CN101127402B - 用于增加堆入口rh的系统水平调节 - Google Patents

用于增加堆入口rh的系统水平调节 Download PDF

Info

Publication number
CN101127402B
CN101127402B CN2007101282927A CN200710128292A CN101127402B CN 101127402 B CN101127402 B CN 101127402B CN 2007101282927 A CN2007101282927 A CN 2007101282927A CN 200710128292 A CN200710128292 A CN 200710128292A CN 101127402 B CN101127402 B CN 101127402B
Authority
CN
China
Prior art keywords
cathode
relative humidity
inlet air
heap
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2007101282927A
Other languages
English (en)
Other versions
CN101127402A (zh
Inventor
A·B·阿尔普
D·A·阿瑟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GM Global Technology Operations LLC
Original Assignee
GM Global Technology Operations LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GM Global Technology Operations LLC filed Critical GM Global Technology Operations LLC
Publication of CN101127402A publication Critical patent/CN101127402A/zh
Application granted granted Critical
Publication of CN101127402B publication Critical patent/CN101127402B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04111Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants using a compressor turbine assembly
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04126Humidifying
    • H01M8/04141Humidifying by water containing exhaust gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04335Temperature; Ambient temperature of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04358Temperature; Ambient temperature of the coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04395Pressure; Ambient pressure; Flow of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/0441Pressure; Ambient pressure; Flow of cathode exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0444Concentration; Density
    • H01M8/04455Concentration; Density of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04492Humidity; Ambient humidity; Water content
    • H01M8/04507Humidity; Ambient humidity; Water content of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04589Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04723Temperature of the coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04731Temperature of other components of a fuel cell or fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04768Pressure; Flow of the coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04776Pressure; Flow at auxiliary devices, e.g. reformer, compressor, burner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04791Concentration; Density
    • H01M8/04798Concentration; Density of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04828Humidity; Water content
    • H01M8/04835Humidity; Water content of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04828Humidity; Water content
    • H01M8/04843Humidity; Water content of fuel cell exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/0494Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04992Processes for controlling fuel cells or fuel cell systems characterised by the implementation of mathematical or computational algorithms, e.g. feedback control loops, fuzzy logic, neural networks or artificial intelligence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04059Evaporative processes for the cooling of a fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • Evolutionary Computation (AREA)
  • Fuzzy Systems (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

一种用于增加堆入口RH的系统水平调节,具体地是一种用于燃料电池堆的控制系统,通过必要时采取降低堆冷却流体温度、增加阴极压力、和/或减少阴极化学计量的一个或多个措施来增加用于水蒸气转移装置以加湿阴极入口空气的阴极废气的相对湿度,来维持阴极入口空气的相对湿度在预定的百分比之上。该控制系统还能够限制堆的功率输出以保持阴极入口空气的相对湿度在预定的百分比之上。

Description

用于增加堆入口RH的系统水平调节
发明背景
1、发明领域
本发明总体上涉及一种用于控制到燃料电池堆(stack)的阴极入口空气的相对湿度的系统和方法,更特别地,涉及一种用于控制到燃料电池堆的阴极入口空气的相对湿度的包括选择性地降低堆冷却剂温度、增加阴极压力、减少阴极化学计量和/或限制堆的功率输出的系统和方法。
2、现有技术
因为氢是清洁的并且可以用于燃料电池中有效地发电,所以它是非常引人注目的燃料。氢燃料电池是一种包括其间具有电解质的阳极和阴极的电—化学装置。阳极接收氢气而阴极接收氧或者空气。氢气在阳极中离解以产生自由的氢质子和电子。氢质子穿过电解质到阴极。氢质子在阴极中与氧和电子反应以产生水。来自阳极的电子无法穿过电解质,因此在到达阴极之前它们直接通过负载来执行任务。
质子交换薄膜燃料电池(PEMFC)是用于车辆的一般燃料电池。PEMFC通常包括固态聚合体电解质质子导电薄膜,例如全氟磺酸薄膜。阳极和阴极典型地包括支撑在碳颗粒上并且与离子交联聚合物混合的细碎粒的催化颗粒,通常是铂(Pt)。催化混合物沉积在薄膜的相对侧上。阳极催化混合物、阴极催化混合物和薄膜的结合限定了薄膜电极组件(MEA)。MEA制造相对昂贵并且对于有效的操作需要一定的条件。
典型地,在燃料电池堆中将若干燃料电池结合以产生预期的电能。例如,用于车辆的典型燃料电池堆可以具有两百或更多的堆叠燃料电池。该燃料电池堆接收阴极输入气体,典型地是由压缩机施加穿过堆的空气流。不是所有的氧都由堆消耗,而是一些空气作为可包括水作为堆的副产品的阴极废气输出。该燃料电池堆还接收流到堆的阳极侧的阳极氢输入气体。
燃料电池堆包括位于堆中若干MEA之间的一系列双极板,其中双极板和MEA位于两个端板之间。双极板包括用于堆中毗邻的燃料电池的阳极侧和阴极侧。阳极气体流动通道设置在双极板的阳极侧上,其允许阳极反应气体流动到各自的MEA。阴极气体流动通道设置在双极板的阴极侧上,其允许阴极反应气体流动到各自的MEA。一个端板包括阳极气体流动通道,而另一个端板包括阴极气体流动通道。双极板和端板由导电材料制成,例如不锈钢或者导电组合物。端板将燃料电池产生的电流引导至堆外。双极板还包括冷却流体流经的流动通道。
过高的堆温度会损坏堆中的薄膜和其它材料。因此,燃料电池系统使用热子系统来控制燃料电池堆的温度。具体地,经过堆中双极板中的冷却流体流动通道泵进冷却流体以带走堆多余的热。正常的燃料电池堆工作期间,基于堆负荷、周围温度和其它因素来控制泵的速度,从而使堆的工作温度维持在最佳温度,例如80℃。典型地,在堆冷却回路的外侧提供散热器,该散热器将被堆加热的冷却液体冷却,在堆中该冷却的冷却液体循环通过堆。
如现有技术中充分理解的,燃料电池薄膜以一定的相对湿度(RH)工作,从而使穿过薄膜的离子阻力足够低以有效地传导质子。通过控制若干堆的工作参数,例如堆压力、温度、阴极化学计量和进到堆的阴极空气的相对湿度,控制来自燃料电池堆的阴极输出气体的相对湿度以控制薄膜的相对湿度。由于显示出RH端值之间的循环严格限制了薄膜寿命,所以出于堆耐用的目的,期望最小化薄膜相对湿度循环的数量。由于吸收水分和随后的干燥,薄膜RH循环造成薄膜扩张和收缩。薄膜的这种扩张和收缩造成薄膜中的针孔,其造成氢和氧交叉穿越薄膜产生热点,这进一步增加了薄膜中针孔的尺寸,因此,降低了它的寿命。
燃料电池工作期间,MEA的湿气和外部的潮湿会进入阳极和阴极流动通道。在低电池功率需求下,典型地低于0.2A/cm2,由于反应气体的流动速度太低无法使水分流出通道,所以水分会在流动通道中积累。随着水分的积累,在流动通道中形成液滴。随着液滴尺寸的增加,流动通道封闭,而且因为在普通的入口和出口歧管之间通道是平行的,所以反应气体转移到其它流动通道。随着液滴尺寸增加,液滴的表面张力会变得比试图将液滴推到排气歧管的Δ压力更大,因此反应气体不会流经水分阻塞的通道,反应气体无法促使水分流出通道。薄膜的那些由于通道阻塞而不接收反应气体的区域将不发电,因此导致不均匀的电流分布并降低燃料电池的整体效率。随着水分阻塞了越来越多的流动通道,由燃料电池产生的电能减少,其中认为小于200mV的电池电压电势是电池失效。因为燃料电池是电耦合串联,所以如果一个燃料电池停止工作,那么整个燃料电池堆会停止工作。
如上所述,水分作为堆工作的副产品而产生。因此,来自堆的阴极废气将包括水蒸气和液态水。现有技术中已知使用水蒸气转移(WVT)单元来收集阴极废气中的一些水分,并且使用该水分来加湿阴极输入空气流。WVT装置往往相当昂贵并且在燃料电池系统设计中占用很大空间。因此,最小化WVT装置的尺寸将不仅降低系统的成本,而且减少了需要对其封装的空间。而且,已知的WVT装置往往随时间的推移而退化。特别地,像装置使用年限中的薄膜或者其它元件,它们的水分传输能力降低,从而降低了它们整体的效率。
而且,当对堆的功率要求增加时,压缩机速度增加以提供用于所需功率的适当量的阴极空气。但是,当压缩机速度增加时,经过WVT装置的空气流具有较高的速度,以及较少的加湿到预期水平的机会。而且,在一些燃料电池系统设计中,阴极废气流的相对湿度基本维持恒定,典型地约80%,其中控制冷却流体流动的温度从而使其温度随堆的负荷增加而增加。
发明内容
根据本发明的教导,公开了一种用于燃料电池堆的控制系统,通过必要时采取降低堆冷却流体温度、增加阴极压力、和/或减少阴极化学计量的一个或多个措施来增加被水蒸气转移(transfer)装置所使用以对阴极入口空气进行加湿的阴极废气的相对湿度,来维持阴极入口空气的相对湿度在预定的百分比之上。该控制系统还能够限制堆的功率输出以保持阴极入口空气的相对湿度在预定的百分比之上。
本发明的附加特征通过结合附图的下面描述和附加的权利要求而变得显而易见。
附图说明
图1是根据本发明的实施例,包括用于控制阴极入口湿度的控制器的燃料电池系统的示意性方块图。
具体实施方式
指导用于燃料电池堆的控制系统的本发明实施方式的下列讨论本质上仅是示例性的并且决不打算限制本发明或者其实施或使用,该控制系统通过必要时采取降低堆冷却流体温度、增加阴极压力、减少阴极化学计量、和/或限制堆的功率输出的一个或多个措施来维持阴极入口空气的相对湿度在预定的百分比之上。
图1是包括燃料电池堆12的燃料电池系统10的示意性方块图。堆12包括阴极输入线路14和阴极输出线路16。压缩机18产生经WVT装置20传送以加湿的用于堆12阴极侧的空气流。质量流量计22测量来自压缩机的空气的流动率。将加湿的空气在线路14上输入到堆12,并且将加湿的阴极废气供给在输出线路16上。经过WVT装置20来传送线路16上的阴极废气以提供用于加湿阴极输入空气的水蒸气。WVT装置20可以是用于这里所述目的的任何合适的WVT装置。
系统10包括抽吸穿过流经堆12的冷却剂回路28的冷却流体的泵24。从堆12加热的冷却流体流经散热器30,在散热器30中该流体被冷却且通过冷却剂回路28送回到堆12中。系统10还包括位于阴极废气线路14中在WVT装置20之后用于控制堆12的阴极侧压力的背压阀42。
系统10包括若干用于传感某些工作参数的传感器。具体地,系统10包括用于测量线路14中的阴极入口空气的相对湿度的RH传感器36,以及用于测量线路14中的阴极入口空气温度的温度传感器34。在现有技术中已知的是使用湿敏传感器来代替RH传感器36和温度传感器34的结合。温度传感器38测量进入堆12的冷却剂回路28中的冷却流体的温度,并且温度传感器26测量离开堆12的冷却流体的温度。压力传感器32测量线路16中的阴极废气的压力。如现有技术中已知的,因为堆12的温度不同于入口线路14中的空气的温度,所以需要修正所测量的阴极入口空气的相对湿度。通过已知入口RH和进入堆12的冷却流体的温度,可以计算阴极空气的修正相对湿度。
控制器40接收来自质量流量计22的质量流量信号、来自RH传感器36的相对湿度信号、来自温度传感器34的温度信号、来自温度传感器38的温度信号、来自温度传感器26的温度信号和来自压力传感器32的压力信号。控制器40还控制背压阀42。
根据本发明,控制器40通过必要时执行降低冷却流体温度、增加阴极压力、和/或减少阴极化学计量的一个或多个措施来增加被WVT装置20所使用以对阴极入口空气进行加湿的阴极废气的相对湿度,来试图将修正的相对湿度维持在预定的百分比之上。控制器40还可以限制堆12的功率输出以将阴极入口空气的相对湿度保持在预定的百分比之上。
控制器40可以通过增加泵24的速度和/或散热器28的冷却能力,例如通过冷却风扇,来降低堆冷却流体温度。控制器40可以通过关闭和打开背压阀42来增加或减少堆12中的阴极压力。压力传感器32将测量阴极压力的变化。而且,控制器40可以为了特定的输出电流通过降低压缩机18的速度来减少阴极化学计量。通过控制器40读取来自质量流量计22的信号并基于该信号,控制器40控制压缩机18的速度到预期的阴极化学计量定点。这些操作的一个或多个的结合将增加线路16上的阴极废气的相对湿度,从而提供了用于加湿阴极入口空气的WVT装置20中的更大湿度。
如果这三个操作的一个或多个没有将阴极入口空气的修正相对湿度增加到预期百分比之上,那么控制器40会限制来自堆12的功率输出。这可以通过在燃料电池堆12和堆负荷之间改变“最大可用电流”变量来做到。减少该变量值适当的量直到阴极入口湿度充足。通过减少该变量,堆负荷将吸取较少的功率,它减少了涌进流动通道的副产品水分。而且,压缩机18的阴极空气流的设定点将降低,导致较慢的空气流穿过WVT装置20,以及更大的阴极入口空气湿度。
如果增加线路16中的阴极废气的相对湿度以满足入口空气相对湿度,那么监视堆12中的燃料电池的输出电压以确定是否会淹没电池,尤其是末端电池。如果存在水分正在流动通道中积累的迹象,那么控制器40会通过上述操作中的任一个来降低阴极废气的相对湿度。
用该控制设计,有可能通过在工业中典型使用的那些技术减小WVT装置20的尺寸,而不用牺牲长久的堆寿命所需的最小阴极入口湿度。因此,可以降低WVT装置20所要求的成本、重量和空间要求。
用来计算用于本发明上述控制算法的阴极出口相对湿度、阴极化学计量和阴极入口RH的公式在现有技术中是已知的。特别地,可以计算阴极输出相对湿度,通过
100 * P 127 [ 10 7.903 - 1674.5 229.15 + T 1 ] [ CS + 0.21 ] ( 1 - 10 7.903 - 1674.5 229.15 + T 1 P 1 + P 2 ) / [ 2 · 0.21 ] + [ ( 10 7.903 - 1674.5 229.15 + T 1 P 1 + P 2 ) ( CS - 2 · 0.21 ) ] ( 1 )
可以计算阴极化学计量,通过
Figure S071C8292720070716D000062
可以计算阴极入口相对湿度百分比,通过
10 7.093 - 1674.5 229.15 + T 2 [ C ] 10 7.093 - 1674.5 229.15 + T 3 [ C ] - - - ( 3 )
其中CS是阴极化学计量,T1是以摄氏度为单位的堆冷却流体出口温度,P1是以kPa为单位的阴极出口压力,T2是以摄氏度为单位的阴极入口温度,P2是以kPa为单位的阴极压力降,其基于已知模型计算,以及T3是以摄氏度为单位的堆冷却流体入口温度。
前面的讨论仅仅公开并描述了本发明的示例性实施例。本领域技术人员将轻易地从这种讨论以及从附图和权利要求中认识到,可以从中进行各种改变、修改和变化而没有脱离本发明的精神和范围,就像下面的权利要求所限定的。

Claims (10)

1.一种燃料电池系统,包括:
接收阴极入口空气流并输出阴极废气流的燃料电池堆;
用于向堆提供阴极入口空气流的压缩机;
接收来自压缩机的阴极入口空气流和来自燃料电池堆的阴极废气流的水蒸气转移装置,所述水蒸气转移装置用阴极废气中的水分加湿阴极入口空气;
用于使冷却流体经过堆流动以控制堆温度的冷却剂回路;以及
用于控制阴极入口空气的相对湿度从而使相对湿度不降到预定的百分比以下的控制器,所述控制器执行降低冷却流体的温度、增加阴极压力和减少阴极化学计量的一个或多个措施来增加阴极废气的相对湿度,以防止阴极入口空气的相对湿度降到预定的百分比以下,
所述燃料电池系统的特征在于:
其还包括位于阴极排气线路中的背压阀,所述控制器关闭背压阀以增加阴极压力,并且
其中如果降低冷却流体的温度、增加阴极压力和减少阴极化学计量在防止阴极入口空气的相对湿度降到预定的百分比以下中都无效,那么控制器限制燃料电池堆功率输出。
2.根据权利要求1的系统,其中控制器增加经过冷却剂回路的冷却流体流动以降低堆冷却流体温度。
3.根据权利要求1的系统,其中控制器增加冷却剂回路中的散热器的冷却能力以降低堆冷却流体温度。
4.根据权利要求1的系统,其中控制器减小压缩机的速度以减少阴极化学计量。
5.根据权利要求1的系统,其中所述系统在车辆上。
6.一种燃料电池系统,包括:
接收阴极入口空气流并输出阴极废气流的燃料电池堆;
位于阴极排气线路中的背压阀;
用于向堆提供阴极入口空气流的压缩机;
接收来自压缩机的阴极入口空气流和来自燃料电池堆的阴极废气流的水蒸气转移装置,所述水蒸气转移装置用阴极废气中的水分加湿阴极入口空气;
用于使冷却流体经过堆流动以控制堆温度的冷却流体回路;以及
用于控制阴极入口空气的相对湿度从而使相对湿度不降到预定的百分比以下的控制器,所述控制器通过执行增加冷却流体流动以降低冷却流体温度、为了降低冷却流体温度而增加散热器的冷却能力、关闭背压阀以增加阴极压力、以及降低压缩机的速度以减少阴极化学计量的一个或多个措施来增加阴极废气的相对湿度,以防止阴极入口空气的相对湿度降到预定的百分比以下,
其中如果降低冷却流体的温度、增加阴极压力和减少阴极化学计量在防止阴极入口空气的相对湿度降到预定的百分比以下中都无效,那么控制器限制燃料电池堆功率输出。
7.一种用于防止到燃料电池堆的阴极入口空气流的相对湿度降到预定的百分比之下的方法,所述方法包括:
使阴极废气流经水蒸气转移装置;
使阴极入口空气流流经水蒸气转移装置以获得由阴极废气所提供的湿度;以及
执行降低冷却堆的冷却流体的温度、增加堆的阴极压力以及减少阴极化学计量中的一个或多个措施来增加阴极废气的相对湿度,以防止阴极入口空气的相对湿度降到预定的百分比之下,
所述方法的特征在于:
其还包括限制燃料电池堆功率以防止阴极入口空气的相对湿度降到预定的百分比之下,并且
其中增加阴极压力包括关闭阴极废气线路中的背压阀。
8.根据权利要求7的方法,其中降低冷却流体的温度包括增加冷却流体流动。
9.根据权利要求7的方法,其中降低冷却流体的温度包括增加散热器的冷却能力。
10.根据权利要求7的方法,其中减少阴极化学计量包括降低提供阴极入口空气流的压缩机的速度或者增加堆的输出电流。
CN2007101282927A 2006-06-09 2007-06-08 用于增加堆入口rh的系统水平调节 Expired - Fee Related CN101127402B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/449933 2006-06-09
US11/449,933 US20070287041A1 (en) 2006-06-09 2006-06-09 System level adjustments for increasing stack inlet RH

Publications (2)

Publication Number Publication Date
CN101127402A CN101127402A (zh) 2008-02-20
CN101127402B true CN101127402B (zh) 2010-09-15

Family

ID=38777143

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007101282927A Expired - Fee Related CN101127402B (zh) 2006-06-09 2007-06-08 用于增加堆入口rh的系统水平调节

Country Status (4)

Country Link
US (1) US20070287041A1 (zh)
JP (1) JP4871219B2 (zh)
CN (1) CN101127402B (zh)
DE (1) DE102007026331B4 (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7517600B2 (en) * 2006-06-01 2009-04-14 Gm Global Technology Operations, Inc. Multiple pressure regime control to minimize RH excursions during transients
US8173311B2 (en) * 2007-02-26 2012-05-08 GM Global Technology Operations LLC Method for dynamic adaptive relative humidity control in the cathode of a fuel cell stack
JP2008277115A (ja) * 2007-04-27 2008-11-13 Toyota Motor Corp 燃料電池システム
US8415067B2 (en) 2008-02-14 2013-04-09 GM Global Technology Operations LLC Three-way diverter assembly for a fuel cell system
US8308938B2 (en) * 2008-06-18 2012-11-13 GM Global Technology Operations LLC Three-way diverter assembly for a fuel cell system
JP5506182B2 (ja) * 2008-11-14 2014-05-28 パナソニック株式会社 燃料電池スタックを備える燃料電池システムおよび燃料電池スタックの製造方法
JP5287864B2 (ja) * 2009-04-28 2013-09-11 トヨタ自動車株式会社 燃料電池システム
KR101090715B1 (ko) * 2009-05-27 2011-12-08 현대자동차주식회사 연료전지의 공기 공급량 제어 방법
CN101944625B (zh) * 2009-07-08 2013-02-06 上海攀业氢能源科技有限公司 一种空冷燃料电池系统
KR20110011944A (ko) 2009-07-29 2011-02-09 삼성에스디아이 주식회사 연료전지 시스템
US9368817B2 (en) * 2009-10-16 2016-06-14 GL Global Technology Operations LLC In-situ fuel cell stack reconditioning
US9306230B2 (en) * 2009-11-19 2016-04-05 GM Global Technology Operations LLC Online estimation of cathode inlet and outlet RH from stack average HFR
US8927165B2 (en) 2010-06-28 2015-01-06 GM Global Technology Operations LLC Stack cathode inlet RH (relative humidity) control without RH sensing device feedback
KR101282679B1 (ko) 2010-07-07 2013-07-12 현대자동차주식회사 연료전지 시스템의 운전 방법
WO2012127348A1 (en) * 2011-03-23 2012-09-27 Tata Motors Limited System and method for controlling temperature of a fuel cell stack
EP2720306B8 (en) * 2011-06-06 2016-09-07 Nissan Motor Co., Ltd. Wet state control device for fuel cell
US10873094B2 (en) * 2011-09-02 2020-12-22 Nissan Motor Co., Ltd. Fuel cell system
KR101417345B1 (ko) * 2012-09-19 2014-07-08 기아자동차주식회사 연료전지 시스템의 제어 방법
KR101755781B1 (ko) * 2015-01-19 2017-07-10 현대자동차주식회사 차량 연료전지의 제어방법
DE102017102354A1 (de) 2017-02-07 2018-08-09 Audi Ag Verfahren zum Betreiben eines Brennstoffzellensystems und zum Einstellen einer relativen Feuchte eines Kathodenbetriebsgases während einer Aufheizphase
CN110212221B (zh) * 2019-05-16 2020-06-05 苏州市华昌能源科技有限公司 燃料电池、其湿度控制方法
CN110190307B (zh) * 2019-05-16 2020-07-24 苏州市华昌能源科技有限公司 燃料电池系统、其湿度控制方法
DE102021213328A1 (de) 2021-11-26 2023-06-01 Robert Bosch Gesellschaft mit beschränkter Haftung Brennstoffzellensystem und Verfahren zum Betreiben eines Brennstoffzellensystems

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1606187A (zh) * 2003-10-10 2005-04-13 现代自动车株式会社 用于燃料电池堆的温度/湿度控制系统及其方法
CN2733612Y (zh) * 2004-02-27 2005-10-12 上海神力科技有限公司 一种带有动态控制装置的燃料电池
CN1741312A (zh) * 2004-08-27 2006-03-01 亚太燃料电池科技股份有限公司 燃料电池加湿模组的瞬间启动及调温装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001143732A (ja) * 1999-11-12 2001-05-25 Toshiba Corp 固体高分子型燃料電池発電システム及びその運転方法
JP2001351655A (ja) * 2000-06-05 2001-12-21 Honda Motor Co Ltd 燃料電池用ガス供給装置
US6777120B2 (en) * 2001-05-23 2004-08-17 General Motors Corporation Relative humidity sensor with compensation for changes in pressure and gas composition
JP3807263B2 (ja) * 2001-07-24 2006-08-09 日産自動車株式会社 燃料電池の発電量制御装置
DE10146943B4 (de) * 2001-09-24 2017-05-24 General Motors Llc ( N. D. Ges. D. Staates Delaware ) Verfahren zum Betrieb eines Brennstoffzellensystems sowie Brennstoffzellensystem
US20040096709A1 (en) * 2002-11-15 2004-05-20 Darling Robert M. Fuel cell system with a dry cathode feed
JP4698965B2 (ja) * 2004-03-29 2011-06-08 本田技研工業株式会社 燃料電池システム
DE102004022312B4 (de) * 2004-05-04 2009-04-16 Daimler Ag Feuchtigkeitsaustauschmodul mit einem Bündel von für Feuchtigkeit durchlässigen Hohlfasermembranen
US7976991B2 (en) * 2005-05-17 2011-07-12 GM Global Technology Operations LLC Relative humidity control for a fuel cell
US7517600B2 (en) * 2006-06-01 2009-04-14 Gm Global Technology Operations, Inc. Multiple pressure regime control to minimize RH excursions during transients

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1606187A (zh) * 2003-10-10 2005-04-13 现代自动车株式会社 用于燃料电池堆的温度/湿度控制系统及其方法
CN2733612Y (zh) * 2004-02-27 2005-10-12 上海神力科技有限公司 一种带有动态控制装置的燃料电池
CN1741312A (zh) * 2004-08-27 2006-03-01 亚太燃料电池科技股份有限公司 燃料电池加湿模组的瞬间启动及调温装置

Also Published As

Publication number Publication date
US20070287041A1 (en) 2007-12-13
DE102007026331B4 (de) 2012-08-02
JP2007335409A (ja) 2007-12-27
JP4871219B2 (ja) 2012-02-08
DE102007026331A1 (de) 2008-01-03
CN101127402A (zh) 2008-02-20

Similar Documents

Publication Publication Date Title
CN101127402B (zh) 用于增加堆入口rh的系统水平调节
CN100583527C (zh) 用于使瞬变期间的相对湿度偏移最小化的多压力状态控制
CN102110828B (zh) 从电池堆平均hfr在线估计阴极进口和出口rh
CN100583528C (zh) 基于反馈用于高温防护的质子交换膜燃料电池的控制
US8053126B2 (en) Water transfer efficiency improvement in a membrane humidifier by reducing dry air inlet temperature
US9105889B2 (en) Method and apparatus for determining humidity states of individual cells in a fuel cell, method and apparatus for controlling humidity states of individual cells in a fuel cell, and a fuel cell system
JP5394568B2 (ja) 開放型燃料電池システム
JP4705543B2 (ja) 閉鎖式インジェクタの抜き取り機能を用いたアノード流れシフト方法
US8623564B2 (en) Method for remedial action in the event of the failure of the primary air flow measurement device in a fuel cell system
US7514171B2 (en) Cathode transient humidity control in a fuel cell system
WO2011018856A1 (ja) 燃料電池の含水量制御方法及び燃料電池システム
CN101764244A (zh) 燃料电池系统中氢进入阴极入口的方法和控制
CN101728555B (zh) 在燃料电池系统中的压缩机旁通阀故障期间的补救方法
CN110212221B (zh) 燃料电池、其湿度控制方法
JPWO2010073386A1 (ja) 燃料電池システム
CN102193030B (zh) 用于基于hfr的rh控制的基本堆电阻的自学习
CN102195055B (zh) 在满足排放限制同时用于最大化泄放速度的在线阳极压力偏置
US8927165B2 (en) Stack cathode inlet RH (relative humidity) control without RH sensing device feedback
CN101399349A (zh) 具有减少的效率损耗的燃料电池系统加温策略
JP7374061B2 (ja) 燃料電池システム
JP5310739B2 (ja) 燃料電池システム
CN102195065A (zh) 用于燃料电池车辆启动的可变阳极流率
JP7331825B2 (ja) 燃料電池システム
US20090117422A1 (en) Balanced Humidity by Cross Coupling WVT and Stack Cathode Flow Paths

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100915