CN101191079A - 用于全馏分裂解汽油选择性加氢的方法 - Google Patents

用于全馏分裂解汽油选择性加氢的方法 Download PDF

Info

Publication number
CN101191079A
CN101191079A CNA2006101185231A CN200610118523A CN101191079A CN 101191079 A CN101191079 A CN 101191079A CN A2006101185231 A CNA2006101185231 A CN A2006101185231A CN 200610118523 A CN200610118523 A CN 200610118523A CN 101191079 A CN101191079 A CN 101191079A
Authority
CN
China
Prior art keywords
pore volume
oxide compound
pyrolysis gasoline
periodic table
hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006101185231A
Other languages
English (en)
Other versions
CN101191079B (zh
Inventor
刘仲能
侯闽渤
赵江
吴征
李则俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Shanghai Research Institute of Petrochemical Technology
China Petrochemical Corp
Original Assignee
China Petroleum and Chemical Corp
Sinopec Shanghai Research Institute of Petrochemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Shanghai Research Institute of Petrochemical Technology filed Critical China Petroleum and Chemical Corp
Priority to CN2006101185231A priority Critical patent/CN101191079B/zh
Publication of CN101191079A publication Critical patent/CN101191079A/zh
Application granted granted Critical
Publication of CN101191079B publication Critical patent/CN101191079B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

本发明涉及一种用于全馏分裂解汽油选择性加氢的方法,主要解决现有技术中存在难以对胶质和水含量高的全馏分裂解汽油进行选择性加氢的技术问题。本发明通过采用以C5烃~干点为204℃的烃化合物馏分的裂解汽油和氢气为原料,在反应温度为40~60℃,反应压力为2.0~3.0MPa,新鲜油空速为3.75~5.0小时-1,氢/油体积比为80~120∶1的条件下,原料与催化剂接触,发生反应,使原料中的双烯烃和烯烃基芳烃组分转化成单烯烃和烷基芳烃,其中催化剂包括载体氧化铝、活性组分金属镍或其氧化物、至少一种选自钼或钨中的至少一种元素或其氧化物、至少一种选自稀土中的元素或其氧化物、至少一种选自元素周期表中IA或IIA中的元素或其氧化物、至少一种选自硅、磷、硼或氟中的元素或其氧化物、至少一种选自元素周期表中IVB中的元素或其氧化物,其中载体的比表面积为100~180米2/克,总孔容为0.5~1.2毫升/克,且载体具有复合孔分布的技术方案,较好地解决了该问题,可用于全馏分裂解汽油选择性加氢的工业生产中。

Description

用于全馏分裂解汽油选择性加氢的方法
技术领域
本发明涉及一种用于全馏分裂解汽油选择性加氢的方法。
背景技术
乙烯装置中裂解汽油的利用是提高装置综合经济效益的主要途径之一。由于裂解汽油组成复杂、热稳定性差,通常,先经一段选择性加氢除去二烯烃和苯乙烯,二段加氢脱硫后,主要用于芳烃抽提。目前工业上裂解汽油选择加氢用催化剂主要是Pd系或Ni系催化剂,中间馏分(C6~C8烃化合物馏分)加氢或全馏分(C5烃~干点为204℃的烃化合物馏分)加氢工艺。由于各乙烯装置裂解原料和裂解条件的差异,各装置裂解汽油原料组成相差较大,特别是裂解汽油的双烯、胶质以及As、重金属含量存在较大差异;有的装置粗裂解汽油双烯、胶质高,而有的装置粗裂解汽油原料中胶质及As、重金属等毒物含量较高,个别装置粗裂解汽油双烯、胶质及As、重金属等毒物含量均高,这些都会导致操作工况恶化,Pd系催化剂容易失活。因此,尽管传统的Pd系催化剂在工业应用中已经取得了较好的效果,但是仍然具有一定的局限性,尤其对含As较高的原料,Pd系催化剂往往很难满足在较苛刻的工况条件下长期稳定运行的需要。Ni基催化剂的耐As性能和低温稳定性使其在裂解汽油尤其是全馏分裂解汽油选择性加氢工艺中具有重要的用途,原料无需脱As处理,从而节省大量的操作费用,并减少催化剂因As积累引起活性下降的停车再生费用;Ni基催化剂与Pd系催化剂相比价格更低;低温型Ni基催化剂在裂解副产如C4、C5、C9的加氢利用方面将发挥及其重要的作用。因此,Ni基催化剂在取代Pd系催化剂应用于全馏分或选择馏分裂解汽油选择性加氢具有良好的前景。
全馏分裂解汽油富含C5、C9 +(碳九及其以上)不饱和组分,双烯高,易聚合,胶质(二烯烃及苯乙烯等不饱和组份发生聚合反应生成的高分子聚合物)高,重组分多,焦粉含量高,稳定性差,由于形成共沸物或工业装置缺乏有效的油水分离手段,导致原料游离水含量高,重金属等毒物易富集在C9 +(碳九及其以上)馏分中以及加氢放热量大等特点,使催化剂很快失活,因而催化剂不得不频繁活化和再生。目前工业应用的Ni/Al2O3催化剂难以适应乙烯工业中裂解汽油一段加氢中原料质量经常波动以及高选择性、高空速和长周期运行的要求,在双烯低温加氢活性、选择性、空速以及耐水等抗干扰性能等方面还有待改进,希望加氢催化剂具有较好的抗干扰性、适当的容胶能力、较高的低温活性和选择性,以增加催化剂再生周期,从而延长催化剂使用寿命。
中国专利CN1644656A中公开了一种加氢催化剂及其工艺和应用。该催化剂重量百分比组成为NiO 10~30%,Al2O370~90%。该催化剂适用于含二烯烃和苯乙烯及其衍生物的馏分油,反应工艺条件为温度50~200℃,压力2.0~4.0MPa,液体空速1~10小时-1,氢油体积比为H2/油=100~300,采用该催化剂和工艺可直接加氢制备高芳烃溶剂油和高辛烷值汽油。该催化剂的缺点是催化剂载体的制备过程复杂,载体需在600~700℃通入水蒸气扩孔1~4小时,然后焙烧,才可得到高比表面、大孔的载体。
中国专利CN1218822A中公开了一种选择性加氢催化剂。该催化剂由5~25重%的NiO,0.1~2.0重%的锂或碱土金属(优选镁),以及余量的氧化铝组成,适用于含双烯烃的馏分油,特别是裂解汽油的全馏分油的选择性加氢过程。该催化剂的缺点是催化剂的比表面积较低(60~85米2/克),孔体积较小(0.28~0.36毫升/克),反应活性相对较低,反应温度较高(80~160℃)。
发明内容
本发明主要解决现有技术中存在难以对胶质和水含量较高的全馏分(C5烃~干点为204℃的烃化合物馏分)裂解汽油进行选择性加氢的技术问题。提供一种新的用于全馏分裂解汽油选择性加氢的方法。该方法具有低温活性高,容胶能力强,稳定性好,并具有耐水性能好的优点。
为解决上述技术问题,本发明采用的技术方案如下:一种用于全馏分裂解汽油选择性加氢的方法,以C5烃~干点为204℃的烃化合物馏分的裂解汽油和氢气为原料,在反应温度为40~60℃,反应压力为2.0~3.0MPa,新鲜油空速为3.75~5.0小时-1,氢/油体积比为80~120∶1的条件下,原料与催化剂接触,发生反应,使原料中的双烯烃和烯烃基芳烃组分转化成单烯烃和烷基芳烃,其中催化剂以重量百分比计包括以下组分:(a)5.0~40.0%的金属镍或其氧化物;(b)0.01~20.0%的选自钼或钨中的至少一种元素或其氧化物;(c)0.01~10.0%的选自稀土中的至少一种元素或其氧化物;(d)0.01~2.0%的选自元素周期表中I A或II A中的至少一种元素或其氧化物;(e)0~15.0%的选自硅、磷、硼或氟中的至少一种元素或其氧化物;(f)0~10.0%的选自元素周期表中IVB中的至少一种元素或其氧化物;(g)余量的载体氧化铝;所述载体的比表面积为100~180米2/克,总孔容为0.5~1.2毫升/克,孔直径<30纳米的孔容占总孔容的5~65%,孔直径30~60纳米的孔容占总孔容的20~80%,孔直径>60纳米的孔容占总孔容的20~50%。
上述技术方案中,以重量百分比计,金属镍或其氧化物的用量优选范围为10.0~30.0%;选自钼或钨中的至少一种元素或其氧化物的用量优选范围为0.1~15.0%;选自稀土中的至少一种元素或其氧化物的用量优选范围为0.1~5.0%;选自元素周期表中I A或II A中的至少一种元素或其氧化物的用量优选范围为0.2~0.8%;选自硅、磷、硼或氟中的至少一种元素或其氧化物的用量优选范围为0.5~10.0%;选自元素周期表中IVB中的至少一种元素或其氧化物的用量优选范围为0.1~5.0%。选自稀土中的元素优选方案为镧或铈中至少一种;选自元素周期表中I A的元素优选方案为钾;选自元素周期表中IIA的元素优选方案为选自钙、镁或钡中至少一种;选自元素周期表中IVB的元素优选方案为选自钛或锆中至少一种。载体比表面积优选范围为120~160米2/克,总孔容优选范围为0.8~1.1毫升/克,孔直径<30纳米的孔容占总孔容的优选范围为20~50%,孔直径30~60纳米的孔容占总孔容的优选范围为20~45%,孔直径>60纳米的孔容占总孔容的优选范围为25~45%。本发明的加氢方法特别适用于含有较高胶质和游离水的全馏分裂解汽油的选择性加氢。为了得到较高的选择性,采用的反应温度优选范围为45~55℃,反应压力优选范围为2.5~2.8MPa,新鲜油空速优选范围为2.5~3.8小时-1,氢/油体积比优选范围为80~110∶1。
本发明载体的制备方法包括将氧化铝和改性剂、胶溶剂、水按所需量混合、挤条成型后,先在50~120℃下干燥1~24小时,然后在700~1150℃下焙烧1~10小时,得到载体。
本发明催化剂的制备方法为:将载体用所需量的镍化合物和催化剂中使用的助催化剂组分配成的溶液浸渍,浸渍后的载体经干燥、在空气中350~500℃焙烧即得氧化性催化剂成品。可重复上述步骤制得所需的镍含量。成品催化剂在使用前需用氢气还原。
本发明采用的催化剂具有复合孔结构,较大的可几孔径,以及富含丰富的介孔。本发明采用的催化剂在用于全馏分(C5烃~干点为204℃的烃化合物馏分)裂解汽油选择性加氢时具有良好的低温活性、选择性和稳定性,而且具有良好的抗干扰性、耐高胶质和耐高含量水性能。在入口温度50℃、反应压力2.7MPa、氢/油体积比100∶1,新鲜油空速3.8小时-1、总空速7.6小时-1条件下,对胶质含量为120毫克/100克油、游离水含量为1000ppm的全馏分(C5烃~干点为204℃的烃化合物馏分)裂解汽油进行选择加氢反应,其出口双烯平均值为0.0克碘/100克油,双烯加氢率为100%,取得了较好的技术效果。
下面通过实施例对本发明作进一步阐述。但是这些实施例无论如何都不对本发明的范围构成限制。
具体实施方式
【实施例1】
称取拟薄水铝石300克,150克α氧化铝,9克田菁粉,混合,之后加入含聚乙烯醇溶液(质量浓度为5%)25克,硝酸4.0克,浓度为85%的磷酸1.8克,硝酸钾1.5克,硝酸镁2克的水溶液360毫升,挤成φ2.5毫米的三叶草,湿条经120℃干燥4小时后于1150℃焙烧2小时,得到载体Z1。称取钼酸铵2.5克,硝酸镧1.0克,硝酸锆4.0克加入水130克,与浓度为14%的镍液50克混合配成浸渍液。将载体在浸渍液中进行等量浸渍,60℃干燥8小时,450℃焙烧4小时,制得Ni基催化剂C1,使最终Ni含量为载体氧化铝重量的10.0%。催化剂组成、比表面积、孔容、孔径分布见表1,其中各组分含量均以载体氧化铝重量计。
【实施例2】
采用载体Z2,载体制备方法同实施例1,载体组成见表1。称取钼酸铵10.0克,钨酸铵5.0克,硝酸镧3.5克,硝酸铈3.0克,氯化钛4.5克,硼氢化钾2.0克,氟化钾3.0克,加入水30克,与浓度为14%的镍液150克混合配成浸渍液。用实施例1同样的操作步骤及条件制得Ni基催化剂C2,使最终Ni含量为载体氧化铝重量的30.0%。催化剂组成、比表面积、孔容、孔径分布见表1,其中各组分含量均以载体氧化铝重量计。
【实施例3】
称取拟薄水铝石300克,45克硅藻土,9克田菁粉,混合,之后加入含聚乙烯醇溶液(质量浓度为5%)25克,硝酸3.5克,硝酸钙1.0克的水溶液360毫升,挤成φ2.5毫米的三叶草,湿条经50℃干燥24小时后于750℃焙烧4小时,得到载体Z3。称取钼酸铵25克,硝酸铈3.0克,硝酸锆0.5克加入水80克,与浓度为14%的镍液100克混合配成浸渍液。用实施例1同样的操作步骤及条件制得Ni基催化剂C3,使最终Ni含量为载体氧化铝重量的20.0%。催化剂组成、比表面积、孔容、孔径分布见表1,其中各组分含量均以载体氧化铝重量计。
【实施例4】
称取拟薄水铝石345克,9克田菁粉,混合,之后加入含聚乙烯醇溶液(质量浓度为5%)25克,硝酸3.5克,硝酸钙1.0克的水溶液345毫升,挤成φ2.5毫米的三叶草,湿条经50℃干燥24小时后于750℃焙烧4小时,得到载体Z4。称取钨酸铵8克,硝酸镧3克,硝酸锆0.5克加入水70克,与浓度为14%的镍液100克混合配成浸渍液。用实施例1同样的操作步骤及条件制得Ni基催化剂C4,使最终Ni含量为载体氧化铝重量的20.0%。催化剂组成、比表面积、孔容、孔径分布见表1,其中各组分含量均以载体氧化铝重量计。
【实施例5】
称取拟薄水铝石300克,45克硅藻土,9克田菁粉,混合,之后加入含聚乙烯醇溶液(质量浓度为5%)25克,硝酸3.5克,硝酸钙1.0克的水溶液360毫升,挤成φ2.5毫米的三叶草,湿条经50℃干燥24小时后于750℃焙烧4小时,得到载体Z5。称取钼酸铵17克,硝酸铈3.0克加入水85克,与浓度为14%的镍液100克混合配成浸渍液。用实施例1同样的操作步骤及条件制得Ni基催化剂C5,使最终Ni含量为载体氧化铝重量的20.0%。催化剂组成、比表面积、孔容、孔径分布见表1,其中各组分含量均以载体氧化铝重量计。
【比较例1】
称取拟薄水铝石300克,9克田菁粉,45克石墨,混合,挤成φ2.5毫米的三叶草,湿条经120℃干燥4小时后于1050℃焙烧4小时,得到载体D1。用实施例1同样的操作步骤及条件制得Ni基催化剂CD1,使最终Ni含量为载体氧化铝重量的20%。催化剂组成、比表面积、孔容、孔径分布见表1,其中各组分含量均以载体氧化铝重量计。
表1
Figure A20061011852300091
【实施例6】
本实施例说明实施例1~5所得催化剂在全馏分(C5烃~干点为204℃的烃化合物馏分)裂解汽油选择加氢中的应用。
取本发明实施例1-5催化剂各80毫升,在氢气压力为2.7MPa,温度为450℃和氢气流量为1500毫升/分的条件下还原12小时。在氢气压力2.7MPa,入口温度50℃,新鲜油空速3.8小时-1(总空速7.6小时-1),氢/油体积比100∶1的条件下通入全馏分裂解汽油原料进行试验。全馏分裂解汽油原料中胶质含量为170毫克/100克油、水含量为414ppm,其重量百分比组成为C5烃15.3%,C6烃22.5%,C7烃23.7%,C8烃20.7%,C9 +烃17.8%,双烯值30.06。加氢结果见表2。
【比较例2】
取比较例1催化剂CD1 80毫升,用实施例6同样的条件还原。用实施例6同样的原料、反应条件进行试验,加氢结果见表2。
表2
Figure A20061011852300101
【实施例7】
本实施例说明本发明实施例2催化剂C2在全馏分(C5烃~干点为204℃的烃化合物馏分)裂解汽油选择加氢中1000小时的试验结果。
取实施例2催化剂C280毫升,重复实施例6的还原过程,在温度50℃,反应压力2.65MPa,新鲜油空速3.8小时-1(总空速7.6小时-1),氢/油体积比100∶1的条件下通入全馏分裂解汽油原料进行试验。全馏分裂解汽油原料中胶质含量为170毫克/100克油、水含量为414ppm,其重量百分比组成为C5烃15.3%,C6烃22.5%,C7烃23.7%,C8烃20.7%,C9 +烃17.8%,双烯值30.06。加氢结果见表3。
【比较例3】
取比较例1催化剂CD1 80毫升,用实施例6同样的条件还原。用实施例7同样的原料、反应条件进行试验,加氢结果见表3。
表3
Figure A20061011852300111
【实施例8】
本实施例说明本发明实施例3催化剂C3在全馏分(C5烃~干点为204℃的烃化合物馏分)裂解汽油选择加氢中改变评价条件的试验结果。
取实施例3催化剂C3 80毫升,重复实施例6的还原过程,通入全馏分裂解汽油原料改变工艺条件进行试验。全馏分裂解汽油原料中胶质含量为170毫克/100克油、水含量为414ppm,其重量百分比组成为C5烃15.3%,C6烃22.5%,C7烃23.7%,C8烃20.7%,C9 +烃17.8%,双烯值30.06。加氢结果见表4。
表4
Figure A20061011852300121
【实施例9】
本实施例说明本发明实施例2催化剂C2在高游离水的全馏分(C5烃~干点为204℃的烃化合物馏分)裂解汽油选择加氢中48小时的试验结果。
取实施例2催化剂C280毫升,重复实施例6的还原过程,在温度50℃,反应压力2.65MPa,新鲜油空速3.8小时-1(总空速7.6小时-1),氢/油体积比100∶1的条件下通入全馏分裂解汽油原料进行试验。全馏分裂解汽油原料中胶质含量为120毫克/100克油、游离水含量为1000ppm,其重量百分比组成为C5烃15.5%,C6烃21.8%,C7烃23.3%,C8烃21.3%,C9 +烃18.1%,双烯值27.12。加氢结果见表5。
表5
  反应时间(小时)   产物平均双烯(克碘/100克油)   平均双烯加氢率(%)
  16   0.17   98.73
  32   0.30   97.71
  48   0.00   100.00

Claims (5)

1.一种用于全馏分裂解汽油选择性加氢的方法,以C5烃~干点为204℃的烃化合物馏分的裂解汽油和氢气为原料,在反应温度为40~60℃,反应压力为2.0~3.0MPa,新鲜油空速为3.75~5.0小时-1,氢/油体积比为80~120∶1的条件下,原料与催化剂接触,发生反应,使原料中的双烯烃和烯烃基芳烃组分转化成单烯烃和烷基芳烃,其中催化剂以重量百分比计包括以下组分:
(a)5.0~40.0%的金属镍或其氧化物;
(b)0.01~20.0%的选自钼或钨中的至少一种元素或其氧化物;
(c)0.01~10.0%的选自稀土中的至少一种元素或其氧化物;
(d)0.01~2.0%的选自元素周期表中I A或IIA中的至少一种元素或其氧化物;
(e)0~15.0%的选自硅、磷、硼或氟中的至少一种元素或其氧化物;
(f)0~10.0%的选自元素周期表中IVB中的至少一种元素或其氧化物;
(g)余量的载体氧化铝;
其中载体的比表面积为100~180米2/克,总孔容为0.5~1.2毫升/克,孔直径<30纳米的孔容占总孔容的5~65%,孔直径30~60纳米的孔容占总孔容的20~80%,孔直径>60纳米的孔容占总孔容的20~50%。
2.根据权利要求1所述用于全馏分裂解汽油选择性加氢的方法,其特征在于反应温度为45~55℃,反应压力为2.5~2.8MPa,新鲜油空速为2.5~3.8小时-1,氢/油体积比为80~110∶1。
3.根据权利要求1所述用于全馏分裂解汽油选择性加氢的方法,其特征在于以重量百分比计,金属镍或其氧化物的用量为10.0~30.0%;选自钼或钨中的至少一种元素或其氧化物的用量为0.1~15.0%;选自稀土中的至少一种元素或其氧化物的用量为0.1~5.0%;选自元素周期表中I A或IIA中的至少一种元素或其氧化物的用量为0.2~0.8%;选自硅、磷、硼或氟中的至少一种元素或其氧化物的用量为0.5~10.0%;选自元素周期表中IVB中的至少一种元素或其氧化物的用量为0.1~5.0%。
4.根据权利要求1所述用于全馏分裂解汽油选择性加氢的方法,其特征在于选自稀土中的元素选自镧或铈中至少一种;选自元素周期表中I A的元素为钾;选自元素周期表中II A的元素选自钙、镁或钡中至少一种;选自元素周期表中IVB的元素选自钛或锆中至少一种。
5.根据权利要求1所述用于全馏分裂解汽油选择性加氢的方法,其特征在于载体比表面积为120~160米2/克,总孔容为0.8~1.1毫升/克,孔直径<30纳米的孔容占总孔容的20~50%,孔直径30~60纳米的孔容占总孔容的20~45%,孔直径>60纳米的孔容占总孔容的25~45%。
CN2006101185231A 2006-11-21 2006-11-21 用于全馏分裂解汽油选择性加氢的方法 Active CN101191079B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2006101185231A CN101191079B (zh) 2006-11-21 2006-11-21 用于全馏分裂解汽油选择性加氢的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2006101185231A CN101191079B (zh) 2006-11-21 2006-11-21 用于全馏分裂解汽油选择性加氢的方法

Publications (2)

Publication Number Publication Date
CN101191079A true CN101191079A (zh) 2008-06-04
CN101191079B CN101191079B (zh) 2011-03-23

Family

ID=39486284

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006101185231A Active CN101191079B (zh) 2006-11-21 2006-11-21 用于全馏分裂解汽油选择性加氢的方法

Country Status (1)

Country Link
CN (1) CN101191079B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103666548A (zh) * 2012-09-04 2014-03-26 中国石油天然气股份有限公司 一种汽油的选择性加氢方法
CN107057757A (zh) * 2017-06-02 2017-08-18 钦州学院 一种裂解汽油一段选择性加氢的方法
CN107159283A (zh) * 2017-06-02 2017-09-15 钦州学院 一种裂解c5‑c9馏分选择性加氢的方法
WO2020052144A1 (zh) * 2018-09-11 2020-03-19 福州大学 一种催化裂化汽油预加氢方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1100853C (zh) * 1998-11-18 2003-02-05 中国科学院大连化学物理研究所 一种汽油加氢精制催化剂
FR2785908B1 (fr) * 1998-11-18 2005-12-16 Inst Francais Du Petrole Procede de production d'essences a faible teneur en soufre
CN1107704C (zh) * 2000-02-03 2003-05-07 中国石油天然气股份有限公司兰州石化分公司 裂解汽油选择性加氢催化剂
CN100335165C (zh) * 2004-12-21 2007-09-05 中国科学院山西煤炭化学研究所 一种加氢催化剂及其制备工艺和应用

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103666548A (zh) * 2012-09-04 2014-03-26 中国石油天然气股份有限公司 一种汽油的选择性加氢方法
CN103666548B (zh) * 2012-09-04 2015-12-02 中国石油天然气股份有限公司 一种汽油的选择性加氢方法
CN107057757A (zh) * 2017-06-02 2017-08-18 钦州学院 一种裂解汽油一段选择性加氢的方法
CN107159283A (zh) * 2017-06-02 2017-09-15 钦州学院 一种裂解c5‑c9馏分选择性加氢的方法
CN107159283B (zh) * 2017-06-02 2019-05-17 钦州学院 一种裂解c5-c9馏分选择性加氢的方法
WO2020052144A1 (zh) * 2018-09-11 2020-03-19 福州大学 一种催化裂化汽油预加氢方法
US11674091B2 (en) 2018-09-11 2023-06-13 Fuzhou University Catalytic cracking gasoline prehydrogenation method

Also Published As

Publication number Publication date
CN101191079B (zh) 2011-03-23

Similar Documents

Publication Publication Date Title
CN100553770C (zh) 用于选择性加氢的镍催化剂
CN101279279B (zh) 用于选择性加氢的方法
CN101191078B (zh) 用于选择性加氢的具有复合孔结构的镍催化剂
CN101121899B (zh) 用于全馏分裂解汽油选择性加氢的方法
CN100450612C (zh) 含杂多酸的加氢裂化催化剂及其制备方法
CN103055857A (zh) 用于低碳烷烃脱氢催化剂及其制备方法
CN104151129B (zh) α-甲基苯乙烯选择性加氢的方法
CN104588011A (zh) 烷烃脱氢催化剂及其制备方法
CN101191079B (zh) 用于全馏分裂解汽油选择性加氢的方法
CN103418377A (zh) 用于低碳烷烃脱氢制备低碳烯烃的薄壳型催化剂
CN101940928B (zh) 正丁烯临氢异构制丁烯-2或丁烯-1的镍基催化剂
CN100506379C (zh) 用于选择性加氢的大孔容含硫镍催化剂
CN101348406B (zh) 用于裂解碳九及其以上烃加氢的方法
CN100506380C (zh) 用于裂解汽油选择性加氢的催化剂
CN103666548B (zh) 一种汽油的选择性加氢方法
CN104449835B (zh) 裂解碳九及其以上烃加氢的方法
CN1049800A (zh) 镍/氧化铝催化剂的制备
CN107970933A (zh) 一种碳三选择加氢催化剂、制备方法及加氢方法
CN101428225A (zh) 用于含少量丁二烯的丁烯-2临氢异构制丁烯-1的镍基催化剂
CN104549345B (zh) 一种加氢裂化活性支撑剂及其制备方法
CN100417713C (zh) 用于费托合成重质蜡的加氢裂解催化剂及其制法和应用
CN101173185B (zh) 用于裂解汽油选择性加氢的方法
CN102041052A (zh) 一种裂解c9+混合组分选择性催化加氢的方法
CN100506381C (zh) 用于选择性加氢的大孔容超细镍催化剂
CN103725312A (zh) 一种降低富苯汽油组分苯含量的催化转化方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant