CN101310178A - 用于有机化合物的绝对定量方法 - Google Patents

用于有机化合物的绝对定量方法 Download PDF

Info

Publication number
CN101310178A
CN101310178A CNA2006800377035A CN200680037703A CN101310178A CN 101310178 A CN101310178 A CN 101310178A CN A2006800377035 A CNA2006800377035 A CN A2006800377035A CN 200680037703 A CN200680037703 A CN 200680037703A CN 101310178 A CN101310178 A CN 101310178A
Authority
CN
China
Prior art keywords
compound
tracer agent
carbon
isotope ratio
isotope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006800377035A
Other languages
English (en)
Other versions
CN101310178B (zh
Inventor
乔治·鲁伊斯·恩西纳尔
何塞·莱格纳西·加西亚·阿隆斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universidad de Oviedo
Original Assignee
Universidad de Oviedo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad de Oviedo filed Critical Universidad de Oviedo
Publication of CN101310178A publication Critical patent/CN101310178A/zh
Application granted granted Critical
Publication of CN101310178B publication Critical patent/CN101310178B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • G01N30/7206Mass spectrometers interfaced to gas chromatograph
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/12Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using combustion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/884Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample organic compounds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/8868Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample elemental analysis, e.g. isotope dilution analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8886Analysis of industrial production processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/23Carbon containing
    • Y10T436/235In an aqueous solution [e.g., TOC, etc.]

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Combustion & Propulsion (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本方法涉及无需使用标准物从色谱系统洗提的有机化合物的定量,该方法包括:通过化学反应持续地将包含在这些化合物中的碳转化为二氧化碳(CO2),以及其混合物,在分离前或分离后,具有已知的、恒定的碳化合物流,优选CO2,富含碳-13(13C)同位素。该混合物被引入质谱仪中,其中持续测量碳中或由此产生的特征离子中的12C/13C同位素比。利用在线同位素稀释将这种同位素比转化为碳质量流测量。

Description

用于有机化合物的绝对定量方法
技术领域
本发明涉及仪器分析化学领域,更具体地,涉及利用色谱分离系统确定有机化合物的方法,该方法不需要校准特定设备对于每种化合物的仪器响应,并且它的应用将包括如环境部分(部门)和工业过程控制的部分。
背景技术
当需要确定到达分析实验室的任何样品中的一种或多种有机化合物的含量时,通常遵循以下步骤:
a)如果该样品为固体,则将待确定的有机化合物溶解或浸滤在合适的溶剂中。在液体样品的情况下,所有需要的是将有机化合物萃取(extraction)到合适的溶剂中。此时,或稍后,可以将某一类型的内标物(internal standard)加入到样品中以便校正随后的方法误差。这些内标物可以为:i)不同于待被确定的化合物并且在样品中不存在的化合物(内标法),ii)一种或多种待被确定的化合物,其中在化合物中存在的元素的任何一种的同位素丰度已被改变(同位素稀释法),或者iii)一种或多种待被确定的化合物,但是无需修改天然同位素丰度(标准叠加法)。当样品为液体时,内标物可以被直接加入到样品中。
b)一旦化合物已从固体中萃取,或者当样品为液体时,通过非-色谱技术预富集(预浓缩)或分离其它干扰化合物的方法可能是必需的,必须确定其产率。
c)最后,将制备的样品注入到色谱系统中以便通过合适的仪器装置分离存在的不同的有机化合物并检测它们。
d)将峰面积或峰高中的信号与由待确定的每种化合物的纯标准物(standards)制备的校准线进行比较,因为对于每种化合物,仪器信号是不同的。这种校准使得可以确定注射的样品中的有机化合物的含量。值得注意的是,分析步骤无疑是该方法中最昂贵的,因为鉴定的标准物是昂贵的,并且样品中存在的每种化合物需要独立校准,其需要时间和金钱。
e)如果在上述内标物中,已经使用了某一类型的内标物,则定量方法稍微不同。
同位素稀释是五十多年前描述的经典的元素测定技术。它基于通过加入具有改变的同位素丰度的已知量的同一元素(示踪剂)来考虑改变样品中元素的同位素丰度并且通过质谱法测量混合物中的最终同位素丰度。
该原理可以用于利用在线同位素稀释(on-line isotope dilution)测定从色谱系统洗提的元素的量,其基本原理已经在各种出版物[(1)至(5)]中描述。在色谱分离后不断地混合样品和示踪剂(流动中)并且通过质谱法测量作为时间函数的混合物中的同位素比Rm。如果输入混合物的示踪剂随时间保持恒定,则混合物中测量的同位素比(Rm)将仅取决于样品中待分析的元素,其可以是恒定或变化的。
当在线同位素稀释用于色谱分离后的元素分析时,它对于存在于从色谱柱洗提的化合物与用作示踪剂(其包含同位素富集的元素)的化合物之间的同位素平衡是必不可少的。
这种同位素平衡的实现已经描述在使用感应耦合等离子体作为电离源(ionisation source)的技术水平中,因为它能够破坏来自色谱柱的化合物和包含示踪剂的化合物中的所有化学键[(1)至(5)]。因此,电离过程的效果将取决于包含分析物的化合物或富集的示踪剂的性质。对于通过在线同位素稀释的有机化合物的测定,存在本领域水平中的出版物,其描述了感应耦合等离子体作为电离源的应用以及13C-标记(示踪)的苯甲酸作为示踪剂的应用(6)。这种电离源对于测定碳不是最合适的,因为用于这种元素的电离过程的低产量和被大气碳的潜在污染。
发明内容
本发明的设计者提供了一种定量有机化合物的方法,其消除和/或简化了在用于有机化合物的绝对测定方法的领域的水平中已知的一些步骤。
“绝对测定”或“绝对方法”应理解为意味着无需校准而进行的任何测定或方法,即,不需要使用对于待分析的每种化合物的纯标准物。
本发明的一个方面提供了一种定量有机化合物的方法,其包括下列步骤:
a.通过色谱法分离样品中的化合物;
b.使(a)中分离的化合物与富(富含)碳-13的示踪剂混合;
c.使部分(b)中的混合物化学反应,以产生CO2
d.通过质谱仪测量(c)中产生的12C/13C的同位素比;
e.通过在线同位素稀释方程将12C/13C同位素比色谱图转化为碳质量流色谱图;
其中,如果示踪剂是富碳-13的CO2,则与所述示踪剂混合也可以在(a)中分离的化合物的化学反应之后进行。
本发明的方法包括能够定量地将从色谱柱洗提的每种有机化合物中存在的碳转化为二氧化碳(CO2)的化学反应,作为用于实现同位素平衡的方式。其中所述化学反应可以为:
a)利用氧、氧-氩或氧-氢混合物的气相燃烧反应;
b)在催化剂存在的情况下利用金属氧化物(CuO、Ag2O或其他)的固相氧化反应;或者
c)利用强氧化剂(高锰酸盐、重铬酸盐、过硫酸盐或其他)的液相氧化反应。
从样品中每种有机化合物的化学反应获得的二氧化碳在被引入到质谱仪的电离源中用于在线同位素稀释分析之前不断地与富碳-13的示踪剂混合。
本发明的用于引入用13C同位素标记的碳并进行在线同位素稀释的方法包括三种同样有效的可选途径:
a)直接引入作为富13C的二氧化碳的示踪剂。
b)引入作为溶解在液相中的富13C的另一碳化合物(有机或无机,例如,诸如碳酸钠)的示踪剂。
c)引入作为富13C的另一挥发性碳化合物(例如,诸如甲烷)的示踪剂。
在第一种情况中,即,利用富13C的CO2作为示踪剂,后者在任何时间(在流动相中,在柱之后或在化学反应之后)被引入到色谱系统中,而在第二种和第三种情况中,即,当示踪剂为除了CO2之外的碳化合物时,它必须总是在化学反应之前被引入以便也将用作示踪剂的化合物转化为富13C的CO2
在本发明方法的优选具体实施方式中,获得的混合物(其是待分析的有机化合物和示踪剂的混合物)被不断地引入到质谱仪中以便测量碳同位素比12C/13C,由此获得质量流色谱图。
由于色谱分离,元素从样品输入到混合物中随时间变化,并且,因此,同位素稀释方程通过输入(entering)元素的质量流作为未知变量而改进[(1)至(5)]。作为时间函数的质量流的表现将称为所谓的质量流色谱图。色谱峰的整合(integration)提供了所述峰中元素的质量的绝对测量。如果我们知道注入色谱系统中的样品的质量(或体积),则可以计算原始样品中的浓度[(1)至(5)]。
可以进行12C/13C同位素比的测量,取决于所用的电离源,在具有质量12和13的碳的单阳离子(monopositive ion)和由此衍生的其它离子中,例如,诸如在分别具有质量44和45的CO2 +中。
本发明中开发的方法使得可以在引入到电离源中之前实现从色谱柱洗提的化合物与同位素富集的示踪剂之间的同位素平衡。这种在先的同位素平衡的实现使得可以选择用于分析有机化合物的最合适的电离源,其可以在高真空中操作,由此提供较高的灵敏度和较低的碳污染,其能够转化为(translate into)对于有机化合物的更好的检测极限。
因此,本发明提供了一种用于有机化合物的高灵敏度、高精度的绝对测定方法,其利用在线同位素稀释,通过在色谱系统出口利用除了感应耦合等离子体之外的电离源持续测量12C/13C同位素比。
本发明用于有机化合物的绝对定量方法,相对于本领域现有技术水平描述的用于有机化合物的定量方法,具有以下优点:
a)它是可以用于任何有机化合物而与其化学形式(chemicalform)无关的通用方法,因为任何有机化合物中存在的碳对于通过上述化学反应之一定量地转化为CO2是敏感的。
b)它是不需要利用对于待测定的每种化合物的校准标准物的绝对方法,其显著地降低了常规实验室中用于分析所需的成本和时间。实际上,它将允许绝对定量从色谱系统洗提的样品中的任何含碳化合物,伴随单注入且不需要任何标准物。
c)它利用同位素稀释,因此,它可以认为是初步分析方法,该分析方法对于国际单位制(International System of Units)是可直接追踪的。
d)它需要电流色谱系统的最小修改,以便引入化学反应和富集碳13的流。
e)它利用低成本质谱仪,因为当测量同位素比时不需要高精度。
f)它使得可以利用内标物以校正样品制备期间、注射的体积变化、或者由于溶剂蒸发引起的体积变化的方法误差,因为这种方法也使得可以绝对测定注射的内标物的量。
本发明的另一方面是所述方法在液相色谱分离和气相色谱分离中、在环境分析实验室和工业过程控制实验室中的应用,其中具有已知化学结构的有机化合物的常规测定通过色谱技术进行。
具体地说,各种类型的样品中的脂肪族烃、芳香族烃、杀虫剂、有机氯化合物(organochlorated compound)等的测定利用本发明是可行的。因此,应用的最直接领域之一是分析实验室中有机污染物的环境分析。应用的第二重要领域是工业和药物产品的质量控制和化学过程的控制,其通常在生产工厂本身的实验室中进行。
在分析化学中,应用的其它领域可以是样品制备过程的优化和研究(液-液萃取、固-液萃取、固相微萃取等),因为利用这种方法进行的绝对定量可以用于以高度可靠的方式研究并优化这个过程。具体实例是选择和使用内标物以校正分离过程中的误差。
从仪器的观点来看,本发明可以并入使用质谱法作为检测系统的色谱装置(简易GC-MS或HPLCMS装置),并因此包括对由分析仪器公司商业化敏感的仪器改进。
这种修改(改进)的装置可以使得进行高精度和准确度的有机化合物的常规分析成为可能,其对于实验室成本低,并且比用传统的外部校准和标准物叠加法的时间大大缩短。
在整个说明书和权利要求书中,词语“包括”及其变型不用于排除其它的技术特征、成分或步骤。对于本领域技术人员来说,本发明的其它目的、优点和特征将部分地从说明书、部分地从本发明的实践中显现。下面提供的实施例和附图用于举例说明的目的,并不用于限制本发明。
附图说明
图1示出了同位素稀释分析的基本原理。其中:“I.a.”是同位素丰度;“S”是样品;“Mix.”是混合物;“T”是示踪剂;“a”是同位素a;以及“b”是同位素b。
图2示出了对于液相色谱系统的在线同位素稀释的原理。其中:“HPLC P.”是HPLC泵;“M.ph.”是流动相;“S.”是注射器;“I.v.”是喷射阀;“C.”是柱;“E.t.”是富集的示踪剂;“P.p.”是蠕动泵;以及“I.s.(M.S.)”是质谱仪的电离源。
图3示出了气相色谱法的优选具体实施方式。其中:“C.int.”是燃烧界面;“C.inj.”是色谱注射器;“C.G”是气相色谱法;“J”是接合处;“M.S.”是质谱仪;“(E.i.)I.s.”是电子冲击电离源;“C.c.”是色谱柱;“M.f.c.”是质量流控制器;以及“Res.13CO2(He)“是富13C的CO2的储存器。
具体实施方式
为了更好的理解本发明所描述的方法,我们将解释待遵循的过程(步骤),以便利用具有电子-冲击电离源的四极质谱仪通过气相色谱分析确定有机化合物。
同位素稀释分析的基本原理在图1中示出,用于具有两种同位素的元素:a和b。如所观察到的,同位素a是样品中最丰富的,而示踪剂在同位素b中富集。样品中的同位素丰度将是样品和示踪剂中丰度的线性组合,其将取决于样品中存在的元素的量和添加的示踪剂的量。测量样品中的同位素比Rm(同位素a/同位素b)使得可以确定原始样品中元素的量。
这个基本原理可以应用于确定利用在线同位素稀释从色谱系统洗提的元素的量,其基本原理在图2中示出,用于液相色谱系统。如图2中可以观察到的,在色谱分离后将样品和示踪剂持续混合(流动中)并且通过质谱法测量作为时间函数的混合物中的同位素比Rm。
13C富集的二氧化碳溶解在高压氦(pressurised Helium)中而被制备。具有示踪剂的容器具有输出开口,并且通过质量流控制器控制气流,该质量流控制器精确地调节加入到混合物中的示踪剂流。另一方面,燃烧界面安装在色谱柱的出口处,包括陶瓷管,其中在气流中预先氧化为CuO的铜丝被引入并维持在合适的温度(>850℃)以便用于下面的一般反应(generic reaction)定量发生:
CnH2n+2+(3n+1)CuO→nCO2+(n+1)H2O+(3n+1)Cu
其中,CnH2n+2为任何脂肪族烃。
任何有机化合物将定量地发生前面的反应,被转化为二氧化碳、水、以及,在杂原子存在的情况下,其它反应产物(NO2、SO2等)。
13C-标记的二氧化碳流在燃烧界面的出口处加入,并且由此产生的混合物通过熔凝硅管被引入到质谱仪的电离源中。
利用电子-冲击电离源,可以测量具有质量(mass)44(用于碳12)和45(用于碳13)的CO2 +分子离子中的碳同位素比。通过考虑氧的天然同位素丰度将测量的同位素比转化为12C/13C同位素比。
将这个同位素比写入在线同位素稀释方程(1)中以获得质量流色谱图并在相应的整合后直接确定每个色谱峰的碳质量。这个具体实施方式的通用图在图3中示出。
参考文献
(1)“Isotope dilution analysis for trace element speciation.Atutorial review”.Rodríguez González,P;Marchante Gayón,JM;GarcíaAlonso,JI;Sanz Medel,A.SPECTROCHIMICA ACTA PARTB-ATOMIC 10 SPECTROSCOPY,2005,60(2):151-207.
(2)“Isotope-dilution mass spectrometry”.Heumann,KG.INTERNATIONAL JOURNAL OF MASS SPECTROMETRY ANDION PROCESSES,1992,118:575-592.
(3)“Speciation of essential elements in human serum usinganion-exchange chromatography coupled to post-column isotopedilution analysis with double focusing ICP-MS”.
Figure A20068003770300131
CS,Marchante Gayón,JM;García Alonso,JI;Sanz Medel,A.JOURNALOF ANALYTICAL ATOMIC SPECTROSCOPY,2001,16(6):587-592.
(4)“Quantitative speciation of selenium in human serum byaffinity chromatography coupled to post-column isotope dilutionanalysis ICP-MS”.Reyes,LH,Marchante-Gayón,JM,García Alonso,JI;Sanz Medel,A.JOURNAL OF ANALYTICAL ATOMICSPECTROSCOPY,2003,18(10):1210-1216.
(5)“Determination of cadmium in biological and environmentalmaterials by isotope dilution inductively coupled plasma massspectrometry:Effect of flow sample introduction methods”.Mota,JPV,De la Campa,MRF,García Alonso,JI;Sanz Medel,A.JOURNAL OFANALYTICAL ATOMIC SPECTROSCOPY,1999,14(2):113-120.
(6)“Development of an ICP-IDMS method for dissolved organiccarbon determinations and its application to chromatographic fractionsof heavy metal complexes with humic substances”.Vogl,J;Heumann,KG.ANALYTICAL CHEMISTRY,1998,70(10):2038-2043.

Claims (10)

1.用于有机化合物的定量方法,所述方法包括:
a.通过色谱法分离样品中的化合物;
b.使(a)中分离的所述化合物与富碳-13的示踪剂混合;
c.使部分(b)中的混合物化学反应,以产生CO2
d.通过质谱仪测量(c)中产生的12C/13C的同位素比;
e.通过在线同位素稀释方程将所述12C/13C同位素比色谱图转化为碳质量流色谱图;
其中,如果所述示踪剂是富碳-13的CO2,则与所述示踪剂混合也可以在(a)中分离的所述化合物的所述化学反应之后进行。
2.根据权利要求1所述的方法,其中,所述示踪剂是碳化合物。
3.根据权利要求2所述的方法,其中,所述示踪剂是碳酸钠。
4.根据权利要求2所述的方法,其中,所述示踪剂是挥发性碳化合物。
5.根据权利要求4所述的方法,其中,所述示踪剂是甲烷。
6.根据前述权利要求中任一项所述的方法,其中,所述分离通过液相色谱法或气相色谱法进行。
7.根据权利要求1至6中任一项所述的方法,其中,所述12C/13C同位素比是直接测量的。
8.根据权利要求1至6中任一项所述的方法,其中,所述同位素比是通过来源于12C和13C的离子测量的。
9.根据前一权利要求所述的方法,其中,所述来源于12C/13C比的离子是分别具有质量44和45的CO2 +
10.根据前述权利要求中任一项所述的方法,其中,所述质谱仪的所述电离源是电子-冲击电离源。
CN2006800377035A 2005-10-11 2006-10-11 用于有机化合物的绝对定量方法 Expired - Fee Related CN101310178B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ESP200502590 2005-10-11
ES200502590A ES2273601B1 (es) 2005-10-11 2005-10-11 Metodo absoluto de cuantificacion de compuestos organicos.
PCT/ES2006/070153 WO2007042597A1 (es) 2005-10-11 2006-10-11 Método absoluto de cuantificación de compuestos orgánicos

Publications (2)

Publication Number Publication Date
CN101310178A true CN101310178A (zh) 2008-11-19
CN101310178B CN101310178B (zh) 2013-02-27

Family

ID=37942340

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800377035A Expired - Fee Related CN101310178B (zh) 2005-10-11 2006-10-11 用于有机化合物的绝对定量方法

Country Status (8)

Country Link
US (1) US20090124019A1 (zh)
EP (1) EP1939617A4 (zh)
JP (1) JP5015941B2 (zh)
CN (1) CN101310178B (zh)
ES (1) ES2273601B1 (zh)
HK (1) HK1125458A1 (zh)
RU (1) RU2008118143A (zh)
WO (1) WO2007042597A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101230542B1 (ko) 2010-12-10 2013-02-06 한국수력원자력 주식회사 액체소듐의 순도유지가 가능하도록 고안된 소듐―co2 표면반응 가시화 실험장치 및 실험방법
EP3090260A1 (en) * 2014-01-02 2016-11-09 John P. Jasper Method for continuously monitoring chemical or biological processes
WO2017114654A1 (en) * 2015-12-29 2017-07-06 Total Raffinage Chimie Method for detecting and quantifying oxygen in oxidizable compounds
FR3091350B1 (fr) * 2019-01-02 2022-03-11 Ids Group Marquage et identification isotopiques des liquides
CN113952840B (zh) * 2021-12-22 2024-04-19 中国科学院地球环境研究所 一种还原分离装置及相应的分析方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2673291A1 (fr) * 1991-02-27 1992-08-28 Inbiomed International Procede d'authentification de l'origine d'un produit constitue d'un melange de composes organiques par marquage isotopique.
US6355416B1 (en) * 1997-02-14 2002-03-12 The George Washington University Assay for the measurement of DNA synthesis rates

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3786249A (en) * 1971-12-20 1974-01-15 Stanford Research Inst Negative ion duoplasmatron mass spectrometer for isotope ratio analysis
US5012052A (en) * 1988-03-22 1991-04-30 Indiana University Foundation Isotope-ratio-monitoring gas chromatography-mass spectrometry apparatus and method
FR2845479A1 (fr) * 2002-10-03 2004-04-09 Air Liquide Dispositif et procede d'analyse de melanges de composes organiques gazeux
WO2005010506A1 (ja) * 2003-07-09 2005-02-03 Tokyo Gas Company Limited 同位体濃度の測定方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2673291A1 (fr) * 1991-02-27 1992-08-28 Inbiomed International Procede d'authentification de l'origine d'un produit constitue d'un melange de composes organiques par marquage isotopique.
US6355416B1 (en) * 1997-02-14 2002-03-12 The George Washington University Assay for the measurement of DNA synthesis rates

Also Published As

Publication number Publication date
JP5015941B2 (ja) 2012-09-05
HK1125458A1 (en) 2009-08-07
EP1939617A4 (en) 2010-07-07
JP2009511887A (ja) 2009-03-19
CN101310178B (zh) 2013-02-27
RU2008118143A (ru) 2009-11-20
ES2273601A1 (es) 2007-05-01
WO2007042597A1 (es) 2007-04-19
EP1939617A1 (en) 2008-07-02
US20090124019A1 (en) 2009-05-14
ES2273601B1 (es) 2008-06-01

Similar Documents

Publication Publication Date Title
Hintelmann et al. Measurement of mercury methylation in sediments by using enriched stable mercury isotopes combined with methylmercury determination by gas chromatography–inductively coupled plasma mass spectrometry
Schettgen et al. Fast determination of urinary S-phenylmercapturic acid (S-PMA) and S-benzylmercapturic acid (S-BMA) by column-switching liquid chromatography–tandem mass spectrometry
WO1998042006A9 (en) A device for continuous isotope ratio monitoring following fluorine based chemical reactions
CN104991019B (zh) 生物检材中钩吻素甲和钩吻素子的液相色谱-串联质谱检测方法
Godin et al. Isotope ratio monitoring of small molecules and macromolecules by liquid chromatography coupled to isotope ratio mass spectrometry
CN105675788B (zh) 高效液相色谱串联质谱技术检测唾液中孕酮和睾酮的方法
CN101310178B (zh) 用于有机化合物的绝对定量方法
Cabañero et al. Isotope ratio mass spectrometry coupled to liquid and gas chromatography for wine ethanol characterization
CN109839451A (zh) 一种血中全氟类化合物、酚类化合物和雌激素的同时快速分析方法
CN113711030A (zh) 用于通过lc-ms/ms检测11-氧代雄激素的方法和系统
Sorouraddin et al. Picoline based-homogeneous liquid–liquid microextraction of cobalt (ii) and nickel (ii) at trace levels from a high volume of an aqueous sample
Tao et al. Nicotine in complex samples: recent updates on the pretreatment and analysis method
Driedger et al. Determination of part-per-trillion levels of atmospheric sulfur dioxide by isotope dilution gas chromatography/mass spectrometry
Díaz et al. Gas chromatography-combustion-mass spectrometry with postcolumn isotope dilution for compound-independent quantification: its potential to assess HS-SPME procedures
Holm et al. Fast and sensitive determination of urinary 1-hydroxypyrene by packed capillary column switching liquid chromatography coupled to micro-electrospray time-of-flight mass spectrometry
Ottoila et al. Quantitative determination of nitroglycerin in human plasma by capillary gas chromatography negative ion chemical ionization mass spectrometry
Baeyens et al. Investigation of headspace and solvent extraction methods for the determination of dimethyl-and monomethylmercury in environmental matrices
Cueto Díaz et al. A quantitative universal detection system for organic compounds in gas chromatography with isotopically enriched 13CO2
CN105699575A (zh) 高效液相色谱串联质谱技术检测唾液中皮质醇的方法及试剂盒
Yang et al. Determination of M+ 4 stable isotope labeled cortisone and cortisol in human plasma by µElution solid‐phase extraction and liquid chromatography/tandem mass spectrometry
Hansen Quantitative and qualitative chromatographic analysis
Menegário et al. Micro-scale flow system for on-line multielement preconcentration from saliva digests and determination by inductively coupled plasma optical emission spectrometry
Sobrado et al. Modification of a commercial gas chromatography isotope ratio mass spectrometer for on-line carbon isotope dilution: evaluation of its analytical characteristics for the quantification of organic compounds
Takatsu et al. Determination of serum cholesterol by stable isotope dilution method using discharge‐assisted thermospray liquid chromatography/mass spectrometry
Rodriguez et al. Application of capillary ion chromatography and capillary ion chromatography coupled with mass spectrometry to determine methanesulfonate and inorganic anions in microliter sample volumes of Antarctic snow and ice

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1125458

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1125458

Country of ref document: HK

C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130227

Termination date: 20131011