CN101239821A - 一种钛钪锑酸铅铋锂系弛豫铁电陶瓷及其用途 - Google Patents

一种钛钪锑酸铅铋锂系弛豫铁电陶瓷及其用途 Download PDF

Info

Publication number
CN101239821A
CN101239821A CNA2008100449763A CN200810044976A CN101239821A CN 101239821 A CN101239821 A CN 101239821A CN A2008100449763 A CNA2008100449763 A CN A2008100449763A CN 200810044976 A CN200810044976 A CN 200810044976A CN 101239821 A CN101239821 A CN 101239821A
Authority
CN
China
Prior art keywords
ferroelectric ceramic
parts
relaxation ferroelectric
scandate
lithium titanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008100449763A
Other languages
English (en)
Other versions
CN101239821B (zh
Inventor
朱建国
江一杭
肖定全
覃宝全
赵毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN2008100449763A priority Critical patent/CN101239821B/zh
Publication of CN101239821A publication Critical patent/CN101239821A/zh
Application granted granted Critical
Publication of CN101239821B publication Critical patent/CN101239821B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种钛钪锑酸铅铋锂系弛豫铁电陶瓷及其用途,其特点是该弛豫铁电陶瓷的通式为:(1-x)(Bi1-yLiy)(Sc1-ySby)O3-xPbTiO3,其中x、y表示复合离子中相应元素材料在各元素中所占的原子数,所有元素的原子数总和为1,式中0.60≤x≤0.65,0.01≤y≤0.15。该弛豫铁电陶瓷由以下原料组分组成,按重量计为:三氧化二铋23.37~34.37份,三氧化二钪6.92~10.17份,二氧化钛14.55~17.52份,氧化铅40.64~48.96份,三氧化二锑0.17~3.34份和碳酸锂0.04~0.85份。钛钪锑酸铅铋锂系弛豫铁电陶瓷铁电-顺电相变温度为300~341℃,压电常数d33可达545pC/N,平面机电耦合系数kp可达58%;该弛豫铁电陶瓷用于大功率超声器件,高温物体超声波,以及高温物体的振动、加速度和压力测试领域。

Description

一种钛钪锑酸铅铋锂系弛豫铁电陶瓷及其用途
技术领域
本发明涉及一种钛钪锑酸铅铋锂系弛豫铁电陶瓷及其用途,属于功能陶瓷材料领域。
背景技术
弛豫型铁电体(Relaxor Ferroelectrics)是一类重要的功能材料,它具有介电常数高,电致伸缩效应大,响应速度快,回零性好,驱动功率小,理论上无滞后等优点,是制造多层陶瓷电容器,微位移驱动器、致动器及电光学器件的理想材料。目前,国内外研究较多的弛豫型铁电材料主要集中在Pb(Mg1/3Nb2/3)O3和Pb(Zn1/3Nb2/3)O3等体系(Seung-Eek Park and Thomas R.Shrout,Ultrahigh strain and piezoelectric behavior inrelaxor based ferroelectric single crystals[J],J.Appl.Phys.,1997,Vol.82:1804-1811)。如:Pb(Mg1/3Nb2/3)O3-PbTiO3(PMN-PT)和Pb(Zn1/3Nb2/3)O3-PbTiO3(PZN-PT)陶瓷,它们都具有高的介电常数、大的电致收缩系数和高的压电常数,在航空、航天、自适应光学、精密机械加工、自动控制、半导体集成、生物医学工程等科技领域以及显微分析技术等方面有着广阔的应用前景。
1但是这类陶瓷材料在制备和使用过程中还存在着一些弊端,如:PMN-PT和PZN-PT体系位于准同型相界(Morphotropic Phase Boundary)附近的组分的居里温度(铁电-顺电相变温度Tm)均在200℃以下。低的居里温度使得PMN-PT和PZN-PT陶瓷的性能-温度稳定性较差,其器件的使用温度一般被限制在100℃以下。另外,PMN-PT和PZN-PT陶瓷在常规制备工艺条件下总是存在着一定的焦绿石相,难以烧成纯的钙钛矿结构;它们的烧成温度也相对较高,一般为1200℃或更高,因此耗能大,不利于降低生产成本。
随着科学技术的迅猛发展,许多电子电器设备需要在更宽的温度范围内正常使用,这要求铁电材料具有更高的居里温度。研究新型的高居里温度、高性能的铁电材料,在高温电子领域已经成为当务之急。如:工业上所用的大功率超声器件,高温物体超声波应用,高温物体的振动,加速度和压力测定,都要求铁电材料具有良好的温度-性能稳定性和更宽的温度使用范围。近年来,Bi(Me)O3-PbTiO3体系压电陶瓷由于具有较高的居里温而备受研究者的关注(Richard E.EITEL,New High TemperatureMorphotropic Phase Boundary Piezoelectrics Based on Bi(Me)O3-PbTiO3 Ceramics[J],Jpn.J.Appl.Phys.,2001,Vol.40:5999-6002)。Bi(Me)O3-PbTiO3体系压电陶瓷的发现,为开发新型的具有高居里温度的弛豫铁电陶瓷提供了可能。如:在BiScO3-PbTiO3体系中引入(Ba,Sr)TiO3,形成(Ba,Sr)TiO3-BiScO3-PbTiO3三元固溶体。该体系表现出明显的介电弛豫现象,其铁电-顺电相变温度(Tm)在246~338℃之间,明显高于传统的铅基弛豫铁电陶瓷。又如:在BiScO3-PbTiO3体系中引入PbSnO3,形成PbSnO3-BiScO3-PbTiO3三元固溶体,该体系同样表现出明显的介电弛豫现象,铁电-顺电相变温度在237~353℃之间。但是,(Ba,Sr)TiO3和PbSnO3的引入都会在一定程度上降低体系的压电常数和机电耦合系数,为器件的设计带来一定的困难(根据引入量的不同,位于准同型相界附近组分的压电常数d33一般在200~440pC/N之间)。
发明内容
本发明的目的是针对现有技术的不足而提出一种钛钪锑酸铅铋锂系弛豫铁电陶瓷及其用途,其特点是能在较低烧结温度下烧成,具有高的铁电-顺电相变温度(Tm)和优异的压电性能。
本发明的目的由以下技术描述实现,其中所述原料份数除特殊说明外,均为重量份数。
钛钪锑酸铅铋锂系弛豫铁电陶瓷的通式为:
(1-x)(Bi1-yLiy)(Sc1-ySby)O3-xPbTiO3
其中x、y表示复合离子中相应元素材料在各元素中所占的原子数,所有元素的原子数总和为1,式中0.60≤x≤0.65,0.01≤y≤0.15。
钛钪锑酸铅铋锂系弛豫铁电陶瓷由以下原料份数组成:
三氧化二铋        23.37~34.37份
三氧化二钪        6.92~10.17份
二氧化钛          14.55~17.52份
氧化铅            40.64~48.96份
三氧化二锑        0.17~3.34份
碳酸锂            0.04~0.85份
钛钪锑酸铅铋锂系弛豫铁电陶瓷的制备方法包括以下步骤:
(1)将三氧化二铋23.37~34.37份,三氧化二钪6.92~10.17份,二氧化钛14.55~17.52份,氧化铅40.64~48.96份,三氧化二锑0.17~3.34份和碳酸锂0.04~0.85份,以球磨或振磨的方式进行混料,时间为12~24小时,在温度为800℃~850℃预烧2~4小时;
(2)将上述预烧粉料加入球磨机中研磨5~10小时,然后加入浓度为10%~15%的聚乙烯醇粘结剂造粒,聚乙烯醇粘结剂的用量为粉体重量的8%~15%,造粒后的粉料在陶瓷研钵中研磨0.5~1小时,再在温度为100℃~150℃的烘箱中烘烤8~30分钟,取出再研磨0.5~1小时,过60目分样筛,获得颗粒大小均匀,流动性好的粉料;
(3)将上述粉料在18~22Mpa下干压成型,保压10~30秒,获得所需形状的陶瓷生坯,此陶瓷生坯经充分排胶后,放入刚玉坩锅中,在温度1080℃~1120℃烧结2~4小时,获得质量好的陶瓷;
(4)将上述烧结成型的陶瓷经研磨抛光、清洗后,采用丝网印刷机镀上银电极,在温度120℃~150℃的硅油中预热5~10分钟后,缓慢施加直流电压对其极化,极化步骤如下:1.0Kv/mm保压5分钟→2.0KV/mm保压5分钟→3.0~3.5KV/mm保压10分钟,极化后的陶瓷经清洗,获得具有高压电系数、高居里温度的陶瓷成品。
聚乙烯醇粘结剂由以下组分组成:聚乙烯醇15%,甘油7%,酒精3%,去离子水75%。
采用丹东方圆仪器公司生产的DX-1000型X射线衍射仪测试钛钪锑酸铅铋锂系弛豫铁电陶瓷的X射线衍射峰图谱,如图1所示。采用美国Radiant公司生产的Precision Workstation测试钛钪锑酸铅铋锂系弛豫铁电陶瓷的铁电回线,如图2所示。采用中国科学院声学研究所生产的ZJ-3A型准静态d33测试仪和美国Angilent公司生产的HP4294A型精密阻抗分析仪测试钛钪锑酸铅铋锂系弛豫铁电陶瓷的压电常数d33和d31,机电耦合系数kp和kt,如图3所示。采用高温介电性能测试系统测试钛钪锑酸铅铋锂系弛豫铁电陶瓷的介电常数在不同频率下随温度变化的关系图(介温图谱),如图4所示。结果表明,本发明的钛钪锑酸铅铋锂系弛豫铁电陶瓷的晶体结构为单一的钙钛矿结构,铁电-顺电相变温度在300~341℃之间,明显高于传统PMN-PT和PZN-PT系弛豫铁电陶瓷;压电常数d33最高可达545pC/N,平面机电耦合系数kp可达58%。
钛钪锑酸铅铋锂系弛豫铁电陶瓷用于大功率超声器件,高温物体超声波,高温物体的振动、加速度和压力测定领域。
本发明具有如下优点:
1、本发明所制得的弛豫铁电陶瓷的晶体结构为单一的钙钛矿结构。
2、铁电-顺电相变温度在300~341℃之间,明显高于传统PMN-PT和PZN-PT系弛豫铁电陶瓷。
3、压电常数d33最高可达545pC/N,平面机电耦合系数kp可达58%。
附图说明
图1为钛钪锑酸铅铋锂弛豫铁电陶瓷的X射线衍射谱图。
图2为钛钪锑酸铅铋锂弛豫铁电陶瓷的铁电回线图。
图3为钛钪锑酸铅铋锂弛豫铁电陶瓷的d33、d31和kp、kt随组分的变化图。
图4为钛钪锑酸铅铋锂弛豫铁电陶瓷介电常数在不同频率下随温度变化关系图。
具体实施方法
下面通过实施例对本发明进行具体描述,有必要在此指出的是本实施例只用于对本发明进行进一步说明,但不能理解为对本发明保护范围的限制,该领域的技术熟练人员可以根据上述发明的内容作出一些非本质的改进和调整。
实施例1:钛钪锑酸铅铋锂系弛豫铁电陶瓷的制备
钛钪锑酸铅铋锂系弛豫铁电陶瓷的通式为:
(1-x)(Bi1-yLiy)(Sc1-ySby)O3-xPbTiO3,其中x=0.62,y=0.075
并按下述工艺步骤及工艺参数制备:
1、钛钪锑酸铅铋锂弛豫铁电陶瓷的原料由以下组分组成:三氧化二铋27.45份,三氧化二钪8.11份,二氧化钛16.4份,氧化铅46.29份,三氧化二锑1.4份和碳酸锂0.35份,以球磨或振磨的方式进行混料,时间为24小时,在温度800℃预烧2小时。
2、将上述预烧粉料加入球磨机中研磨5小时,然后加入浓度为15%的聚乙烯醇粘结剂造粒,造粒后的粉料在陶瓷研钵中研磨0.5小时,再在温度为120℃的烘箱中烘烤30分钟,取出再研磨0.5小时,过60目分样筛,获得颗粒大小均匀,流动性好的粉料。
3、将上述粉料在20Mpa下干压成型,保压30秒,获得所需形状的陶瓷生坯,此陶瓷生坯经充分排胶后,放入刚玉坩锅中,在温度1080℃烧结2小时,获得质量好的陶瓷。
4、将上述烧结成型的陶瓷经研磨抛光、清洗后,采用丝网印刷机镀上银电极,在温度150℃的硅油中预热5分钟后,缓慢施加直流电压对其极化,极化步骤如下:1.0Kv/mm保压5分钟→2.0KV/mm保压5分钟→3.0KV/mm保压10分钟,极化后的陶瓷经清洗,获得具有高压电系数、高居里温度的陶瓷成品。
钛钪锑酸铅铋锂系弛豫铁电陶瓷的性能参数如表1。
实施例2:钛钪锑酸铅铋锂系弛豫铁电陶瓷的制备
钛钪锑酸铅铋锂系弛豫铁电陶瓷的通式为:
(1-x)(Bi1-yLiy)(Sc1-ySby)O3-xPbTiO3,其中x=0.60,y=0.075
并按下述工艺步骤及工艺参数制备:
1、钛钪锑酸铅铋锂弛豫铁电陶瓷的原料由以下组分组成:三氧化二铋28.9份,三氧化二钪8.53份,二氧化钛15.88份,氧化铅44.85份,三氧化二锑1.48份和碳酸锂0.36份,以球磨或振磨的方式进行混料,时间为24小时;在温度800℃预烧2小时。
2、将上述预烧粉料加入球磨机中研磨5小时,然后加入浓度为15%的聚乙烯醇粘结剂造粒,造粒后的粉料在陶瓷研钵中研磨0.5小时,再在温度为120℃的烘箱中烘烤30分钟,取出再研磨0.5小时,过60目分样筛,获得颗粒大小均匀,流动性好的粉料。
3、将上述粉料在20Mpa下干压成型,保压30秒,获得所需形状的陶瓷生坯,此陶瓷生坯经充分排胶后,放入刚玉坩锅中,在温度1100℃烧结2小时,获得质量好的陶瓷。
4、将上述烧结成型的陶瓷经研磨抛光、清洗后,采用丝网印刷机镀上银电极,在温度150℃的硅油中预热5分钟后,缓慢施加直流电压对其极化,极化步骤如下:1.0Kv/mm保压5分钟→2.0KV/mm保压5分钟→3.0KV/mm保压10分钟,极化后的陶瓷经清洗,获得具有高压电系数、高居里温度的陶瓷成品。
钛钪锑酸铅铋锂系弛豫铁电陶瓷的性能参数如表2。
采用高温介电性能测试系统测得的0.40(Bi0.925Li0.075)(Sc0.925Sb0.075)O3-0.60PbTiO3陶瓷介电常数在不同频率下随温度变化的关系图(介温图谱),如图2所示。样品的介电峰具有明显的频率色散,并且峰位置随着测试频率的增加朝着高温方向移动,表现出弛豫特性。其铁电-顺电相变温度为302℃(100kHz)。图中所述γ=1.7为该组分铁电体的弛豫度。
实施例3:钛钪锑酸铅铋锂系弛豫铁电陶瓷的制备
钛钪锑酸铅铋锂系弛豫铁电陶瓷的通式为:
(1-x)(Bi1-yLiy)(Sc1-ySby)O3-xPbTiO3,其中x=0.62,y=0.10
并按下述工艺步骤及工艺参数制备:
1、钛钪锑酸铅铋锂弛豫铁电陶瓷的原料由以下组分组成:三氧化二铋26.73份,三氧化二钪7.91份,二氧化钛16.62份,氧化铅46.41份,三氧化二锑1.86份和碳酸锂0.47份,以球磨或振磨的方式进行混料,时间为24小时;在温度800℃预烧2小时。
2、将上述预烧粉料加入球磨机中研磨5小时,然后加入浓度为15%的聚乙烯醇粘结剂造粒,造粒后的粉料在陶瓷研钵中研磨0.5小时,再在温度为120℃的烘箱中烘烤30分钟,取出再研磨0.5小时,过60目分样筛,获得颗粒大小均匀,流动性好的粉料。
3、将上述粉料在20Mpa下干压成型,保压30秒,获得所需形状的陶瓷生坯,此陶瓷生坯经充分排胶后,放入刚玉坩锅中,在温度1100℃烧结2小时,获得质量好的陶瓷。
4、将上述烧结成型的陶瓷经研磨抛光、清洗后,采用丝网印刷机镀上银电极,在温度120℃的硅油中预热5分钟后,缓慢施加直流电压对其极化,极化步骤如下:1.0Kv/mm保压5分钟→2.0KV/mm保压5分钟→3.0KV/mm保压10分钟,极化后的陶瓷经清洗,获得具有高压电系数、高居里温度的陶瓷成品。
钛钪锑酸铅铋锂系弛豫铁电陶瓷的性能参数如表3。
实施例4:钛钪锑酸铅铋锂系弛豫铁电陶瓷的制备
钛钪锑酸铅铋锂系弛豫铁电陶瓷的通式为:
(1-x)(Bi1-yLiy)(Sc1-ySby)O3-xPbTiO3,其中x=0.55,y=0.15
并按下述工艺步骤及工艺参数制备:
1、钛钪锑酸铅铋锂弛豫铁电陶瓷的原料由以下组分组成:三氧化二铋30.26份,三氧化二钪8.96份,二氧化钛14.92份,氧化铅41.67份,三氧化二锑3.34份和碳酸锂0.85份,以球磨或振磨的方式进行混料,时间为24小时;在温度800℃预烧2小时。
2、将上述预烧粉料加入球磨机中研磨5小时,然后加入浓度为15%的聚乙烯醇粘结剂造粒,造粒后的粉料在陶瓷研钵中研磨0.5小时,再在温度为120℃的烘箱中烘烤30分钟,取出再研磨0.5小时,过60目分样筛,获得颗粒大小均匀,流动性好的粉料。
3、将上述粉料在20Mpa下干压成型,保压30秒,获得所需形状的陶瓷生坯,此陶瓷生坯经充分排胶后,放入刚玉坩锅中,在温度1080℃烧结2小时,获得质量好的陶瓷。
4、将上述烧结成型的陶瓷经研磨抛光、清洗后,采用丝网印刷机镀上银电极,在温度120℃的硅油中预热5分钟后,缓慢施加直流电压对其极化,极化步骤如下:1.0Ky/mm保压5分钟→2.0KV/mm保压5分钟→3.0KV/mm保压10分钟,极化后的陶瓷经清洗,获得具有高压电系数、高居里温度的陶瓷成品。
实施例5:钛钪锑酸铅铋锂系弛豫铁电陶瓷的制备
钛钪锑酸铅铋锂系弛豫铁电陶瓷的通式为:
(1-x)(Bi1-yLiy)(Sc1-ySby)O3-xPbTiO3,其中x=0.65,y=0.01
并按下述工艺步骤及工艺参数制备:
1、钛钪锑酸铅铋锂弛豫铁电陶瓷的原料由以下组分组成:三氧化二铋26.7份,三氧化二钪7.91份,二氧化钛17.19份,氧化铅47.99份,三氧化二锑0.17份和碳酸锂0.04份,以球磨或振磨的方式进行混料,时间为24小时;在温度850℃预烧4小时。
2、将上述预烧粉料加入球磨机中研磨5小时,然后加入浓度为15%的聚乙烯醇粘结剂造粒,造粒后的粉料在陶瓷研钵中研磨0.5小时,再在温度为120℃的烘箱中烘烤30分钟,取出再研磨0.5小时,过60目分样筛,获得颗粒大小均匀,流动性好的粉料。
3、将上述粉料在20Mpa下干压成型,保压30秒,获得所需形状的陶瓷生坯,此陶瓷生坯经充分排胶后,放入刚玉坩锅中,在温度1120℃烧结4小时,获得质量好的陶瓷。
4、将上述烧结成型的陶瓷经研磨抛光、清洗后,采用丝网印刷机镀上银电极,在温度120℃的硅油中预热5分钟后,缓慢施加直流电压对其极化,极化步骤如下:1.0Kv/mm保压5分钟→2.0KV/mm保压5分钟→3.0KV/mm保压10分钟,极化后的陶瓷经清洗,获得具有高压电系数、高居里温度的陶瓷成品。
以上实施例说明,本发明提供的钛钪锑酸铅铋锂系弛豫铁电陶瓷可在1120℃下烧结得到纯的钙钛矿相。钛钪锑酸铅铋锂陶瓷的介电现象表现出明显的弛豫特性,其铁电-顺电相变温度Tm根据x不同,在300~341℃之间,高于传统铅基弛豫铁电体。钛钪锑酸铅铋锂陶瓷的d33最高可达545pC/N,平面机电耦合系数可高达58%,是一种具有实际应用价值的高性能弛豫铁电陶瓷。
表1  0.38(Bi0.925Li0.075)(Sc0.925Sb0.075)O3-0.62PbTiO3弛豫铁电陶瓷的性能参数
  烧结温度   ρg/cm3   d33pC/N   -d31pC/N   kp   kt   PrμC/cm2   Eckv/mm  εr(1kHz)-  tanδ(1kHz)%   Tm
  1100℃   7.58   545   171   58   65   28.3   1.8   2014   4   330
表2  0.40(Bi0.925Li0.075)(Sc0.925Sb0.075)O3-0.60PbTiO3弛豫铁电陶瓷的性能参数
  烧结温度   ρg/cm3   d33pC/N   -d31pC/N   kp   kt   PrμC/cm2   Eckv/mm εr(1kHhz)-  tanδ(1kHz)%   Tm
  1080℃   7.56   407   131   51   56   -   -   1460   6   302
表3  0.38(Bi0.90Li0.10)(Sc0.90Sb0.010)O3-0.62PbTiO3弛豫铁电陶瓷的性能参数
烧结温度   ρg/cm3   d33pC/N   -d31pC/N   kp   kt   PrμC/cm2   Eckv/mm  εr(1kHz)-  tanδ(1kHz)%   Tm
  1120℃   7.55   456   134   52   58   -   -   1825   6   319

Claims (3)

1.一种钛钪锑酸铅铋锂系弛豫铁电陶瓷,其特征在于该弛豫铁电陶瓷的通式为:(1-x)(Bi1-yLiy)(Sc1-ySby)O3-xPbTiO3
其中x、y表示复合离子中相应元素材料在各元素中所占的原子数,所有元素的原子数总和为1,式中0.60≤x≤0.65,0.01≤y≤0.15。
2.如权利要求1所述钛钪锑酸铅铋锂系弛豫铁电陶瓷,其特征在于该弛豫铁电陶瓷由以下原料组分组成,按重量计为:
三氧化二铋        23.37~34.37份
三氧化二钪        6.92~10.17份
二氧化钛          14.55~17.52份
氧化铅            40.64~48.96份
三氧化二锑        0.17~3.34份
碳酸锂            0.04~0.85份
3.如权利要求1或2所述钛钪锑酸铅铋锂系弛豫铁电陶瓷,其特征在于该弛豫铁电陶瓷铁电-顺电相变温度为300~341℃,压电常数d33可达545pC/N,平面机电耦合系数kp可达58%;该弛豫铁电陶瓷用于大功率超声器件,高温物体超声波,以及高温物体的振动、加速度和压力测试领域。
CN2008100449763A 2008-03-14 2008-03-14 一种钛钪锑酸铅铋锂系弛豫铁电陶瓷及用途 Expired - Fee Related CN101239821B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008100449763A CN101239821B (zh) 2008-03-14 2008-03-14 一种钛钪锑酸铅铋锂系弛豫铁电陶瓷及用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008100449763A CN101239821B (zh) 2008-03-14 2008-03-14 一种钛钪锑酸铅铋锂系弛豫铁电陶瓷及用途

Publications (2)

Publication Number Publication Date
CN101239821A true CN101239821A (zh) 2008-08-13
CN101239821B CN101239821B (zh) 2010-11-24

Family

ID=39931712

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008100449763A Expired - Fee Related CN101239821B (zh) 2008-03-14 2008-03-14 一种钛钪锑酸铅铋锂系弛豫铁电陶瓷及用途

Country Status (1)

Country Link
CN (1) CN101239821B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103762304A (zh) * 2013-10-26 2014-04-30 溧阳市东大技术转移中心有限公司 包括Sc2O3应力缓冲体的压电元件
CN113402273A (zh) * 2021-05-31 2021-09-17 中国科学院上海硅酸盐研究所 一种修饰改性的钛酸铅基高温压电陶瓷及其制备方法
CN113800903A (zh) * 2021-11-08 2021-12-17 厦门乃尔电子有限公司 一种锑酸铋-镱酸铋-钛酸铅系压电陶瓷材料及制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103762304A (zh) * 2013-10-26 2014-04-30 溧阳市东大技术转移中心有限公司 包括Sc2O3应力缓冲体的压电元件
CN103762304B (zh) * 2013-10-26 2016-09-07 溧阳市东大技术转移中心有限公司 包括Sc2O3应力缓冲体的压电元件
CN113402273A (zh) * 2021-05-31 2021-09-17 中国科学院上海硅酸盐研究所 一种修饰改性的钛酸铅基高温压电陶瓷及其制备方法
CN113402273B (zh) * 2021-05-31 2022-05-10 中国科学院上海硅酸盐研究所 一种修饰改性的钛酸铅基高温压电陶瓷及其制备方法
CN113800903A (zh) * 2021-11-08 2021-12-17 厦门乃尔电子有限公司 一种锑酸铋-镱酸铋-钛酸铅系压电陶瓷材料及制备方法

Also Published As

Publication number Publication date
CN101239821B (zh) 2010-11-24

Similar Documents

Publication Publication Date Title
CN109626988B (zh) 高压电响应和高居里温度的压电陶瓷材料及其制备方法
CN111302797B (zh) 一种铌酸钾钠基无铅压电陶瓷及其制备方法
CN102180665A (zh) 一种钪酸铋—钛酸铅高温压电陶瓷材料及其制备方法
CN107698252B (zh) 一种陶瓷材料作为高温稳定压电能量收集材料的应用及制备方法
CN104876567A (zh) 高压电系数铌酸钾钠基无铅压电陶瓷及其制备方法
CN109734447B (zh) 具有优异温度稳定性的无铅织构化陶瓷及其制备方法
CN101024574A (zh) 铋基钙钛矿替代的铌酸钾钠系无铅压电陶瓷及其制备方法
CN103102154A (zh) Bi0.5Na0.5TiO3-BaTiO3–BiMg0.5Ti0.5O3无铅压电陶瓷材料
CN106518070B (zh) 一种多元系高压电活性压电陶瓷材料及其制备方法
CN101265081B (zh) 具有低温烧结特性的铁电陶瓷、工艺方法及应用
CN104529446A (zh) 一种氧化铜掺杂的铌酸钾钠电致应变陶瓷及其制备方法
CN112876247A (zh) 一种宽温度稳定性的高储能密度铌酸锶钠基钨青铜陶瓷及制备方法
CN111269009A (zh) 一种锆锰酸铋-钪酸铋-钛酸铅系压电陶瓷材料及其制备方法
Zhang et al. Enhanced piezoelectric performance of BiScO3-PbTiO3 ceramics modified by 0.03 Pb (Sb1/2Nb1/2) O3
CN101239821B (zh) 一种钛钪锑酸铅铋锂系弛豫铁电陶瓷及用途
CN113213918B (zh) 兼具高压电性能和低损耗的钛酸锶铋—钪酸铋—钛酸铅系高温压电陶瓷材料及其制备方法
KR101333793B1 (ko) 비스무스계 압전 세라믹스 및 그 제조방법
CN101033133A (zh) 一种高居里温度、高压电性能的钛钪铌酸铅铋锂系压电陶瓷
CN108409319B (zh) 高储能密度及充放电性能的无铅陶瓷材料及其制备方法
CN104230333B (zh) 一种高温压电陶瓷材料及其制备方法
CN109485416B (zh) 一种钛酸钡钙基无铅压电陶瓷及其制备方法
CN115385675B (zh) 一种高居里温度兼具储能特性的铁酸铋基无铅铁电陶瓷材料及其制备方法
CN112759390A (zh) 一种具有高kp值的PSN-PZT压电陶瓷及其制备方法
KR100667256B1 (ko) 압전 트랜스포머용 고효율 psn-pmn-pzt압전세라믹
CN102432285B (zh) 钛镍酸铋-钛锌酸铋-钛酸铅三元系高温压电陶瓷及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20101124

Termination date: 20170314