CN101133322A - 分析活化聚乙二醇化合物的方法 - Google Patents

分析活化聚乙二醇化合物的方法 Download PDF

Info

Publication number
CN101133322A
CN101133322A CNA200680007046XA CN200680007046A CN101133322A CN 101133322 A CN101133322 A CN 101133322A CN A200680007046X A CNA200680007046X A CN A200680007046XA CN 200680007046 A CN200680007046 A CN 200680007046A CN 101133322 A CN101133322 A CN 101133322A
Authority
CN
China
Prior art keywords
group
derivatization
sample
activation
potpourri
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA200680007046XA
Other languages
English (en)
Inventor
R·A·沃林福德
M·图罗夫斯基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dr Reddys Laboratories Ltd
Original Assignee
Dow Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Global Technologies LLC filed Critical Dow Global Technologies LLC
Publication of CN101133322A publication Critical patent/CN101133322A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/8813Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/884Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample organic compounds
    • G01N2030/8854Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample organic compounds involving hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/20Oxygen containing
    • Y10T436/200833Carbonyl, ether, aldehyde or ketone containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/2575Volumetric liquid transfer

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Analytical Chemistry (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

化学分析方法,该方法用于测定RO(CH2CH2O)nH,RO(C2H4O)nA,及AO(C2H4O)nA的混合物中的RO(CH2CH2O)nH,RO(C2H4O)nA,及AO(C2H4O)nA,其中R为烷基,A为与表面或生物活性材料或用到的其它东西偶联的官能团,n为大于10的整数。所述方法包括步骤:利用临界状态液相色谱分析混合物样品以确定混合物中RO(CH2CH2O)nH,RO(C2H4O)nA,及AO(C2H4O)nA的相对量,另外,化学分析方法,该方法用于测定RO(CH2CH2O)nH,RO(C2H4O)nA,及AO(C2H4O)nA的混合物中的RO(CH2CH2O)nH,RO(C2H4O)nA,及AO(C2H4O)nA,其中R为烷基,A为与生物活性材料偶联的官能团,n为大于10的整数。该方法包括两个步骤。第一个步骤是利用衍生化试剂使混合物的A基团衍生化,形成包含RO(CH2CH2O)nH,RO(C2H4O)nAD,及DAO(C2H4O)nAD的衍生化的混合物,其中AD为衍生化的A基团。第二个步骤是利用临界状态液相色谱分析衍生化的混合物样品来确定衍生化的混合物中RO(CH2CH2O)nH,RO(C2H4O)nAD,及DAO(C2H4O)nAD的相对量。

Description

分析活化聚乙二醇化合物的方法
技术背景
本发明涉及分析聚乙二醇化合物的化学分析方法。更具体地说,本发明涉及利用“临界状态”液相色谱对聚乙二醇化合物的分析。本发明的聚乙二醇化合物被“活化”以利于生理活性材料的化学改性,例如,改性材料可应用于药物释放体系。
生物活性化合物与聚氧化烯共轭连接,能够提高该化合物的生物相容性,参见,例如USP 5,366,735和USP 6,280,745。在一篇相关综述(Bioconjugate Chem.,1995,6,p150-165)中,Zalipsky认为,聚乙二醇是能与生物活性化合物(如药物、蛋白质、肽、或酶)共轭连接的生物相容性最好的聚合物之一,得到的共轭物具有改善的性质,如相容溶解性,减小的毒性,提高的表面相容性,增加的循环时间,以及减小的免疫原性。
聚乙二醇(PEG)是羟基封端的线性聚氧化烯,通常由分子式HO(CH2CH2O)nH表示。单甲氧基聚乙二醇(mPEG)通常由分子式CH3O(CH2CH2O)nH表示。mPEG可以用基团“A”来“活化”,基团A可以与生物活性材料的基团偶联。活化的mPEG通常由分子式CH3O(CH2CH2O)nA表示。例如,三氯均三嗪(trichloro-s-triazine)活化的mPEG可以与生物活性材料的胺基偶合,如Henmanson在Bioconjugate Techniques(1996)15章中的讨论。双活化线性PEGs在水凝胶的形成中也是有用的。
更最近,所谓的“第二代”PEGylation化学得到发展,例如,使mPEG的二醇杂质污染问题最小化,增大PEG的分子量及增加接头(linker)的稳定性,参见Roberts等,Advanced Drug Delivery Reviews 54(2002)p459-4。美国专利6,455,639描述了一种分子量增大的mPEG,其具有窄的分子量分布。
临界状态液相色谱成为了一种重要的聚合物分析方法,参见,例如Gorbunov等,J.Chrom A,955(2002)9-17。临界状态液相色谱被用于测定mPEG中的聚乙二醇(参见,例如Baran等,J.Chrom.B,753(2001)139-149;和Kazanskii等,Polymer Science,Series A,Vol 42,No.6(2000),p585-595)。然而,当mPEG分子量为5,000g/mol或更大时,聚乙二醇和mPEG峰的分辨率低(参见Kazanskii等文献中的图2)。并且,临界状态液相色谱不被用于分析活化的mPEG。
发明内容
本发明揭露临界状态液相色谱(LCCC)可以用于分析活化的PEGs,用来测定残留的未活化的PEGs和不同程度活化的PEGs。例如,甚至mPEG的分子量为5,000g/mol或更大时,LCCC可以被用于测定活化的mPEG中未活化的mPEG醇和PEG二醇,单活化的mPEG和PEG二醇,及双活化的PEG的相对量。而且,活化的PEG的衍生作用能增加色谱分辨率。因此,例如,根据本发明,包含双活化的PEG的单活化的mPEG的衍生作用可以增加其色谱分辨率。另外,根据本发明,包含双活化的PEG二醇的单活化的mPEG的衍生作用使其在被色谱法分开后,更易于检测PEGs。
因此,在一个实施方案中,本发明是一种化学分析方法,其包括提供含活化基团A活化的PEGs的组合物样品,并利用临界状态液相色谱法分析样品来确定样品中不同活化度(degrees of activation)PEGs的相对量。
更具体地说,在一个实施方案中,本发明是一种测定RO(CH2CH2O)nH,RO(C2H4O)nA,及AO(C2H4O)nA的混合物中RO(CH2CH2O)nH,RO(C2H4O)nA,及AO(C2H4O)nA的化学分析方法,其中R为氢或烷基,A为与表面或生物活性材料或用到的其它东西偶联的官能团,n为大于10的整数,包括步骤:利用临界状态液相色谱分析混合物样品以确定混合物中RO(CH2CH2O)nH,RO(C2H4O)nA,及AO(C2H4O)nA的相对量。
在另一个实施方案中,本发明是一种测定RO(CH2CH2O)nH,RO(C2H4O)nA,及AO(C2H4O)nA的混合物中RO(CH2CH2O)nH,RO(C2H4O)nA,及AO(C2H4O)nA的化学分析方法,其中R为氢或烷基,A为与表面或生物活性材料或用到的其它东西偶联的官能团,n为大于10的整数,包括步骤:(a)利用衍生化试剂衍生化混合物中的A基团,形成包含RO(CH2CH2O)nH,RO(C2H4O)nAD,及DAO(C2H4O)nAD的衍生化混合物,其中AD为衍生化的A基团;(b)利用临界状态液相色谱分析衍生化混合物样品以确定衍生化混合物中RO(CH2CH2O)nH,RO(C2H4O)nAD,及DAO(C2H4O)nAD的相对量。
作为另一选择的实施方案,羟基、R、或A基团可以出现两次以上和/或在PEG链末端以外的地方。
因此,在另一个实施方案中,本发明是一种化学分析方法,其包括提供含分子式M[O(CH2CH2O)nB]x所示的聚乙二醇化合物的样品,其中
M为小分子或聚合物骨架,其带有至少x个与O(CH2CH2O)nB基团连接的位点;
n每次出现时独立地为1或大于1的整数,优选5或更大的整数,更优选10或更大的整数,n优选小于2500,更优选小于2000,尤其优选小于1000;
B每次出现时独立地为氢或A,其中A定义如上;
x为2或大于2的整数,优选3或更大的整数;
以及利用临界状态液相色谱分析混合物样品以测定具有不同A基团活化度的聚乙二醇的相对量。作为这个的一个变体,在色谱分析之前,化合物可以利用基团D衍生化。
在另一个实施方案中,本发明的方法可以用来分析活化的聚乙烯化合物的混合物,其中活化基团作为侧基连在含PEG的聚合物上。因此,根据本实施例,样品包含分子式BO[(CH2CH2O)nM]m(OCH2CH2)pOB所示的化合物,其中
M为连接两个PEGs的小分子,其带有含B的侧基,
B每次出现时独立地为H或A,
m,n,和p分别为大于1的整数,
A定义如上。作为这个的一个变体,化合物可以由基团D衍生化。
附图说明
图1为色谱图的复印件,其给出了mPEG,丙醛双缩醛(propionaldehyde diacetal)活化的mPEG和丙醛双缩醛活化二醇的分离结果;
图2为色谱图的复印件,其给出了mPEG醇,甲磺酰酯活化的mPEG和甲磺酰酯活化的二醇的分离结果;
图3为色谱图的复印件,其给出了mPEG醇,对硝基苯基碳酸酯活化mPEG和对硝基苯基碳酸酯活化的二醇的分离结果。
发明详述
本发明的一种方法所分析的化合物由分子式I,II和III所示:
(I)RO(C2H4O)nA;
(II)AO(C2H4O)nA;和
(III)RO(C2H4O)nH
其中,R代表(每次出现独立地代表)氢或C1-7烃基团(通常为甲基),n代表C2H4O基团的摩尔平均数,如10-2000之间,A是“活化”基团。在许多应用中,分子式I的化合物为所要的材料。分子式III的化合物为无反应活性的未活化的PEG。分子式II的化合物是由PEG二醇杂质生成的双活化PEG。因此,被分析的样品通常主要由分子式I的化合物与混合物中含量相对低的分子式II和III的化合物组成。分子式I,II和III化合物的相对量利用临界状态液相色谱分析混合物样品中RO(CH2CH2O)nH,RO(C2H4O)nA,及AO(C2H4O)nA的相对量来测定。
应了解,在其全部范围内,本发明包括PEG共聚物(例如,含C2H4O基团的无规或嵌段共聚物)和包含但不限于线性、支化、梳状及星形拓扑结构的任意聚合物拓扑(topology)。
活化基团A可以是已知的用于活化PEGs以进行下一步反应的任何官能团,例如,偶联到生理活性试剂上。该活化基团的非限定例子包括卤化物、磺酸酯(如甲磺酸酯)、异氰酸酯、胺、肼、氨氧基(aminooxys)、硫醇、羧酸、酯、碳酸酯(如对硝基苯基碳酸酯)、酰胺、氨基甲酸酯、醛(如丙醛)、缩醛(如丙醛缩醛)、酮、缩酮、马来酰亚胺、乙烯基砜、碘乙酰胺、及二硫化物(如二硫吡啶)。
应了解,需要一定的试验来获得临界状态液相色谱。然而,参考文献将指导液相色谱领域的技术人员得到必要的条件,参见,例如Gorbunov等,J.Chrim A,955(2002)9-17。临界状态LC一般根据聚合物端基组成分离聚合物,(理论上)不受聚合物分子量的影响。例如,如果在临界状态下进行反相柱操作,那么,带有疏水端基的聚合物能够与带有亲水端基的聚合物分开。LCCC可以等度(isocratically)操作,或先等度再梯度操作。虽然临界状态是所希望的,稍微偏离临界状态的操作也会提供关于样品中多种官能化PEG的一定比例的测定信息。
实施例1
0.1g被丙醛双缩醛活化的重均分子量为5,000的mPEG与3毫升水混合制备成注射样品。5微升注射样品被注射进52%A和48%B的流动相中(这里A为47%的乙腈水溶液,B为43%乙腈水溶液),流动相流速为0.75ml/min,在柱温为30℃时,流经包装直径(packingdiameter)为5微米的Supelco LC-18反相柱,柱内径为4.6mm,柱长为250mm,接下来由一个蒸发光散射检测器(evaporative light scatteringdetector)生成图1的色谱图。色谱图1在大约3.8分钟时显示了mPEG峰,在约4.8分钟时显示了活化的mPEG峰,在约5.6分钟时显示了活化的二醇峰。不同PEGs的相对量由峰面积和蒸发光散射检测器的响应因子确定。
蒸发光散射检测器在液相色谱中已被熟知,参见,例如Rissler,J.Chrom.A,742(1996)45。
实施例2
0.1g被甲磺酸酯活化的重均分子量为5,000的mPEG与3毫升水混合制备成注射样品。5微升注射样品被注射进52%A和48%B的流动相中(这里A为47%的乙腈水溶液,B为43%乙腈水溶液),流动相流速为0.75ml/min,在柱温为30℃时,流经包装直径为5微米的SupelcoLC-18反相柱,柱内径为4.6mm,柱长为250mm,接下来由一个蒸发光散射检测器生成图2的色谱图。色谱图2在大约3.8分钟时显示了mPEG峰,在约4.4分钟时显示了活化的二醇峰,在约4.9分钟时显示了活化的mPEG峰,不同PEGs的相对量由峰面积和蒸发光散射检测器的响应因子确定。
实施例3
0.1g被对硝基苯基碳酸酯活化的重均分子量为20,000的mPEG与3毫升水混合制备成注射样品。5微升注射样品被注射进52%A和48%B的流动相中(这里A为47%的乙腈水溶液,B为43%乙腈水溶液),流动相流速为0.75ml/min,在柱温为29℃时,流经包装直径为5微米Jupiter C-18反相柱,柱内径为4.6mm,柱长为150mm,接下来由一个蒸发光散射检测器生成图3的色谱图。色谱图3在大约3分钟时显示了mPEG峰,在约4.8分钟时显示了活化的mPEG峰,约8.5分钟时显示了活化的二醇的小峰。不同PEGs的相对量由峰面积和蒸发光散射检测器的响应因子确定。
衍生化的活化的mPEG
在另一个实施方案中,本发明是用于测定上面所讨论活化的PEGs的化学分析方法,其包含利用衍生化试剂D使PEGs的A基团衍生化。
因此,根据一个实施方案,该方法包括提供混合物中的RO(CH2CH2O)nH,RO(C2H4O)nA,及AO(C2H4O)nA的样品,利用衍生化试剂使混合物中的A基团衍生化,形成含RO(CH2CH2O)nH,RO(C2H4O)nAD,及DAO(C2H4O)nAD的衍生化混合物,其中AD为衍生化的A基团;利用临界状态液相色谱分析衍生化的混合物样品来确定衍生化的混合物中RO(CH2CH2O)nH,RO(C2H4O)nAD,及DAO(C2H4O)nAD的相对量。当活化基团是亲水时,例如包含但不限于,醛、马来酰亚胺、胺或硫醇的基团,尤其能应用本发明的该实施方案。亲水基团活化的mPEG难于与mPEG醇分离,因为mPEG醇的羟基也是亲水性的。然而发现,如果该活化的mPEG由衍生化试剂衍生化,其中将疏水基团连在活化的mPEG的A基团上,那么衍生化的活化的mPEG就能够很容易地与未活化的PEG醇分开。
类似地,亲水基团活化的mPEGs难于与用两个亲水基团活化的PEG二醇分离,因为mPEG醇的甲基不是非常疏水。然而发现,如果活化的mPEG与双活化的PEG的A基团由衍生化试剂衍生化,其中将疏水基团连在活化的mPEG和双活化的PEG二者的A基团上,那么,衍生化的活化的mPEG能够很容易与衍生化的双活化的PEG分开。
因此,衍生化试剂是与活化基团A反应改变基团亲水性/疏水性的基团。衍生化试剂的使用也可能是所需的,其中衍生作用是可逆的,能可逆地转化回活化基团A。合适的衍生化试剂的非限定性例子包括醇、胺、肼(如1-(肼基羰甲基)氯化吡啶和二硝基苯基苯基肼,其与PEG醛(如丙醛)、缩醛、酮、及缩酮反应生成PEG腙)、氨氧基、硫醇(如萘硫醇,其与PEG马来酰亚胺反应生成PEG硫醚)、醛(如与PEG胺反应生成PEG亚胺的芳香醛);缩醛、酮、缩酮、马来酰亚胺、乙烯基砜、碘乙酰胺、二硫化物(如二吡啶二硫化物,其与PEG硫醇反应生成PEG二硫吡啶)、氯化物、磺酸酯、异氰酸酯、羟酸、酯、碳酸酯、酰胺、及氨基甲酸酯。
衍生化试剂最优选将可检测的特征给予衍生化的活化的PEG(例如mPEG),如紫外(UV)载色体(chromaphore)或荧光基团,使得衍生化的活化的PEG(例如mPEG)在从临界LC体系中洗脱时能被检测出来。应了解,即使当活化基团A具有足够的疏水特征,使单活化的PEG(例如mPEG)与双活化的PEG在临界LC色谱柱上能够充分地拆分,在从临界LC体系中洗脱时,利用衍生化试剂使活化的mPEG和双活化的PEG衍生化也是必须的,衍生化试剂给予它们足够的可检测特征。
结论
总之,显而易见,尽管上面描述了有关优选实施方案的发明,应了解,本发明不限于此,而是要覆盖所有包含在由权利要求限定的范围内的本发明的各种选择、修改和等同状况。

Claims (33)

1.化学分析方法,该方法用于测定RO(CH2CH2O)nH,RO(C2H4O)nA,及AO(C2H4O)nA的混合物中的RO(CH2CH2O)nH,RO(C2H4O)nA,及AO(C2H4O)nA,其中R为烷基,A为与表面或生物活性材料或用到的其它东西偶联的官能团,n为大于10的整数,所述方法包括步骤:利用临界状态液相色谱分析混合物样品以确定混合物中RO(CH2CH2O)nH,RO(C2H4O)nA,及AO(C2H4O)nA的相对量。
2.根据权利要求1所述的方法,其中,R基本上由甲基组成。
3.根据权利要求1所述的方法,其中,A包含醛基。
4.根据权利要求3所述的方法,其中,醛基为丙醛。
5.根据权利要求1所述的方法,其中,A为丙醛双缩醛。
6.根据权利要求1所述的方法,其中,A为甲磺酰酯。
7.根据权利要求1所述的方法,其中,A为对硝基苯基碳酸酯。
8.根据权利要求1所述的方法,其中,A包含马来酰亚胺基团。
9.根据权利要求1所述的方法,其中,A包含胺基。
10.根据权利要求1所述的方法,其中,A包含硫醇基团。
11.根据权利要求1所述的方法,其中,A包含二硫醇基团。
12.根据权利要求1所述的方法,其中,RO(C2H4O)nA的重均分子量大于5,000g/mol。
13.根据权利要求12所述的方法,其中,RO(C2H4O)nA的重均分子量大于10,000g/mol。
14.化学分析方法,该方法用于测定RO(CH2CH2O)nH,RO(C2H4O)nA,及AO(C2H4O)nA的混合物中的RO(CH2CH2O)nH,RO(C2H4O)nA,及AO(C2H4O)nA,其中R为烷基,A为与表面或生物活性材料或用到的其它东西偶联的官能团,n为大于10的整数,该方法包括步骤:(a)利用衍生化试剂使混合物的A基团衍生化,形成包含RO(CH2CH2O)nH,RO(C2H4O)nAD,及DAO(C2H4O)nAD的衍生化的混合物,其中AD为衍生化的A基团;(b)利用临界状态液相色谱分析衍生化的混合物样品来确定衍生化的混合物中RO(CH2CH2O)nH,RO(C2H4O)nAD,及DAO(C2H4O)nAD的相对量。
15.根据权利要求14所述的方法,其中,R基本上由甲基组成。
16.根据权利要求14所述的方法,其中,A包含羰基。
17.根据权利要求16所述的方法,其中,A包含醛基。
18.根据权利要求17所述的方法,其中,醛基为丙醛。
19.根据权利要求16所述的方法,其中,衍生化试剂为1-(肼基羰甲基)氯化吡啶。
20.根据权利要求16所述的方法,其中,衍生化试剂为二硝基苯基肼。
21.根据权利要求14所述的方法,其中,A为马来酰亚胺。
22.根据权利要求21所述的方法,其中,衍生化试剂为硫代萘。
23.根据权利要求14所述的方法,其中,A包含胺基。
24.根据权利要求23所述的方法,其中,衍生化试剂为芳香醛。
25.根据权利要求14所述的方法,其中,A包括硫醇基团。
26.根据权利要求25所述的方法,其中,衍生化试剂为邻二吡啶二硫化物。
27.根据权利要求14所述的方法,其中,RO(C2H4O)nA的重均分子量大于5,000g/mol。。
28.根据权利要求27所述的方法,其中,RO(C2H4O)nA的重均分子量大于10,000g/mol。
29.化学分析方法,该方法包括提供含活化基团A活化的PEGs的组合物样品,和利用临界状态液相色谱分析样品来确定样品中不同活化度PEGs的相对量。
30.根据权利要求29所述的方法,其中,样品包含分子式M[O(CH2CH2O)nB]x所示的聚乙二醇化合物,其中
M为小分子或聚合物骨架,其带有至少x个与O(CH2CH2O)nB基团连接的位点;
n每次出现时独立地为1或大于1的整数,B每次出现时独立地为氢或A;和
x为2或大于2的整数,
以及利用临界状态液相色谱分析混合物样品以确定具有不同A基团活化度的聚乙二醇的相对量。
31.根据权利要求29所述的方法,其中,样品包含聚乙二醇,其中活化基团A为聚合物链的侧基。
32.根据权利要求31所述的方法,其中,样品包含分子式BO[(CH2CH2O)nM]m(OCH2CH2)pOB所示的聚合物,其中
M为连接到两个PEGs的小分子,其有含B的侧基,
B每次出现时为H或A,
m,n,和p独立地为大于1的整数,
A定义如上。
33.根据权利要求29-32任一项所述的方法,进一步包括在色谱分析样品前利用衍生化试剂使A基团衍生化。
CNA200680007046XA 2005-03-04 2006-03-03 分析活化聚乙二醇化合物的方法 Pending CN101133322A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/072,763 US7824919B2 (en) 2005-03-04 2005-03-04 Method for analyzing activated polyethylene glycol compounds
US11/072,763 2005-03-04

Publications (1)

Publication Number Publication Date
CN101133322A true CN101133322A (zh) 2008-02-27

Family

ID=36578811

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA200680007046XA Pending CN101133322A (zh) 2005-03-04 2006-03-03 分析活化聚乙二醇化合物的方法

Country Status (6)

Country Link
US (2) US7824919B2 (zh)
EP (1) EP1859264A1 (zh)
JP (1) JP5039873B2 (zh)
KR (1) KR20070112149A (zh)
CN (1) CN101133322A (zh)
WO (1) WO2006096535A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104991016A (zh) * 2015-06-25 2015-10-21 吉林大学 一种生物样本中peg化药物的定量测定方法
CN108562674A (zh) * 2018-07-26 2018-09-21 淄博职业学院 衍生化hplc-uv法测定甲磺酸酯的方法
CN112903860A (zh) * 2021-01-25 2021-06-04 人福普克药业(武汉)有限公司 苯佐那酯中有关物质mpeg的检测方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2678401A1 (en) * 2007-02-22 2008-08-28 Biovectra Inc. Process for purification of water soluble polymers
TWI451876B (zh) 2008-06-13 2014-09-11 Lilly Co Eli 聚乙二醇化之離脯胰島素化合物
DE102018000650A1 (de) 2018-01-27 2019-08-01 Friedrich-Schiller-Universität Jena Verfahren zur Bestimmung von Verunreinigungen in Polyalkylenethern oder Polyalkylenaminen und dessen Verwendung
CN108931603A (zh) * 2018-04-23 2018-12-04 国家烟草质量监督检验中心 一种基于稳定同位素标记质谱联用技术检测血浆中羧酸类代谢物的方法
CN109030669A (zh) * 2018-10-31 2018-12-18 苏州赛分科技有限公司 一种分离peg修饰蛋白样品中游离peg的高效液相色谱方法
CN109682901A (zh) * 2019-03-01 2019-04-26 重庆派金生物科技有限公司 聚乙二醇化蛋白类药物的平均修饰度测定方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4911926A (en) 1988-11-16 1990-03-27 Mediventures Inc. Method and composition for reducing postsurgical adhesions
US6280745B1 (en) 1997-12-23 2001-08-28 Alliance Pharmaceutical Corp. Methods and compositions for the delivery of pharmaceutical agents and/or the prevention of adhesions
EP0985697B1 (en) 1998-03-24 2006-01-04 Nof Corporation Oxirane derivatives and process for producing the same
WO2004101600A2 (en) * 2003-05-12 2004-11-25 Affymax, Inc. Novel poly(ethylene glycol) modified compounds and uses thereof
CA2533702C (en) * 2003-07-22 2012-05-22 Nektar Therapeutics Al, Corporation Method for preparing functionalized polymers from polymer alcohols

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104991016A (zh) * 2015-06-25 2015-10-21 吉林大学 一种生物样本中peg化药物的定量测定方法
CN104991016B (zh) * 2015-06-25 2017-04-05 吉林大学 一种生物样本中peg化药物的定量测定方法
CN108562674A (zh) * 2018-07-26 2018-09-21 淄博职业学院 衍生化hplc-uv法测定甲磺酸酯的方法
CN108562674B (zh) * 2018-07-26 2021-06-15 淄博职业学院 衍生化hplc-uv法测定甲磺酸酯的方法
CN112903860A (zh) * 2021-01-25 2021-06-04 人福普克药业(武汉)有限公司 苯佐那酯中有关物质mpeg的检测方法
CN112903860B (zh) * 2021-01-25 2022-05-27 人福普克药业(武汉)有限公司 苯佐那酯中有关物质mpeg的检测方法
WO2022156241A1 (zh) * 2021-01-25 2022-07-28 人福普克药业(武汉)有限公司 苯佐那酯中有关物质mpeg的检测方法

Also Published As

Publication number Publication date
KR20070112149A (ko) 2007-11-22
EP1859264A1 (en) 2007-11-28
WO2006096535A1 (en) 2006-09-14
US8202732B2 (en) 2012-06-19
US20060198818A1 (en) 2006-09-07
US7824919B2 (en) 2010-11-02
JP2008532046A (ja) 2008-08-14
US20120125852A1 (en) 2012-05-24
JP5039873B2 (ja) 2012-10-03

Similar Documents

Publication Publication Date Title
CN101133322A (zh) 分析活化聚乙二醇化合物的方法
Chadwick et al. Measurements of intestinal permeability using low molecular weight polyethylene glycols (PEG 400): I. Chemical analysis and biological properties of PEG 400
Kloeckner et al. Gene carriers based on hexanediol diacrylate linked oligoethylenimine: effect of chemical structure of polymer on biological properties
JP5312050B2 (ja) 分割型の分解性重合体とそれから生成される複合体
Vugmeyster et al. Pharmacokinetic, biodistribution, and biophysical profiles of TNF nanobodies conjugated to linear or branched poly (ethylene glycol)
Aghazadeh-Habashi et al. High performance liquid chromatographic determination of glucosamine in rat plasma
Rebolj et al. Characterization of a protein conjugate using an asymmetrical-flow field-flow fractionation and a size-exclusion chromatography with multi-detection system
Kizhakkedathu et al. High molecular weight polyglycerol-based multivalent mannose conjugates
Ooya et al. Enhanced accessibility of peptide substrate toward membrane-bound metalloexopeptidase by supramolecular structure of polyrotaxane
Ozturk et al. Cefaclor monohydrate loaded microemulsion formulation for topical application: Characterization with new developed UPLC method and stability study
Schou-Pedersen et al. Evaluation of supercritical fluid chromatography for testing of PEG adducts in pharmaceuticals
Hoste et al. New derivatives of polyglutamic acid as drug carrier systems
Anastasio et al. Residue study of ivermectin in plasma, milk, and mozzarella cheese following subcutaneous administration to buffalo (Bubalus bubalis)
AU2005314235B2 (en) Detection and quantitation of cyclodextrins
Schott et al. Solubilization of water-insoluble drugs due to random amphiphilic and degradable poly (dimethylmalic acid) derivatives
Nielsen et al. TR146 cells grown on filters as a model of human buccal epithelium: permeability of fluorescein isothiocyanate-labelled dextrans in the presence of sodium glycocholate
Fraier et al. A sensitive procedure for the quantitation of free and N-(2-hydroxypropyl) methacrylamide polymer-bound doxorubicin (PK1) and some of its metabolites, 13-dihydrodoxorubicin, 13-dihydrodoxorubicinone and doxorubicinone, in human plasma and urine by reversed-phase HPLC with fluorimetric detection
Neimert-Andersson et al. Synthesis of new sugar-based surfactants and evaluation of their hemolytic activities
Pahovnik et al. Synthesis of poly (ester‐amide) dendrimers based on 2, 2‐Bis (hydroxymethyl) propanoic acid and glycine
Topchieva et al. Noncovalent adducts of poly (ethylene glycols) with proteins
Morgan Determination of polyamines as their benzoylated derivatives by HPLC
Szathmary Determination of hydroxypropyl-β-cyclodextrin in plasma and urine by size-exclusion chromatography with post-column complexation
Mushtaq et al. Determination of voriconazole in human plasma using RP-HPLC/UV-VIS detection: Method development and validation; subsequently evaluation of voriconazole pharmacokinetic profile in Pakistani healthy male volunteers
JP4543917B2 (ja) ポリオキシアルキレン誘導体の末端活性化率分析方法
Ohkawa et al. Synthesis of multiacyl poly (ethylene glycol) for the conjugation of cytochrome c to phospholipid vesicle

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: DR. REDDY S LABORATORIES(EUROPE) LTD.

Free format text: FORMER OWNER: THE DOW GLOBAL TECHNOLOGIES INC.

Effective date: 20100513

COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: MICHIGAN, U.S. TO: EAST YORKSHIRE, U.K.

TA01 Transfer of patent application right

Effective date of registration: 20100513

Address after: The British East Yorkshire

Applicant after: Dr.reddy's Laboratories Ltd.

Address before: michigan

Applicant before: Dow Global Technologies Inc.

C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Open date: 20080227