CN101128780A - 时钟信号输出装置及其控制方法、电子设备及其控制方法 - Google Patents

时钟信号输出装置及其控制方法、电子设备及其控制方法 Download PDF

Info

Publication number
CN101128780A
CN101128780A CNA2006800059136A CN200680005913A CN101128780A CN 101128780 A CN101128780 A CN 101128780A CN A2006800059136 A CNA2006800059136 A CN A2006800059136A CN 200680005913 A CN200680005913 A CN 200680005913A CN 101128780 A CN101128780 A CN 101128780A
Authority
CN
China
Prior art keywords
clock signal
oscillator
mentioned
high precision
correction data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006800059136A
Other languages
English (en)
Other versions
CN101128780B (zh
Inventor
关重彰
井上胜豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Publication of CN101128780A publication Critical patent/CN101128780A/zh
Application granted granted Critical
Publication of CN101128780B publication Critical patent/CN101128780B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G3/00Producing timing pulses
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C13/00Driving mechanisms for clocks by master-clocks
    • GPHYSICS
    • G04HOROLOGY
    • G04FTIME-INTERVAL MEASURING
    • G04F5/00Apparatus for producing preselected time intervals for use as timing standards
    • G04F5/14Apparatus for producing preselected time intervals for use as timing standards using atomic clocks

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electric Clocks (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

本发明提供一种时钟信号输出装置及其控制方法、电子设备及其控制方法,即使使用消耗功率较高的高精度振荡器,也能在避免整体消耗功率的增大的同时提高时钟信号的精度。本发明的时钟信号输出装置具有生成基准时钟信号(CL1)的晶体振荡器(41),并根据基准时钟信号(CL1)生成规定频率的输出用时钟信号(CL0)进行输出,该时钟信号输出装置具有:原子振荡器(42),其生成比晶体振荡器(41)精度高的时钟信号(CL2);间歇时间管理部(47),其间歇地驱动原子振荡器(42);以及校正部(46),其每当原子振荡器(42)被驱动时,获得以时钟信号(CL2)为基准来校正输出用时钟信号(CL0)的偏差量的校正数据,根据该校正数据校正输出用时钟信号(CL0)。

Description

时钟信号输出装置及其控制方法、电子设备及其控制方法
技术领域
本发明涉及具有生成基准时钟信号的基准振荡器、并根据基准时钟信号生成规定频率的输出用时钟信号进行输出的时钟信号输出装置及其控制方法、电子设备及其控制方法。
背景技术
以往,在电子钟表中,具有将从基准振荡器所输出的基准时钟信号进行分频来生成例如1Hz的信号、并根据该1Hz的信号来计时时刻的电子钟表。这种电子钟表公知有年差钟表,年差钟表将温度补偿晶体振荡器(Temperature Compensated Crystal Oscillator)用作基准振荡器,实现年差±数十秒以内(例如,专利文献1)。近年来,提出了使用原子振荡器的标准振荡器(例如,专利文献2、3)。
专利文献1:日本特公平6-31731号公报
专利文献2:美国专利第6806784号
专利文献3:美国专利第6265945号
然而,现有的温度补偿晶体振荡器采用根据具有二次特性的电容的温度特性来对具有三次特性的晶体的温度特性进行温度补偿的结构,因而振荡频率发生温度变化。并且,这种晶体振荡器由于晶体的老化特性而长期使振荡频率变化,与原子振荡器相比频率精度不良。
另一方面,当电子钟表的基准振荡器使用原子振荡器时,原子振荡器的消耗功率比晶体振荡器高,因而电池的持续期间缩短。
发明内容
本发明是鉴于上述情况而完成的,本发明的目的是提供一种即使使用消耗功率较高的高精度振荡器,也能在避免整体消耗功率的增大的同时提高时钟信号的精度的时钟信号输出装置及其控制方法、电子设备及其控制方法。
为了解决上述课题,本发明提供一种时钟信号输出装置,其具有生成基准时钟信号的基准振荡器,并根据基准时钟信号生成规定频率的输出用时钟信号进行输出,其特征在于,该时钟信号输出装置具有:高精度振荡器,其生成比上述基准振荡器精度高的高精度时钟信号;间歇驱动部,其间歇地驱动该高精度振荡器;以及校正部,其每当上述高精度振荡器被驱动时,获得以上述高精度时钟信号为基准来校正上述输出用时钟信号的偏差量的校正数据,根据该校正数据校正上述输出用时钟信号。
根据该结构,该时钟信号输出装置具有:高精度振荡器,其生成比基准振荡器精度高的高精度时钟信号;间歇驱动部,其间歇地驱动该高精度振荡器;以及校正部,其每当高精度振荡器被驱动时,获得以高精度时钟信号为基准来校正输出用时钟信号的偏差量的校正数据,根据该校正数据校正输出用时钟信号,因而即使使用消耗功率高的高精度振荡器,也能在间歇地停止该高精度振荡器来避免整体消耗功率的增大的同时,以高精度振荡器为基准来提高输出用时钟信号的精度。
在上述结构中,优选的是,该时钟信号输出装置具有:基准振荡器影响信息检测部,其检测给上述基准振荡器的动作带来影响的基准振荡器影响信息;在检测出上述基准振荡器影响信息的情况下,上述间歇驱动部驱动上述高精度振荡器,上述校正部获得上述校正数据。
根据该结构,在检测出给基准振荡器的动作带来影响的基准振荡器影响信息的情况下,驱动高精度振荡器来获得校正数据,因而可迅速校正由上述基准振荡器影响信息所产生的频率变化,可进一步提高输出用时钟信号的精度。
并且,在上述结构中,优选的是,该时钟信号输出装置具有:基准振荡器影响信息检测部,其检测给上述基准振荡器的动作带来影响的基准振荡器影响信息;以及存储部,其存储有与上述基准振荡器影响信息的各值对应的校正数据;检测上述基准振荡器影响信息,在所检测的上述基准振荡器影响信息是最初检测的值的情况下,上述间歇驱动部驱动上述高精度振荡器,上述校正部获得上述校正数据,把该校正数据存储在上述存储部内,根据该校正数据校正上述输出时钟信号,在所检测的上述基准振荡器影响信息不是最初检测的值的情况下,根据与存储在上述存储部内的上述基准振荡器影响信息的值对应的校正数据来校正上述输出时钟信号。根据该结构,只有在所检测的上述基准振荡器影响信息是最初检测的值的情况下才驱动高精度振荡器,因而可减少高精度振荡器的驱动次数,可减少消耗功率。
在上述结构中,优选的是,上述间歇驱动部在所检测的上述基准振荡器影响信息是在预定的校正数据更新期间内最初检测的值的情况下,驱动上述高精度振荡器,在所检测的上述基准振荡器影响信息不是在上述校正数据更新期间内最初检测的值的情况下,把上述高精度振荡器保持在非驱动状态。
根据该结构,在所检测的基准振荡器影响信息不是在校正数据更新期间内最初检测的值的情况下,把高精度振荡器保持在非驱动状态,因而可实现消耗功率降低,并且在所检测的基准振荡器影响信息是在校正数据更新期间内最初检测的值的情况下,驱动高精度振荡器,因而每当经过校正数据更新期间时获得新的校正数据,可更新已存储的校正数据。由此,可按照由基准振荡器的老化特性等引起的频率变化来更新校正数据,可进一步提高输出用时钟信号的精度。
在上述结构中,优选的是,上述基准振荡器影响信息包含温度变化量、湿度变化量、电源功率、该时钟信号输出装置的姿势或重力方向中的至少任一方。
并且,在上述结构中,优选的是,该时钟信号输出装置具有:高精度振荡器影响信息检测部,其检测给上述高精度振荡器的动作带来影响的高精度振荡器影响信息;在检测上述高精度振荡器影响信息期间,把上述高精度振荡器保持在非驱动状态。根据该结构,在检测给高精度振荡器的动作带来影响的高精度振荡器影响信息期间,把高精度振荡器保持在非驱动状态,因而可避免在动作不稳定的状态下驱动高精度振荡器的情况。并且,在上述结构中,优选的是,上述高精度振荡器影响信息包含磁场或电源功率的至少任一方。
在上述结构中,优选的是,上述基准振荡器的消耗功率比上述高精度振荡器小,上述基准振荡器可以使用晶体振荡器、CR振荡器或者MEMS振荡器。并且,上述高精度时钟信号可以是比上述基准时钟信号频率高的信号,上述高精度振荡器可以使用原子振荡器、温度补偿振荡器、恒温槽控制晶体振荡器、使用AT切割振子的振荡器中的任一方。
并且,在上述结构中,该时钟信号输出装置具有:比较部,其进行上述基准时钟信号与上述高精度时钟信号的相位比较或者频率比较;上述间歇驱动部仅在驱动上述高精度振荡器期间驱动上述比较部,可以进一步减少消耗功率。
并且,在上述结构中,优选的是,上述间歇驱动部按照上述基准振荡器的老化特性阶段性地延长间歇驱动周期。根据该结构,可在抑制由老化引起的频率变化的同时减少高精度振荡器的驱动次数,可实现消耗功率降低。
并且,本发明提供一种时钟信号输出装置的控制方法,该时钟信号输出装置具有生成基准时钟信号的基准振荡器,并根据基准时钟信号生成规定频率的输出用时钟信号进行输出,其特征在于,间歇地驱动生成比上述基准振荡器精度高的高精度时钟信号的高精度振荡器,每当驱动该高精度振荡器时,获得以上述高精度时钟信号为基准来校正上述输出用时钟信号的偏差量的校正数据,根据该校正数据校正上述输出用时钟信号。
根据该结构,间歇地驱动生成比基准振荡器精度高的高精度时钟信号的高精度振荡器,每当驱动该高精度振荡器时,获得以高精度时钟信号为基准来校正输出用时钟信号的偏差量的校正数据,根据该校正数据校正输出用时钟信号,因而即使使用消耗功率高的高精度振荡器,也能在避免整体消耗功率的增大的同时,提高输出用时钟信号的精度。
并且,本发明提供一种电子设备,其具有时钟信号输出部,该时钟信号输出部根据从基准振荡器所输出的基准时钟信号生成规定频率的输出用时钟信号进行输出,其特征在于,该电子设备具有:高精度振荡器,其生成比上述基准振荡器精度高的高精度时钟信号;间歇驱动部,其间歇地驱动该高精度振荡器;以及校正部,其每当上述高精度振荡器被驱动时,获得以上述高精度时钟信号为基准来校正上述输出用时钟信号的偏差量的校正数据,根据该校正数据校正上述输出用时钟信号。
根据该结构,该电子设备具有:高精度振荡器,其生成比基准振荡器精度高的高精度时钟信号;间歇驱动部,其间歇地驱动该高精度振荡器;以及校正部,其每当高精度振荡器被驱动时,获得以高精度时钟信号为基准来校正输出用时钟信号的偏差量的校正数据,根据该校正数据校正输出用时钟信号,因而即使使用消耗功率高的高精度振荡器,也能在避免整体消耗功率的增大的同时,提高输出用时钟信号的精度。
并且,在上述结构中,上述电子设备可以构成为钟表,该钟表具有根据上述输出用时钟信号显示时刻的时刻显示部。并且,优选的是,上述电子设备内置有把动作功率提供给该电子设备的电源部。根据该结构,即使是内置有电源部的电子设备,也能进行长期间的动作。
并且,本发明提供一种电子设备的控制方法,该电子设备具有时钟信号输出部,该时钟信号输出部根据从基准振荡器所输出的基准时钟信号生成规定频率的输出用时钟信号进行输出,其特征在于,间歇地驱动生成比上述基准振荡器精度高的高精度时钟信号的高精度振荡器,每当驱动该高精度振荡器时,获得以上述高精度时钟信号为基准来校正上述输出用时钟信号的偏差量的校正数据,根据该校正数据校正上述输出用时钟信号。
根据该结构,间歇地驱动生成比基准振荡器精度高的高精度时钟信号的高精度振荡器,每当驱动该高精度振荡器时,获得以高精度时钟信号为基准来校正输出用时钟信号的偏差量的校正数据,根据该校正数据校正输出用时钟信号,因而即使使用消耗功率高的高精度振荡器,也能在避免整体消耗功率的增大的同时,提高输出用时钟信号的精度。
本发明具有:高精度振荡器,其生成比基准振荡器精度高的高精度时钟信号;间歇驱动部,其间歇地驱动该高精度振荡器;以及校正部,其每当高精度振荡器被驱动时,获得以高精度时钟信号为基准来校正输出用时钟信号的偏差量的校正数据,根据该校正数据校正输出用时钟信号,因而即使使用消耗功率高的高精度振荡器,也能在间歇地停止该高精度振荡器来避免整体消耗功率的增大的同时,以高精度振荡器为基准提高输出用时钟信号的精度。
并且,本发明在检测出给基准振荡器的动作带来影响的基准振荡器影响信息的情况下,驱动高精度振荡器来获得校正数据,因而可迅速校正由上述基准振荡器影响信息所产生的频率变化,可进一步提高输出用时钟信号的精度。
并且,本发明在所检测的基准振荡器影响信息是在预定的校正数据更新期间内最初检测的值的情况下,驱动高精度振荡器,在所检测的基准振荡器影响信息不是在校正数据更新期间内最初检测的值的情况下,把高精度振荡器保持在非驱动状态,因而可减少高精度振荡器的驱动次数,实现消耗功率降低。在该情况下,每当经过校正数据更新期间时,通过驱动高精度振荡器来获得新的校正数据,因而可按照由基准振荡器的老化特性等引起的频率变化来更新校正数据,可进一步提高输出用时钟信号的精度。
并且,本发明在检测给高精度振荡器的动作带来影响的高精度振荡器影响信息期间,把高精度振荡器保持在非驱动状态,因而可避免在动作不稳定的状态下驱动高精度振荡器的情况。
附图说明
图1是示出本发明的第1实施方式的手表的结构的框图。
图2是示出振荡部的结构的框图。
图3是用于对比较电路进行说明的图。
图4是示出校正后的时钟信号的图。
图5是示出振荡部的动作的流程图。
图6A是示出一天的气温变化的图,B是示出校正前的晶体振荡器的频率精度的图,C是示出校正后的频率精度的图。
图7是用于对晶体振荡器的长期精度进行说明的图。
图8是示出第2实施方式的手表的结构的框图。
图9是用于对原子振荡器的驱动停止时间进行说明的图。
图10是示出振荡部的动作的流程图。
图11是示出第3实施方式的手表的振荡部的结构的框图。
图12是示出校正数据的图。
图13是示出振荡部的动作的流程图。
图14是示出变形例的振荡部的结构例的框图。
图15是示出晶体振荡器的结构例的图。
图16是示出校正后的时钟信号的图。
符号说明
10、10A、10B:手表(电子设备);11:运针机构(时刻显示部);12:驱动部;13:电源部;30:驱动马达;40:振荡部;41、41a:晶体振荡器(基准振荡器);41b:频率调整部;42:原子振荡器(高精度振荡器);43、44、43b:分频电路;45:比较电路;46、46c:校正部;46a:存储器(存储部);46b:逻辑调整电路;46d:电容可变电路;47:间歇时间管理部;49:间歇被驱动部;50:马达驱动部;60:电池;65:传感部;70:第1检测部(基准振荡器影响信息检测部);71:温度检测部;72:电压检测部;73:姿势检测部;80:第2检测部(高精度振荡器影响信息检测部);81:磁场检测部;CL0:时钟信号(输出用时钟信号);CL1:基准时钟信号;CL2、CL3:时钟信号;CL4:比较用信号;D1、D2:校正数据;P1:更新期间(校正数据更新期间);P2:温度检测间隔。
具体实施方式
以下,参照附图对本发明的一个实施方式进行说明。
(第1实施方式)
图1是示出本发明的一个实施方式的手表的结构的框图。该手表(电子钟表)10构成为具有:构成钟表模块的运针机构11和驱动部12;以及把动作功率提供给该钟表模块的电源部13。
运针机构11构成驱动秒针21、分针22和时针23来显示时刻的时刻显示部,如该图所示,具有齿轮轮系29,该齿轮轮系29将秒轮24、第二轮25和时轮26经由中间轮27、28连接成相互联动。在秒轮24的旋转轴上安装有秒针21的一端,在第二轮25的旋转轴上安装有分针22的一端,并且在时轮26的旋转轴上安装有时针23的一端。驱动马达30的驱动齿轮31与秒轮24啮合,秒轮24通过驱动马达30的旋转被旋转驱动,该旋转被传递到第二轮25和时轮26,使得秒针21、分针22和时针23的各方被旋转驱动,使用这些针21~23来显示时刻。
驱动部12具有振荡部(时钟信号输出部)40和马达驱动部50,振荡部40输出1Hz的时钟信号(输出用时钟信号)CL0,马达驱动部50根据该1Hz的时钟信号CL0,把驱动脉冲提供给驱动马达30,使驱动马达30驱动。另外,该手表1可以构成为,取代运针机构11或者除了运针机构11以外,还具有液晶显示装置,并使该液晶显示装置显示时刻。在该情况下,可以构成为在驱动部12内设有:对1Hz的时钟信号CL0进行计数的钟表用计数器;以及根据该钟表用计数器的计数值驱动液晶显示装置的液晶驱动部。
电源部13构成为具有:配置在该手表10内的电池60;以及把蓄积在该电池60内的功率作为恒压来提供给驱动部12的各部的恒压电路(未作图示)。该电池60应用锂电池或银电池等的硬币型的一次电池。另外,可以把太阳电池板等的发电部配置在该手表10内,在该情况下,电池60应用二次电池。
在本实施方式中,振荡部40如图2所示,具有晶体振荡器(基准振荡器)41和原子振荡器(高精度振荡器)42。晶体振荡器41是使音叉型晶体振子振荡来输出例如32.768kHz的基准时钟信号CL1的振荡器,原子振荡器42应用频率精度和频率稳定度比晶体振荡器41高的铯原子振荡器,是输出例如9.2GHz的时钟信号CL2的振荡器。另外,可以使用铯原子振荡器以外的原子振荡器(例如铷原子振荡器)。并且,晶体振荡器41可以是在年差钟表或月差钟表等中使用的振荡器等任意的晶体振荡器。
振荡部40具有将晶体振荡器41的基准时钟信号CL1进行分频的分频电路43,该分频电路43是将包含作为调整量赋予部执行功能的具有数据集功能的1/2分频电路43a的多个分频器多级连接而构成,将基准时钟信号CL1分频到1Hz,输出1Hz的时钟信号CL0。该时钟信号CL0作为振荡部40的输出被输出到外部,而且作为比较用信号CL4被输出到振荡部40内的比较电路45。
并且,振荡部40具有将原子振荡器42的时钟信号CL2进行分频的分频电路44,分频电路44将时钟信号CL2分频到1Hz,把该1Hz的分频信号CL3输出到比较电路45。
比较电路45是进行晶体振荡器41的基准时钟信号CL1的分频信号即1Hz的比较用信号CL4与原子振荡器42的时钟信号CL2的分频信号即1Hz的时钟信号CL3的相位比较的电路,具体地说,如图3所示,使用原子振荡器42的分频信号(从分频电路44的分频级中的任一方所取得的时钟信号,例如100Hz的信号)来测定比较用信号CL4和时钟信号CL3的上升定时,从而把表示比较用信号CL4对时钟信号CL2的相位差ΔF的校正数据D1输出到校正部46。
另外,也能使用原子振荡器42的9.2GHz的时钟信号CL2来测定比较用信号CL4与时钟信号CL3的相位差ΔF,然而从减少消耗功率的观点看,优选的是,使用原子振荡器42的时钟信号CL2的分频信号进行测定来减少高频构成电路网。并且,输入到比较电路45的比较用信号CL4可以不具有输出时钟信号的周期,只要是设计上的频率与时钟信号CL3相同的频率,例如16Hz等,就可以使用分频的中间频率。
校正部46是根据从比较电路45所取得的校正数据D1来校正时钟信号CL0的电路,如图2所示,构成为具有:存储器46a,其存储校正数据D1等;以及逻辑调整电路46b,其根据存储在该存储器46a内的校正数据D1,把调整定时信号T1发送到具有数据集功能的1/2分频电路43a,使该分频电路43a调整起动。然后,该逻辑调整电路46b使具有数据集功能的1/2分频电路43a调整起动,从而如图4所示,使时钟信号CL0按照每个校正周期(10秒)TH伸缩必要的相位量(调整量),按照对时钟信号CL2的相位偏差量(相当于相位差ΔF)来校正时钟信号CL0的相位。
另外,原子振荡器42与晶体振荡器41相比,短期精度(振荡频率的由温度变化引起的精度)和长期稳定性(由老化等引起的精度)优良,另一方面,由于消耗功率与晶体振荡器41相比极其高,所以当总是驱动原子振荡器42时,电池60的持续时间缩短。
因此,在本实施方式中,振荡部40如图2所示,具有间歇时间管理部(间歇驱动部)47,该间歇时间管理部47构成为空出时间间隔来间歇驱动原子振荡器42。
间歇时间管理部47具有对晶体振荡器41的时钟信号(例如,分频电路43内的规定频率的时钟信号(可以是1Hz的时钟信号CL0))进行计数的计数器47a,每当该计数器47a的计数值达到与驱动停止期间(例如3小时)相当的值时,仅在驱动期间(例如10秒)把来自电源部13的功率提供给由原子振荡器42、分频电路44以及比较电路45构成的间歇被驱动部49。由此,每3小时驱动间歇被驱动部49十秒,仅在该驱动期间从比较电路45输出表示原子振荡器42的分频信号(上述1Hz的时钟信号CL3)与晶体振荡器41的分频信号(1Hz的比较用信号CL4)的相位差ΔF的校正数据D1。然后,在校正部46中,当取得该校正数据D1时,把上次的校正数据D1更新为新的校正数据D1,根据该更新后的校正数据D1来校正时钟信号CL0的相位。
图5是示出振荡部40的动作的流程图。
在振荡部40中,间歇时间管理部47使计数器47a复位来开始计时(步骤S1),根据计数器47a的计数值判定是否经过了驱动停止期间(3小时)(步骤S2)。间歇时间管理部47重复上述步骤S2的判定直到经过驱动停止期间(3小时)(步骤S2:“否”),当判定为经过了驱动停止期间(3小时)时(步骤S2:“是”),把功率提供给包含原子振荡器42的间歇被驱动部49,开始原子振荡器42的振荡(步骤S3)。
接下来,在原子振荡器42的振荡频率稳定之后,比较电路45测定原子振荡器42的分频信号(上述1Hz的时钟信号CL3)与晶体振荡器41的分频信号(1Hz的比较用信号CL4)的相位差ΔF(步骤S4),把校正数据D1输出到校正部46。然后,校正部46把该校正数据D1存储在存储器46a的规定区域内,在存在上次的校正数据D1的情况下,把该校正数据更新为新取得的校正数据D1,根据该校正数据D1计算校正量(逻辑调整量)(步骤S5)。
然后,校正部46把该校正量(逻辑调整量)存储在存储器46a的规定区域内,逻辑调整电路46b根据该校正量执行使具有数据集功能的1/2分频电路43a调整起动的处理(步骤S6),校正1Hz的时钟信号CL0(比较用信号CL4)的相位偏差量,并且,当从开始把功率提供给包含原子振荡器42的间歇被驱动部49起经过了驱动期间(10秒)时,间歇时间管理部47遮断功率供给,停止间歇被驱动部49的动作,转移到步骤S1的处理(步骤S7)。由此,在间歇被驱动部49停止中,根据存储在存储器46a内的校正量(逻辑调整量),校正1Hz的时钟信号CL0的相位偏差量,在经过3小时后,再次驱动间歇被驱动部49时,重复以下处理,即:新测定原子振荡器42的分频信号与晶体振荡器41的分频信号的相位差ΔF,校正1Hz的时钟信号CL0的相位偏差量,以便校正该相位差ΔF。
在本结构中,在手表1的驱动中总是驱动晶体振荡器41,并且间歇地驱动原子振荡器42,每当驱动原子振荡器42时,以原子振荡器42的时钟信号CL2为基准来测定晶体振荡器41的分频信号即1Hz的比较用信号CL4的相位偏差量,校正1Hz的时钟信号CL0,以便校正该相位偏差量,因而可在间歇地停止原子振荡器42来避免整体消耗功率的增大的同时,以原子振荡器42为基准来提高时钟信号CL0的精度,可减少钟表误差。
具体地说,在一天的气温如图6(A)所示变动的情况下,校正前的晶体振荡器41如图6(B)所示,在比基准温度(例如25℃)T0低的昼间时段中,在负侧产生频率偏差,在高于基准温度T0的夜间时段中,在正侧产生频率偏差。在本结构中,该晶体振荡器41每3小时以原子振荡器42的精度来校正,因而如图6(C)所示,频率偏差的绝对值减小。
并且,在图6(C)中,由基准温度T0的线(图中符号α)和频率偏差的线(图中符号β)包围的面积相当于每1天的钟表误差(日差)。在本实施方式中,按照比1天中温度较高的昼间时段或者温度较低的夜间时段短的周期(3小时)校正为原子振荡器42的精度,因而可使昼间时段的正侧的频率偏差与夜间时段的负侧的频率偏差相互抵消,可减小手表10的日差、月差和年差。例如,在依赖于晶体振荡器41的温度特性的频率偏差是0.1ppm的情况下,通过每1天校正8次,可使频率偏差约为1/8,即0.0125ppm左右(相当于年差约0.4秒)。并且,在原子振荡器42的消耗功率是0.1W的情况下,由于每3小时(10800秒)仅驱动10秒,因而可把由原子振荡器42所消耗的功率抑制到10/10800倍,即约1/1000倍的消耗功率(10-4W)。
并且,如图7所示,在依赖于晶体的老化特性的频率偏差在3年中是0.2ppm的情况下(图中符号γ),在本实施方式中,由于校正成与原子振荡器42的长期频率偏差大致相同,因而可达到与原子振荡器42的精度相同的频率偏差即10-4ppm左右(图中符号θ),可提供从使用开始时在长期间内误差不变动的高质量的手表10。而且,在本结构中,不仅使原子振荡器42间歇地停止,而且使分频电路44和比较电路45间歇地停止,因而可相应地进一步减少消耗功率,即使使用与现有的手表相同的电池,电池的持续时间也不会大幅缩短。这样在本结构中,即使使用消耗功率高的原子振荡器42,也能避免消耗功率的增大,同时在长期间内减少钟表误差,因而该手表1可充分应用于要求精度的地铁等的铁路车站工作人员或列车驾驶员使用的铁路钟表。
(第2实施方式)
第2实施方式的手表10A如图8所示,具有传感部65,该传感部65具有:第1检测部(基准振荡器影响信息检测部)70,其检测给晶体振荡器(基准振荡器)41等的动作带来影响的第1信息(基准振荡器影响信息);以及第2检测部(高精度振荡器影响信息检测部)80,其检测给原子振荡器(高精度振荡器)42等的动作带来影响的第2信息(高精度振荡器影响信息)。以下,对与第1实施方式大致相同的结构附上相同符号而省略详细说明,对不同部分进行详述。
第1检测部70具有:检测温度(包含外部气温)的温度检测部71;检测电源电压的电压检测部72;以及检测手表10A的姿势的姿势检测部73。这里,温度变化是招致晶体振荡器41的频率变化的主要原因,电源电压下降是招致手表10A的各部的动作不稳定的主要原因,手表10A的姿势、例如给晶体的机械振动带来影响的姿势等,是招致晶体振荡器41的频率变化等的主要原因。
并且,第2检测部80具有检测地磁等的磁场(变化磁通)的磁场检测部81,当超过容许级别时,磁场成为招致原子振荡器42的动作不稳定的主要原因。
并且,在本实施方式中,振荡部40内的间歇时间管理部47如图9所示,按照晶体的老化特性γ来设定原子振荡器42的驱动停止时间ST。更具体地说,如该图所示,由于晶体的老化特性γ是进行对数变化的特性,因而间歇时间管理部47使原子振荡器42的驱动停止时间ST呈对数变化,从而设定在手表10的刚开始使用后最短的驱动停止时间,随着时间经过把驱动停止时间阶段性地设定得长。另外,在图示例中,示出每当晶体的频率偏差变化一定量时,变更驱动停止时间ST的情况,然而每当经过一定时间时变更驱动停止时间ST等的变更定时可任意设定。
在该手表10A中,除了振荡部40根据由间歇时间管理部47设定的驱动停止时间ST驱动原子振荡器42来进行晶体振荡器41的时钟校正的定期校正处理以外,还根据上述传感部65的检测结果执行临时校正处理,该临时校正处理校正或停止校正晶体振荡器41的时钟。
以下,对该临时校正处理进行说明。图10是示出该情况的动作的流程图。另外,该临时校正处理是按照规定的中断周期持续执行的处理。
在振荡部40中,间歇时间管理部47首先判定由电压检测部72所检测的电压是否小于等于预先设定的阈值Z1(步骤S11)。这里,该阈值Z1应用电池剩余量是否少的判定基准值。
在电压小于等于阈值Z1的情况下(步骤S11:“是”),间歇时间管理部47把晶体振荡器41的时钟校正设定为停止状态,以避免消耗原子振荡器42的驱动等所需要的功率(步骤S20)。在被设定为该停止状态的情况下,振荡部40即使经过驱动停止时间ST也不进行原子振荡器42的驱动或时钟校正,由此,可抑制功率消耗,确保手表10A的驱动时间。另外,当电压超过阈值Z1时,该停止状态的设定被解除。
另一方面,在电压超过阈值Z1的情况下(步骤S11:“否”),间歇时间管理部47判定由磁场检测部81所检测的磁场是否超过预先设定的阈值Z2(步骤S12),在超过阈值Z2的情况下(步骤S12:“是”),转移到步骤S20的处理,把时钟校正设定为停止状态。这里,阈值Z2应用针对原子振荡器42的磁场的容许级别,由此,可避免当发生招致原子振荡器42的动作不稳定的级别的磁场时驱动原子振荡器42的情况。
然后,在磁场小于等于阈值Z2的情况下(步骤S12:“否”),间歇时间管理部47判定由温度检测部71所检测的每经过规定时间的温度变化量是否超过预先设定的阈值Z3(步骤S13),在超过的情况下(步骤S13:“是”),进行驱动包含原子振荡器42的间歇被驱动部49来校正来自晶体振荡器41的时钟信号CL0的步骤S3~S7的处理(以下称为时钟校正处理)(步骤S21)。这里,阈值Z3应用依赖于晶体振荡器41的温度的频率变化的容许级别,由此,在产生超过容许级别的温度变化的情况下执行时钟校正处理,可迅速避免由伴随晶体振荡器41的温度变化的频率变化引起的时钟信号CL0的频率偏差。
并且,在温度变化量小于等于阈值Z3的情况下(步骤S13:“否”),间歇时间管理部47判定由姿势检测部73所检测的姿势是否是给晶体振荡器41带来频率变化等的影响的姿势(步骤S14),在是带来影响的姿势的情况下(步骤S14:“是”),执行步骤S21的时钟校正处理。由此,可迅速避免由伴随晶体振荡器41的姿势变化的频率变化引起的时钟信号CL0的频率偏差。另一方面,在步骤S14的判定结果是否定结果的情况下,间歇时间管理部47临时结束该处理,之后重复执行该处理。
如以上说明那样,在本结构中,监视给晶体振荡器41和原子振荡器42的动作带来影响的信息,在检测出使晶体振荡器41招致频率变化的信息(温度变化量、姿势)的情况下,进行时钟校正处理,在检测出招致晶体振荡器41或原子振荡器42的动作不稳定的信息(电源电压、磁场)的情况下,停止时钟校正,因而可按照晶体振荡器41的频率变化迅速校正时钟信号CL0,与第1实施方式相比,可进一步减少钟表误差。
而且,在本结构中,按照晶体的老化特性γ把原子振荡器42的驱动停止时间ST阶段性设定得较长,因而在由老化引起的晶体振荡器41的频率变化大的前半期间(图9所示的从使用开始起大致半年以内),按照较短的周期进行时钟校正处理,另一方面,在由老化引起的频率变化少的后半期间(图9所示的大致半年以后),按照长的周期进行时钟校正处理,因而可在抑制由老化引起的频率变化的同时减少原子振荡器42等的驱动次数,可减少消耗功率。由此,与第1实施方式相比,可进一步减少钟表误差,而且可实现消耗功率降低。
(第3实施方式)
第3实施方式的手表10B如图11所示,具有检测温度(基准振荡器影响信息)的温度检测部71,该温度检测部71与振荡部40的间歇时间管理部47连接。该间歇时间管理部47具有对校正数据的更新期间P1进行计时的计数器47a1以及用于对温度检测间隔P2进行计时的计数器47b2,并构成为可对更新期间P1和温度检测间隔P2进行计时。
并且,在存储器46a内,如图12所示,存储有与各温度对应的校正数据D1(k)(k=温度)。另外,在该图中示出按照每1度设定校正数据D1(k)的情况,然而从削减数据量的观点看,可以按例如每5度进行粗设定,在该情况下,对于未设定有校正数据的中间温度的校正数据D1(n),可以根据与前后温度对应的校正数据D1(m)、D1(m+1)(另外,m<n<m+1)等,通过补充运算处理等进行指定,并且从提高精度的观点看,可以按例如每0.5度进行细设定。
图13是示出振荡部40的动作的流程图。
首先,间歇时间管理部47把30日设定为校正数据D1(k)的更新期间P1,并把10分设定为温度检测间隔P2(步骤S31),开始计数器47a1的更新期间P1的计时(步骤S32),判定是否经过了更新期间P1(步骤S33)。
然后,间歇时间管理部47在经过了更新期间P1的情况下(步骤S33:“是”),从最初开始更新期间P1的计时,另一方面,在未经过更新期间P1时(步骤S33:“否”),开始计数器47a2的温度检测的温度检测间隔P2的计时(步骤S34),等到经过温度检测间隔P2(步骤S35)。
当经过了温度检测间隔P2时(步骤S35:“是”),间歇时间管理部47通过温度检测部71测定温度T(步骤S36),判定测定温度T是否是在目前的更新期间P1的计时中最初检测的温度(步骤S37)。
这里,在是最初检测的温度的情况下(步骤S37:“否”),间歇时间管理部47把功率提供给包含原子振荡器42的间歇被驱动部49来开始原子振荡器42的振荡(步骤S38)。接下来,当原子振荡器42稳定驱动时,间歇时间管理部47通过比较电路45测定原子振荡器42的分频信号(上述1Hz的时钟信号CL3)与晶体振荡器41的分频信号(1Hz的比较用信号CL4)的相位差ΔF(步骤S39),计算校正该相位差ΔF的校正量(步骤S40),通过校正部46把存储在存储器46a内的与上述测定温度T对应的校正数据D1(T)重写成与所计算的校正量对应的校正数据(步骤S41),遮断向间歇被驱动部49的功率供给,停止间歇被驱动部49的动作(步骤S42)。
然后,间歇时间管理部47根据该重写后的校正数据D1(T)实施校正时钟信号CL0的相位偏差量的处理(步骤S43),然后转移到步骤S33的处理,重复执行步骤S33~S43的处理。
另一方面,在测定温度T不是在目前的更新期间P1的计时中最初检测的温度的情况下(步骤S37:“是”),根据已存储在存储器46a内的与上述测定温度T对应的校正数据D1(T)来实施校正时钟信号CL0的相位偏差量的处理(步骤S43),之后转移到步骤S33的处理,重复执行步骤S33~S43的处理。
因此,在更新期间P1的计时中,按照温度检测间隔P2测定温度T,只有在该温度T是最初检测的温度的情况下,才驱动包含原子振荡器42的间歇被驱动部49来获得与该测定温度T对应的校正数据D1(T),可把存储器46a内的校正数据D1(k)更新为最新值。由此,即使由于老化等而使晶体振荡器41的频率相对于温度而变动,也能按照该变动更新存储器46a内的校正数据D1(k),可避免时钟信号CL0的频率偏差。
如以上说明那样,在本结构中,只有在所检测的温度T是在预先设定的更新期间P1内最初检测的值的情况下,才把功率提供给包含原子振荡器42的间歇被驱动部49,获得与该温度T对应的校正数据D1(T),更新存储器46a内的校正数据,因而与按照预定的间隔把功率提供给间歇被驱动部49来取得校正数据的第1实施方式相比,可减少原子振荡器42的驱动次数,可减少消耗功率。由此,与第1实施方式相比,可进一步减少钟表误差,并可实现消耗功率降低。
而且,当经过了更新期间P1时,按照在下一更新期间P1内最初检测的各温度T,获得与该温度T对应的校正数据D1(T)来更新存储器46a内的校正数据,因而可按照由晶体的老化特性等引起的频率变动恰当地更新存储器46a内的校正数据,进一步减少了钟表误差。
并且,根据本结构,由于内置有晶体振荡器41的温度补偿系统和调整系统,因而无需工厂发货时用于进行调整的高价的调整装置或调整作业。并且,即使在工厂发货时进行调整、减少发货后的原子振荡器42的驱动频度来实现电池寿命的延长的情况下,也只需在工厂发货时使用高温槽等体验所需温度(例如-20℃~70℃)就能结束调整,可实现调整作业的时间缩短或简化。
另外,不限于使更新期间P1固定的情况,可以使更新期间P1可变,更优选的是,可以按照晶体的老化特性γ(参照图9)把更新期间P1阶段性地设定得较长。只要按照老化特性γ使更新期间P1可变,就能在抑制由老化引起的频率变化的同时减少原子振荡器42等的驱动次数,可进一步减少消耗功率。由此,在本结构中,可提供整体精度接近原子振荡器的精度、消耗功率接近晶体振荡器的消耗功率的振荡器。
上述的实施方式毕竟示出本发明的一个方式,可在本发明的范围内任意变形。例如,在上述的第2和第3实施方式中,对检测使晶体振荡器41招致频率变化的信息即温度变化量或姿势的情况作了描述,然而不限于此,可以检测例如湿度变化量,并且可以取代姿势的检测而检测重力方向。并且,招致晶体振荡器41或原子振荡器42的动作不稳定的信息不限于电源电压或磁场,可以检测除此以外的信息。并且,在第3实施方式中,设置有检测给原子振荡器42等的动作带来影响的第2信息的第2检测部80,该第2检测部80可以构成为,在检测第2信息期间不驱动原子振荡器42或者不取得校正数据。
并且,在上述的实施方式中,例示出进行晶体振荡器41与原子振荡器42的相位比较的情况,然而可以进行晶体振荡器41与原子振荡器42的频率比较,以原子振荡器42的频率为基准来校正晶体振荡器41的振荡频率。
图14是示出校正振荡频率的情况的振荡部40的结构例的框图。另外,在该图中,对与图1相同的结构附上同一符号而省略详细说明。在该振荡部40中,晶体振荡器41a如图15的一例所示,构成为除了晶体振子X、振荡用的逆变器INV1、反馈电阻Rf、驱动调整电阻Rd、栅极侧的电容器Cg和漏极侧的电容器Cd以外,还具有与电容器Cg并联、由电容器C1、C2…Cn和开关SW1、SW2…SWn的串联电路构成的频率调整部41b。并且,校正部46c如图14所示,由存储器46a、以及控制上述开关SW1~SWn的电容可变电路46d构成。另外,不同点仅是,分频电路43b配备不具有数据集功能的1/2分频电路来取代具有数据集功能的1/2分频电路43a。
在该振荡部40中,比较电路45a使用原子振荡器42的例如100MHz的分频信号来测定晶体振荡器41的基准时钟信号CL1的分频信号即1Hz的比较用信号CL4的周期,把表示该周期的校正数据D2输出到校正部46c。然后,校正部46c根据该校正数据D2求出晶体振荡器41的频率偏差量,根据该频率偏差量控制上述开关SW1~SWn的开闭状态,维持在使晶体振荡器41a的振荡频率变化的状态,以使时钟信号CL0(比较用信号CL4)的频率为1Hz。由此,每3小时按照原子振荡器42的频率精度更新晶体振荡器41a的振荡频率,不仅具有上述实施方式的效果,而且与按照每校正周期TH(10秒)校正时钟信号CL0的逻辑调整的情况(图4)相比,如图16所示,可使时钟信号CL0的振荡频率大致恒定。
并且,在本实施方式中,作为时钟信号CL0的校正方式,可以将上述的逻辑调整方式和晶体振荡器的电容可变方式并用。在该情况下,通过将逻辑调整方式和电容可变方式并用,可增加时钟信号CL0的调整量。另外,不限于在晶体振荡电路内设置电容可变用的电容器的情况,可以在晶体振荡电路的外部设置电容可变用的电容器。
并且,在上述的各实施方式中,对控制基准时钟信号CL1的相位或频率来校正时钟信号CL0的偏差量的情况作了描述,然而不限于基准时钟信号CL1,可以对成为时钟信号CL0的生成基准的其他信号(例如分频信号)的任一方的相位或频率进行控制来校正时钟信号CL0的偏差量。
并且,在上述的实施方式中,例示出把原子振荡器42等的驱动停止时间设定为3小时并把驱动时间设定为10秒的情况,然而不限于此,可以是任意时间,并且不使间歇驱动周期为等间隔,例如,可以在昼间时段缩短驱动停止时间(例如2小时),在夜间时段延长驱动停止时间(例如4小时)等,使间歇驱动周期为不等间隔。
并且,在上述的实施方式中,例示出作为基准振荡器采用使用音叉型晶体振子的晶体振荡器、并且作为比基准振荡器精度高的振荡器(高精度振荡器)采用原子振荡器的情况,然而基准振荡器可以应用温度补偿晶体振荡器等的其他晶体振荡器或者PLL(Phase Locked Loop:锁相环)电路、晶体振荡器以外的CR振荡器或陶瓷振荡器、或者把机械要素部件或电子电路等集成在一个硅基板上的MEMS(Micro ElectronicMechanical Systems:微电子机械系统)振荡器,并且高精度振荡器可以应用在频率精度或频率稳定度比基准振荡器高的范围内使用AT切割振子的振荡电路、温度补偿振荡器(TCXO)、恒温槽控制晶体振荡器(OvenControlled Xtal Oscillator:OCXO)等。然而,由于基准振荡器总是被驱动,因而从减少消耗功率的观点看,优选的是振荡频率比高精度振荡器低的振荡器。
并且,在上述的实施方式中,例示出把本发明应用于由运针机构11、驱动部12以及电源部13构成的手表10的情况,然而可广泛应用于具有日历机构的钟表、接收时间代码重叠的电波来根据时间代码校正时刻的电波钟表、怀表、坐表和挂表等的所有钟表、或者移动电话机、PDA(Personal Digital Assistants:个人数字助理)、便携型测量器、便携型GPS(Global Positioning System:全球定位系统)装置等的可携带的电子设备、或者标准振荡器、笔记本型个人计算机等的电子设备。特别是,本发明由于减少了消耗功率,因而适合于内置有提供动作功率的电源部(电池)且要求长期间动作的电源内置电子设备。
另外,在应用于电波钟表的情况下,即使在发生不能接收电波的状况,例如,电波到达不了的场所(建筑物中、地下、水中、噪音源附近)、或者无电波的场所(无标准报时站的场所、宇宙等),或者天线的朝向不合适,在电波的定期检查中,电波频率或时间代码不同,或者气象上的电场强度下降等的状况的情况下,也能显示充分准确的时刻,可在各种状况下提供高精度的电波钟表。并且,在应用于移动电话机等的数据通信设备的情况下,通过把来自振荡部40的时钟信号用作通信比特速率用决定用基准信号,可进行高可靠且高速的通信。
权利要求书(按照条约第19条的修改)
1. 一种时钟信号输出装置,其具有生成基准时钟信号的基准振荡器,并根据基准时钟信号生成规定频率的输出用时钟信号进行输出,其特征在于,该时钟信号输出装置具有:
高精度振荡器,其生成比上述基准振荡器精度高的高精度时钟信号;
间歇驱动部,其间歇地驱动该高精度振荡器;以及
校正部,其每当上述高精度振荡器被驱动时,获得以上述高精度时钟信号为基准来校正上述输出用时钟信号的偏差量的校正数据,根据该校正数据校正上述输出用时钟信号。
2. 根据权利要求1所述的时钟信号输出装置,其特征在于,该时钟信号输出装置具有:基准振荡器影响信息检测部,其检测给上述基准振荡器的动作带来影响的基准振荡器影响信息;在检测出上述基准振荡器影响信息的情况下,上述间歇驱动部驱动上述高精度振荡器,上述校正部获得上述校正数据。
3. 根据权利要求1所述的时钟信号输出装置,其特征在于,该时钟信号输出装置具有:基准振荡器影响信息检测部,其检测给上述基准振荡器的动作带来影响的基准振荡器影响信息;以及存储部,其存储有与上述基准振荡器影响信息的各值对应的校正数据;
检测上述基准振荡器影响信息,在所检测的上述基准振荡器影响信息是最初检测的值的情况下,上述间歇驱动部驱动上述高精度振荡器,上述校正部获得上述校正数据,把该校正数据存储在上述存储部内,根据该校正数据校正上述输出时钟信号,在所检测的上述基准振荡器影响信息不是最初检测的值的情况下,根据与存储在上述存储部内的上述基准振荡器影响信息的值对应的校正数据来校正上述输出时钟信号。
4. 根据权利要求3所述的时钟信号输出装置,其特征在于,上述间歇驱动部在所检测的上述基准振荡器影响信息是在预定的校正数据更新期间内最初检测的值的情况下,驱动上述高精度振荡器,在所检测的上述基准振荡器影响信息不是在上述校正数据更新期间内最初检测的值的情况下,把上述高精度振荡器保持在非驱动状态。
5. (追加)根据权利要求4所述的时钟信号输出装置,其特征在于,上述间歇驱动部按照上述基准振荡器的老化特性把上述校正数据的更新期间设定得阶段性地变长。
6. (变更)根据权利要求2至5中的任一项所述的时钟信号输出装置,其特征在于,上述基准振荡器影响信息包含温度变化量、湿度变化量、电源功率、该时钟信号输出装置的姿势或重力方向中的至少任一方。
7. (变更)根据权利要求1至6中的任一项所述的时钟信号输出装置,其特征在于,该时钟信号输出装置具有:高精度振荡器影响信息检测部,其检测给上述高精度振荡器的动作带来影响的高精度振荡器影响信息;在检测上述高精度振荡器影响信息期间,把上述高精度振荡器保持在非驱动状态。
8. (变更)根据权利要求7所述的时钟信号输出装置,其特征在于,上述高精度振荡器影响信息包含磁场或电源功率中的至少任一方。
9. (变更)根据权利要求1至8中的任一项所述的时钟信号输出装置,其特征在于,上述基准振荡器的消耗功率比上述高精度振荡器小。
10. (变更)根据权利要求1至9中的任一项所述的时钟信号输出装置,其特征在于,上述基准振荡器是晶体振荡器、CR振荡器或者MEMS振荡器。
11. (变更)根据权利要求1至10中的任一项所述的时钟信号输出装置,其特征在于,上述高精度时钟信号是比上述基准时钟信号频率高的信号。
12. (变更)根据权利要求1至11中的任一项所述的时钟信号输出装置,其特征在于,上述高精度振荡器是原子振荡器、温度补偿振荡器、恒温槽控制晶体振荡器、使用了AT切割振子的振荡器中的任一方。
13. (变更)根据权利要求1至12中的任一项所述的时钟信号输出装置,其特征在于,该时钟信号输出装置具有:比较部,其进行上述基准时钟信号与上述高精度时钟信号的相位比较或者频率比较;上述间歇驱动部仅在驱动上述高精度振荡器期间驱动上述比较部。
14. (变更)根据权利要求1至13中的任一项所述的时钟信号输出装置,其特征在于,上述间歇驱动部按照上述基准振荡器的老化特性阶段性地延长间歇驱动周期。
15. 一种时钟信号输出装置的控制方法,该时钟信号输出装置具有生成基准时钟信号的基准振荡器,并根据基准时钟信号生成规定频率的输出用时钟信号进行输出,其特征在于,
间歇地驱动生成比上述基准振荡器精度高的高精度时钟信号的高精度振荡器,每当驱动该高精度振荡器时,获得以上述高精度时钟信号为基准来校正上述输出用时钟信号的偏差量的校正数据,根据该校正数据校正上述输出用时钟信号。
16. 一种电子设备,其具有时钟信号输出部,该时钟信号输出部根据从基准振荡器所输出的基准时钟信号生成规定频率的输出用时钟信号进行输出,其特征在于,该电子设备具有:
高精度振荡器,其生成比上述基准振荡器精度高的高精度时钟信号;
间歇驱动部,其间歇地驱动该高精度振荡器;以及
校正部,其每当上述高精度振荡器被驱动时,获得以上述高精度时钟信号为基准来校正上述输出用时钟信号的偏差量的校正数据,根据该校正数据校正上述输出用时钟信号。
17. (变更)根据权利要求16所述的电子设备,其特征在于,上述电子设备构成为钟表,该钟表具有根据上述输出用时钟信号来显示时刻的时刻显示部。
18. (变更)根据权利要求16或17所述的电子设备,其特征在于,上述电子设备内置有把动作功率提供给该电子设备的电源部。
19. 一种电子设备的控制方法,该电子设备具有时钟信号输出部,该时钟信号输出部根据从基准振荡器所输出的基准时钟信号生成规定频率的输出用时钟信号进行输出,其特征在于,
间歇地驱动用于生成比上述基准振荡器精度高的高精度时钟信号的高精度振荡器,每当驱动该高精度振荡器时,获得以上述高精度时钟信号为基准来校正上述输出用时钟信号的偏差量的校正数据,根据该校正数据校正上述输出用时钟信号。

Claims (18)

1.一种时钟信号输出装置,其具有生成基准时钟信号的基准振荡器,并根据基准时钟信号生成规定频率的输出用时钟信号进行输出,其特征在于,该时钟信号输出装置具有:
高精度振荡器,其生成比上述基准振荡器精度高的高精度时钟信号;
间歇驱动部,其间歇地驱动该高精度振荡器;以及
校正部,其每当上述高精度振荡器被驱动时,获得以上述高精度时钟信号为基准来校正上述输出用时钟信号的偏差量的校正数据,根据该校正数据校正上述输出用时钟信号。
2.根据权利要求1所述的时钟信号输出装置,其特征在于,该时钟信号输出装置具有:基准振荡器影响信息检测部,其检测给上述基准振荡器的动作带来影响的基准振荡器影响信息;在检测出上述基准振荡器影响信息的情况下,上述间歇驱动部驱动上述高精度振荡器,上述校正部获得上述校正数据。
3.根据权利要求1所述的时钟信号输出装置,其特征在于,该时钟信号输出装置具有:基准振荡器影响信息检测部,其检测给上述基准振荡器的动作带来影响的基准振荡器影响信息;以及存储部,其存储有与上述基准振荡器影响信息的各值对应的校正数据;
检测上述基准振荡器影响信息,在所检测的上述基准振荡器影响信息是最初检测的值的情况下,上述间歇驱动部驱动上述高精度振荡器,上述校正部获得上述校正数据,把该校正数据存储在上述存储部内,根据该校正数据校正上述输出时钟信号,在所检测的上述基准振荡器影响信息不是最初检测的值的情况下,根据与存储在上述存储部内的上述基准振荡器影响信息的值对应的校正数据来校正上述输出时钟信号。
4.根据权利要求3所述的时钟信号输出装置,其特征在于,上述间歇驱动部在所检测的上述基准振荡器影响信息是在预定的校正数据更新期间内最初检测的值的情况下,驱动上述高精度振荡器,在所检测的上述基准振荡器影响信息不是在上述校正数据更新期间内最初检测的值的情况下,把上述高精度振荡器保持在非驱动状态。
5.根据权利要求2至4中的任一项所述的时钟信号输出装置,其特征在于,上述基准振荡器影响信息包含温度变化量、湿度变化量、电源功率、该时钟信号输出装置的姿势或重力方向中的至少任一方。
6.根据权利要求1至5中的任一项所述的时钟信号输出装置,其特征在于,该时钟信号输出装置具有:高精度振荡器影响信息检测部,其检测给上述高精度振荡器的动作带来影响的高精度振荡器影响信息;在检测上述高精度振荡器影响信息期间,把上述高精度振荡器保持在非驱动状态。
7.根据权利要求6所述的时钟信号输出装置,其特征在于,上述高精度振荡器影响信息包含磁场或电源功率中的至少任一方。
8.根据权利要求1至7中的任一项所述的时钟信号输出装置,其特征在于,上述基准振荡器的消耗功率比上述高精度振荡器小。
9.根据权利要求1至8中的任一项所述的时钟信号输出装置,其特征在于,上述基准振荡器是晶体振荡器、CR振荡器或者MEMS振荡器。
10.根据权利要求1至9中的任一项所述的时钟信号输出装置,其特征在于,上述高精度时钟信号是比上述基准时钟信号频率高的信号。
11.根据权利要求1至10中的任一项所述的时钟信号输出装置,其特征在于,上述高精度振荡器是原子振荡器、温度补偿振荡器、恒温槽控制晶体振荡器、使用了AT切割振子的振荡器中的任一方。
12.根据权利要求1至11中的任一项所述的时钟信号输出装置,其特征在于,该时钟信号输出装置具有:比较部,其进行上述基准时钟信号与上述高精度时钟信号的相位比较或者频率比较;上述间歇驱动部仅在驱动上述高精度振荡器期间驱动上述比较部。
13.根据权利要求1至12中的任一项所述的时钟信号输出装置,其特征在于,上述间歇驱动部按照上述基准振荡器的老化特性阶段性地延长间歇驱动周期。
14.一种时钟信号输出装置的控制方法,该时钟信号输出装置具有生成基准时钟信号的基准振荡器,并根据基准时钟信号生成规定频率的输出用时钟信号进行输出,其特征在于,
间歇地驱动生成比上述基准振荡器精度高的高精度时钟信号的高精度振荡器,每当驱动该高精度振荡器时,获得以上述高精度时钟信号为基准来校正上述输出用时钟信号的偏差量的校正数据,根据该校正数据校正上述输出用时钟信号。
15.一种电子设备,其具有时钟信号输出部,该时钟信号输出部根据从基准振荡器所输出的基准时钟信号生成规定频率的输出用时钟信号进行输出,其特征在于,该电子设备具有:
高精度振荡器,其生成比上述基准振荡器精度高的高精度时钟信号;
间歇驱动部,其间歇地驱动该高精度振荡器;以及
校正部,其每当上述高精度振荡器被驱动时,获得以上述高精度时钟信号为基准来校正上述输出用时钟信号的偏差量的校正数据,根据该校正数据校正上述输出用时钟信号。
16.根据权利要求15所述的电子设备,其特征在于,上述电子设备构成为钟表,该钟表具有根据上述输出用时钟信号来显示时刻的时刻显示部。
17.根据权利要求15或16所述的电子设备,其特征在于,上述电子设备内置有把动作功率提供给该电子设备的电源部。
18.一种电子设备的控制方法,该电子设备具有时钟信号输出部,该时钟信号输出部根据从基准振荡器所输出的基准时钟信号生成规定频率的输出用时钟信号进行输出,其特征在于,
间歇地驱动用于生成比上述基准振荡器精度高的高精度时钟信号的高精度振荡器,每当驱动该高精度振荡器时,获得以上述高精度时钟信号为基准来校正上述输出用时钟信号的偏差量的校正数据,根据该校正数据校正上述输出用时钟信号。
CN2006800059136A 2005-02-24 2006-02-24 时钟信号输出装置及其控制方法、电子设备及其控制方法 Expired - Fee Related CN101128780B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP048269/2005 2005-02-24
JP2005048269 2005-02-24
PCT/JP2006/303403 WO2006090831A1 (ja) 2005-02-24 2006-02-24 クロック信号出力装置及びその制御方法、電子機器及びその制御方法

Publications (2)

Publication Number Publication Date
CN101128780A true CN101128780A (zh) 2008-02-20
CN101128780B CN101128780B (zh) 2010-12-08

Family

ID=36927464

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800059136A Expired - Fee Related CN101128780B (zh) 2005-02-24 2006-02-24 时钟信号输出装置及其控制方法、电子设备及其控制方法

Country Status (6)

Country Link
US (1) US7391273B2 (zh)
EP (1) EP1852756B1 (zh)
JP (1) JP4561829B2 (zh)
CN (1) CN101128780B (zh)
DE (1) DE602006016560D1 (zh)
WO (1) WO2006090831A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103608734A (zh) * 2011-05-14 2014-02-26 约翰逊控制器汽车电子有限责任公司 计时器设备及其操作方法
CN104601144A (zh) * 2013-10-31 2015-05-06 精工爱普生株式会社 时钟生成装置、电子设备、移动体以及时钟生成方法
CN106231668A (zh) * 2011-02-22 2016-12-14 松下知识产权经营株式会社 无线通信系统以及无线子机和无线母机
CN107229009A (zh) * 2016-03-25 2017-10-03 精工爱普生株式会社 电路装置、物理量检测装置、电子设备以及移动体
CN107306115A (zh) * 2016-04-25 2017-10-31 精工爱普生株式会社 电路装置、振荡器、电子设备以及移动体
CN110235065A (zh) * 2017-01-25 2019-09-13 ams有限公司 校准时间数字转换器系统的方法及时间数字转换器系统
CN110568750A (zh) * 2019-09-04 2019-12-13 西安矽力杰半导体技术有限公司 计时电路及计时方法
CN111033394A (zh) * 2017-09-28 2020-04-17 微芯片技术股份有限公司 经温度补偿的时钟频率监视器
CN111694399A (zh) * 2019-03-15 2020-09-22 瑞鼎科技股份有限公司 调整显示时钟的方法及装置
CN113031428A (zh) * 2019-12-25 2021-06-25 精工爱普生株式会社 实时时钟装置以及电子设备
CN113703518A (zh) * 2021-08-31 2021-11-26 深圳市航顺芯片技术研发有限公司 时钟频率调节装置、方法、设备及存储介质

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7791419B1 (en) * 2007-05-14 2010-09-07 Dust Networks, Inc. Timing calibration for crystal oscillators within a mesh network
US7852711B1 (en) * 2008-02-25 2010-12-14 Pillar, LLC Portable device using location determination and MEMS timekeeping to update and keep time
JP2010021706A (ja) * 2008-07-09 2010-01-28 Panasonic Corp 半導体集積回路
US7830216B1 (en) * 2008-09-23 2010-11-09 Silicon Labs Sc, Inc. Precision, temperature stable clock using a frequency-control circuit and a single oscillator
JP4695175B2 (ja) * 2008-11-14 2011-06-08 日本電波工業株式会社 恒温型の水晶発振器
US8731501B2 (en) * 2009-09-29 2014-05-20 Silicon Laboratories Inc. Systems and methods for tuning a broadcast radio receiver with digital display
JP2011197910A (ja) * 2010-03-18 2011-10-06 Denso Corp クロック制御回路およびマイクロコンピュータ
US8660596B2 (en) * 2010-10-01 2014-02-25 Mediatek Inc. Electronic apparatus and associated frequency adjusting method
EP2498151B1 (fr) 2011-03-09 2014-09-24 Rolex Sa Montre bracelet avec oscillateur atomique
JP6069872B2 (ja) * 2012-03-30 2017-02-01 セイコーエプソン株式会社 発振装置および電子装置
JP5874522B2 (ja) * 2012-05-09 2016-03-02 セイコーエプソン株式会社 発振装置および電子装置
US8901989B2 (en) * 2012-07-26 2014-12-02 Qualcomm Incorporated Adaptive gate drive circuit with temperature compensation
EP2741151A1 (en) * 2012-12-06 2014-06-11 Services Pétroliers Schlumberger Silicon-based oscillator for a downhole toolsystem made therewith
US9698872B2 (en) 2013-06-18 2017-07-04 Qualcomm Incorporated Methods and apparatus for improving remote NFC device detection using a low power oscillator circuit
JP6192529B2 (ja) * 2013-12-20 2017-09-06 学校法人 名城大学 電波時計の機能実行方法
WO2015156729A1 (en) * 2014-04-09 2015-10-15 Transmode Systems Ab Methods and nodes for transmission of a synchronous data over packet data network
JP6544047B2 (ja) * 2015-05-29 2019-07-17 セイコーエプソン株式会社 基準信号発生装置、電子機器、データ通信装置および地上デジタル通信網
JP2016226153A (ja) * 2015-05-29 2016-12-28 株式会社東芝 モータ駆動回路
JP2017175203A (ja) * 2016-03-18 2017-09-28 セイコーエプソン株式会社 発振器、電子機器および移動体
JP6834605B2 (ja) * 2017-03-06 2021-02-24 セイコーエプソン株式会社 電子機器
CN115561988B (zh) * 2022-12-06 2023-03-07 浙江赛思电子科技有限公司 一种授时终端及其授时系统和方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1224165A (en) * 1967-06-15 1971-03-03 Plessey Co Ltd Improvements relating to temperature compensated crystal oscillators
US3783408A (en) * 1972-06-30 1974-01-01 Honeywell Inf Systems Low frequency oscillator circuit
US3757510A (en) * 1972-07-03 1973-09-11 Hughes Aircraft Co High frequency electronic watch with low power dissipation
JPS5210769A (en) * 1975-07-16 1977-01-27 Citizen Watch Co Ltd Electronic watch
JPS5557181A (en) * 1978-10-20 1980-04-26 Citizen Watch Co Ltd Electronic watch
JPH0631731B2 (ja) 1984-08-13 1994-04-27 セイコーエプソン株式会社 温度補償機能付時計装置
US4899117A (en) * 1987-12-24 1990-02-06 The United States Of America As Represented By The Secretary Of The Army High accuracy frequency standard and clock system
JPH07312549A (ja) * 1994-05-19 1995-11-28 Toshiba Corp クロック補正方法及びその装置
JPH0882686A (ja) * 1994-09-12 1996-03-26 Nippon Avionics Co Ltd リアルタイムクロックの精度向上回路
DE69811374T2 (de) 1998-11-27 2003-12-18 Asulab Sa Hochfrequenztaktgenerator unter Verwendung eines Referenztaktgenerators
JP3558040B2 (ja) * 1999-03-30 2004-08-25 セイコーエプソン株式会社 電子機器、電子機器の外部調整装置、電子機器の調整方法
JP3642219B2 (ja) * 1999-03-30 2005-04-27 セイコーエプソン株式会社 電子機器および電子機器の調整方法
JP2000315121A (ja) * 1999-04-30 2000-11-14 Toshiba Corp Rtc回路
US6265945B1 (en) 1999-10-25 2001-07-24 Kernco, Inc. Atomic frequency standard based upon coherent population trapping
JP2002051004A (ja) * 2000-05-24 2002-02-15 Seiko Instruments Inc 電力供給装置及び携帯情報機器
JP3753307B2 (ja) 2000-10-31 2006-03-08 富士通株式会社 携帯無線端末装置
JP2002228778A (ja) 2001-01-31 2002-08-14 Seiko Epson Corp リアルタイムクロック及び計時回路
JP2002305443A (ja) * 2001-04-06 2002-10-18 Texas Instr Japan Ltd タイマー回路
US6806784B2 (en) * 2001-07-09 2004-10-19 The National Institute Of Standards And Technology Miniature frequency standard based on all-optical excitation and a micro-machined containment vessel
KR100396785B1 (ko) * 2001-10-19 2003-09-02 엘지전자 주식회사 Gsm단말기의 시간오차 보상장치 및 방법
WO2003098258A1 (en) * 2002-05-17 2003-11-27 Motorola, Inc., A Corporation Of The State Of Delaware Frequency management in a communications positioning device
JP2004048454A (ja) * 2002-07-12 2004-02-12 Fujitsu Ltd 原子発振装置
JP2004205244A (ja) * 2002-12-24 2004-07-22 Citizen Watch Co Ltd 電子時計及びその制御方法
JP4611892B2 (ja) * 2003-05-20 2011-01-12 シチズンホールディングス株式会社 電波修正腕時計、調整装置及び電波修正腕時計の調整システム

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106231668A (zh) * 2011-02-22 2016-12-14 松下知识产权经营株式会社 无线通信系统以及无线子机和无线母机
CN103608734A (zh) * 2011-05-14 2014-02-26 约翰逊控制器汽车电子有限责任公司 计时器设备及其操作方法
CN104601144A (zh) * 2013-10-31 2015-05-06 精工爱普生株式会社 时钟生成装置、电子设备、移动体以及时钟生成方法
CN104601144B (zh) * 2013-10-31 2019-03-19 精工爱普生株式会社 时钟生成装置、电子设备、移动体以及时钟生成方法
CN107229009B (zh) * 2016-03-25 2021-02-12 精工爱普生株式会社 电路装置、物理量检测装置、电子设备以及移动体
CN107229009A (zh) * 2016-03-25 2017-10-03 精工爱普生株式会社 电路装置、物理量检测装置、电子设备以及移动体
CN107306115A (zh) * 2016-04-25 2017-10-31 精工爱普生株式会社 电路装置、振荡器、电子设备以及移动体
CN110235065B (zh) * 2017-01-25 2021-04-06 希奥检测有限公司 校准时间数字转换器系统的方法及时间数字转换器系统
CN110235065A (zh) * 2017-01-25 2019-09-13 ams有限公司 校准时间数字转换器系统的方法及时间数字转换器系统
CN111033394A (zh) * 2017-09-28 2020-04-17 微芯片技术股份有限公司 经温度补偿的时钟频率监视器
US10936004B2 (en) 2017-09-28 2021-03-02 Microchip Technology Incorporated Temperature compensated clock frequency monitor
CN111033394B (zh) * 2017-09-28 2022-01-11 微芯片技术股份有限公司 经温度补偿的时钟频率监视器
CN111694399A (zh) * 2019-03-15 2020-09-22 瑞鼎科技股份有限公司 调整显示时钟的方法及装置
CN111694399B (zh) * 2019-03-15 2022-02-25 瑞鼎科技股份有限公司 调整显示时钟的方法及装置
CN110568750A (zh) * 2019-09-04 2019-12-13 西安矽力杰半导体技术有限公司 计时电路及计时方法
CN113031428A (zh) * 2019-12-25 2021-06-25 精工爱普生株式会社 实时时钟装置以及电子设备
CN113031428B (zh) * 2019-12-25 2022-09-23 精工爱普生株式会社 实时时钟装置以及电子设备
CN113703518A (zh) * 2021-08-31 2021-11-26 深圳市航顺芯片技术研发有限公司 时钟频率调节装置、方法、设备及存储介质

Also Published As

Publication number Publication date
CN101128780B (zh) 2010-12-08
EP1852756B1 (en) 2010-09-01
DE602006016560D1 (de) 2010-10-14
US7391273B2 (en) 2008-06-24
EP1852756A1 (en) 2007-11-07
JP4561829B2 (ja) 2010-10-13
US20060202771A1 (en) 2006-09-14
EP1852756A4 (en) 2009-08-05
JPWO2006090831A1 (ja) 2008-08-07
WO2006090831A1 (ja) 2006-08-31

Similar Documents

Publication Publication Date Title
CN101128780B (zh) 时钟信号输出装置及其控制方法、电子设备及其控制方法
CA1305611C (en) High accuracy frequency standard and clock system
CN103684256B (zh) 内置晶振的高精度数字温度补偿振荡器电路结构
JP5266308B2 (ja) 時間基準温度補償方法
CN102759881B (zh) 在工业温度范围内保持当日时间的设备和方法
US8901983B1 (en) Temperature compensated timing signal generator
EP2854293B1 (en) Temperature compensated timing signal generator
EP2854294B1 (en) Temperature compensated timing signal generator
CN202059372U (zh) 基于高频晶体实现时钟晶体振荡器闭环温度补偿的装置
CN103608734A (zh) 计时器设备及其操作方法
US7679466B1 (en) Counter-based resonator frequency compensation
EP1906271B1 (en) Portable clock and electronic device
KR102226104B1 (ko) 전자 시계에 통합된 타임 베이스의 평균 주파수를 조정하기 위한 방법
US8896359B1 (en) Temperature compensated timing signal generator
JP2000315121A (ja) Rtc回路
ES2380202T3 (es) Oscilador de cuarzo de elevada precisión y bajo consumo
JP4411869B2 (ja) 電子機器、電子機器の制御方法、そのプログラム、記録媒体
US20240094682A1 (en) Radio-Controlled Timepiece And Method Of Controlling Radio-Controlled Timepiece
JP6834605B2 (ja) 電子機器
JP2018169175A (ja) 携帯端末、プログラム、及び歩度補正システム
USRE31402E (en) Electronic timepiece
US20080191808A9 (en) Layout for a time base
JP2017151034A (ja) 発振装置、温度センサー、集積回路及び時計
JPH0245837Y2 (zh)
CN109976139A (zh) 电子钟表及电子钟表的控制方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20101208

Termination date: 20210224