CN101222041B - 用于锂离子电池的纳米复合电极材料Li3N/Si及其制备方法 - Google Patents

用于锂离子电池的纳米复合电极材料Li3N/Si及其制备方法 Download PDF

Info

Publication number
CN101222041B
CN101222041B CN2007101726203A CN200710172620A CN101222041B CN 101222041 B CN101222041 B CN 101222041B CN 2007101726203 A CN2007101726203 A CN 2007101726203A CN 200710172620 A CN200710172620 A CN 200710172620A CN 101222041 B CN101222041 B CN 101222041B
Authority
CN
China
Prior art keywords
electrode material
li3n
lithium ion
nano
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2007101726203A
Other languages
English (en)
Other versions
CN101222041A (zh
Inventor
周永宁
傅正文
吴晓京
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN2007101726203A priority Critical patent/CN101222041B/zh
Publication of CN101222041A publication Critical patent/CN101222041A/zh
Application granted granted Critical
Publication of CN101222041B publication Critical patent/CN101222041B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明属锂离子薄膜电池技术领域,具体为一种用于锂离子电池的纳米复合电极材料Li3N/Si及其制备方法。该材料是由Li3N与IVA族元素Si组成的纳米薄膜,可通过脉冲激光沉积法制备获得,Li3N/Si纳米复合物粒径小于50nm。薄膜电极的比容量随薄膜中Li3N和Si的配比不同在400-650mAh/g范围内变化,在反复充放电过程中表现出优良的电化学性能。该种薄膜电极材料比容量高,循环性能好,制备方法简单,适用于薄膜锂离子电池。

Description

用于锂离子电池的纳米复合电极材料Li3N/Si及其制备方法
技术领域
本发明属锂离子薄膜电池技术领域,具体涉及可用于锂离子电池的纳米尺寸复合物电极活性材料及其制备方法。
背景技术
随着社会的发展,尤其是电子计算机、摄像机、移动电话和电动汽车等的应用,对电池的功率、容量、充电和放电速度、寿命、制造成本及环境友好程度,提出了越来越高的要求,传统的铅酸电池、镍镉电池等显然已不能很好地满足。锂离子电池作为一种新型的高级电源,其发展正呈现不可阻挡的势头,国际上对锂离子电池的研究非常重视。为了研制大容量的锂离子电池,阳极材料的选择尤为重要。目前,最常用的锂离子电池阳极材料为石墨,但其比容量只有350mAh/g左右,这使得整个电池的能量密度很难得到较大的提高。寻找新的锂离子阳极材料是该领域重点关注的问题。
发明内容
本发明的目的在于提供一种电化学性能良好的用于锂离子电池的新型复合电极材料及其制备方法。
本发明提出的复合电极材料,是由脉冲激光沉积法制备获得Li3N与IVA族元素Si的纳米复合薄膜电极材料,薄膜粒径小于50nm,这样可以大大降低反应体系的电化学内阻,提高反应体系中活性物质的利用率,最终提高体系的电化学容量和循环性能。
上述用于锂离子电池的复合电极材料,是由Li3N与IVA族元素Si均匀混合组成的纳米复合物。Li3N与Si的摩尔比为1∶x,2>x>0.5。其中Si的粒径小于50nm。Li3N为干燥的氮化锂,Li3N的粒径小于50nm。
本发明的优点在于直接利用Li3N与Si的纳米混合物形成具有电化学活性的电极材料,该材料不仅在充放电时本身可以提供锂源,而且具有良好的充放电循环性能和较高的比容量。混合物的制备过程不需要传统电极材料的高温反应或高能球磨过程,仅需要采取一定的方法使复合物达到纳米级(50nm)以下的混合即可。因此具有制备过程简单、电化学性能优良的显著优点。
脉冲激光沉积法制备上述复合电极活性材料的具体步骤如下:将摩尔比为1∶x(2>x>0.5)的Li3N与Si均匀混合后压制成靶,通过脉冲激光沉积的方法制备成纳米混合物电极薄膜材料。制备条件为:基片选用不锈钢片,基片与靶的距离为25-45mm;沉积气氛为高纯氮,保持压强在5-20Pa;沉积温度为常温;激光为由Nd:YAG激光器产生的基频经三倍频产生的355nm脉冲激光,脉冲频率10Hz,脉冲宽度10ns,能量密度为1.5-2.5J/cm2;沉积时间1h-2h。
具体实施方式
下面通过实施例进一步描述本发明。
实施例
将摩尔比为1∶1的Li3N与Si粉充分混合;然后将混合物粉压制成脉冲激光沉积的靶材料,通过脉冲激光沉积法制备成复合纳米混合物电极薄膜材料。制备条件:基片为不锈钢片,基片与靶的距离为30mm;沉积过程在高纯氮中进行,保持压强在10Pa;沉积温度为室温;激光波长为355nm,脉冲频率10Hz,脉冲宽度10ns,能量密度为2J/cm2;沉积时间为1小时。
由SEM表明,沉积薄膜中颗粒粒径约为50nm。表明沉积的薄膜为Li3N/Si纳米复合物材料构成。由TEM电子衍射测定表明,沉积薄膜为Li3N/Si纳米混合物,其中Li3N为六方结构,空间群都为P63/mmc,Si为面心立方结构,空间群为Fd3m。将该薄膜作为工作电极,以高纯锂片作为对电极组装成模拟电池。其中电解液为1M LiPF6+EC+DMC(EC与DMC的体积比为1/1),电池装配在充氩气的干燥箱内进行。电池的充放电在Land电池测试系统上进行。混合物薄膜电极表现出了良好的电化学性能。电池在2V到0.5V之间有明显的放电平台,可逆容量可达650mAh/g(附图)。

Claims (3)

1.一种纳米复合电极材料Li3N/Si的制备方法,其特征在于具体步骤如下:将摩尔比为1∶x,2>x>0.5,的Li3N与Si均匀混合后压制成靶,其中,Li3N和Si的粒径小于50nm,然后通过脉冲激光沉积的方法制备成纳米混合物电极薄膜材料,沉积的条件为:基片选用不锈钢片,基片与靶的距离为25-45mm;沉积气氛为高纯氮,保持压强在5-20Pa;沉积温度为常温;激光为由Nd:YAG激光器产生的基频经三倍频产生的355nm脉冲激光,脉冲频率10Hz,脉冲宽度10ns,能量密度为1.5-2.5J/cm2;沉积时间1h-2h。
2.由权利要求1所述方法制备获得的纳米复合电极材料Li3N/Si。
3.一种如权利要求2所述的纳米复合Li3N/Si电极材料作为锂电池电极活性材料的应用。
CN2007101726203A 2007-12-20 2007-12-20 用于锂离子电池的纳米复合电极材料Li3N/Si及其制备方法 Expired - Fee Related CN101222041B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2007101726203A CN101222041B (zh) 2007-12-20 2007-12-20 用于锂离子电池的纳米复合电极材料Li3N/Si及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2007101726203A CN101222041B (zh) 2007-12-20 2007-12-20 用于锂离子电池的纳米复合电极材料Li3N/Si及其制备方法

Publications (2)

Publication Number Publication Date
CN101222041A CN101222041A (zh) 2008-07-16
CN101222041B true CN101222041B (zh) 2010-12-15

Family

ID=39631715

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007101726203A Expired - Fee Related CN101222041B (zh) 2007-12-20 2007-12-20 用于锂离子电池的纳米复合电极材料Li3N/Si及其制备方法

Country Status (1)

Country Link
CN (1) CN101222041B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11996547B2 (en) 2022-06-22 2024-05-28 Tesla, Inc. Large-format battery anodes comprising silicon particles

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3902038B1 (en) * 2016-10-13 2023-07-19 Tesla, Inc. Large-format battery anodes comprising silicon particles
US10892481B2 (en) * 2019-02-13 2021-01-12 GM Global Technology Operations LLC Methods of pre-lithiating electroactive material and electrodes including pre-lithiated electroactive material
CN110444751B (zh) * 2019-08-05 2021-06-01 张振刚 Li-Si-N纳米复合薄膜及其制备方法、负极结构及锂电池
CN110911685B (zh) * 2019-11-28 2021-09-14 宁德新能源科技有限公司 用于负极的组合物和包含该组合物的保护膜、负极和装置
CN113725422B (zh) * 2021-09-08 2023-12-12 四川星耀新能源科技有限公司 一种硅碳复合负极材料及其制备方法、锂离子电池

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1549363A (zh) * 2003-05-19 2004-11-24 中国科学院青海盐湖研究所 新型锂离子电池负极材料制备方法
CN1585170A (zh) * 2004-05-28 2005-02-23 中国科学院上海微系统与信息技术研究所 用于锂离子电池负极的可逆脱嵌锂材料及制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1549363A (zh) * 2003-05-19 2004-11-24 中国科学院青海盐湖研究所 新型锂离子电池负极材料制备方法
CN1585170A (zh) * 2004-05-28 2005-02-23 中国科学院上海微系统与信息技术研究所 用于锂离子电池负极的可逆脱嵌锂材料及制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JP特开2003-331837A 2003.11.21
JP特开平10-302777A 1998.11.13
JP特开平9-102313A 1997.04.15

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11996547B2 (en) 2022-06-22 2024-05-28 Tesla, Inc. Large-format battery anodes comprising silicon particles

Also Published As

Publication number Publication date
CN101222041A (zh) 2008-07-16

Similar Documents

Publication Publication Date Title
Peng et al. Dual-manipulation on P2-Na0. 67Ni0. 33Mn0. 67O2 layered cathode toward sodium-ion full cell with record operating voltage beyond 3.5 V
Wang et al. Prelithiation: a crucial strategy for boosting the practical application of next-generation lithium ion battery
Zhang et al. Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries
Etacheri et al. Challenges in the development of advanced Li-ion batteries: a review
CN103474632B (zh) 一种用于锂电池的负极材料及其制备方法和应用
Ding et al. Recent advances in cathode prelithiation additives and their use in lithium–ion batteries
CN102456881B (zh) 橄榄石型磷酸盐正极材料、其制备方法及含该正极材料的正极和电池
Yuan et al. Fabrication of three-dimensional porous ZnMn2O4 thin films on Ni foams through electrostatic spray deposition for high-performance lithium-ion battery anodes
Meng et al. Influences of oxygen content on the electrochemical performance of a-SiOx thin-film anodes
Wang et al. Effectively stabilizing electrode/electrolyte interface of high-energy LiNi0. 9Co0. 1O2//Si–C system by simple cathode surface-coating
Wang et al. Magnetron sputtering enabled synthesis of nanostructured materials for electrochemical energy storage
CN102386412A (zh) 一种锂离子电池正极Li3V2(PO4)3/C复合材料及其制备方法
CN101222041B (zh) 用于锂离子电池的纳米复合电极材料Li3N/Si及其制备方法
CN102227024A (zh) 适用于动力锂离子电池的正极材料磷酸铁锂及其制备方法
CN103825030B (zh) 一种三维石墨烯基复合电极及其制备方法和应用
CN102034958A (zh) 具有橄榄石结构的介孔磷酸盐正极材料及其制备方法和用途
CN100391034C (zh) 一种锂电池电极材料Li2S/Co纳米复合薄膜及其制备方法
Li et al. Dual functions of zirconium metaphosphate modified high-nickel layered oxide cathode material with enhanced electrochemical performance
CN101237040B (zh) 一种用于锂离子电池的硒化铟铜阳极材料及其制备方法
CN102569801B (zh) 具有复合纳米结构碳层包覆磷酸铁锂电极材料及其应用
CN107482181B (zh) 一种复合锂离子电池正极材料Li3V2(PO4)3/C及其制备方法
CN102136565A (zh) 用于锂离子电池的氧化铁-硒纳米复合负极材料及其制备方法
Ding et al. Nanocomposite SnO2–Se thin film as anode material for lithium-ion batteries
CN100384000C (zh) 以硒化锌薄膜为阳极的薄膜锂离子电池及其制备方法
CN101252186A (zh) 一种用于锂离子电池的磷化铬负极材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20101215

Termination date: 20131220