CN101233674B - 超导设备和轴向式超导马达 - Google Patents

超导设备和轴向式超导马达 Download PDF

Info

Publication number
CN101233674B
CN101233674B CN200680027761XA CN200680027761A CN101233674B CN 101233674 B CN101233674 B CN 101233674B CN 200680027761X A CN200680027761X A CN 200680027761XA CN 200680027761 A CN200680027761 A CN 200680027761A CN 101233674 B CN101233674 B CN 101233674B
Authority
CN
China
Prior art keywords
coil
iron core
superconducting
utmost point
armature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200680027761XA
Other languages
English (en)
Other versions
CN101233674A (zh
Inventor
冈崎徹
大桥绅悟
杉本英彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Publication of CN101233674A publication Critical patent/CN101233674A/zh
Application granted granted Critical
Publication of CN101233674B publication Critical patent/CN101233674B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K53/00Alleged dynamo-electric perpetua mobilia
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K55/00Dynamo-electric machines having windings operating at cryogenic temperatures
    • H02K55/02Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/10Synchronous motors for multi-phase current
    • H02K19/103Motors having windings on the stator and a variable reluctance soft-iron rotor without windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/16Synchronous generators
    • H02K19/22Synchronous generators having windings each turn of which co-operates alternately with poles of opposite polarity, e.g. heteropolar generators
    • H02K19/24Synchronous generators having windings each turn of which co-operates alternately with poles of opposite polarity, e.g. heteropolar generators with variable-reluctance soft-iron rotors without winding

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Superconductive Dynamoelectric Machines (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

一种超导设备,包括:由超导导线形成的线圈;连接有线圈的铁芯;和布置在磁路中并且被磁通量磁化的磁性材料。该磁路通过线圈通电而产生并且通过铁芯。在线圈和铁芯之间形成间隙,或/和非磁性材料被置于线圈和铁芯之间。

Description

超导设备和轴向式超导马达
技术领域
本发明涉及一种超导设备,并且更具体地涉及一种如下的超导设备:所述超导设备包括连接到铁芯并且由超导导线形成的线圈,并且能够应用于马达、发电机、变压器和超导磁能存储(SMES),特别适于应用至设有感应器的轴向式超导马达。
背景技术
近来,通过电驱动马达工作以运行的船、汽车等的发展已经在解决例如汽油的燃料源的短缺和由废气引起的环境恶化方面取得进步。特别地,通过采用一种在日本未审查专利申请公开No.6-6907(专利文献1)中披露的超导马达,可以消除超导线圈中的电阻损耗并且能够提高效率。而且,马达尺寸可被减小并且马达输出可被提高。
除了马达,使用超导导线的超导结构也变得日益广泛地用于发电机、变压器等中。
然而,如果磁场作用在超导导线上,则超导导线的特性变差,由此不能通过超导导线提供大电流。特别地,在超导线圈被连接到铁芯的结构中,由于超导线圈通电而产生的磁场被铁芯强化并且作用在超导线圈自身上。因此,可被供给到超导线圈的电流减小并且电流强度也减小。这导致超导线圈的尺寸并且因此超导设备的尺寸需要被增加以提供所需的电流量的问题。
将结合连接有超导线圈的C型磁体(铁芯)更加详细地描述这个问题。
如图10所示,通过在希望的位置处在C型铁芯1上缠绕超导导线而形成超导线圈2,并且在超导线圈2和C型铁芯1之间不留任何间隙,并且另一磁性材料5被布置在C型铁芯1的间隙1a中。磁性材料5也可由铁芯形成。当将电流供给到超导线圈2时,磁通量F1和F2被激发,例如,如虚线所示。磁通量F1通过C型铁芯1并且在间隙1a中产生磁场,由此将布置在间隙1a中的磁性材料5磁化。在另一方面,磁通量F2通过在超导线圈2附近围绕C型铁芯1和超导线圈2的空气而不通过间隙1a。磁通量的大小由“磁动势/磁阻”表示。因此,如果磁动势恒定,则磁通量的大小随着磁阻降低而增加。这意味着磁通量F2变得较强,因为磁通量不仅通过具有大的磁阻的空气(低的磁导率),而且还通过具有小的磁阻(高的磁导率)的C型铁芯1。结果,作用在超导线圈2上的磁场的强度增加并且超导线圈2的特性变差。
专利文献1:日本未审查专利申请公开No.6-6907。
发明内容
鉴于以上问题,本发明的一个目的在于改进用于将超导线圈连接到铁芯的结构,由此弱化作用在超导线圈自身上的磁场强度从而超导特性将不会变差,并且提高超导线圈中的电流强度,由此降低超导线圈的尺寸。
为了解决上述问题,本发明提供一种超导设备,所述超导设备包括:
由超导导线形成的线圈;
连接有线圈的铁芯;和
布置在磁路中并且被磁通量磁化的磁性材料,该磁路通过线圈通电产生并且通过铁芯,
其中在线圈和铁芯之间形成间隙,或/和非磁性材料被置于线圈和铁芯之间。
利用上述构造,每一个均用作磁阻的间隙或/和非磁性材料在由超导导线形成的线圈(即,超导线圈)和连接有超导线圈的铁芯之间形成。因此,在由于超导线圈通电而激发的磁通量中,在超导线圈附近激发的磁通量(即,对应于图10所示磁通量F2的磁通量)通过每一个均具有低的磁导率的间隙和非磁性材料中的至少一个。因此,因为在超导线圈附近激发的大部分的磁通量通过每一个均具有低的磁导率的空气或/和非磁性材料,因此这种磁通量的大小可被降低并且作用在超导线圈上的磁场可被弱化。因此,可将更大的电流供给到超导线圈而不显著恶化超导线圈的超导特性。这意味着超导线圈中的电流强度可增加。结果,超导线圈的大小可减小并且设有超导线圈的超导设备的大小也可减小。
通常,当超导线圈被连接到铁芯时,在超导线圈附近激发的磁通量的大小(即,图10中的磁通量F2)也以类似于作用在另一磁性材料上的磁通量(即,图10中的磁通量F1)的方式增加。然而,根据本发明,即使当超导线圈被连接到铁芯时,仅仅在超导线圈附近激发的磁通量的大小可减小。
而且,因为在超导线圈和铁芯之间留出间隔以弱化作用在超导线圈上的磁场,在向超导线圈供给交流电流的情况下,在线圈中产生的交流损耗可减小并且设备损耗也可减小。
非磁性材料的实例包括玻璃纤维增强塑料(FRP)、不锈钢、锡、铝和铜。非磁性材料的相对透过性优选为100或更低。
当将非磁性材料置于线圈和铁芯之间时,能够以适当的组合将多种非磁性材料置于其间。
在线圈和铁芯之间的间隔优选地设定成等于或者大于0.1mm并且更优选等于或者大于0.5mm。
利用上述构造,通过将间隔设定为等于或者大于0.1mm,在超导线圈附近激发的磁通量可被减小。而且,通过将间隔设定为等于或者大于0.5mm,相关磁通量可被进一步减小。另一优点在于,超导线圈可被更加容易地连接到铁芯并且能够更加容易地制造超导设备。
假设a是包括被磁化的磁性材料的磁路中的间隙的总尺寸并且b是线圈和铁芯之间的间隔的尺寸,优选地,满足b>a。
当磁化磁性材料的磁通量通过具有低磁导率的间隙时(例如,在图10中示出的间隙),这种磁通量也减小。考虑到这一点,通过将a和b之间的关系设定为b>a,与磁化磁性材料的磁通量相比,在超导线圈附近激发的磁通量可以大大减小。因此,在超导线圈中的电流密度可被增加从而磁化磁性材料的磁通量将不会变得太小。
根据本发明的超导设备可以例如以如下实用形式实现:布置在磁路中的磁性材料是连接到转子的感应器,并且在通电期间转子被操作而旋转。
通过使用上述实用形式,本发明的第二方面提供一种包括感应器的轴向式超导马达。
更具体地,该轴向式超导马达被构造成轴向式和感应器类型的马达,该马达在旋转轴周围包括:电枢侧定子,包括连接到铁芯的电枢线圈;一对转子,包括布置在电枢侧定子的两侧上的感应器;以及一对场侧定子,包括布置在转子的两侧上的场线圈,转子被装配在旋转轴上并且固定于旋转轴,
其中电枢线圈和场线圈的每一个均为由超导导线形成的线圈,在电枢线圈和该电枢线圈连接到其上的铁芯之间形成间隙,或/和将非磁性材料置于电枢线圈和铁芯之间,并且在场线圈和用作铁芯的场侧定子之间形成间隙,或/和将非磁性材料置于场线圈和场侧定子之间,
其中场线圈被布置成使得N极和S极位于各个同心圆上,并且
其中,在电枢线圈和场线圈通电期间用作磁性材料的每一个转子中的感应器被布置成使得定位成面对场线圈的N极的N极感应器和定位成面对场线圈的S极的S极感应器沿着周向交替地定位。
根据本发明的在超导线圈和铁芯之间形成有间隙的超导设备不仅能够适当地用于轴向马达,而且还可用于发电机、变压器以及超导磁能存储(SMES)。
根据本发明,如上所述,每一个均用作磁阻的间隙或/和非磁性材料在由超导导线形成的线圈(即,超导线圈)和连接有超导线圈的铁芯之间形成。因此,在由于超导线圈通电而激发的磁通量中,在超导线圈附近激发的磁通量通过每一个均具有低的磁导率的间隙或/和非磁性材料。因此,因为在超导线圈附近激发的大部分的磁通量通过每一个均具有低的磁导率的空气或/和非磁性材料,磁通量的大小可减小并且作用在超导线圈上的磁场可被弱化。因此,可将更大的电流供给到超导线圈而不显著降低超导线圈的超导特性。这意味着超导线圈中的电流强度可被增加。结果,超导线圈的大小可被减小并且设有超导线圈的超导设备的大小也可被减小。
附图说明
图1(A)是根据本发明的第一实施例的感应器型马达的截面视图,并且图1(B)是转子从其图1(A)所示位置旋转90°的感应器型马达的截面视图。
图2(A)是场侧定子的前视图,图2(B)是沿着图2(A)的线I-I截取的截面视图,并且图2(C)是场侧定子的主要部分的放大视图。
图3(A)是转子的前视图,图3(B)是沿着图3(A)的线I-I截取的截面视图,并且图3(C)是后视图,图3(D)是沿着图3(A)的线II-II截取的截面视图。
图4(A)是示出旋转轴穿过转子和场侧定子的状态的前视图,图4(B)是沿着图4(A)的线I-I截取的截面视图,并且图4(C)是沿着图4(A)的线II-II截取的截面视图。
图5是电枢侧定子的前视图。
图6是沿着图5的线I-I截取的截面视图。
图7(A)和7(B)的每一个均是示出在感应器型马达中激发磁通量的状态的截面视图。
图8是解释本发明的基本原理的示意图。
图9(A)是根据本发明的第二实施例的感应器型马达的截面视图,并且图9(B)是转子从其图9(A)所示位置旋转90°的感应器型马达的截面视图。
图10是用于解释现有技术的基本原理的示意图。
附图标记
3间隙
10感应器型马达
11、15场侧定子(铁芯)
12、14转子
13电枢侧定子
18、31场线圈
20、28 N极感应器
21、27S极感应器
24电枢线圈
25磁通收集器(铁芯)
40,41非磁性材料
F1、F2磁通量
具体实施方式
将参考附图描述本发明的实施例。
首先,结合C型铁芯描述本发明的基本原理。
如图8所示,由超导导线制成的超导线圈2在希望的位置处被连接到C型铁芯1,并且在超导线圈2和C型铁芯1之间留出间隙3以用于提供希望水平的磁阻,并且磁性材料5被布置在C型铁芯1的间隙1a中。当将电流供给到超导线圈2时,磁通量F1和F2被激发,例如,如虚线所示。磁通量F1通过C型铁芯1并且在间隙1a中产生磁场,由此将布置在间隙1a中的磁性材料磁化。在另一方面,磁通量F2通过超导线圈2周围的空气而不通过C型铁芯1。因为磁通量F2仅仅通过具有低的磁导率的空气,空气用作磁阻并且磁通量F2以较小的量级产生。因此,作用在超导线圈2上的磁场的强度降低从而超导线圈2的特性将不会显著变差。结果,超导线圈中的电流强度可被增加,并且超导线圈的尺寸可被减小。
顺便提及,通过将C型铁芯1和超导线圈2之间的间隙3的尺寸设定为更大的数值,仅仅通过空气的磁通量F2增加并且作用在超导线圈2上的磁场强度可减小。
图1示出根据本发明的第一实施例的感应器型马达10。感应器型马达10利用在上面结合C型铁芯描述的原理。
感应器型马达10具有轴向间隙结构。更具体地,旋转轴34以指定顺序相继地穿过场侧定子11、转子12、电枢侧定子13、转子14和场侧定子15。场侧定子11和15以及电枢侧定子13的每一个均相对于旋转轴34以一定间隙被固定到安装表面G。转子12和14在外部装配在旋转轴34上并且固定于旋转轴34。
因为场侧定子11和场侧定子15是双侧对称的,图2(A)、2(B)和2(C)示出一个场侧定子15作为代表。
场侧定子11和15(铁芯)的每一个均由磁性材料制成并且固定到安装表面G。场侧定子11和15分别包括具有真空隔热结构并且被安装到场侧定子的隔热冷却剂容器17和30,以及为由超导导线制成的绕组并且被保持在隔热冷却剂容器17和30中的场线圈18和31。
在每一个场侧定子11、15和每一个场线圈18、31之间,如图2(C)所示,围绕场线圈18、31的整个周边留出间隙3。在该间隙中,在场侧定子11、15和场线圈18、31之间的间隔被设定为b。在该实施例中,设定b1=0.5mm。通过围绕场线圈18、31形成间隙3,在该实施例的感应器型马达10中,相应于在上面结合C型铁芯描述的磁通量F2的磁通量被减小并且作用在场线圈18、31上的磁场被弱化。
另外,由树脂、铝、黄铜等制成的非磁性材料被置于场侧定子11、15和场线圈18、31之间以在场侧定子11、15和场线圈18、31之间留出间隙3的状态中支撑场线圈18、31。
场侧定子11和15分别具有以比旋转轴34的外直径更大的尺寸在定子中心钻出的松配合孔11b和15b,以及围绕松配合孔11b和15b以环面形式凹进的凹槽11a和15a。场线圈18和31被分别保持在液态氮在其中循环的隔热冷却剂容器17和30中。隔热冷却剂容器17和30被分别置于凹槽11a和15a中。
场侧定子11和15的每一个均由例如波明德合金、硅钢板、铁或者透磁合金的磁性材料制成。用于形成场线圈18和31的超导导线是例如铋或者钇基超导导线。
因为转子12和14是双侧对称的,图3(A)-3(D)示出一个转子14作为代表。
转子12和14分别包括:盘形支撑部件19和26,每一个均由非磁性材料制成并且具有用于安装到旋转轴的孔19a和26a;一对S极感应器21和27,在关于安装孔19a和26a点对称的位置处嵌入支撑部件19和26中;以及一对N极感应器20和28,在从S极感应器21和27的位置旋转90°的位置处嵌入支撑部件19和26中。
S极感应器21和27以及N极感应器20和28分别具有扇形的一个端表面20a、21a、27a和28a,这些端表面在各个同心圆上以相等间隔布置成面对电枢侧定子13并且具有相同面积。
S极感应器21和27的另一个端表面21b和27b被布置成面对场线圈18和31产生S极的相应位置。例如,如图2(C)和4(B)所示,S极感应器27的另一端表面27b具有定位成面对场线圈31的外周边侧的弧形形状。
N极感应器20和28的另一个端表面20b和28b被布置成面对场线圈18和31产生N极的相应位置。例如,如图3(B)和4(C)所示,N极感应器28的另一端表面28b具有定位成面对场线圈31的内周边侧的弧形形状。
因此,S极感应器21和27以及N极感应器20和28具有如此三维形状,使得它们的截面形状沿着轴向从弧形的另一端表面20b、21b、27b和28b连续地变化,并且该一个端表面20a、21a、27a和28a的每一个均具有扇形形状。而且,从另一端表面20b、21b、27b和28b到该一个端表面20a、21a、27a和28a,S极感应器21和27以及N极感应器20和28的每一个的截面面积是恒定的。而且,N极感应器20和28的另一端表面20b和28b具有与S极感应器21和27的另一端表面21b和27b相同的面积。
支撑部件19和26由非磁性材料制成,例如FRP或者不锈钢。感应器27和28的每一个均由例如波明德合金、硅钢板、铁或者透磁合金的磁性材料制成。
如图1(A)和1(B)所示,由非磁性材料制成的电枢侧定子13固定到安装表面G。电枢侧定子13包括具有真空隔热结构的隔热冷却剂容器23;以及电枢线圈24,该电枢线圈是由超导导线制成并且被分别保持在隔热冷却剂容器23中的绕组。
电枢侧定子13具有以比旋转轴34的外直径更大的尺寸在其中心钻出的松配合孔13b,以及围绕松配合孔13b沿着周向以相等间隔钻出的四个安装孔13a。电枢线圈24被分别保持在液态氮在其中循环的隔热冷却剂容器23中,并且由磁性材料制成的磁通收集器25(铁芯)被布置在每一个电枢线圈24的中空部分中。在其内保持电枢线圈24的四个隔热冷却剂容器23被分别置于线圈安装孔13a中。
每一个电枢线圈24不被直接地缠绕在磁通收集器25的外周边表面上。如图5和6所示,在电枢线圈24的内周边表面和磁通收集器25的外周边表面之间留出间隙3。更具体地,在电枢线圈24的内周边表面和磁通收集器25的外周边表面之间的间隔被设定为5mm,即b2=5mm。换言之,如场线圈18和31的情况一样,在电枢线圈24的周围形成间隙3以减小作用在电枢线圈24上的磁场。
磁通收集器25由例如波明德合金、硅钢板、铁或者透磁合金的磁性材料制成。用于形成电枢线圈24的超导导线是例如铋或者钇基超导导线。而且,电枢侧定子13由非磁性材料制成,例如FRP或者不锈钢。
电力馈送设备32通过配线被连接到场线圈18和31以及电枢线圈24使得直流电流被供给到场线圈18和31并且三相交流电流被供给到电枢线圈24。通过将那些电流供给到场线圈18和31以及电枢线圈24,转子12和14的S极感应器21和27以及N极感应器20和28被磁化,并且激发磁通量F1,如图7中的实线和虚线所示,由此转子12和14基于下述原理旋转。在场侧定子11、转子12、电枢侧定子13、转子14和场侧定子15中相邻的两个之间形成预定间隙4。因此,在该实施例的感应器型马达10中,每一个磁通量F1通过八个间隙4。假设磁通量F1所通过的该八个间隙4的总尺寸为a,则a被设定为小于场线圈18和31以及电枢线圈24的每一个的周围留出的间隙3的尺寸b(即a<b)。
此外,液态氮罐33通过用于循环作为冷却剂的液态氮的隔热管道而被连接到隔热冷却剂容器17、23和30。
将在下面描述感应器型马达10的工作原理。
当直流电流被供给到图1右侧的场线圈31时,在场线圈31的外周边侧上产生S极并且在其内周边侧上产生N极。因此,如图4(A)和4(B)所示,在S极侧上的磁通量通过另一端表面27b被引入S极感应器27中,并且被引入的S极磁通量在该一个端表面27a处出现。同样,如图4(A)和4(C)所示,在N极侧上的磁通量通过另一端表面28b被引入N极感应器28中,并且被引入的N极磁通量在该一个端表面28a处出现。因为该另一端表面27b和28b被布置在沿着场线圈31的外周边和内周边延伸的相应的同心圆上,因此总是保证在S极感应器27的一个端表面27a处出现S极并且在N极感应器28的一个端表面28a处出现N极,即使转子14旋转。
基于相同的原理,当直流电流被供给到图1左侧的场线圈18时,总是保证在转子12中,在N极感应器20的一个端表面20a处出现N极并且在S极感应器21的一个端表面21a处出现S极。
当在以上状态中向电枢线圈24供给三相交流电流时,由于在供给的交流电流的三相中的相移而在电枢侧定子13的轴线周围产生旋转磁场。该旋转磁场对于转子12和14中的N极感应器20和28以及S极感应器21和27的每一个产生关于该轴线的转矩,由此转子12和14旋转并且旋转轴34被驱动而旋转。
利用上述构造,因为间隙3形成在场线圈18和31以及电枢线圈24周围以防止场线圈18和31以及电枢线圈24接触用作铁芯的场侧定子11和15以及磁通收集器25,在场线圈18和31以及电枢线圈24的每一个的周围激发的磁通量F2可被减小。因此,在避免超导特性变差的同时,作用在由超导导线制成的场线圈18和31以及电枢线圈24的每一个上的磁场可被弱化以增强场线圈18和31以及电枢线圈24的每一个中的电流强度。结果,线圈尺寸可被减小。
根据该实施例,因为通过将间隙3的尺寸b设定为大于磁通量F1通过的间隙4的总尺寸a而使每一个间隙3形成为足够的空间,因此磁通量F2的大小可被大大地减小。
虽然在该实施例中用作冷却剂的液态氮被引入间隙中以冷却场线圈和电枢线圈,这些线圈可以利用冷却剂或者冷却器由线圈周围的冷却空气间接地冷却而不是将冷却引入间隙中。
而且,虽然结合轴向马达描述了这个实施例,本发明也可被用于径向马达。
图9示出本发明的第二实施例。
在该实施例中,非磁性材料40被置于每一个场侧定子11、15和每一个场线圈18、31之间以形成间隙,并且非磁性材料41被置于每一个磁通收集器25和每一个电枢线圈24之间以形成间隙。
虽然非磁性材料40被置于每一个场侧定子11、15和每一个场线圈18、31之间,使得冷却剂能够被引入隔热冷却剂容器17和30的每一个中的空间被保留,使得场线圈18和31可被冷却。
而且,非磁性材料的实例包括FRP、不锈钢、锡、铝和铜。
利用上述构造,在场线圈18和31以及电枢线圈24的每一个周围激发的磁通量F2可被减小。因此,作用在由超导导线制成的场线圈18和31以及电枢线圈24的每一个上的磁场可被弱化以增强场线圈18和31以及电枢线圈24的每一个中的电流强度,同时避免超导特性变差。结果,线圈尺寸可被减小。
应该注意,其它构造和工作中的其它优点与第一实施例中的那些类似并且未在这里描述,其中类似的构件被赋予相同的附图标记。
工业实用性
根据本发明的超导设备不仅可应用于用于驱动船、汽车等运行的马达,而且也可应用于发电机、变压器和超导磁能存储(SMES)。

Claims (4)

1.一种超导设备,包括:
由超导导线形成的线圈;
铁芯,所述线圈连接到所述铁芯;和
布置在磁路中并且被磁通量磁化的磁性材料,所述磁路通过所述线圈的通电而产生并且通过所述铁芯,
其中在所述线圈和所述铁芯之间形成间隙,或/和非磁性材料被置于所述线圈和所述铁芯之间,
其中所述线圈和所述铁芯之间的间隔被设定成等于或者大于0.1mm,并且
其中用于形成场线圈的超导导线是铋或者钇基超导导线。
2.根据权利要求1所述的超导设备,其中,假定a是包括被磁化的磁性材料的所述磁路中的相邻的两个磁性材料之间的间隙的总尺寸并且b是所述线圈和所述铁芯之间的所述间隔的尺寸,则满足b>a。
3.根据权利要求1所述的超导设备,其中,布置在所述磁路中的所述磁性材料是转子中的感应器,并且所述转子在所述通电期间被操作而旋转。
4.一种被构造成轴向式和感应器类型的马达的轴向式超导马达,所述马达在旋转轴周围包括:电枢侧定子,包括连接到铁芯的电枢线圈;一对被布置在所述电枢侧定子的两侧上的包括感应器的转子;以及一对被布置在所述转子的两侧上的包括场线圈的场侧定子,所述转子被装配在所述旋转轴上并且固定到所述旋转轴,
其中所述电枢线圈和所述场线圈的每一个均为由超导导线形成的线圈,在所述电枢线圈和所述电枢线圈连接到其上的铁芯之间形成间隙,或/和非磁性材料置于所述电枢线圈和所述铁芯之间,并且在所述场线圈和用作铁芯的所述场侧定子之间形成间隙,或/和非磁性材料置于所述场线圈和所述场侧定子之间,
其中所述场线圈被布置成使得所述场线圈的N极和所述场线圈的S极位于各个同心圆上,并且
其中,在所述电枢线圈和所述场线圈的通电期间所述转子的每一个中的用作磁性材料的所述感应器被布置成使得定位成面对所述场线圈的所述N极的N极感应器和定位成面对所述场线圈的所述S极的S极感应器沿着周向方向交替地布置;
其中用于形成场线圈的超导导线是铋或者钇基超导导线,并且所述线圈和所述铁芯之间的间隔被设定成等于或者大于0.1mm。
CN200680027761XA 2005-07-28 2006-04-17 超导设备和轴向式超导马达 Expired - Fee Related CN101233674B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP219264/2005 2005-07-28
JP2005219264A JP4758703B2 (ja) 2005-07-28 2005-07-28 超電導装置およびアキシャルギャップ型の超電導モータ
PCT/JP2006/308016 WO2007013207A1 (ja) 2005-07-28 2006-04-17 超電導装置およびアキシャルギャップ型の超電導モータ

Publications (2)

Publication Number Publication Date
CN101233674A CN101233674A (zh) 2008-07-30
CN101233674B true CN101233674B (zh) 2010-11-03

Family

ID=37683114

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200680027761XA Expired - Fee Related CN101233674B (zh) 2005-07-28 2006-04-17 超导设备和轴向式超导马达

Country Status (8)

Country Link
US (1) US7932659B2 (zh)
EP (1) EP1909376A1 (zh)
JP (1) JP4758703B2 (zh)
KR (1) KR20080030627A (zh)
CN (1) CN101233674B (zh)
HK (1) HK1117949A1 (zh)
TW (1) TW200711192A (zh)
WO (1) WO2007013207A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7315103B2 (en) 2004-03-03 2008-01-01 General Electric Company Superconducting rotating machines with stationary field coils
JP4923301B2 (ja) * 2007-03-05 2012-04-25 国立大学法人福井大学 超電導コイル装置、誘導子型同期機、及び変圧装置
KR100901461B1 (ko) * 2007-07-11 2009-06-08 한국전기연구원 초전도 동기 전동기
US8049358B2 (en) 2007-10-15 2011-11-01 Converteam Technology Ltd Marine power distribution and propulsion systems
GB2456179B (en) * 2008-01-07 2012-02-15 Converteam Technology Ltd Marine power distribution and propulsion systems
RU2597876C2 (ru) * 2012-03-06 2016-09-20 Фуджикура Лтд. Сверхпроводящая катушка и сверхпроводящее устройство
KR101324234B1 (ko) 2012-05-14 2013-11-01 연세대학교 산학협력단 초전도 동기 전동기
DE102018217983A1 (de) * 2018-10-22 2020-04-23 Rolls-Royce Deutschland Ltd & Co Kg Rotor und Maschine mit supraleitendem Permanentmagneten in einem Rotorträger
KR102233200B1 (ko) * 2020-07-03 2021-03-29 한산전력 주식회사 구동모듈 내장형 회전자를 갖는 발전시스템

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN88201930U (zh) * 1988-03-22 1988-09-07 中国科大研究生院 一种超导励磁电机

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51134811A (en) 1975-05-19 1976-11-22 Hitachi Ltd Electric motor with no commutator
US4739200A (en) * 1986-04-23 1988-04-19 The United States Of America As Represented By The Secretary Of The Air Force Cryogenic wound rotor for lightweight, high voltage generators
JPH01318540A (ja) * 1988-06-16 1989-12-25 Mitsubishi Electric Corp 車両用電動機
US5334899A (en) * 1991-09-30 1994-08-02 Dymytro Skybyk Polyphase brushless DC and AC synchronous machines
JP3207251B2 (ja) * 1992-07-10 2001-09-10 株式会社東芝 アキシャルギャップ回転電機
JPH066907A (ja) 1992-06-18 1994-01-14 Sumitomo Electric Ind Ltd 電気自動車における超電導モータ装置
US5581135A (en) * 1993-09-15 1996-12-03 Imra Material R & D Co., Ltd. Superconducting motor
US5672921A (en) * 1995-03-13 1997-09-30 General Electric Company Superconducting field winding assemblage for an electrical machine
US5532663A (en) * 1995-03-13 1996-07-02 General Electric Company Support structure for a superconducting coil
JP3363682B2 (ja) * 1995-12-19 2003-01-08 株式会社ミツバ 磁石発電機
JP3972964B2 (ja) * 1996-05-10 2007-09-05 ゼネラル・エレクトリック・カンパニイ 界磁巻線集成体
IL119010A0 (en) 1996-08-05 1996-11-14 Radovski Alexander Brushless synchronous electric rotary machines
US5774032A (en) * 1996-08-23 1998-06-30 General Electric Company Cooling arrangement for a superconducting coil
US5982070A (en) * 1996-12-27 1999-11-09 Light Engineering Corporation Electric motor or generator having amorphous core pieces being individually accomodated in a dielectric housing
JP3237647B2 (ja) 1999-03-10 2001-12-10 株式会社デンソー 車両用交流発電機
US7315103B2 (en) * 2004-03-03 2008-01-01 General Electric Company Superconducting rotating machines with stationary field coils
JP4653648B2 (ja) * 2004-12-24 2011-03-16 住友電気工業株式会社 誘導子型同期機
JP4680708B2 (ja) * 2005-07-28 2011-05-11 住友電気工業株式会社 アキシャル型モータ

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN88201930U (zh) * 1988-03-22 1988-09-07 中国科大研究生院 一种超导励磁电机

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JP平1-318540A 1989.12.25
JP特开平6-38418A 1994.02.10
JP特开平9-308222A 1997.11.28

Also Published As

Publication number Publication date
WO2007013207A1 (ja) 2007-02-01
EP1909376A1 (en) 2008-04-09
CN101233674A (zh) 2008-07-30
HK1117949A1 (en) 2009-01-23
US7932659B2 (en) 2011-04-26
JP2007037343A (ja) 2007-02-08
KR20080030627A (ko) 2008-04-04
TW200711192A (en) 2007-03-16
JP4758703B2 (ja) 2011-08-31
US20100148625A1 (en) 2010-06-17

Similar Documents

Publication Publication Date Title
CN101233674B (zh) 超导设备和轴向式超导马达
US8816557B2 (en) Dynamoelectric device
US8022797B2 (en) Superconducting coil apparatus and inductor-type synchronous machine
KR101766684B1 (ko) 비접촉식 회전형 여자장치를 적용한 고온 초전도 회전기
EP1367690A2 (en) Gas turbine engine and generator directly coupled without reduction gear; Device with electromagnet having amorphous metal core pieces
JP2007500500A (ja) 半径方向エアギャップ、横方向磁束型モータ
US20090009012A1 (en) Assembly and method for magnetization of permanent magnet rotors in electrical machines
US20200251971A1 (en) Radial-Gap Type Superconducting Synchronous Machine, Magnetizing Apparatus, and Magnetizing Method
US9973050B2 (en) Asynchronous machine with optimized distribution of electrical losses between stator and rotor
GB2462532A (en) Brushless motor/generator with trapped-flux superconductors
US6936945B2 (en) Permanent magnet synchronous motor
EP3961884A1 (en) Superconducting induction rotating machine, and superconducting drive force generating system using said superconducting induction rotating machine
JP2006518180A (ja) モータ/ジェネレータのための拡張コア
CA2655819C (en) Inductor-type synchronous machine
CN105576862A (zh) 一种全超导电励磁低速直驱同步发电机
CN101233672B (zh) 轴向马达
JP2005176578A (ja) 超電導モータ及び該超電導モータを用いる自動車
AU2007271814B2 (en) Synchronous machine having magnetic bearing excited by the rotor
JP2005269868A (ja) 超電導モータ装置および該超電導モータ装置を用いた移動体
US20030030339A1 (en) Rotating back iron for synchronous motors/generators
JP2011250503A (ja) 超電導モータ
JP2006149007A (ja) 固定子ヨークおよびラジアルギャップ型モータ
JP6899022B1 (ja) モータ装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1117949

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1117949

Country of ref document: HK

C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20101103

Termination date: 20130417