降解糊状材料形成不同的降解动力学。由于所述的两阶段降解,本发明的可模压生物材料在植入后保持多孔结构,以提高骨形成。另外,所述的两阶段降解能使改善诸如骨生长诱导剂的活性剂的持续释放或运输。
优选地,本发明可模压生物材料具有该组分之一的两阶段降解模式,其在植入体内后最终成为双组分体系的三阶段降解模式。所述三阶段降解模式可以分别由颗粒状固体多孔材料、可生物降解糊状物材料的聚合物组分以及可生物降解糊状物材料的陶瓷化组分的不同的降解动力学导致的。
本发明的可模压生物材料的一个优点在于,其具有可模压粘结稠度,其易于被使用的部位接纳并保留在使用的部位。与诸如β-磷酸三钙颗粒或HA纳米悬浮物的其它可生物降解的植入物材料相比,当本发明的植入物用于湿润的开放的植入部位,如严重出血环境时,其具有很好的抗洗出能力。
本发明的另一个优点在于,有机溶剂对包含在植入材料中的活性物质的负面影响可通过将包含有机溶剂的可生物降解的糊状物材料与包含诸如β-磷酸三钙颗粒的颗粒状固体多孔材料的活性物质分隔开而被消除。
本发明的再一个优点在于,与传统的糊状组合物相比,可压模生物材料增加了多孔性,减少了聚合物含量,从而减轻了机体的负担。此外,与传统的糊状组合物相比,可模压生物材料的机械稳定性增强了。
通过提供一种包含本发明可模压生物材料的两种单独的组分的成套组件,使两种组分在使用前立即进行混合成为可能。在使用本发明的可模压生物材料之前,立即将含有陶瓷材料的活性物质与含有有机溶剂的可生物降解的糊状材料混合,与已处于储存条件下的含有有机溶剂和活性剂的配方相比,进一步增加了诸如骨生长诱导蛋白的活性剂的保存期限。
成套组件的另一个优点在于,由于两种组分被分隔开,可生物降解的糊状物材料能够进行最终的灭菌,例如通过伽玛灭菌。
本发明的一个方面是,与诸如PCT/EP2005/006204中的糊状物的聚合物糊状物相比,尽管植入材料的聚合物含量降低了,但令人惊讶的是,所述植入物材料在2小时之后显示的硬度比没有添加多孔陶瓷材料的聚合物糊状物的硬度高2.5倍。
本发明的其它效果或优点将在下文中描述。
本发明的实施方案为:
(1)一种可模压生物材料,其包括:
a)平均粒径为100-4000μm的颗粒状固体多孔材料,以及
b)可生物降解的糊状物材料。
(1a)优先地,所述颗粒状固体多孔材料形成所述可模压生物材料的内部结构,并构成机械强度,而所述可生物降解的糊状物材料使颗粒状固体多孔材料处于一起。所述可生物降解的糊状物材料进一步增强固体颗粒多孔材料的机械强度。由于本发明,在前的颗粒状固体多孔材料被并入单一的结构体中,所述结构体具有,与固体颗粒多孔材料(例如,自由流动的陶瓷颗粒)和可生物降解的糊状物材料相比,改进的机械特性。
(1b)更优选地,所述可模压生物材料是一种骨取代材料。
(1c)进一步优选地,所述可模压生物材料是无水的。
(1d)最优选地,所述可生物降解的糊状物材料包括非胶原质基聚合物。
(1e)在另一个实施方案中,所述可生物降解的糊状物材料包括一种合成聚合物。
(1f)在另一个实施方案中,所述可模压生物材料的聚合物含量少于35wt%,优选少于25wt%,少于15wt%,最优选约10-15wt%。
(1g)在另一个实施方案中,所述可模压生物材料的颗粒状固体多孔材料以及水不溶的固体填充物的含量超过50wt%,优选超过55wt%,最优选约58-62wt%。
(1h)在另一个实施方案中,可模压生物材料内的固体材料的量至少为55wt%,优选在55wt%至80wt%之间,在55wt%至70wt%之间,在55wt%至65wt%之间,在58wt%至62wt%之间。优选可模压生物材料内的固体材料和/或固体颗粒多孔材料选自硫酸钙、磷酸钙和源自牛的骨移植替代物材料。
(2)实施方案1的可模压生物材料,其中
所述可生物降解的糊状物材料是一种糊状物,其包括:
i.一种增塑剂,其是可溶于水的或可与水混合的生物相容的有机液体;
ii.一种不溶于水的聚合物,其可溶于所述可塑剂,并是生物相容的、可生物降解的,和/或可生物再吸收的;以及
iii.一种不溶于水的固体填充物,其不溶于所述可塑剂,
其中所述糊状物优选是可注射的。
(2a)实施方案1的可模压生物材料,其中
a)所述颗粒状固体多孔材料包括由磷酸钙或硫酸钙,优选磷酸三钙,最优选β-磷酸三钙制成的颗粒,优选陶瓷化颗粒,其平均粒径为100-4000μm,100-3000μm,100-2000μm,100-1500μm,500-4000μm,500-3000μm,500-2000μm,500-1500μm,或500-1000μm,以及
b)所述可生物降解的糊状物材料是一种糊状物,其包括:
i.一种增塑剂,其是可溶于水的或可与水混合的生物相容的有机液体;
ii.一种不溶于水的聚合物,其可溶于所述增塑剂,并是生物相容的、可生物降解的,和/或可生物再吸收的;以及
iii.一种不溶于水的固体填充物,其不溶于所述可塑剂,
其中所述糊状物一方面优选是可注射的。
(2b)任选地,所述可生物降解的糊状物材料是可注射的且在其包装中是稳定的,且一旦与水性媒介或体液接触后,能够在原部位硬化以形成固体植入体。
(2c)本发明的所述颗粒状固体多孔材料是可生物降解的、可生物再i吸收的,和/或生物相容的,优选大孔的和/或微孔的生物材料,其具有骨传导性,加入诸如骨生长促进物质的活性剂或其结合物同样具有骨传导特性。它可增加可模压生物材料的机械稳定性,并在诸如聚合物成分的b)中可生物降解糊状物材料降解后,留下作为用于细胞浸润和随后的骨取代的基质。
优选地,所述固体多孔材料具有相互连接的孔。
优选地,所述的颗粒状固体多孔材料是一种无机钙化合物或诸如生物玻璃的二氧化硅基材料。更优选地,所述颗粒状固体多孔材料是磷酸钙,最优选磷酸三钙,β-磷酸三钙、α-磷酸三钙、磷灰石、含有磷酸钙的粘合剂、磷酸四钙、两阶段磷酸三钙/羟基磷灰石材料(TCP/HA)或其组合物或混合物,最优选β-磷酸三钙。
优选地,所述颗粒状固体多孔材料具有颗粒状外观,更优选作为自由流动的颗粒。所述颗粒状固体多孔材料优选的平均粒径及其优选的实施方案为100-4000μm,100-3000μm,100-2000μm,100-1500μm,500-4000μm,500-3000μm,500-2000μm,500-1500μm,或500-1000μm。
另外,所述颗粒状固体多孔材料任选是活性剂的载体,如下文中实施方案6中描述的。优选地,所述活性剂至少部分均匀地或均匀地分布于颗粒状固体多孔材料上。最优选地,所述颗粒状固体多孔材料均匀或随机的涂敷有诸如形态发生蛋白的活性剂,其包括但不限于BMP-2、BMP-7或GDF-5。所述包括BMP-2、BMP-7或GDF-5的活性剂可以现有技术中已知的活性形式使用,包括它们的成熟蛋白或生物活性片段或其变异体(例如,带有N-末端丙氨酸延伸的成熟人类BMP-2蛋白)。
(2d)在一个实施方案中的所述可生物降解的糊状物材料内的所述不溶于水的固体填充物包括:
a)一种无机化合物,和/或
b)一种有机化合物。
这个实施方案中的无机化合物优选是钙化合物、氧化镁、氢氧化镁、从、碳酸镁、二氧化硅或其组合物或混合物,更优选硫酸钙、碳酸钙或磷酸钙,最优选磷酸三钙、β-磷酸三钙、α-磷酸三钙、磷灰石、含有磷酸钙的粘结剂、磷酸四钙、两阶段磷酸三钙/羟基磷灰石材料(TCP/HA)或其组合物或混合物。
所述有机化合物包括壳聚糖、胶原质、藻酸钙、聚(2-甲基丙烯酸羟乙酯)、透明质酸或其衍生物、纤维素或其衍生物,或淀粉或其衍生物。
在(2d)中提及的一种或多种化合物的组合物也包括在内。
任选地,可生物降解的糊状物材料包括至少一种另外的含有钙的不溶于水的固体填充物,优选选自硫酸钙、碳酸钙、磷酸氢钙或羟磷灰石。
(2e)一个实施方案中的可生物降解的糊状物材料内的所述不溶于水的聚合物包括聚(α-羟酸)、聚原酸酯、聚酸酐、聚氨基酸、聚乙醇酸(PGA)、聚乳酸(PLLA)、聚(D,L)-乳酸(PDLLA)、聚(乳酸-共-羟基乙酸)(PLGA)、聚(乳酸-共-羟基乙酸)聚乙二醇(PLGA-PEG)共聚物、聚(3-羟基丁酸)(P(3-HB))、聚(3-羟基戊酸)(P(3-HV))、聚对二氧杂环己酮(PDS)、聚(ε-己内酯)(PCL)、聚酸酐(PA)聚原酸酯、polyglactine,或其共聚物、三元共聚物、嵌段共聚物、组合物或混合物。
优选地,所述不溶于水的聚合物是PLGA,优选不溶于水的聚合物具有乳酸/羟基乙酸的比少于75∶25,优选50∶50。
同样优选地,所述不溶于水的聚合物是封端聚合物。封端聚合物包括修饰的,但不含有自由羧基末端基团,与非封端的聚合物相比,其导致极性的变化。
优选地,所述不溶于水的聚合物是非封端的聚合物或带有自由羧基末端基团的聚合物。与封端的聚合物相比,这样的聚合物能更好地与极性的,优选带正电的活性剂相互作用。这就产生了与封端的聚合物相比更好地持续释放的优点。
一方面,所述可生物降解的糊状物材料的不溶于水的聚合物的含量等于或少于40wt%。
在另一个实施方案中,所述可生物降解的糊状物材料组合物的密度等于或大于1.21g/ml,优选在1.3g/ml至1.5g/ml之间。
(2f)一个实施方案中的所述可生物降解的糊状物材料内的所述增塑剂包括聚乙二醇(PEG)400、PEG200、PEG300、PEG600、1,3-丁二醇、蓖麻油、N-甲基-2-吡咯烷酮、2-吡咯烷酮、C2至C6烷醇、丙二醇、丙酮缩甘油、丙酮、乙酸甲酯、乙酸乙酯、乳酸乙酯、甲基乙基酮、二甲基甲酰胺、二甲亚砜、二甲砜、四氢呋喃、癸基甲基亚砜(decylmethyl sulfoxide)、油酸、碳酸丙烯酯、N,N-二乙基-m-甲苯酰胺、1-正十二烷基氮杂环庚烷-2-酮或其混合物。
优选地,所述可生物降解的糊状物材料内的增塑剂包括聚乙二醇(PEG)400。
优选地,所述可生物降解的糊状物材料的可塑剂含量为40-95wt%,更优选为40-55wt%。
(2g)在所述可生物降解的糊状物材料中,不溶于水的固体填充物与不溶于水的聚合物的比(即重量比)优选1∶1至5∶1,更优选1∶1至3∶1,进一步优选为1.5∶1,如在一混合物中含有少于50wt%,优选30-36wt%的不溶于水的固体填充物和少于40wt%,优选20-25wt%的不溶于水的聚合物。
(3)实施方案1或2的任一的可模压生物材料,其具有可模压粘稠度,优选其一旦与水性媒介或体液接触后,能够原部位硬化以形成固体植入体,优选为固体多孔植入体。
(3a)更优选地,上述实施方案中的任一种的可模压生物材料,其中所述固体植入物具有相互连接的孔。
(4)实施方案1-3中任一种的可模压生物材料,其中,组分a)和b)按一定配比使用,以形成粘合产品,优选比例为1∶0.3wt%至1∶2wt%,优选1∶1wt%至1∶2wt%,更优选1∶1.3wt%至1∶1.7wt%,最优选1∶1.4至1∶1.6wt%。
在一个优选实施方案中,可模压生物材料的结构是a)和b)的两组分体系。颗粒固体多孔材料在体内变硬后增强体系的机械强度,而可生物降解的糊状物材料提供粘合的半固体结构,其使颗粒状固体多孔材料在应用前和应用中保持在一起。在应用至移植部位后,所述半固体粘合材料硬化,并通过在体内的颗粒之间形成至少部分固体桥而将固体多孔颗粒连接到一起。因此,通过两种组分的结合而产生了粘合的可模压材料,与诸如β-TCP的颗粒材料不同,所述可模压材料是一种局部固定的生物材料。这种粘合的可模压材料在水溶液或体液内原部位硬化后将转变成用于细胞浸润和随后的骨形成的粘合支架。生物材料的可模压特性有利于填充各种装置或诸如骨材料填充、临界大小缺损、长骨缺损和脊椎融合的各种应用中的骨形成。优选地,采用a)和b)的比例为1∶0.3wt%至1∶2wt%,优选1∶1wt%至1∶2wt%,更优选1∶1.3wt%至1∶1.7wt%,最优选1∶1.4wt%至1∶1.6wt%。这些比例允许陶瓷化颗粒理想地结合成粘合体系,反之亦然,获得用于诸如脊椎融合的适应症的具有最大孔隙度的最终植入材料。最终可模压生物材料内的糊状物材料与陶瓷颗粒之间的比例调节原部位硬化后的生物材料的总孔隙度,并避免材料的塌陷以促进再生过程。即使在聚合物组分降解后,颗粒状固体多孔材料的多孔支架仍保留在应用位置,随后它将被新形成的组织,如骨或软骨取代。
(5)实施方案1-4中任一个的可模压生物材料,其中组分b)的糊状物包括溶于水的降解调节剂。
(5a)在一个实施方案中,可模压生物材料中的所述溶于水的降解调节剂包括下述物质中的一种或多种:
(a)溶胀剂,优选纤维素衍生物;
(b)表面活性剂,优选环氧乙烷和环氧丙烷的嵌段共聚物,如
Figure A20068004692600152
80;或
(c)致孔剂,如海藻糖、甘露醇、蔗糖、山梨糖醇、生理学的氨基酸,例如氨基乙酸、谷氨酰胺、精氨酸、柠檬酸钠、琥珀酸钠和磷酸钠、氯化钠、聚乙烯吡咯酮(PVP)、固体PEG,如PEG4000、PEG10000、碳酸氢钠、硫酸钙或壳聚糖;或
(d)气体或气体形成剂,如碳酸钙或碳酸氢钠。
(5b)可生物降解的糊状物材料中的溶于水的降解调节剂的含量少于10wt%,优选少于5wt%,更优选1-4wt%,进一步优选1.5-3.5wt%,最优选2-3.5wt%,基于组分b)的糊状物的总重量。
(5c)可生物降解的糊状物材料中的溶于水的降解调节剂优选是羧甲基纤维素,更优选羧甲基纤维素少于10wt%,优选少于5wt%,更优选1-4wt%,进一步优选1.5-3.5wt%,最优选2-3.5wt%,基于组分b)的可生物降解的糊状物材料的总重量。
(5d)可生物降解的糊状物材料中的溶于水的降解调节剂的平均粒径优选小于1000μm,优选25-1000μm,更优选50-500μm,最优选100-300μm,优选具有1500-2500mPa*s的粘度,优选具有0.2至1.3的取代度,更优选0.6至1,最优选约0.7。
(6)实施方案1-5中任一个的可模压生物材料,进一步包括
c)活性剂,优选治疗有效量的活性剂,最优选,所述活性剂是一种组织再生剂、骨生长因子、骨诱导剂或软骨诱导剂。
(6a)可模压材料中的活性剂优选涂敷在颗粒状固体多孔材料上或处于固体颗粒多孔材料内。
(6b)另一方面,所述活性剂涂敷在不溶于水的固体填充物上或溶解或悬浮在增塑剂中,优选均匀地涂敷在可生物降解的糊状物材料的不溶于水的固体填充剂上。
(6c)优选地,不含活性剂的或优选含有活性剂的可模压生物材料具有体内骨诱导和/或骨传导,软骨或牙周韧带再生特性。
(7)实施方案1-6中任一个的可模压生物材料,其中所述活性剂选自激素、细胞因子、生长因子,优选骨生长因子、抗生素和小分子。
(7a)一方面,所述活性剂是甲状旁腺激素(PTH)和/或PTH 1-34肽。
(7b)另一方面,所述活性剂是骨诱导或软骨诱导蛋白。
(7c)另一方面,所述活性剂是TGF-β族的或BMP或GDF族的,优选选自BMP-1、BMP-2、BMP-3、BMP-4、BMP-5、BMP-6、BMP-7、BMP-8、BMP-9、BMP-10、BMP-11、BMP-12、BMP-13、BMP-14、BMP-15或BMP-16;GDF-1,GDF-2,GDF-3,GDF-4,GDF-5,GDF-6,GDF-7,GDF-8,GDF-9,GDF-10或GDF-11。如果适合,在这方面,这些活性剂的两种或多种的组合物也被包括在内。
(7d)另一方面,所述活性剂是软骨再生软骨源性视黄酸敏感蛋白(CD-RAP)。
(7e)优选地,所述活性剂选自BMP-2、BMP-7和GDF-5。
(8)实施方案1-7中任一个的可模压生物材料,每毫升生物材料含有5μg-2mg活性剂,优选每毫升250μg-2mg,最优选每毫升250μg-1mg。
(9)实施方案1-8中任一个的可模压生物材料,其显示原位两阶段降解。
本发明的优点之一在于,聚合物和固定不动的颗粒状固体多孔材料形成组合物基质,所述基质尤其有利于骨取代或骨增长。在约两至三天后,在期间保持所述基质的生理学完整性,聚合物降解增加了,并且在超过几周的时间,在生物材料被新形成的骨所取代发生的环境里,保持固体多孔陶瓷的基质结构。
术语“两阶段的降解”是指有两个阶段的降解,聚合物的初期降解和第二降解阶段,其中固体颗粒多孔材料将被例如细胞,如破骨细胞再吸收,且被新形成的骨头所取代。所述第二降解阶段可允许活性剂的进一步释放以加速重塑过程。这个降解模式产生能被分为不同的或连续的释放阶段的释放模式。这样的释放阶段可以例如由初期释放,降解时的进一步释放和/或从聚合物扩散以及聚合物组分分解时的最终释放组成。
(10)实施方案1-9中任一个的可模压生物材料,所述生物材料在原部位硬化后至少2-3天的时间内保持物理完整性,和/或在聚合物组分降解后保持多孔颗粒结构。
(10a)一个优选实施方案中的可模压生物材料包括:
(a)β-磷酸三钙
(b)i.PEG 400
ii.PLGA
iii.磷酸钙,选自含有磷酸钙的粘结剂、碳酸钙、羟磷灰石、磷酸氢钙、β-磷酸三钙和α-磷酸三钙,或其混合物;以及
iv.任选地羧甲基纤维素钠盐。
(10b)进一步优选的实施方案中的可模压生物材料包括:
(a)平均粒径为500-1000μm的β-TCP颗粒,优选总孔隙度为20-70%;
(b)i.PEG 400:40-50wt%,优选40-45wt%;
ii.PLGA:20-25wt%,优选22-25wt%;
iii.磷酸钙,选自含有磷酸钙的粘结剂和β-磷酸三钙:25-40wt%,优选30-35wt%;以及
iv.任选地羧甲基纤维素钠盐。
实施方案(10a)和(10b)中的任选的羧甲基纤维素钠盐组分含量优选少于10wt%,优选少于5wt%,更优选1-4wt%,最优选2-3.5wt%,基于组分b)的糊状物的总重量。
根据本发明的总孔隙度是指诸如β-TCP的合成生物材料的大孔隙度和/或微孔隙度。孔隙度能通过本领域技术人员已知的方法,如水银孔隙度仪和显微CT法进行测定。
优选地,β-TCP是纯相β-TCP,以避免在生物材料降解过程中不希望的副作用。相纯度能通过如Tadic and Epple,(2004),Biomaterials 25:987-994中描述的高分辨X射线衍射法等方法进行测定。
(11)成套组件,其包括如实施方案1-10中任一个的可模压生物材料的隔离的组分a)和b),或如实施方案6-10中任一个的可模压生物材料的隔离的组分a)、b)和c)。
由于本发明,两种组分a)和b)相隔离,a)、b)和c)相隔离,或b)和c)相隔离,提高了活性剂随时间的稳定性,从而增强了可模压生物材料的再生潜力。这有利于长时间的储存以及最终产品的经济有效性。
此外,可通过使用一种或多种初级包装组件,如水泡眼、玻璃小瓶,进一步延长糊状物材料的稳定性,避免水吸收或扩散进入可生物降解的糊状物材料,所述包装组件通常用于药物制备且为本领域技术人员所熟知。与准备使用的产品(例如单一成分产品)相比,两种组分相隔离的另一个优点在于,可模压生物材料的工业制备显著地简化了(例如,通过最终灭菌),并且与其它工业制备方法,如无菌制备工艺相比,成本降低了。
(11a)在一个优选的实施方案中,所述成套组件还可包括使用的设备,例如,注射器、敷药器、注射枪、附加装置、脊椎融合设备、微创应用设备、调药刀、坩埚,或其组合。
(12)一种植入体,其包括如实施方案1-10中任一个所述的可模压生物材料的组分a)和b),或如实施方案6-10中任一个所述的可模压生物材料的组分a)、b)和c),优选变硬的植入体,一旦与水性溶液接触即获得所述变硬植入体。
(13)一种制备可模压生物材料的方法,其包括将一种糊状物与平均粒径为100-4000μm的颗粒多孔材料混合,优选上述实施方案中所描述的颗粒多孔材料,其中所述糊状物包括
i.增塑剂,其是溶于水或易与水混合的生物相容性有机液体;
ii.增塑剂,其是溶于水或易与水混合的生物相容性有机液体;
iii.不溶于水的固体填充物,其不溶于所述增塑剂,
使得混合物具有可模压粘稠度,其一旦与水性媒介或体液接触能够在原位硬化形成固体多孔植入体。
(14)实施方案13的方法,其中将所述可生物降解的糊状物材料干燥以减少水杂质和/或采用不含水的组分i、ii和/或iii制备。
制备步骤的优点在于,进一步增加了糊状物和各可模压生物材料的稳定性,例如以避免太早硬化、可模压生物材料的聚合物化学转化或链断裂。
(15)实施方案1-10中任一个所述的可模压生物材料的应用,实施方案11的成套组件的应用,或实施方案12的植入体的应用,用于制备药物组合物或医疗设备,以用于各种适应症,例如,脊椎融合、长骨缺损、临界大小缺损、骨折不愈合、关节再定位,优选膝盖或臀部再定位、骨折修复、软骨修复、全部厚度或部分厚度缺损、上颌面再造、上颚窦提升术、牙周修复、牙周病、腰椎间盘退化症、脊椎前移症、骨组织填充。
(15a)优选地,所述药物组合物或医疗设备用于融合相邻的椎骨。在这个实施方案中,药物组合物或医疗设备优选被插入相邻的椎骨之间,任选地在诸如脊椎融合笼器或隔片的脊椎植入体内。
用于脊椎手术的脊椎植入体是本领域技术人员熟知的,并以各种不同的外形使用,所述外形包括圆柱或圆锥形笼(螺纹笼)、盒形或长方形笼(非螺纹笼)、水平圆柱体(例如BAK笼)、垂直环(例如Harms笼)、开放式盒子(例如Brantigan笼)、固体长方形平行管状隔片,例如LT-Cage Lumbar Tapered Fusion Device、INTER FIXTM和INTER FIXTMThreaded Fusion Devices,以及可生物再吸收的笼子,例如带有或没有椎弓根螺钉的Telamon PeekTM和Telamon HydrosorbTM,以及固定设备(脊椎融合进展(Advances in spinal fusion)、分子科学(MolecularScience)、生物力学(Biomechanics)和临床处理(Clinical Management),马塞尔德克(Marcel Dekker),Inc NewYork 2004)。上文进一步描述了不同的融合技术,且为本领域技术人员所熟知。
优选地,上述实施方案中的可模压生物材料被填充至脊椎植入物内,使得所述材料填充了空间或中空的结构,以避免纤维组织形成而不是骨形成。任选地,所述被填充的植入物在应用至身体或组织前的短时间内能被浸渍、浸湿或润湿于水性液体、体液或氯化钠溶液中,从而形成对于细胞迁移和组织再生最佳的多孔支架。
或者,所述药物组合物或医疗设备也可用于有或没有内部固定的一节段或多节段的后外侧融合。在这个实施方案中,所述药物组合物或医疗设备优选被嵌入椎骨的后外侧,任选有或没有内部固定。
(15b)这个实施方案考虑了实施方案1-10中任一个的、实施方案11的套件的、或实施方案12的植入物的可模压生物材料可被用于脊椎融合方法中、治疗长骨缺损、治疗临界大小缺损、治疗骨折、治疗骨折不愈合、治疗腰椎间盘退化症、治疗骨椎前移、治疗骨缺损或融合相邻椎骨的方法中,包括在相邻椎骨之间嵌入实施方案1-10中任一个所述的、实施方案11的成套组件的构件的、或实施方案12的植入体的可模压生物材料,所述可模压生物材料位于诸如脊椎融合笼或隔片的脊椎植入体内。
这个实施方案还考虑了实施方案1-10中任一个所述的、实施方案11的套件的、或实施方案12的植入物的可模压生物材料可用于骨和/或软骨诱导方法中,包括嵌入实施方案1-10中任一个所述的、实施方案11的成套组件的构件的、或实施方案12的植入体的可模压生物材料。
(16)由实施方案13或14的方法制备的可压模生物材料。
(17)一种药物组合物,其包括实施方案1-10中任一个所述的、实施方案11的成套组件的、或实施方案12的植入体的可模压生物材料。
(18)实施方案1-10中任一个所述的、实施方案11的成套组件的、或实施方案12的植入物的可模压生物材料在制备用于骨增长的药物组合物中的应用。
(18a)在一个优选实施方案中,所述的骨增长跟随着外伤的、恶性的或人工缺损,或是随后设置植入体的先决条件。
(19)实施方案1-10中任一个所述的、实施方案11的成套组件的、或实施方案12的植入物的可模压生物材料在制备用于治疗骨缺损的药物组合物中的应用。
(19a)在一个优选实施方案中,所述骨缺损是长骨缺损、临界大小缺损、骨折不愈合、关节再定位,如膝和臀部再定位后的缺损、上颌面区域缺损或伴随前齿根尖切除术的骨缺损、囊肿或肿瘤的切除、拔牙、颅骨缺损、脑颅或面颅的骨缺损、骨质疏松或手术移除残留牙齿。
(20)实施方案1-10中任一个所述的、实施方案11的成套组件的、或实施方案12的植入体的可模压生物材料在制备用于治疗退化、外伤腰椎间盘疾病、脊椎融合、脊椎体骨折、脊椎成形和脊椎后凸成形的药物组合物中的应用。
(21)实施方案1-10中任一个所述的、实施方案11的成套组件的、或实施方案12的植入体的可模压生物材料在制备用于治疗骨裂开的药物组合物中的应用。
(22)实施方案1-10中任一个所述的、实施方案11的成套组件的、或实施方案12的植入体的可模压生物材料在制备用于上颚度提升术或萎缩的上颌骨或下颌槽嵴的增高的药物组合物中的应用。
(23)实施方案1-10中任一个所述的、实施方案11的成套组件的、或实施方案12的植入物的可模压生物材料在制备用于填充空腔、牙周病中的再生和/或牙周病中的支撑引导组织再生的药物组合物中的应用。
(24)实施方案1-10中任一个所述的、实施方案11的成套组件的、或实施方案12的植入物的可模压生物材料在制备用于促进软骨形成的药物组合物中的应用。
(25)实施方案1-10中任一个所述的、实施方案11的成套组件的、或实施方案12的植入物的可模压生物材料在制备用于治疗至少一种软骨疾病的药物组合物中的应用。
优选地,所述骨疾病选自如下的涉及骨髓间质干细胞软骨分化的疾病:骨关节炎、风湿性关节炎、外伤引起的关节软骨损伤、骨软骨缺损、全厚度或部分厚度缺损、自体软骨细胞移植中的软骨细胞表型特征的维持、耳、气管或鼻软骨的再造、肱骨内髁软骨炎(osteochondritisdissecans)、椎间盘或半月板的再生、骨折和/或源自软骨的骨生成。
具体实施方式
现在将参照如下定义以及对本发明附图的描述详细描述本发明。
重要技术术语的定义
为了有利于理解本发明的原理,将会涉及某些实施方案以及描述这些实施方案的具体语言。然而,可以理解,意在不构成对本发明范围的限制,此处阐明的本发明的原理的改变、其它应用和改进能被预期,如同本发明所涉及领域的技术人员常想到的。
A可模压生物材料
术语“可模压的生物材料”是指易于采用任何形状和形式以例如填充缺损位置或植入体内的中空空腔或孔穴的生物材料。它包括悬浮、分散或液体的组合物,优选所述组合物能够通过微创应用或注射使用。它还包括可塑的糊状物材料。优选地,所述可模压生物材料能在湿润环境下硬化,优选在人体内或在与人体液接触时,即,能够原部位硬化。本发明的可模压生物材料区别于其它传统的生物材料,例如在使用诸如盐溶液或体液的水溶液之前可模压的CPC。与传统的自硬化或自凝固反应组合物,如粘合剂组合物或结晶度较低的磷灰石(PCA)磷酸钙植入物材料完全不同,本发明的可模压生物材料优选包括具有骨架特性的颗粒状固体多孔材料,而不是用于化学粘结剂固化反应的一种或多种反应组分。优选地,所述可模压生物材料不包含脱钙骨基质(DBM),优选结合磷酸钙。
术语“无水的”是指可模压生物材料含有少于5wt%,优选少于3wt%,更优选少于2wt%,最优选少于1wt%的水,由诸如卡尔费休法的方法测定。优选地,术语“无水的”是指可模压生物材料中仅有痕量的自由水(例如非结合水)存在。自由水的含量的减少可降低聚合物,如PLGA的降解速率,从而延长可模压生物材料的保存期限。
痕量的水是指水的量不能通过本领域技术人员已知的标准制备方法进一步减少,所述方法例如是干燥各组分的方法、减压干燥或升温干燥、预先热处理组分的方法、真空干燥、冷冻干燥,以及如果适合,通过分子筛以及使用用于包装对水分敏感的药物制品的带有干燥剂的包装系统。
术语“颗粒”,如颗粒材料,是指生物材料的离散的固体颗粒,例如沙子、谷粒或至少1μm的粉末,优选至少50μm,最优选至少100μm。
术语“粘合”是指粘在一起或黏着。它也包括至少部分例如颗粒多孔材料的微粒状颗粒通过可生物降解的糊状物材料连接至少部分其相邻的颗粒形成桥,以使固体颗粒多孔材料保持在一起。
本发明的术语“原部位硬化”是指,在有机溶剂分散到体外环境以及如人或动物体或组织的生物体内后,在与水性媒介,如水、生理溶液或体液接触后形成固体基质。根据适应症和可模压生物材料的应用,这样的固体基质还将包括基质,优选植入体,所述基质在与周围体液接触后,至少具有更高的机械强度。
B颗粒状固体多孔材料
术语“颗粒状固体多孔材料”是指可生物降解的、可生物再吸收的和/或生物适合的,优选大孔和/或微孔生物材料,其是骨传导的。它还指细小颗粒的固体材料,如磷酸钙。在上文中的实施方案中有更详细的描述。
C可生物降解的糊状物材料
如前所述,本发明一般提供一种包括至少如下三种组分的可生物降解的糊状物材料:增塑剂,其是溶于水或易与水混合的生物相容的有机液体;不溶于水的聚合物,其是生物相容的、可生物降解的和/或可生物再吸收的且可溶于所述增塑剂中;以及不溶于水的固体填充物,其不溶于所述可塑剂,其中所述糊状物优选是可注射的且在其包装内是稳定的,并且在被放置在缺损处后硬化。
优选地,预混合的可生物降解的糊状物材料在包装内的稳定性至少持续几周,更优选几个月,最优选至少一年。稳定性可理解为各预混合物的粘稠度和模压性随着时间没有显著变化。包装包括通常使用的防水包装,如通常用于药物应用中的非肠道应用的包装。
本发明中使用的术语“糊状物”是指柔软的、平滑的、粘稠的混合物或材料,或可处理的优选使用注射器或微创应用的糊状物(即,能通过16-至18-号(gauge)注射器),其包括至少三种组分,优选至少四种组分,如本说明书中所描述的。优选地,所述可生物降解的糊状物材料应该是与活性剂相容的,以避免不必要的降解和/或活性剂的失活。至少在一些实施方案中,所述糊状物是悬浮、分散或液体。
在一个优选实施方案中,本发明的可生物降解的糊状物材料以及可模压生物材料不含毒性物质。优选地,这些毒性物质在生产过程中已经避免了,因为它们的生产要求由生产过程中的所需的去除步骤而产生的额外的花费,并且要求用于高灵敏度化学分析的必须的昂贵设备。
术语“毒性物质”尤其包括现有技术方法中所使用的那些有毒有机溶剂和添加剂,ICH将其归类于2级溶剂(ICH主题Q3C杂质:残留溶剂),例如,二氯甲烷。此外,治疗用蛋白开发的国际指南(the internationalguidance for the development of therapeutic proteins)要求,在制备过程中应避免有害和有毒物质(详见:国际协调会(InternationalConference on Harmonization)(ICH),主题Q3C;www.emea.eu.int/)。但是,有利地,本发明的糊状物不含有所述1类毒性物质。而且,本发明仅含有ICH主题Q3C归类为3类的溶剂,因此,治疗上是很好接受的,并满足管理机构的要求。
此外,在另一个优选实施方案中,本发明的可生物降解的糊状物材料以及可模压生物材料不含传染性材料。
优选地,对于溶剂的相同要求通常对于下述物质也是有效的:可生物降解的糊状物的可塑剂、不溶于水的固体添加物和/或溶于水的降解调节剂,以及可生物降解的糊状物本身和本发明的可模压生物材料。
本发明的可生物降解的糊状物以及可模压生物材料的浓度的变化导致通过糊状物或可模压生物材料的粘稠度、原部位硬化时间、孔隙率和最终植入物的机械特性的改变而适应于具体的医学应用。另外,这些参数的变化是通过改变不溶于水的聚合物的降解行为适应活性剂的释放动力学的有效方法。
D增塑剂
本发明的术语“增塑剂”是指药学上可接受的、溶于水或易与水混合的有机液体或溶剂或其混合物。增塑剂的功能是溶解不溶于水的可生物降解的、生物相容的和/或可生物再吸收的聚合物,以使溶于水的固体填充材料悬浮;或溶解使不溶于水的固体填充物悬浮的不溶性聚合物。这些功能取决于活性剂的性质。
优选地,可塑剂的功能是降低不溶于水的可生物降解的、生物相容的和/或可生物再吸收的聚合物的玻璃化转变温度低于生物材料变得可模压的温度,更优选地,不溶于水的可生物降解的、生物适合的和/或可生物再吸收的聚合物的玻璃化转变温度低于室温。
在优选的接触水性媒介或体液的原部位硬化过程中,增塑剂从糊状物中扩散溶出,留下小孔并导致形成稳定的组合物设备或原位植入物。因此,聚合物的玻璃化转变温度升高,聚合物凝固并将生物材料转变成机械稳定的植入体。在一个优选的实施方案中,所述可塑剂是溶于水或易与水混合的溶剂。它可以是液体;优选可塑剂是溶于水的聚合物。优选地,增塑剂对原位硬化的植入物中的不溶于水的聚合物的玻璃化转变温度的影响较低,并与活性剂相容。取决于不溶于水的聚合物,选自下文中进一步限定的可塑剂的可塑剂在放置后应以对聚合物的玻璃化转变温度影响最小的方式使用。
术语“溶解的”是指物质溶解或悬浮于液体中,使得物质均匀分散在液体中。
优选地,所述可塑剂是生物相容的。更优选地,所述增塑剂选自聚乙二醇(PEG)400、PEG200、PEG300、PEG600、1,3-丁二醇、蓖麻油、C2至C6烷醇、丙二醇、丙酮缩甘油、丙酮、乙酸甲酯、乙酸乙酯、乳酸乙酯、甲基乙基酮、二甲基甲酰胺、二甲亚砜、二甲砜、四氢呋喃、癸基甲基亚砜、油酸、碳酸丙烯酯、N,N-二乙基-m-甲苯酰胺、1-正十二烷基氮杂环庚烷-2-酮或其混合物。
优选本发明的可生物降解的糊状物含有少于60%的增塑剂,更优选少于55%,进一步更优选少于50%,最优选40%至45%。
术语“生物相容的”是指材料在具体应用中进行适当的宿主反应的能力。而且,术语“生物相容的”是指材料不显示任何毒性,并在应用后不会导致任何免疫或炎症反应。
术语“可生物降解的”具体是指这样的材料,例如聚合物,其随体内扩散的大分子降解而分解,但没有从体内去除的证据存在。体内可生物降解的材料量的减少是被动过程的结果,其被宿主组织内的物理化学条件(例如,湿度、pH值)催化。
术语“可生物再吸收的”具体是指这样的材料,例如聚合物材料,其经过降解并进一步在体内再吸收;即,聚合物,由于降解副产物的简单过滤或新陈代谢后,其通过自然途径去除。因此,生物再吸收是指这样一个概念,其反映初始外来材料的全部消除。在一个优选的实施方案中,所述可生物再吸收的聚合物是这样一种聚合物,其由于水性环境中的大分子降解而进行链断裂。术语“再吸收”描述一个主动过程。
E不溶于水的聚合物
术语“不溶于水的聚合物”是指不溶解于水中的聚合物,即当与水混合时不能形成均相,其能溶于所述增塑剂中,并能在水性媒介中固化以形成固体植入体,在其中,一旦除去可塑剂,不溶于水的固体填充物被加入至周围组织。优选地,所述不溶于水的聚合物是“生物相容的”、“可生物降解的”和/或“可生物再吸收的”聚合物。更优选地,所述不溶于水的聚合物是一种脂肪族聚合物,纯聚合物的玻璃化转变温度高于30℃。本发明聚合物的特性粘度(25℃,0.1%氯仿中测得的粘度)为约0.1dl/g至5dl/g,优选约0.1dl/g至1dl/g。
在另一个实施方案中,所述聚合物是合成的聚合物。
或者,所述不溶于水的聚合物选自聚乙烯(PE)、聚丙烯(PP)、聚对苯二甲酸乙二酯(PET)、聚丙交酯乙交酯(polyglactine)、聚酰胺(PA)、聚甲基丙烯酸甲酯(PMMA)、聚羟甲基丙烯酸甲酯(PHEMA)、聚氯乙烯(PVC)、聚乙烯醇(PVA)、聚四氟乙烯(PTFE)聚醚醚酮(PEEK)、聚砜(PSU)、聚亚胺酯、聚硅氧烷或其混合物。
更优选地,所述聚合物选自聚(α-羟酸)、聚原酸酯、聚酸酐、聚氨基酸、聚乙醇酸(PGA)、聚乳酸(PLLA)、聚(D,L)-乳酸(PDLLA)、聚(D,L-丙交酯-共-乙交酯)或聚(L-丙交酯-共-乙交酯)(PLGA)、聚(乳酸-共-羟基乙酸)聚乙二醇(PLGA-PEG)共聚物、聚(3-羟基丁酸)(P(3-HB))、聚(3-羟基戊酸)(P(3-HV))、聚对二氧杂环己酮(PDS)、聚(ε-己内酯)(PCL)、聚酸酐(PA),其共聚物、三元共聚物、嵌段共聚物、组合物或混合物。
在本发明的另一个实施方案中,不溶于水的聚合物是封端聚合物。术语“封端聚合物”是指线性聚合物链的自由羧基基团已被醇酯化。
在本发明的另一个实施方案中,不溶于水的聚合物是PLGA-PEG共聚物,优选PLGA-PEG双嵌段或三嵌段共聚物。
F不溶于水的固体填充物
术语“不溶于水的固体填充物”是指不溶于水和增塑剂的化合物,即,当与水或增塑剂混合时不形成均相。
一旦可模压生物材料硬化,所述不溶于水的固体填充物作为可生物降解的糊状物材料内的基质。而且,所述不溶于水的固体填充物能进一步增加生物相容性(例如,细胞粘附),以在聚合物降解过程中稳定局部的pH值。
优选地,所述不溶于水的固体填充物是无机或有机化合物。
术语“磷酸钙”包括含有如下离子的化合物:钙离子(Ca2+)、磷酸根离子(PO3 3-),任选地,其它离子,如氢氧根离子(OH-)、碳酸根例子(CO3 2-)或镁离子(Mg2+)或适合于本发明不溶于水的固体填充剂的其它离子。
G溶于水的降解调节剂
术语“溶于水的降解调节剂”是指药学上可接受的且在诸如水或体液的水性液体中可膨胀或溶解的化合物,当被添加至可生物降解的糊状物材料时,其可增加体外或机体内的可模压生物材料的孔隙度。例如,形成的固体植入物的孔隙度的增加取决于所用溶于水的降解调节剂的量。优选地,溶于水的降解调节剂增加孔,优选足够尺寸的大孔的数量,所述孔用于进入原部位硬化材料中的活细胞在内生长。更优选地,溶于水的降解调节剂允许调节可生物降解的糊状物材料的聚合物组分的降解。
另一方面,降解调节剂能在缺损处固定或富集内生生长因子,进一步促进再生过程,例如但不限于骨增长。另外,降解调节剂(例如,溶胀剂)当与水接触时能形成可模压生物材料内的水凝胶,其类似于自然形成的血凝块的性质。
本发明的溶于水的降解调节剂包括,例如,藻酸钠、淀粉酶、支链淀粉、淀粉、透明质酸、透明质酸钠、胶质、胶原质、羧甲基纤维素、甲基纤维素、羧甲基纤维素钙盐、羟丙基甲基纤维素、羟丁基甲基纤维素、羟乙基纤维素,或甲基羟乙基纤维素,及其衍生物。
在另一个实施方案中,溶于水的降解调节剂是表面活性剂,优选环氧乙烷/山梨聚糖和环氧丙烷的嵌段共聚物,如
Figure A20068004692600291
Figure A20068004692600292
80(例如,聚山梨醇酯80、
Figure A20068004692600293
80、聚氧乙烯山梨醇酐油酸酯)。
更优选地,溶于水的降解调节剂是羧甲基纤维素盐,最优选羧甲基纤维素钠盐,任选地,粒径小于1000μm,更优选粒径为25-1000μm。优选地,羧甲基纤维素钠盐的重量百分比小于10wt%,优选小于5wt%,更优选1-4wt%,最优选2-3.5wt%,基于生物材料糊状物组分的总重量。
本发明的术语“粒径”是指微米级(μm)的诸如磷酸三钙或羧甲基纤维素的材料直径的平均分布,可通过筛析或激光衍射进行测定。材料的具体粒径范围例如可通过筛选获得。
H活性剂
术语“活性剂”包括多肽或小分子药物。
可以理解,活性剂优选不会因为植入后的沉淀或微量沉淀而聚集和部分或全部失活。例如,这可以通过在固体颗粒多孔材料上均匀涂敷而实现,如WO03/043673所描述的。
术语“均匀涂敷”或“均匀分布”是指活性剂被均匀地分布在颗粒状固体多孔材料的内表面和/或外表面。
均匀分布有利于活性剂有效释放且保持活性进入植入位置周围的组织。而且,可以理解,活性剂不会因为沉淀或微量沉淀而聚集和部分或全部失活,通过均匀涂敷实现了生物活性的、非聚集的蛋白的附着。
术语“骨传导”是指提供用于血管入口细胞浸润和吸附、软骨形成和软骨组织沉积的良好的多孔支架的物质。骨传导材料可以通过支架效果支撑骨的生成。
术语“骨诱导”是指将细胞骨髓间充质干细胞转变为造骨细胞和软骨细胞的能力。骨诱导的先决条件是一个信号,其通过可模压生物材料分布到周围组织中,在周围组织中如前所述的造骨细胞前体激活。此处所用的骨诱导包括间质细胞分化为骨前体细胞,造骨细胞。而且,骨诱导还包括所述造骨细胞分化为骨细胞,成熟的骨细胞。而且,骨诱导还包括间质细胞分化为软骨细胞。尤其在长骨中,存在于骨的软骨膜中的成软骨细胞和软骨细胞也能分化为骨细胞。因此,骨诱导要求不分化的或较少分化的细胞分化为能形成骨头的骨细胞。因此,骨诱导的先决条件是一个信号,其通过可模压生物材料分布进入周围组织,在周围组织中通常存在如前所述的骨细胞前体。
术语“骨形成”描述由造骨细胞合成新的骨头。根据本发明,移植处的或可模压生物材料的周围的预先存在的骨细胞或祖细胞形成采用硬化的可模压生物材料结构的硬化的可模压生物材料,尤其在硬化过程中形成,作为细胞(例如,骨细胞)能依附于其上的基质。
包括于本发明的可模压生物材料中的蛋白质和肽优选具有体内骨诱导特性。例如,本领域熟知的转化生长因子-β(TGF-β)超家族包括具有骨诱导特性的成员。所述TGF-β超家族的成员在下文中列出。总之,在被从载体释放后的本发明可模压生物材料的骨诱导蛋白质或肽作为可模压生物材料的移植位置周围组织的骨前体细胞的骨诱导信号。
术语“骨诱导多肽”是指多肽,例如转化生长因子-β(TGF-β)超家族的成员,其具有骨诱导特性。
在本发明可模压生物材料的另一个优选实施方案中,所述骨诱导蛋白质是TGF-β族的成员。
TGF-β族的生长和分化因子已显示涉及包括骨形成在内的多种生物学过程。所述族的所有成员是含有特征畴结构的分泌多肽。在N-末端,TGF-β族成员包括信号肽或分泌腱(secretion leader)。,该序列通过前结构域(prodomain)和成熟多肽序列接在C-末端。成熟多肽序列包括七个保守的半胱氨酸,其中六个用于分子内二硫键的形成,一个用于两个多肽的二聚。生物活性TGF-β族成员是二聚物,优选由两个成熟多肽组成。TGF-β族成员分泌为包括除了成熟序列之外的前结构域的蛋白质。所述前结构域在细胞外分裂且不是信号分子的一部分。
在本发明中,术语“TGF-β族成员”或下面提及的所述族的蛋白质包括所述蛋白质或成员的所有生物活性变体和所有变体以及它们的非活性前体。因此,仅包含成熟序列的蛋白质以及包含成熟序列和前结构域的蛋白质或成熟蛋白质、前结构域和前导序列,以及生物活性片段或其变体均在本发明的范围内。TGF-β族成员片段是否具有生物活性能通过现有技术描述的生物检测方法而容易地测定。
更优选地,TGF-β超家族成员是BMP或GDF亚族的成员。
本发明的骨诱导多肽优选选自BMP-1、BMP-2、BMP-3、BMP-4、BMP-5、BMP-6、BMP-7、BMP-8、BMP-9、BMP-10、BMP-11、BMP-12、BMP-13、BMP-14、BMP-15、BMP-16、GDF-1,GDF-2,GDF-3,GDF-4,GDF-5,GDF-6,GDF-7,GDF-8,GDF-9,GDF-10和GDF-11。最优选地,所述骨诱导多肽选自BMP-2、BMP-7和GDF-5。
出版物公开的骨诱导多肽包括:OP-1和OP-2:美国专利No.5,011,691、美国专利No.5,266,683,Ozkaynak等人,(1990)EMBO J.9:2085-2093;OP-3:WO94/10203(PCT US93/10520);BMP2、BMP3、BMP4:WO88/00205,Wozney等人,(1988)Science 242:1528-1534;BMP5和BMP6:Celeste等人,(1991)PNAS 87:9843-9847;Vgr-1:Lyons等人,(1989)PNAS 86:4554-4558;DPP:Padgett等人,(1987)Nature 325:81-84;Vg-1:Week s(1987)Cell 51:861-867;BMP-9:WO95/33830(PCT/US95/07084);BMP-10:WO94/26893(PCT/US94/05290);BMP-11:WO94/26892(PCT/US94/05288);BMP-12:WO95/16035(PCT/US94/14030);BMP-13:WO95/16035(PCT/US94/14030);GDF-1:WO92/00382(PCT/US91/04096)和Lee等人(1991)PNAS 88:4250-4254;GDF-8:WO94/21681(PCT/US94/03019);GDF-9:WO94/15966(PCT/US94/00685);GDF-10:WO95/10539(PCT/US94/11440);GDF-11:WO96/01845(PCT/US95/08543);BMP-15:WO96/36710(PCT/US96/06540);MP121:WO96/01316(PCT/EP95/02552);GDF-5(CDMP-1,MP52):WO94/15949(PCT/US94/00657)以及WO96/14335(PCT/US94/12814)以及WO93/16099(PCT/EP93/00350);GDF-6(CDMP-2,BMP13):WO95/01801(PCT/US94/07762)以及WO96/14335以及WO95/10635(PCT/US94/14030);GDF-7(CDMP-3,BMP-12):WO95/10802(PCT/US94/07799)以及WO95/10635(PCT/US94/14030)。
优选地,BMP或GDF亚族的活性剂,例如BMP-2、BMP-7或GDF-5,分别是指预前体(preproform)、前体(proform)或成熟的(例如,BMP-2-、BMP-7-或GDF-5-)肽。此外还包括具有基本相同的生物活性,优选骨诱导特性的所述蛋白质的片段和变体。
包括在本发明之内的还有所述蛋白质的变体,例如具有基本相同的生物活性的BMP-2变体,其包含例如成熟BMP-2蛋白质序列和前文提到的多肽的截短形式,所述成熟BMP-2蛋白质序列包括诸如N-末端的丙氨酸延伸的N-端延伸,如Ruppert等人,(1996)Eur.J.Biochem.,237:295-302中所描述的。
优选地,所述活性剂是未糖基化的蛋白质,更优选地源自E.coli的重组蛋白。未糖基化蛋白质的优点在于,例如,在缺损处延长固定和/或降低了诸如rhBMP-2的活性剂的需要量。
本发明还包括这样的实施方案,其中所述活性剂选自激素、细胞因子、生长因子、抗生素和其它天然和/或合成的药物,如类固醇、前列腺素等。
优选地,所述活性剂是甲状旁腺素(PTH)和/或PTH1-34肽。
在本发明的另一个实施方案中,所述活性剂是“软骨诱导”或“软骨再生”蛋白质。优选地,软骨诱导蛋白质是MIA/CD-RAP(MIA,黑色素瘤抑制活性、软骨源性视黄酸敏感蛋白,EP0710248,EP1146897)、OTOR(源自纤维细胞的蛋白质,FDP,类MIA(MIA-like),MIAL)和TANGO130(Bosserhoff等人,(2004),Gene Expr.Patterns.4:473-479;Bosserhoff和Buettner(2003),Biomaterials 24:3229-3234;Bosserhoff等人(1997),Dev.Dyn.208:516-525;WO00/12762),更优选地人类MIA/CD-RAP。
I植入体
所述“植入物”是指医疗设备、整形外科设备或生物材料。优选地,所述植入物是脊椎植入物、骨折修复植入物、用于长骨缺损、临界大小缺损和骨折不愈合的植入物、用于软骨修复、上颌面再造和关节再造的植入物、牙周缺损植入物、用作骨空腔填充物的植入物或其它整形外科手术使用的植入物,如笼、板、螺丝钉、销钉、固定设备。
术语“脊椎植入物”在上文中有详细描述。
对图的描述
结合图1-5详细描述本发明的各方面。
图1示出了在水性环境中原位硬化后本发明两组分可模压生物材料的内部和外部孔隙度。图中示出的组合物如下:β-磷酸三钙颗粒(40.0wt%)、聚合物糊状物(60.0wt%),所述聚合物糊状物包括乳酸/羟基乙酸的比为50∶50且分子量为13.6kDa的聚(乳酸-共-羟基乙酸)(22.2wt%)、聚乙二醇400(44.4wt%)、β-磷酸三钙粉末(33.3wt%)。
图像A示出了原位硬化后本发明两组分可模压生物材料的外表面,显示有孔,所述孔尤其基于β-磷酸三钙颗粒之间的空穴。
图像B示出了材料的内部,显示直径大于100μm的孔,其是在周围组织内的植入物材料的整体性的基本要求。
本发明两组分可模压生物材料的优点在于其具有可模压的粘合粘稠度,易于适合于应用位置并保留在应用位置。与其它可生物降解的植入物材料,如β-磷酸三钙颗粒或HA纳米悬浮物相比,本发明的植入物在用于湿润的开放环境,例如外科领域,如严重出血环境时,它具有很好的抗洗出能力。另外,植入材料能够容易地用于填充到如市场上出现的各种脊椎融合器的植入体中,而不会泄漏材料和被洗出。此外,所述材料在植入后具有粘结支架的特性,其经得住周围组织的机械压力。与其它可注射生物材料相比的另一个优点是在体内或组织内原部位硬化后植入物材料的多孔结构,以及与诸如胶原质基植入物相比的耐压力。
形成多孔基质的较大整体的生物材料的缺点是,由于它们的硬度,其不能与中空的植入体,如脊椎融合器一起使用(瓶颈)。由于可模压粘稠度和方便的应用,本发明植入物有利于用作骨移植替代物生物材料,以填充脊椎植入体,如各种形状的脊椎融合器,其在原部位硬化后在笼内形成植入体材料的整体结构。
图2示出了原位硬化后本发明两组分可模压生物材料的另外的外部孔隙率,所述另外的外部孔隙度是通过在糊状物组分中加入羧甲基纤维素而膨胀获得的。所用的组合物如下:β-磷酸三钙颗粒(40.0wt%)、聚合物糊状物(60.0wt%),所述聚合物糊状物包括乳酸/羟基乙酸的比为50∶50且分子量为13.6kDa的聚(乳酸-共-羟基乙酸)(21.6wt%)、聚乙二醇400(43.1wt%)、β-磷酸三钙粉末(32.3wt%)以及羧甲基纤维素钠盐(3.0wt%)。
图像A示出了本发明两组分可模压生物材料的外表面,显示了与图1的植入物材料相比的额外的孔,所述孔是由羧甲基纤维素钠盐的膨胀而形成的。这些孔具有大于100μm的直径,满足了细胞在内生长的基本要求。
加入溶胀剂如羧甲基纤维素钠盐的优点在于,增加植入物材料的外表面的孔隙度,而内部孔隙度(图像B)在加入溶胀剂时不会必然增加。内部孔隙度是通过诸如β-磷酸三钙的固体填充物的颗粒床的形成并通过溶剂交换出可降解的糊状物材料而建立的。
图3示出了在原位硬化2小时后聚合物糊状物的机械稳定性与本发明两组分可模压生物材料的机械稳定性的对比。白色柱代表根据实施例2制备的聚合物糊状物,其具有如下组合物:乳酸/羟基乙酸的比为50∶50(RG 502H)且分子量为13.6kDa的聚(乳酸-共-羟基乙酸)(21.6wt%)、聚乙二醇400(43.1wt%)、β-磷酸三钙粉末(32.3wt%)以及羧甲基纤维素钠盐(3.0wt%)。黑色柱代表根据实施例3制备的植入物材料,其具有如下组合物:根据实施例1制备的β-磷酸三钙颗粒(40.0wt%)和根据实施例3结合白色柱描述的聚合物(可生物降解的)糊状物(60.0wt%)。
本发明的一方面是,尽管与聚合物糊状物相比,植入物材料的聚合物含量降低了,但植入物材料令人惊讶地显示了2小时后的硬度,其比没有加入多孔陶瓷材料的聚合物糊状物硬度高2.5倍。
图4示出了取决于用于制备可生物降解的糊状物的有机溶剂,即本发明可模压生物材料的组分b)的蛋白质稳定性。图4所示的糊状物由下述实施例6所描述的方法制备。A表示对照样品,B是聚乙二醇400,C是N-甲基吡咯烷酮,D是二甲基亚砜,E是四氢糠醇聚乙二醇醚。
该图突出了有机溶剂与蛋白质之间的接触能促使后者的(部分)降解。如图所示,降解率(白色柱)在48小时后能达到所用蛋白质初始量的75%。
本发明的一个优点在于,有机溶剂对植入体材料中含有的活性物质上的负面影响,能够通过在储存期间将含有有机溶剂的聚合物糊状物和含有诸如β-磷酸三钙颗粒的陶瓷材料的活性物质分隔开而被消除。在将植入体材料应用于患者之前,通过将含有陶瓷化材料的活性物质与含有有机溶剂的糊状物立即混合,与蛋白质和含有有机溶剂的基质结合的相比,活性物质如骨生长诱导蛋白质的活性能够被保存。
图5表示本发明可模压生物材料的糊状物组分内的聚合物的水解度的变化。水解度通过中和1克可模压生物材料的糊状物组分的酸性降解产物所需的氢氧化钠溶液的量测定。在图5中,PGLA共聚物用作可生物降解的糊状物材料的聚合物组分(见实施例7)。
其中灰色三角形表示可模压生物材料的糊状物组分,由乳酸/羟基乙酸的比为50∶50且分子量为13.6kDa的聚(乳酸-共-羟基乙酸)(33.3wt%)和聚乙二醇400(66.6wt%)组成;白色方形表示本发明可模压生物材料的糊状物组分,由乳酸/羟基乙酸的比为50∶50且分子量为13.6kDa的聚(乳酸-共-羟基乙酸)(22.2wt%)、聚乙二醇400(44.5wt%)和β-磷酸三钙粉末(33.3wt%)组成;黑色方形表示本发明可模压生物材料的糊状物组分,由乳酸/羟基乙酸的比为50∶50且分子量为13.6kDa的聚(乳酸-共-羟基乙酸)(21.6wt%)、聚乙二醇400(43.1wt%)、β-磷酸三钙粉末(32.3wt%)以及羧甲基纤维素钠盐(3.0wt%)组成。
三个样品的滴定曲线显示,不溶于水的无机填充物(此处指β-磷酸三钙)的添加令人惊讶地加速了聚合物(此处指PLGA共聚物)的降解。
另外,溶于水的降解调节剂的高浓度,如图5中所用的约3%的羧甲基纤维素,加速了植入体材料中的聚合物的降解,从而改变了活性组分的释放曲线。
本发明的一个优点在于,糊状物组分,即可生物降解的糊状物材料和颗粒状固体多孔材料,如颗粒状磷酸钙矿物,形成复合基质,其尤其有利于骨取代或骨增长。所述基质在植入后至少两至三天的时间内保持其结构(物理)完整性,并在几周内在发生骨取代的生物环境中保持磷酸钙颗粒的多孔结构。结构(物理)完整性是指基本保持被植入的基质的形状和大小。这与在植入后立即或短时间内塌陷成无确定形态的无孔物质的组合物相对比。所述基质的优点在于保持其孔隙度,这对于骨取代或骨增长过程很重要。
由于两阶段的降解,本发明植入物材料保持了用于提高骨形成的多孔结构。另外,两阶段的降解使活性物质如骨生长诱导剂受控释放或将其传送至周围组织。原部位硬化的本发明可模压生物材料的糊状物组分中的聚合物的第一阶段降解导致的释放能够随不溶于水的固体填充物和/或溶于水的降解调节剂的变化而变化。
图6示出了束缚于各种生物材料的rhBMP-2的回收。
如图6所示,仅含有β-TCP颗粒的样品显示几乎与rhBMP-2(E.coli)无相互作用,即从上层清液(A)几乎100%回收rhBMP-2。由于rhBMP-2是带正电荷的,因而本发明的可模压生物材料中的带负电荷的基团可导致回收的减少。
它显示对于触发和/或促进rhBMP-2活性剂吸附至本发明可模压生物材料,非封端的聚合物和CMC是适合方式。改进的活性剂的吸附与在体内使用时从本发明可模压生物材料持续释放活性剂的延长相关。
由于每个样品的β-TCP颗粒的绝对量是相等的,且仅含有β-TCP颗粒的样品显示几乎与rhBMP-2(E.coli)无相互作用,观察到的吸附至其它载体的蛋白质的吸附必须分别由通过非封端的PLGA共聚物和CMC引入的羧基阴离子触发。
实际上,实验显示观察到的吸附至其它载体的蛋白质的吸附(B至D)分别由通过非封端的PLGA共聚物和CMC引入的羧基阴离子触发。这个结论,即含有封端的PLGA共聚物的配方(D)比含有非封端的PLGA共聚物的配方(B和C)产生升高的回收率,得到了观测结果的支持。
图7示出了随时间流逝两种不同生物材料的聚合物的降解。A代表根据实施例2制备的由下述物质组成的可生物降解的糊状物材料的降解:Resomer RG504(44.0wt%)、PEG 400(22.0wt%)、Biocement D(20.6wt%)、干燥的无水硫酸钙(20.6wt%)和羧甲基纤维素钠盐(1.0wt%)。B示出了实施例8的可模压生物材料的降解。
数据显示,与B相比,A的生物材料中的聚合物随时间流逝的降解延长了,从而导致材料B较早的再吸收。数据还代表性地显示了本发明可模压生物材料的三阶段降解动力学(见图7B,下降阶段0-1天,2-4天和7-10天)。
实施例
实施例1:制备涂敷了活性剂的固体颗粒多孔材料
本实施例使用涂敷了β-TCP的颗粒作为固体多孔材料而rhGDF-5作为活性剂。替代方案可以类似地制备。
原材料必须以适当方式灭菌。最初将500mg β-TCP(500-1000μm颗粒大小)以干燥形式放置于2R-玻璃杯内。将rhGDF-5原液(3.4mg/ml于10mM HCl中)用相应的包被缓冲液稀释至0.54μg/ml。用吸管将由上述方法获得的475μl的rhGDF-5溶液移液至β-TCP上并被吸收。湿润的颗粒状物在25℃下培养1小时,然后冻干。涂敷β-TCP的其它实施例在WO03/043673和PCT/EP2005/006204中有描述。
实施例2:制备可生物降解的糊状物材料
初始聚合物(RG502H;PLGA;聚合物组合物:48-52mol%D,L-丙交酯和48-51mol%乙交酯;特性粘度:0.16-0.24dl/g,25℃,0.1%于CHCl3中;Boehringer,Ingelheim)加入至瓷坩埚中的必需量的有机溶剂(PEG400)中。这两种组分均质化,并在约60℃加热直至聚合物完全溶解于有机溶剂中。随后,无机填充物(β-磷酸三钙粉末)和任选的其它赋形剂(例如,降解调节剂,如羧甲基纤维素钠盐)分散至聚合物溶液中。
实施例3:包括多孔含钙陶瓷的原部位硬化的可模压生物材料
实施例1的涂敷了的β-磷酸三钙颗粒和实施例2的可生物降解的糊状物材料在坩埚中用例如消过毒的勺子柔和地混合均匀,以形成粘稠的可模压的材料。制备β-磷酸三钙颗粒和聚合物糊状物的比例(wt%/wt%)各不相同的植入体材料:a)β-TCP∶聚合物糊状物的比例为1∶1.3;b)β-TCP∶聚合物糊状物的比例为1∶1.4;c)β-TCP∶聚合物糊状物的比例为1∶1.5;以及d)β-TCP∶聚合物糊状物的比例为1∶1.7。
对于要求可生物降解的糊状物材料或可模压生物材料处于其硬化后形状的所有实验,所述材料转移至48-孔板的孔中(每孔250-300mg)。所述孔板然后在含有PBS-缓冲液的浴中培养,其中温度固定在37℃。所述浴以150min-1的频率不断振动。
实施例4:机械测试
由实施例2制备的可生物降解的糊状物材料的变硬的湿润样品和实施例3制备的原部位硬化的可生物降解的糊状物材料(植入物材料),转移至96孔板的孔中(每孔150-200mg,每个时间点三个孔和样品)。随后含有样品的所述孔板转移至培养浴中,浴的温度始终保持在37℃,以模拟生理条件,其中PBS-缓冲液作为培养媒介。在每指定的时刻,96孔板从培养浴中移出,以进行机械测试。
样品的硬度采用TH2730(Fa Thuemler)测试。该机器主要由能在样品上施加压力的金属冲孔工具和用于控制和测量施加的力以及确定在测量过程中被覆盖的距离的LVDT-传感器组成。在测试不同样品之前,需确定不含有任何样品的孔的高度(h1)。因此,用于下述测量的冲孔工具的启动点被固定。样品硬度的实际测定包括两个步骤。在第一步测量中必须确定具体样品的高度(h2),其中冲孔工具的十字头速度(crossheadvelocity)是每分钟40mm,施加的力限制为0.2N。进行第二步测量是测量30秒的时间内冲孔工具在样品中被覆盖的距离(d),其中施加的力一直保持为20N。样品的硬度计算如下:
硬度(%)=(h2-d)/h2×100%
所描述的方法基于根据Shore(DIN53505)的硬度测定。
实施例5:制备用于SEM-分析
根据本领域技术人员已知的标准程序,变硬的且真空干燥的样品用金溅射。应用20kV的电压完成SEM-显微照片。用于这些分析的目标结构是植入体材料的颗粒状样品的表面和核心以及尤其是通过这些结构显示的孔隙度
实施例6:不同有机溶剂中的rhGDF-5的稳定性
使用诸如聚乙二醇400、N-甲基吡咯烷酮、二甲基亚砜和四氢糠醇聚乙二醇醚的溶剂。通过在500mg β-TCP上涂敷rhGDF-5制备样品和参照物,以得到最终浓度为500μg/g的β-TCP。随后,将666μl各自的溶剂加入至每份样品中,而参照物不做处理。在25℃下培养24小时后,样品和参照物均采用3ml提取缓冲液在4℃提取1小时,所述缓冲液由尿素(8M)、Tris(10mM)和EDTA(100mM)组成,其pH值用盐酸调节至6.7。在提取步骤后,所有样品和参照物以4500rpm离心分离3分钟。随后,上层清液用1∶1比例的溶剂A(0.15%三氟乙酸和20%乙腈于水中)稀释。溶剂B为在水中的0.15%三氟乙酸和84%乙腈。采用Vydac C18,规格为2.1×250mm,流速为0.3ml/min,测定蛋白质的特性。通过测定220nm处的吸光率记录洗脱图。rhGDF-5、rhBMP-2和它们的降解产物的量由220nm处的峰面积计算。
实施例7:测定聚合物的降解
实施例2制备的可生物降解的糊状物材料在6R-Vail中精确称重,在其中加入约3ml PBS-缓冲液。为了显示样品的pH值,在样品中加入20μl溴百里酚蓝,其中深蓝色指示中性pH值。聚合物(此处指PLGA共聚物)的降解引起pH值的降低,这由从深蓝色到黄色的颜色变化显示出来。到指定的时间点,样品的上层清液采用0.04M氢氧化钠溶液滴定,直至样品的pH值达到中性,这由指示剂的深蓝色指示。到每一个时间点,消耗的氢氧化钠的总量求和,并通过考虑PLGA共聚物的使用量而标准化。
实施例8:测定随时间流逝的体外聚合物降解和可模压生物材料中聚合物的含量
将10.0g β-TCP颗粒与15.0g可生物降解的糊状物材料(ResomerRG502H)(22.2wt%)、聚乙二醇400(44.5wt%)、β-TCP粉末(20.8wt%)和干燥的二水硫酸钙(12.5wt%)混合。取1.0g所得到的粘稠物质以形成圆柱形样品,其随后转移至装有50ml生理磷酸缓冲液的50ml聚丙烯反应管中。
在指定的时间点(培养1天、2天、4天、7天、10天、14天、21天后),样品被取出并真空干燥。在1.5ml聚丙烯反应管中精确称量约75mg真空干燥的组合物材料。随后,加入1.0ml四氢呋喃。在持续水平搅动(300min-1)下于室温将样品培养10分钟。通过以13000rpm离心分离5分钟而将不溶的无机成分从聚合物溶液中分离出来。然后,所获得的上层清液经组合尺寸排阻色谱多角度光散射仪进行分析,所述仪器尤其由HPLC设备、尺寸排阻柱(7.8mm×30.0cm)和顺次结合折光率检测器的多角度散射检测器组成。
为测定从各自样品中提取出来的聚合物的分子量,注入200μl上层清液。采用四氢呋喃以恒定流速1.0ml/min洗脱聚合物。柱温度增加至40℃。为了使所用的软件能计算出绝对分子量和所分析的聚合物的绝对注入量,各聚合物的不同微分折射率(dn/dc)通过记录各聚合物浓度的折射率信号曲线下的面积预先测定。通过类似地继续处理有机增塑剂,本方法允许测定随时间流逝的可模压生物材料的相关组分。
实施例9:rhBMP-2(E.coli)与可模压生物材料各种组分的相互作用
75mg β-TCP颗粒与根据上述实施例制备得到的112.5mg可生物降解的糊状物材料混合,以得到可模压的生物材料。随后使用如下各种生物材料的变体:
A)β-TCP颗粒
B)β-TCP颗粒+可生物降解的糊状物材料,所述可生物降解的糊状物材料由PEG400(44.5wt%)、β-TCP粉末(33.3wt%)和
Figure A20068004692600411
RG502H(非封端的,22.2wt%,购至Boehringer Ingelheim)
C)β-TCP颗粒+可生物降解的糊状物材料,所述可生物降解的糊状物材料由PEG400(43.0wt%)、β-TCP粉末(32.4wt%)、
Figure A20068004692600412
RG502H(非封端的,21.6wt%,购至Boehringer Ingelheim)和DS为0.7且粒径为100-200μm的羧甲基纤维素钠盐(CMC)(3.0wt%)
D)β-TCP颗粒+可生物降解的糊状物材料,所述可生物降解的糊状物材料由PEG400(44.5wt%)、β-TCP粉末(33.3wt%)和
Figure A20068004692600413
RG502(封端的,22.2wt%,购至Boehringer Ingelheim)
为了区分可生物降解的糊状物材料对与rhBMP-2(E.coli)相互作用的程度的影响以及β-TCP颗粒的分布对整个蛋白质吸附的差别,采用75mg β-TCP作为参照载体(A)。
将每份样品转移至15ml聚丙烯反应管中,所述反应管中填充有15ml水性缓冲液(于20mM吗啉乙磺酸一水合物(MES)溶液中的60mM氯化钙、0.01wt%聚山梨醇酯80、0.02wt%叠氮化钠,pH6.2)。所有样品用30μgrhBMP-2(E.coli)加标。在指定的时间点(1天、2天、4天、7天、10天),使用250mm×4.6mm C4柱(Vydac)通过RP-HPLC测定各样品上层清液中的rhBMP-2(E.coli)浓度。
于水中的20wt%乙腈和0.15wt%三氟乙酸以及于水中的84wt%乙腈和0.15wt%三氟乙酸分别作为洗脱液。流速增加至0.8ml/min。通过340nm(激发280nm)处的荧光检测而测定浓度。相对于时间点为“零”处的上层清液中的rhBMP-2的量(100%回收),测定上层清液中的rhBMP-2的量。

Claims (16)

1.一种可模压的生物材料,包括
a)一种颗粒状固体多孔材料,其粒径为100-4000μm,以及
b)一种可生物降解的糊状物材料。
2.根据权利要求1所述的可模压生物材料,其中
a)所述颗粒状固体多孔材料包括陶瓷化颗粒,所述陶瓷化颗粒由平均粒径为100-4000μm的磷酸三钙制成;以及
b)所述可生物降解的糊状物材料是一种糊状物,其包括
i.一种增塑剂,其是一种溶于水或易与水混合的生物相容的有机液体;
ii.一种不溶于水的聚合物,其溶于所述增塑剂且是生物相容的、可生物降解的和/或可生物再吸收的;以及
iii.一种不溶于水的固体填充物,其不溶于所述可塑剂。
3.根据权利要求1或2任一所述的可模压的生物材料,其具有可模压的粘稠度,且一旦与水性媒介或体液接触,能够在原部位硬化以形成固体植入体。
4.根据权利要求1-3中任一项所述的可模压的生物材料,其中所述组分a)和b)以能形成粘合产物的比例使用。
5.根据权利要求1-4中任一项所述的可模压的生物材料,其中组分b)的糊状物包括可溶于水的降解调节剂,其是羧甲基纤维素。
6.根据权利要求1-5中任一项所述的可模压的生物材料,进一步包括
c)一种活性剂。
7.根据权利要求1-6中任一项所述的可模压的生物材料,其中所述活性剂是骨生长因子。
8.根据权利要求1-7中任一项所述的可模压的生物材料,其中所述活性剂选自由BMP-2、BMP-7和GDF-5组成的组。
9.根据权利要求1-8中任一项所述的可模压的生物材料,其显示在原部位的两阶段的降解。
10.根据权利要求1-9中任一项所述的可模压的生物材料,其在原位硬化后至少2-3天的时间内保持物理完整性,并在聚合物组分降解后保持多孔颗粒状结构。
11.一种包括权利要求1-10中任一项所述的可模压的生物材料的单独的组分a)和b)或权利要求6-10中任一项所述的可模压的生物材料的相隔离的组分a)、b)和c)的成套组件。
12.一种包括权利要求1-10中任一项所述的可模压的生物材料的组分a)和b)或权利要求6-10中任一项所述的可模压的生物材料的组分a)、b)和c)的植入体。
13.一种制备可模压的生物材料的方法,所述方法包括将糊状物与磷酸钙或硫酸钙混合,使得所述混合物具有可模压的粘稠度,其一旦与水性媒介或体液接触能够在原部位硬化,以形成固体多孔植入体,其中所述糊状物包括
i.一种增塑剂,其是一种溶于水或易与水混合的生物相容的有机液体;
ii.一种不溶于水的聚合物,其溶于所述增塑剂且是生物相容的、可生物降解的和/或可生物再吸收的;以及
iii.一种不溶于水的固体填充物,其不溶于所述增塑剂。
14.根据权利要求13所述的方法,其中所述糊状物是水被干燥了的和/或是采用无水组分(i)、(ii)和/或(iii)制备的。
15.权利要求1-10中任一项所述可模压的生物材料的应用,权利要求11所述的成套组件的应用,或权利要求12所述的植入物的应用,用于制备药物组合物或医疗设备,以用于脊椎融合、长骨缺损、临界大小缺损、骨折不愈合、关节再定位,优选膝盖或臀部再定位、骨折修复、软骨修复、上颌面再造、牙周修复、腰椎间盘退化症、脊椎前移症、骨组织填充。
16.由权利要求13或14所述的方法制备得到的一种可模压的生物材料。
CN2006800469268A 2005-12-14 2006-12-14 一种用于骨再生的可模压的生物材料及其制备方法和用途 Expired - Fee Related CN101330934B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP05027401 2005-12-14
EP05027401.8 2005-12-14
PCT/EP2006/012082 WO2007068489A2 (en) 2005-12-14 2006-12-14 A moldable biomaterial for bone regeneration

Publications (2)

Publication Number Publication Date
CN101330934A true CN101330934A (zh) 2008-12-24
CN101330934B CN101330934B (zh) 2013-03-20

Family

ID=36577578

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800469268A Expired - Fee Related CN101330934B (zh) 2005-12-14 2006-12-14 一种用于骨再生的可模压的生物材料及其制备方法和用途

Country Status (7)

Country Link
US (1) US20090148487A1 (zh)
EP (1) EP1960008A2 (zh)
JP (1) JP5068269B2 (zh)
KR (1) KR101105890B1 (zh)
CN (1) CN101330934B (zh)
AU (1) AU2006326271B2 (zh)
WO (1) WO2007068489A2 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102573938A (zh) * 2009-07-23 2012-07-11 布若贞提克斯骨生物学有限公司 可注射和可模塑的骨诱导性陶瓷材料
WO2017118293A1 (zh) * 2016-01-06 2017-07-13 宁波华科润生物科技有限公司 可降解骨植入物及其制备方法
CN108295305A (zh) * 2018-03-21 2018-07-20 刘小勇 一种骨填充材料及其制备方法
CN108498873A (zh) * 2010-12-13 2018-09-07 生物模拟治疗有限责任公司 用于脊柱融合手术的组合物和方法
CN109562203A (zh) * 2016-04-06 2019-04-02 格拉夫蒂斯公司 包含血液的磷质钙水泥组合物
CN111214698A (zh) * 2020-01-22 2020-06-02 潍坊医学院附属医院 一种复合骨修复材料及其制备方法
CN111346260A (zh) * 2020-03-11 2020-06-30 四川大学 力学适应性的生物活性陶瓷盔甲及其制备方法
CN112604026A (zh) * 2020-03-31 2021-04-06 美迪帕克医疗器械有限公司 骨移植组合物及其制备方法
CN115916278A (zh) * 2020-06-21 2023-04-04 奥梭瑞贝斯株式会社 骨诱导骨再生材料及其生产方法

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2347775T3 (pl) 2005-12-13 2020-11-16 President And Fellows Of Harvard College Rusztowania do przeszczepiania komórek
GB0701896D0 (en) 2007-02-01 2007-03-14 Regentec Ltd Composition
US20100305714A1 (en) * 2007-10-19 2010-12-02 Stryker Trauma Gmbh Synthetic bone substitute, method for preparing same and method for filing a cavity in a substrate
CN101952341B (zh) * 2008-02-01 2016-03-23 辛西斯有限责任公司 多孔的生物相容性聚合物材料和方法
KR101109431B1 (ko) * 2008-10-13 2012-02-15 (주) 코웰메디 다공성 인산삼칼슘계 과립의 제조 방법 및 이를 이용한 기능성 골이식재의 제조방법
US8709149B2 (en) * 2008-11-12 2014-04-29 Ossdsign Ab Hydraulic cements, methods and products
US20100226956A1 (en) * 2009-03-06 2010-09-09 Per Kjellin Production of moldable bone substitute
US9399086B2 (en) * 2009-07-24 2016-07-26 Warsaw Orthopedic, Inc Implantable medical devices
EP2544727B1 (en) * 2010-03-09 2016-11-02 Mathys AG Bettlach Bone graft substitute
US8697111B2 (en) * 2010-05-12 2014-04-15 Covidien Lp Osteochondral implant comprising osseous phase and chondral phase
CA2840546C (en) 2010-06-28 2020-05-05 Bbs-Bioactive Bone Substitutes Oy A method for preparing a bone protein preparation and a bone protein preparation containing polyethylene glycol/glycerol matrix and calcium salt granules
US8614190B2 (en) 2010-06-30 2013-12-24 Industrial Technology Research Institute Thermal responsive composition for treating bone diseases
EP2590616A2 (en) * 2010-07-09 2013-05-15 Stichting Glass for Health Apatite compositions
US20120021008A1 (en) * 2010-07-23 2012-01-26 Joost Dick De Bruijn Injectable and moldable ceramic materials
CA2813751C (en) 2010-10-06 2019-11-12 President And Fellows Of Harvard College Injectable, pore-forming hydrogels for materials-based cell therapies
US11058796B2 (en) 2010-10-20 2021-07-13 206 Ortho, Inc. Method and apparatus for treating bone fractures, and/or for fortifying and/or augmenting bone, including the provision and use of composite implants, and novel composite structures which may be used for medical and non-medical applications
US11207109B2 (en) 2010-10-20 2021-12-28 206 Ortho, Inc. Method and apparatus for treating bone fractures, and/or for fortifying and/or augmenting bone, including the provision and use of composite implants, and novel composite structures which may be used for medical and non-medical applications
WO2012054742A2 (en) * 2010-10-20 2012-04-26 BIOS2 Medical, Inc. Implantable polymer for bone and vascular lesions
US10525169B2 (en) 2010-10-20 2020-01-07 206 Ortho, Inc. Method and apparatus for treating bone fractures, and/or for fortifying and/or augmenting bone, including the provision and use of composite implants, and novel composite structures which may be used for medical and non-medical applications
US11484627B2 (en) 2010-10-20 2022-11-01 206 Ortho, Inc. Method and apparatus for treating bone fractures, and/or for fortifying and/or augmenting bone, including the provision and use of composite implants, and novel composite structures which may be used for medical and non-medical applications
WO2015095745A1 (en) 2010-10-20 2015-06-25 206 Ortho, Inc. Method and apparatus for treating bone fractures, and/or for fortifying and/or augmenting bone, including the provision and use of composite implants, and novel composite structures which may be used for medical and non-medical applications
US11291483B2 (en) 2010-10-20 2022-04-05 206 Ortho, Inc. Method and apparatus for treating bone fractures, and/or for fortifying and/or augmenting bone, including the provision and use of composite implants
US20140128990A1 (en) * 2011-04-04 2014-05-08 Smith & Nephew, Inc. Bone putty
WO2013130877A1 (en) 2012-02-29 2013-09-06 206 Ortho, Inc. Method and apparatus for treating bone fractures, including the use of composite implants
KR101419779B1 (ko) * 2012-04-09 2014-07-17 박기덕 골 이식재 제조방법 및 이에 의해 제조된 골 이식재
CA2870309C (en) 2012-04-16 2024-02-20 President And Fellows Of Harvard College Mesoporous silica compositions for modulating immune responses
EP2999747B1 (en) 2013-05-23 2020-08-12 206 ORTHO, Inc. Apparatus for treating bone fractures, and/or for fortifying and/or augmenting bone
KR101423129B1 (ko) * 2014-02-26 2014-07-25 주식회사 오쎄인 압축강도 증가 및 혈액 순환 보완을 위한 고강도 골 대체용 합성 골 및 이의 제조방법
ES2588395T3 (es) * 2014-03-17 2016-11-02 Bonalive Biomaterials Oy Pasta implantable y su uso
US9566368B2 (en) 2014-11-13 2017-02-14 Bioventus, Llc Moldable bone graft compositions
US11786457B2 (en) 2015-01-30 2023-10-17 President And Fellows Of Harvard College Peritumoral and intratumoral materials for cancer therapy
US10195305B2 (en) * 2015-03-24 2019-02-05 Orthovita, Inc. Bioactive flowable wash-out resistant bone graft material and method for production thereof
CN107708756A (zh) 2015-04-10 2018-02-16 哈佛学院院长等 免疫细胞捕获装置及其制备和使用方法
US11052175B2 (en) 2015-08-19 2021-07-06 Musculoskeletal Transplant Foundation Cartilage-derived implants and methods of making and using same
DK3359209T3 (en) * 2015-10-05 2021-03-15 Hettwer Holding Aps Compositions and methods for treatment of bone defects
JP2018533596A (ja) 2015-11-12 2018-11-15 グレイバグ ビジョン インコーポレイテッド 医学療法のための凝集マイクロ粒子
EP3411475A4 (en) 2016-02-06 2019-09-11 President and Fellows of Harvard College REGENERATION OF THE HEMATOPOIETIC NICHE TO RECONSTITUTE IMMUNITY
CN115305229A (zh) 2016-07-13 2022-11-08 哈佛学院院长等 抗原呈递细胞模拟支架及其制备和使用方法
US10688222B2 (en) * 2016-11-21 2020-06-23 Warsaw Orthopedic, Inc. Lyophilized moldable implants containing an oxysterol
KR101854540B1 (ko) * 2016-11-25 2018-06-20 건양대학교산학협력단 지속성이 우수한 안면성형용 plla 필러의 제조방법
JP2020519585A (ja) 2017-05-10 2020-07-02 グレイバグ ビジョン インコーポレイテッド 医学療法のための延長放出マイクロ粒子及びその懸濁液
WO2021221685A1 (en) * 2020-05-01 2021-11-04 SECADA MEDICAL LLC dba VENTRIS MEDICAL, LLC Bone graft containment system
JP2023535377A (ja) * 2020-07-17 2023-08-17 ゼタゲン セラピューティクス,インコーポレイティド 鉄賦形剤を用いて骨を移植する方法および組成物

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5626861A (en) * 1994-04-01 1997-05-06 Massachusetts Institute Of Technology Polymeric-hydroxyapatite bone composite
DE19647853A1 (de) * 1996-11-19 1998-05-20 Bioph Biotech Entw Pharm Gmbh Verbindungen mit verbesserter knorpel- und/oder knocheninduzierender Aktivität
US6193991B1 (en) * 1997-10-29 2001-02-27 Atul J. Shukla Biodegradable delivery systems of biologically active substances
US7371408B1 (en) * 1999-06-07 2008-05-13 Wright Medical Technology, Inc. Bone graft substitute composition
US6787584B2 (en) * 2000-08-11 2004-09-07 Pentron Corporation Dental/medical compositions comprising degradable polymers and methods of manufacture thereof
US20040018238A1 (en) * 2001-02-26 2004-01-29 Shukla Atul J Biodegradable vehicles and delivery systems of biolgically active substances
US6949251B2 (en) * 2001-03-02 2005-09-27 Stryker Corporation Porous β-tricalcium phosphate granules for regeneration of bone tissue
CA2460843A1 (en) * 2001-09-21 2003-03-27 Stryker Corporation Pore-forming agents for orthopedic cements
US8546334B2 (en) * 2001-11-19 2013-10-01 Scil Technology Gmbh Device having osteoinductive and osteoconductive properties
US7465484B2 (en) * 2002-02-19 2008-12-16 Midwest Canvas Corporation Concrete cure blanket having reflective bubble layer
US7166133B2 (en) * 2002-06-13 2007-01-23 Kensey Nash Corporation Devices and methods for treating defects in the tissue of a living being
JPWO2004105825A1 (ja) * 2003-01-10 2006-07-20 多木化学株式会社 骨形成用生体材料、該材料を含む注入用製剤、及び該材料を調製するためのキット、並びにこれらを用いる骨形成方法
WO2004073563A2 (en) * 2003-02-14 2004-09-02 Depuy Spine, Inc. In-situ formed intervertebral fusion device
CA2521623C (en) * 2003-04-11 2015-03-17 Etex Corporation Osteoinductive bone material
ATE357244T1 (de) * 2003-09-12 2007-04-15 Wyeth Corp Injizierbare feste calciumphosphat-stäbe zur abgabe von osteogenen proteinen
EP1604693A1 (en) * 2004-06-09 2005-12-14 Scil Technology GmbH In situ forming scaffold, its manufacturing and use

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102573938A (zh) * 2009-07-23 2012-07-11 布若贞提克斯骨生物学有限公司 可注射和可模塑的骨诱导性陶瓷材料
CN108498873A (zh) * 2010-12-13 2018-09-07 生物模拟治疗有限责任公司 用于脊柱融合手术的组合物和方法
WO2017118293A1 (zh) * 2016-01-06 2017-07-13 宁波华科润生物科技有限公司 可降解骨植入物及其制备方法
CN109562203A (zh) * 2016-04-06 2019-04-02 格拉夫蒂斯公司 包含血液的磷质钙水泥组合物
US11338054B2 (en) 2016-04-06 2022-05-24 Centre National De La Recherche Scientifique Phosphocalcic cement composition comprising blood
US11395862B2 (en) 2016-04-06 2022-07-26 Centre National De La Recherche Scientifique Phosphocalcic cement composition comprising blood
CN108295305A (zh) * 2018-03-21 2018-07-20 刘小勇 一种骨填充材料及其制备方法
CN111214698A (zh) * 2020-01-22 2020-06-02 潍坊医学院附属医院 一种复合骨修复材料及其制备方法
CN111214698B (zh) * 2020-01-22 2021-10-22 潍坊医学院附属医院 一种复合骨修复材料及其制备方法
CN111346260A (zh) * 2020-03-11 2020-06-30 四川大学 力学适应性的生物活性陶瓷盔甲及其制备方法
CN112604026A (zh) * 2020-03-31 2021-04-06 美迪帕克医疗器械有限公司 骨移植组合物及其制备方法
CN115916278A (zh) * 2020-06-21 2023-04-04 奥梭瑞贝斯株式会社 骨诱导骨再生材料及其生产方法

Also Published As

Publication number Publication date
EP1960008A2 (en) 2008-08-27
CN101330934B (zh) 2013-03-20
WO2007068489A2 (en) 2007-06-21
JP2009519065A (ja) 2009-05-14
JP5068269B2 (ja) 2012-11-07
AU2006326271B2 (en) 2011-02-24
AU2006326271A1 (en) 2007-06-21
KR20080081290A (ko) 2008-09-09
KR101105890B1 (ko) 2012-01-16
WO2007068489A3 (en) 2007-08-02
US20090148487A1 (en) 2009-06-11

Similar Documents

Publication Publication Date Title
CN101330934B (zh) 一种用于骨再生的可模压的生物材料及其制备方法和用途
EP2322234B1 (en) Pharmaceutical composition comprising an in situ hardening paste, its manufacturing and use
ES2325573T3 (es) Granulos porosos de fosfato tricalcico beta y metodos para produccion de los mismos.
Ahn et al. Effect of recombinant human bone morphogenetic protein‐4 with carriers in rat calvarial defects
JP4703926B2 (ja) 骨形成蛋白をデリバリーするためのヒアルロン酸の処方
JP2005508217A (ja) 整形外科セメントのための孔形成剤
JP2018161541A (ja) 脊椎固定術用の組成物および方法
Kamakura et al. New scaffold for recombinant human bone morphogenetic protein‐2
KR20190101298A (ko) 개선된 조작 특성을 가진 탈회 골기질
EP1753396A2 (en) Composite material for use as protein carrier
Arun Kumar Augmentation of Bone Defect using Synthetic Scaffold (Polyamide/Hydroxyapatite 90: 10) in Rabbits

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130320

Termination date: 20141214

EXPY Termination of patent right or utility model