CN101228683A - 降压电压变换器 - Google Patents

降压电压变换器 Download PDF

Info

Publication number
CN101228683A
CN101228683A CNA2005800511769A CN200580051176A CN101228683A CN 101228683 A CN101228683 A CN 101228683A CN A2005800511769 A CNA2005800511769 A CN A2005800511769A CN 200580051176 A CN200580051176 A CN 200580051176A CN 101228683 A CN101228683 A CN 101228683A
Authority
CN
China
Prior art keywords
voltage
terminal
inductor
switch
decompression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2005800511769A
Other languages
English (en)
Other versions
CN101228683B (zh
Inventor
W·M·曼斯菲尔德
S·林德曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micro Motion Inc
Original Assignee
Micro Motion Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micro Motion Inc filed Critical Micro Motion Inc
Publication of CN101228683A publication Critical patent/CN101228683A/zh
Application granted granted Critical
Publication of CN101228683B publication Critical patent/CN101228683B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Rectifiers (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

提供了一种用于从输入电压(VIN)产生输出电压(VOUT)的降压电压变换器(100)。该变换器(100)包括具有第一端子(112)和第二端子(114)的开关(111),其中第二端子(114)与输出电压(VOUT)电气耦合。还包括具有第一端子(118)和第二端子(120)的整流器(117),其中该第二端子(120)与输出电压(VOUT)电气耦合。第一电感器(124)将开关(111)的第一端子(112)与输入电压(VIN)电气耦合。与第一电感器(124)磁耦合的第二电感器(126)将整流器(117)的第一端子(118)与电压基准(128)电气耦合。与输出电压(Vout)耦合的开关控制器(110)被配置为控制开关(111)。

Description

降压电压变换器
技术领域
本发明的各方面总体涉及电压变换器,更具体而言涉及从交流(AC)电压或直流(DC)电压产生DC电压的降压电压变换器。
背景技术
工业环境中各种靠电供能的设备常常依靠多种AC和/或DC电压的任一种来获得动力。更具体而言,面向DC的系统倾向于使用较低的DC电压,通常在12到50伏DC(VDC)的范围内。然而,面向AC的系统经常采用更高的AC电压,有时在100和250均方根伏(VRMS)的范围内。也可以使用这些范围之外的其他AC或DC电压。不过,工业仪表,例如用于测量质量流量和其他关于流过通道的材料的信息的Coriolis流量计,常常采用需要以诸如1.2-24VDC的低DC电压作为电源的电气元件,因此不能耐受这样大范围的AC或DC输入电压。于是,在这种环境下非常有利的是常使用这样的降压变换器,其能够从AC或DC输入电压产生基本固定的低DC输出电压。
图1中给出了当前使用的一种特定类型降压变换器或整流器1的简化示意图,该变换器用于将正DC输入电压VIN转换成DC输出电压VOUT。跨越输入电容器CA施加输入电压VIN,输入电容器与地参考电势耦合且与n沟道功率场效应晶体管(FET)开关Q的漏极端子耦合。输入电容器CA充当滤波器,通过向开关Q的漏极临时提供额外的电流,在输入电压VIN有变化时,帮助保持从开关Q的漏极看到的电压电平。由输出电容器CB为输出电压VOUT提供类似的功能。
开关Q的栅极由开关控制器2驱动,开关控制器根据输出电压VOUT的电压电平与期望或目标输出电压VOUT的电平的比较情况来导通或截止开关Q。开关控制器2可以替换地或额外地使用输出处的其他一些可测量量,例如电流。通过基本周期性地导通或截止开关Q,开关控制器2一般能够在输入电压VIN的电平和输出电压VOUT驱动的负载都有变化的情况下将输出电压VOUT保持在期望的电平。通常,开关周期为一个工作循环期间开关Q的导通时间和截止时间之和。因此,开关Q的占空比为导通时间和周期之比。于是,利用若干种技术的任一种,开关控制器2控制开关Q的占空比和周期,以将输出电压VOUT保持在满意的电平上。
在变换器1工作期间,当开关Q导通时,电流从输入电压VIN经过开关Q的漏极和源极端子,并经过电感器L流到输出电压VOUT。电流流经电感器L的结果是,在电感器L中存储了电能。典型地,由开关控制器2设定的开关Q的导通时间受到电感器L和输出电容器CB的元件值的限制,使得在导通时间期间电感器两端的电压VL几乎恒定。在这些条件下,在开关Q导通时,连接到开关Q的源极端子电感器L的端子保持在输入电压VIN附近,而电感器L的另一端子处于输出电压VOUT电平。结果,在开关Q导通时,耦合在开关Q的源极端子的二极管D的阴极3处的电压使得二极管D被反向偏置,因此不导电,因为二极管D的阳极4连接到地。
当开关Q随后截止时,电感器L两端的电压VL反转极性,以便保持经过电感器L的电流的连续性。电压的这种“倒转”使得二极管D阴极3的电压下落到地之下,由此将二极管D正向偏置为导电。于是,将开关Q导通时存储在电感器L中的电能作为流经二极管D和电感器L的电流传送到输出电压VOUT。在由开关控制器2决定的一些点处,开关Q再次被导通,并重复上述循环。于是在开关Q导通或截止时电流都流入电压输出VOUT
图1的降压变换器1的一个潜在缺点在于,需要从开关控制器2提供大的电压摆动,以驱动开关Q的栅极,从而导通或截止开关Q。更具体而言,要导通开关Q并保持该状态,开关控制器2必须将栅极驱动到高于输入电压VIN的电压电平,因为栅极电压必须要高于源极电压,在导通状态期间该源极电压接近输入电压VIN。为了截止开关Q,栅极电压必须要接近地,因为在这个时候由于电感器L的倒转二极管D变为正向偏置,从而将源极驱动至稍低于地。当输入电压VIN为较低DC电压时,可以通过容易获得的电压“提升”电路产生用于导通开关Q的适当栅极电压。不过,当输入电压VIN为265VRMS量级上的大AC电压(其转换成大约375VDC的最大DC电压电平)时,在提供栅极处几百伏的极大电压摆动的同时及时而精确地控制栅极电压通常需要涉及到特殊化电气元件的开关控制器2的较复杂电路设计。
发明内容
总体上,本发明的实施例提供了一种用于从输入电压产生输出电压的降压电压变换器。该变换器包括具有第一和第二端子的开关,其中第二端子与输出电压电耦合。整流器具有第一和第二端子,其中第二端子与输出电压电耦合。第一电感器将开关的第一端子与输入电压电耦合。与第一电感器磁耦合的第二电感器将整流器的第一端子与电压基准电耦合。而且,配置与输出电压耦合的开关控制器来控制开关。
结合附图认真阅读如下详细描述,本领域的技术人员将能够理解本发明的其他实施例和优点。
方案
本发明的一个方面包括用于从输入电压产生输出电压的降压电压变换器,包括:
包括第一端子和第二端子的开关,其中所述开关的所述第二端子与所述输出电压电气耦合;
包括第一端子和第二端子的整流器,其中所述整流器的所述第二端子与所述输出电压电气耦合;
第一电感器,其将所述开关的所述第一端子与所述输入电压电气耦合;
与所述第一电感器磁耦合的第二电感器,所述第二电感器将所述整流器的所述第一端子与电压基准电气耦合;以及
与所述输出电压耦合的开关控制器,其被配置成控制所述开关。
优选地,所述第一电感器和所述第二电感器均包括1.7毫亨的电感。
优选地,所述的降压电压变换器(100),还包括:
第一电容器,其将所述输入电压与所述电压基准电气耦合;以及
第二电容器,其将所述输出电压与所述电压基准电气耦合。
优选地,所述第一电容器包括22微法的电容。
优选地,所述第二电容器包括120微法的电容。
优选地,所述电压基准为地。
优选地,所述第一电感器的匝数和所述第二电感器的匝数包括1∶1的比例。
优选地,所述第一电感器包括第一变压器绕组,其中所述第二电感器包括第二变压器绕组,且其中所述第一电感器和所述第二电感器绕磁心缠绕。
优选地,所述磁心为铁氧体磁心。
优选地,所述输入电压和所述输出电压为正直流电压;
所述开关包括n沟道场效应晶体管,所述开关的所述第一端子包括所述FET的漏极端子,所述开关的所述第二端子包括所述FET的源极端子,且所述开关控制器通过所述FET的栅极端子控制所述FET;并且
其中所述整流器包括二极管,所述整流器的所述第一端子包括所述二极管的阳极,且所述整流器的所述第二端子包括所述二极管的阴极。
优选地,所述输入电压和所述输出电压为负DC电压;
所述开关包括p沟道场效应晶体管,所述开关的所述第一端子包括所述FET的漏极端子,所述开关的所述第二端子包括所述FET的源极端子,且所述开关控制器通过所述FET的栅极端子控制所述FET;并且
其中所述整流器包括二极管,所述整流器的所述第一端子包括所述二极管的阴极,且所述整流器的所述第二端子包括所述二极管的阳极。
优选地,所述开关控制器被配置为通过基本周期性地导通和截止所述开关来控制所述开关。
优选地,所述开关控制器被配置为基于所述输出电压控制所述开关。
优选地,所述开关控制器被配置为基于所述输出电压处的电流控制所述开关。
优选地,所述输入电压为交流输入电压;并且
所述降压电压变换器还包括AC整流电路,其将所述AC输入电压与所述第一电感器耦合。
优选地,所述AC整流电路被配置为将所述AC输入电压转换成第一正DC电压;并且
所述输出电压为幅度低于所述第一正DC电压的幅度的正DC输出电压。
优选地,所述AC整流电路被配置为将所述AC输入电压转换成第一负DC电压;并且
所述输出电压为幅度低于所述第一负DC电压的幅度的负DC输出电压。
优选地,一种工业测量仪表包括所述降压电压变换器。
优选地,一种科里奥利(Coriolis)流量计包括所述降压电压变换器。
附图说明
图1为根据现有技术的降压电压变换器的方框图。
图2为根据本发明实施例的降压变换器的方框图。
图3为根据本发明实施例、用于从正DC输入电压产生正DC输出电压的降压变换器的示意图。
图4为图3的降压电压变换器的特定实施例所实现的流经第一电感器和第二电感器的电流、开关漏极处的电压和二极管阳极处的电压的时序图。
图5为根据本发明实施例、用于从负DC输入电压产生负DC输出电压的降压变换器的示意图。
图6为进一步采用用于AC输入电压的AC整流电路的图2的降压变换器的方框图。
具体实施方式
图2为根据本发明实施例的降压电压变换器100的简化方框图,该变换器用于从输入电压VIN产生输出电压VOUT。总体上,变换器100包括具有第一端子112和第二端子114的开关111,其中第二端子114与输出电压VOUT耦合。开关111的第一端子112通过第一电感器124与输入电压VIN电耦合。通过与输出电压VOUT耦合的开关控制器110控制开关111。此外,与第一电感器124磁耦合的第二电感器126将整流器117的第一端子118与电压基准128电耦合,而整流器117的第二端子120与输出电压VOUT电耦合。
图3为降压电压变换器100的具体范例的简化示意图:根据本发明实施例的用于从正DC输入电压VIN产生正DC输出电压VOUT的电压变换器200。变换器200包括具有第一端子212和第二端子214的开关Q1,其中第二端子214与输出电压VOUT耦合。开关Q1的第一端子212通过第一电感器L1与输入电压VIN电耦合。通过与输出电压VOUT耦合的开关控制器210控制开关Q1。此外,与第一电感器L1磁耦合的第二电感器L2将整流器或二极管D1的阳极218与电压基准电耦合,而二极管D1的阴极220与输出电压VOUT电耦合。
更具体地介绍图3的变换器200的具体范例,开关Q1可以是FET,例如具有漏极端子212、源极端子214和栅极端子216的n沟道功率FET。如以下要更详细描述的,开关控制器210利用栅极216通过导通和截止FET Q1来控制FET Q1。在一个实施例中,开关控制器210至少部分地基于输出电压VOUT的电压电平基本周期性地导通和截止FET Q1。在其他实施例中,开关控制器210可以采用输出的另一种特性(例如电流)来控制FET Q1。在另一个实施例中,可以采用输出特性的组合(例如电压和电流组合)来控制Q1。在备选实施例中,可以用其他类型的电子元件,例如双极结晶体管(BJT)代替FET Q1实现类似目的。
在图3的具体实施例中,第一电容器C1将输入电压VIN与电压基准电耦合,而通过第二电容器C2将输出电压VOUT电耦合到电压基准。在一个实施例中,电压基准为地,即0V。将第一电容器C1和第二电容器C2用作滤波电容器,以帮助提供短期电流供应,以便支持输入电压VIN和输出电压VOUT两者的电压电平,并且除去高频噪声。在一个特定实施中,第一电容器C1具有22微法(μF),而第二电容器C2具有120μF的电容。
在一个实施例中,第一电感器L1和第二电感器L2形成共享单个磁心(例如铁氧体磁心)222的变压器的第一和第二绕组,在磁心周围缠绕两个电感器L1、L2。在本发明的其他实施例中可以实施由其他材料构成的磁心。而且,在一种实施中,第一电感器L1绕磁心的匝数和第二电感器L2绕磁心的匝数形成1∶1的比值。尽管在变换器200工作的以下讨论中采用1∶1的比值,在备选实施例中其他比值也是可能的。在一个范例中,电感器L1、L2都具有1.7毫亨(mH)的电感。
变换器200的工作取决于开关或FET Q1的状态。开关控制器210通过将栅极216的电压提升到充分高于源极214处的电压来导通FETQ1,从而导通开关Q1,源极处的电压为输出电压VOUT。当FET Q1导通时,FET Q1的漏极212处的电压VD也大致等于输出电压VOUT,电流从输入电压VIN经过第一电感器L1、FET Q1的漏极212和源极214流到输出电压VOUT。结果,电能被存储在第一电感器L1中,典型地,存储在被第一电感器L1缠绕的磁心222中。而且,由于第一电感器L1和第二电感器L2 1∶1的磁耦合,第一电感器L1两端的电压VL1等于第二电感器L2两端的电压VL2。于是,由于第一电感器L1两端的电压实质上为输入电压VIN减去输出电压VOUT,二极管D1的阳极218处的电压VA变成-(VIN-VOUT)。因此,凭借与输出电压VOUT耦合的阴极220,阳极218的电压VA小于阴极220的电压,导致二极管D1被反向偏置,因此不导电。因此,在开关Q1导通时实质上没有电流流经第二电感器L2,在电流流经第一电感器L1时电能被存储在磁心222中。
当开关控制器210截止开关Q1时,第一电感器L1两端的电压VL1变成负值以试图保持其先前的电流水平,从而将开关Q1的漏极212驱动至输入电压VIN以上。由于两个电感器L1、L2之间的磁耦合,第二电感器L2两端的电压VL2与第一电感器L1两端的电压VL1匹配。结果,第二电感器L2两端的电压VL2接近输出电压的负值-VOUT,在该点二极管D1变成正向偏置且导电。忽略二极管D1上通常很小的电压降,于是也将第一电感器L1两端的电压VL1限制在-VOUT,于是将开关Q1的漏极212处的电压VD箝位在输入电压VIN和输出电压VOUT之和(即VIN+VOUT)。该箝位的结果是,以经过第二电感器L2和二极管D1流到输出电压VOUT的电流形式提供了先前存储在电感器L1、L2的磁心222中的能量。一段时间之后,开关控制器210再次导通开关Q1,并重复该过程。无论开关Q1是导通还是截止,电流都从变换器200向输出电压VOUT流动。
图4以简化时序图示出了流经根据本发明特定实施例的第一电感器L1的电流IL1和流经第二电感器L2的电流IL2的波形。此外,还示出了在相同时间段内开关Q1的漏极212处的电压VD和二极管D1的阳极218处的电压VA。在该范例中,输入电压VIN为50 VDC,输出电压VOUT为12 VDC,由输出电压VOUT驱动的负载(未示出)为40欧姆(Ω)。在该具体范例中,第一电容器C1具有22μF的电容,第二电容器C2为120μF而电感器L1、L2均表现出1.7mH的电感。此外,开关Q1为n沟道功率FET,元件编号STD5NM50,二极管D1为MURS160。
图4的时序图绘示了变换器200工作的典型周期特性。对于开关Q1导通的时间TON,流经第一电感器L1的电流IL1基本线性地从水平I1增大到水平I2。在同一时间段期间,二极管D1被反向偏置,于是基本没有电流经过第二电感器L2流动。而且,由于开关Q1是导通的,开关Q1的漏极212处的电压VD保持在大约VOUT,而二极管D1的阳极218处的电压VA为-(VIN-VOUT),如前所述。换言之,电感器L1、L2两端的电压VL1、VL2相等,为(VIN-VOUT),漏极电压VD向高于阳极电压VA处偏移输入电压VIN的值。
当开关Q1截止时,电感器L1、L2两端的电压VL1、VL2相等,且漏极电压VD和阳极电压VA之间相对偏移VIN都是真实情况。在开关Q1截止的时间tOFF期间,二极管D1导电,阳极电压VA被箝位在输出电压VOUT。由于漏极电压VD向高于阳极电压VA处偏移输入电压VIN的值,因此如上所述漏极电压VD被箝位在(VIN+VOUT)。而且,由于开关Q1是截止的,第一电感器L1中的电流基本为零,而第二电感器L2中的电流由于第二电感器L2两端恒定的电压-VOUT而基本线性地从I2降到I1
在图4所示的特定实施例中,上电流水平I2大约为350毫安(mA),而下电流水平I1大约为250mA。由于经过电感器L1的电流IL1和经过电感器L2的电流IL2被提供在输出电压Vout处,因此提供到40Ω负载的平均电流为(12 VDC)/(40Ω)=300mA。开关控制器210基于电感器L1、L2的元件值、被驱动的负载对输出电压Vout的变化的耐受性以及其他因素来调节tON和tOFF。在图4的情况下,tON为大约5微秒(μS),而tOFF为大约15μS。由于电感器L两端的电压等于L(di/dt),在tON期间第一电感器L1两端的恒定电压VL1,即VIN-VOUT=(50 VDC)-(12 VDC)=38 VDC大致是tOFF期间第二电感器L2两端的电压VL2的幅度,即-VOUT=-12V的三倍,于是说明了在该具体情形下tOFF大致为tON三倍长的原因。当然,对于输入电压VIN和输出电压VOUT的不同组合,将可能通过开关控制器210实施tON与tOFF的不同比例。
对于这里公开的变换器200的各种实施例,可以将宽范围的正DC电压用作输入电压VIN,以便产生低幅度的正DC输出电压VOUT。如上所述,所采用的各种元件,例如电感器L1、L2、电容器C1、C2、二极管D1、开关Q1和开关控制器210,部分地决定着本发明特定实施例所允许的输入和输出电压VIN、VOUT的极限。
上述变换器200的各种实施例的突出优点在于导通和截止开关Q1所需的开关Q1栅极216的电压摆动是有限的。由于开关Q1的源极214直接耦合到输出电压VOUT,因此仅需要在输出电压VOUT和更高几伏之间移动栅极216的电压来操作开关Q1。于是,可以通过标准的容易获取的电子元件驱动Q1的栅极216,由此简化了开关控制器210的设计。在采用本发明的一个或多个实施例的其他应用中也可以实现这些优点中的一个或多个,或其他优点。
也可以通过根据本发明另一实施例的另一电压变换器300实现类似的优点。如图5所示,变换器300以类似于上述变换器200的方式工作,其被配置成将负DC输入电压VIN转换成更低幅度的负DC输出电压VOUT。尽管变换器200和变换器300的大部分元件,例如电感器L1、L2、磁心222和电容器C1、C2是相同的,采用了一些修改来处理负DC输入电压VIN。取代变换器200的开关Q1的是开关Q2,在图5的具体范例中它是p沟道功率FET。开关Q2包括与第一电感器L1耦合的漏极端子312、与输出电压VOUT耦合的源极端子314以及栅极端子316。开关控制器310以类似于变换器200的开关控制器210的方式工作,经由栅极316控制开关Q2的工作。开关控制器310仅需要在输出电压VOUT和更高几伏之间移动栅极316的电压来操作开关Q2,于是和现有技术变换器相比简化了开关控制器310的设计。
图5的变换器300还包括具有第一端子318和第二端子320的二极管D2。由于输入和输出电压VIN、VOUT的极性是负的,第一端子318为阴极而第二端子320为阳极,这与变换器200的二极管D1的取向相反。变换器300的工作类似于以上结合图3的变换器200所述的工作,只是所有电压和电流的极性实质性反转。
图6中给出了根据本发明实施例的电压变换器400的又一实施例,用于将AC输入电压转换成DC输出电压。除了以上结合图2的变换器100所述的元件之外,使用了AC整流电路430,用于将AC输入电压VIN转换成电压变换器400的其余元件可用的DC电压,以产生期望的DC输出电压VOUT。在需要正DC输入电压VOUT的一个实施例中,可以将AC整流电路430配置成将AC输入电压VIN转换成第一正DC电压,然后可以通过图3的变换器200将第一正DC电压转换成输出电压VOUT。在另一个实施例中,如果需要负DC输出电压VOUT,可以将AC整流电路430配置成将AC输入电压VIN转换成第一负DC电压,在一种实施中随后将该第一负DC电压经由图5的变换器300转换成较低幅度的负DC输出电压VOUT
尽管在这里讨论了本发明的若干实施例,其他涵盖于本发明范围内的实施例也是可能的。例如,在备选实施例中可以涉及到不同的AC和DC电压电平,这样可能表示使用除这里具体公开的元件值之外的值。此外,提到正和负电压极性仅仅是为了参考,本发明的其他实施例可以使用不同的电压参考方案。此外,在备选实施例中,电气耦合的元件未必是直接互连的。而且,可以将一个实施例的各方面与备选实施例的各方面组合以产生本发明的其他实施。于是,尽管在特定实施例的上下文中描述了本发明,这种描述是用于例示而非限制。因此,本发明的适当范围仅由如下权利要求限定。

Claims (19)

1.一种用于从输入电压(VIN)产生输出电压(VOUT)的降压电压变换器(100),包括:
包括第一端子(112)和第二端子(114)的开关(111),其中所述开关(111)的所述第二端子(114)与所述输出电压(VOUT)电气耦合;
包括第一端子(118)和第二端子(120)的整流器(117),其中所述整流器(117)的所述第二端子(120)与所述输出电压(VOUT)电气耦合;
第一电感器(124),其将所述开关(111)的所述第一端子(112)与所述输入电压(VIN)电气耦合;
与所述第一电感器(124)磁耦合的第二电感器(126),所述第二电感器(126)将所述整流器(117)的所述第一端子(118)与电压基准(128)电气耦合;以及
与所述输出电压(VOUT)耦合的开关控制器(110),其被配置成控制所述开关(111)。
2.根据权利要求1所述的降压电压变换器(100),其中所述第一电感器(124)和所述第二电感器(126)均包括1.7毫亨的电感。
3.根据权利要求1所述的降压电压变换器(100),还包括:
第一电容器(C1),其将所述输入电压(VIN)与所述电压基准(128)电气耦合;以及
第二电容器(C2),其将所述输出电压与所述电压基准(128)电气耦合。
4.根据权利要求3所述的降压电压变换器(100),其中所述第一电容器(C1)包括22微法的电容。
5.根据权利要求3所述的降压电压变换器(100),其中所述第二电容器(C2)包括120微法的电容。
6.根据权利要求1所述的降压电压变换器(100),其中所述电压基准(128)为地。
7.根据权利要求1所述的降压电压变换器(100),其中所述第一电感器(124)的匝数和所述第二电感器(126)的匝数包括1∶1的比例。
8.根据权利要求1所述的降压电压变换器(100),其中所述第一电感器(124)包括第一变压器绕组,其中所述第二电感器(126)包括第二变压器绕组,且其中所述第一电感器(124)和所述第二电感器(126)绕磁心(222)缠绕。
9.根据权利要求8所述的降压电压变换器(100),其中所述磁心(222)为铁氧体磁心。
10.根据权利要求1所述的降压电压变换器(100),其中:
所述输入电压(VIN)和所述输出电压(VOUT)为正直流(DC)电压;
所述开关(111)包括n沟道场效应晶体管(FET)(Q1),所述开关(111)的所述第一端子(112)包括所述FET(Q1)的漏极端子(212),所述开关(111)的所述第二端子(114)包括所述FET(Q1)的源极端子(214),且所述开关控制器(110)通过所述FET(Q1)的栅极端子(216)控制所述FET(Q1);并且
其中所述整流器(117)包括二极管(D1),所述整流器(117)的所述第一端子(118)包括所述二极管(D1)的阳极(218),且所述整流器(117)的所述第二端子(120)包括所述二极管(D1)的阴极(220)。
11.根据权利要求1所述的降压电压变换器(100),其中:
所述输入电压(VIN)和所述输出电压(VOUT)为负DC电压;
所述开关(111)包括p沟道场效应晶体管(FET)(Q2),所述开关(111)的所述第一端子(112)包括所述FET(Q2)的漏极端子(312),所述开关(111)的所述第二端子(114)包括所述FET(Q2)的源极端子(314),且所述开关控制器(110)通过所述FET(Q2)的栅极端子(316)控制所述FET(Q2);并且
其中所述整流器(117)包括二极管(D2),所述整流器(117)的所述第一端子(118)包括所述二极管(D2)的阴极(318),且所述整流器(117)的所述第二端子(120)包括所述二极管(D2)的阳极(220)。
12.根据权利要求1所述的降压电压变换器(100),其中所述开关控制器(110)被配置为通过基本上周期地导通和截止所述开关(111)来控制所述开关(111)。
13.根据权利要求1所述的降压电压变换器(100),其中所述开关控制器(110)被配置为基于所述输出电压(VOUT)控制所述开关(111)。
14.根据权利要求1所述的降压电压变换器(100),其中所述开关控制器(110)被配置为基于所述输出电压(VOUT)处的电流控制所述开关(111)。
15.根据权利要求1所述的降压电压变换器(100),其中:
所述输入电压(VIN)为交流(AC)输入电压;并且
所述降压电压变换器(100)还包括AC整流电路(430),其将所述AC输入电压与所述第一电感器(124)耦合。
16.根据权利要求15所述的降压电压变换器(100),其中:
所述AC整流电路(430)被配置为将所述AC输入电压转换成第一正DC电压;并且
所述输出电压(VOUT)为幅度低于所述第一正DC电压的幅度的正DC输出电压。
17.根据权利要求15所述的降压电压变换器(100),其中:
所述AC整流电路(430)被配置为将所述AC输入电压转换成第一负DC电压;并且
所述输出电压(VOUT)为幅度低于所述第一负DC电压的幅度的负DC输出电压。
18.一种工业测量仪表,包括根据权利要求1所述的降压电压变换器。
19.一种科里奥利流量计,包括根据权利要求1所述的降压电压变换器(100)。
CN2005800511769A 2005-07-26 2005-07-26 降压电压变换器 Active CN101228683B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2005/026456 WO2007018498A1 (en) 2005-07-26 2005-07-26 Step-down voltage converter

Publications (2)

Publication Number Publication Date
CN101228683A true CN101228683A (zh) 2008-07-23
CN101228683B CN101228683B (zh) 2011-01-12

Family

ID=35929837

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2005800511769A Active CN101228683B (zh) 2005-07-26 2005-07-26 降压电压变换器

Country Status (12)

Country Link
US (1) US7940533B2 (zh)
EP (1) EP1917710A1 (zh)
JP (1) JP2009504119A (zh)
KR (1) KR20100109574A (zh)
CN (1) CN101228683B (zh)
AR (1) AR054571A1 (zh)
AU (1) AU2005335243B2 (zh)
BR (1) BRPI0520440B1 (zh)
CA (1) CA2616728C (zh)
HK (1) HK1123131A1 (zh)
RU (2) RU2009136283A (zh)
WO (1) WO2007018498A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104052265A (zh) * 2013-03-15 2014-09-17 弗莱克斯电子有限责任公司 耦合电感器直流降压转换器
CN104682708A (zh) * 2013-11-29 2015-06-03 华为技术有限公司 降压变换器

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2719623B1 (en) * 2012-10-10 2019-06-26 Airbus Operations GmbH Heating control unit comprising a sensor, ice protection system and method for controlling a heater
US9323267B2 (en) 2013-03-14 2016-04-26 Flextronics Ap, Llc Method and implementation for eliminating random pulse during power up of digital signal controller
US9369000B2 (en) 2013-03-15 2016-06-14 Flextronics Ap, Llc Sweep frequency for multiple magnetic resonant power transmission using alternating frequencies
US20140268910A1 (en) * 2013-03-15 2014-09-18 Flextronics Ap, Llc Coupled inductor dc step down converter
CN107132404B (zh) * 2017-05-15 2019-11-05 矽力杰半导体技术(杭州)有限公司 检测方法、检测电路、控制器及开关电源
CN110768510B (zh) 2019-09-30 2022-09-20 上海矽力杰微电子技术有限公司 控制电路和方法以及功率变换器

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3566253A (en) * 1969-04-01 1971-02-23 Bell Telephone Labor Inc Switching type regulators having alternate load current paths
SE382447B (sv) 1974-06-06 1976-02-02 Euroc Administration Ab Sett att astadkomma en glasyr pa ytan av en kropp av porost keramiskt material
US4034281A (en) * 1974-07-25 1977-07-05 Sanken Electric Company Limited Direct current power supply with a transistor chopper
SU1686650A1 (ru) 1987-07-24 1991-10-23 В.Ф.Захаров Преобразователь посто нного напр жени
JPH0311388A (ja) * 1989-06-09 1991-01-18 Komatsu Ltd 電子ディスプレイデバイスのコネクト構造
JPH0311388U (zh) * 1989-06-16 1991-02-04
JPH03183356A (ja) * 1989-12-07 1991-08-09 Fuji Electric Co Ltd Dc―dcコンバータ
US5347874A (en) 1993-01-25 1994-09-20 Micro Motion, Incorporated In-flow coriolis effect mass flowmeter
US5654881A (en) 1996-03-01 1997-08-05 Lockheed Martin Corporation Extended range DC-DC power converter circuit
CN2258992Y (zh) 1996-09-26 1997-08-06 吴荣滨 多相安装式整流系交流电压表
US5864116A (en) 1997-07-25 1999-01-26 The Lincoln Electric Company D.C. chopper with inductance control for welding
US6381114B1 (en) 2000-03-31 2002-04-30 Micro Motion, Inc. Integrated current source feedback and current limiting element
US6591693B1 (en) * 2000-03-31 2003-07-15 Micro Motion, Inc. Universal input to DC output conversion circuitry
US6507174B1 (en) * 2001-09-06 2003-01-14 Koninklijke Philips Electronics N.V. Voltage regulator with clamping circuit
US6462524B1 (en) * 2001-10-16 2002-10-08 National Semiconductor Corporation Floating buck regulator topology
JP3722427B2 (ja) 2001-12-20 2005-11-30 ジャパンエポキシレジン株式会社 エポキシ樹脂組成物

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104052265A (zh) * 2013-03-15 2014-09-17 弗莱克斯电子有限责任公司 耦合电感器直流降压转换器
CN104052265B (zh) * 2013-03-15 2018-11-06 弗莱克斯电子有限责任公司 耦合电感器直流降压转换器
CN104682708A (zh) * 2013-11-29 2015-06-03 华为技术有限公司 降压变换器

Also Published As

Publication number Publication date
AU2005335243B2 (en) 2010-05-27
CA2616728C (en) 2015-04-28
AR054571A1 (es) 2007-06-27
WO2007018498A1 (en) 2007-02-15
US7940533B2 (en) 2011-05-10
US20100128499A1 (en) 2010-05-27
CA2616728A1 (en) 2007-02-15
EP1917710A1 (en) 2008-05-07
CN101228683B (zh) 2011-01-12
BRPI0520440A2 (pt) 2009-05-12
RU2009136283A (ru) 2011-04-10
KR20100109574A (ko) 2010-10-08
RU2638021C2 (ru) 2017-12-11
AU2005335243A1 (en) 2007-02-15
HK1123131A1 (en) 2009-06-05
RU2016102169A (ru) 2017-07-28
JP2009504119A (ja) 2009-01-29
BRPI0520440B1 (pt) 2018-03-27

Similar Documents

Publication Publication Date Title
CN101228683B (zh) 降压电压变换器
CN100555827C (zh) 开关电源
US7151364B2 (en) DC/DC converter and program
CN102792574B (zh) 开关电源装置
CN103856041A (zh) Ac/dc功率转换器装置
CN1182649C (zh) 低输出电压dc-dc变换器的自驱动同步整流电路
CN102130613B (zh) 具有一个被连接在绕组之间的开关的功率转换器
US20100328971A1 (en) Boundary mode coupled inductor boost power converter
CN101018015A (zh) Dc-dc转换器
CN1585247A (zh) 开关电源装置
CN1848641A (zh) 准谐振类型开关电源单元及使用其的准谐振开关电源装置
CN1306529C (zh) 电磁体装置的驱动装置
CN1747617A (zh) 稀有气体荧光灯照明装置
CN1461098A (zh) 交换式电源供应器
CN102403895A (zh) 基于MOSFET的自激式Sepic变换器
CN100373757C (zh) 电源设备
CN210839348U (zh) 一种非隔离升降压变换器
CN102403896A (zh) 基于MOSFET的自激式Boost变换器
CN100474748C (zh) 开关模式电源及用于控制其输出电压的控制电路和方法
CN102510216A (zh) 基于MOSFET的自激式Cuk变换器
US20200127455A1 (en) Device and Method for Controlling DC Bus Ripple
CN102510217B (zh) 基于MOSFET的自激式Zeta变换器
KR101435469B1 (ko) 영전압 스위칭 직류-직류 컨버터
CN104901553A (zh) 一种变压电路、空调升压系统以及太阳能空调
CN110071634A (zh) 自举式电路及使用该电路的关联的直流转直流转换器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1123131

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1123131

Country of ref document: HK