CN101126810A - 一种合成孔径雷达图像自适应斑点噪声抑制方法 - Google Patents

一种合成孔径雷达图像自适应斑点噪声抑制方法 Download PDF

Info

Publication number
CN101126810A
CN101126810A CNA2007101221054A CN200710122105A CN101126810A CN 101126810 A CN101126810 A CN 101126810A CN A2007101221054 A CNA2007101221054 A CN A2007101221054A CN 200710122105 A CN200710122105 A CN 200710122105A CN 101126810 A CN101126810 A CN 101126810A
Authority
CN
China
Prior art keywords
mrow
msub
msup
sigma
sliding window
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007101221054A
Other languages
English (en)
Other versions
CN100510774C (zh
Inventor
陈杰
朱晶
刘滕冲
周荫清
李春升
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CNB2007101221054A priority Critical patent/CN100510774C/zh
Publication of CN101126810A publication Critical patent/CN101126810A/zh
Application granted granted Critical
Publication of CN100510774C publication Critical patent/CN100510774C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)
  • Image Processing (AREA)

Abstract

本发明提出了一种合成孔径雷达图像自适应斑点噪声抑制方法,提出了用一种全局统计量异质性熵He,作为判断区域同质异质性的标准由于异质性熵He利用图像全局的概率统计分布,可以很好的测量出边沿细节和纹理信息的变化,从而更准确地对图像局部同质异质性进行判断,并自适应地采取不同的降噪处理措施这种方法可以在不牺牲空间分辨率的前提下抑制合成孔径雷达图像中的斑点噪声,并保留目标边沿纹理细节信息的作用。

Description

一种合成孔径雷达图像自适应斑点噪声抑制方法
技术领域
本发明属于图像处理领域,涉及一种斑点噪声抑制方法,特别涉及一种合成孔径雷达图像的自适应斑点噪声抑制方法
背景技术
合成孔径雷达(SAR)不受天气地理和时间等因素的限制,能够对地面进行高分辨率成像,并且具有一定的穿透力,因而被广泛应用于军事侦察资源探测火灾海洋观测环境监测等方面
由于SAR基于相干成像机理进行工作,导致SAR图像中存在严重的斑点噪声,对雷达图像的解译判读和信息提取带来非常大的影响早期的SAR图像斑点噪声抑制是通过多视处理来实现的,这种方法的主要缺点是牺牲了图像的空间分辨率,不适用于当前的高分辨率SAR系统
目前,通常采用空域滤波方法来实现斑点噪声抑制空域的方法一般是利用一个滑动窗口,对窗口内的象素进行加权得到窗口中心点的象素值的滤波方法传统的方法,如Lee滤波,Kuan滤波,Frost滤波以及Gamma MAP滤波,但是上述方法得到的图像存在边沿和纹理细节模糊等问题近期的方法,如改进型Lee滤波利用局域统计量即滑动窗口下的均值和标准差的比值Cv作为权重因子,在均匀区域和比较突变的边沿区域,输出不同的滤波值从而进行斑点噪声抑制这种改进型Lee算法在某种程度上能保持突变的边沿,但是一般SAR图像中的斑点噪声不仅包含乘性噪声,还包含有加性噪声,而Cv仅适用于乘性噪声模型,对加性噪声非常敏感,并且仅是局部统计量,因此边沿细节和纹理信息仍旧不能得到很好的保持
Bruno Aiazzi基于信息论提出的一种定性分析异质性的方法的原理为:
假定SAR图像的回波信号中包含着乘性噪声,因此回波乘性噪声模型为:
g(m,n)=f(m,n)·u(m,n)
其中,g(m,n)为点(m,n)处观察到的图像强度;f(m,n)为点(m,n)处目标的雷达散射截面积(RCS),或者后向散射系数;u(m,n)为点(m,n)处目标的噪声
而在非同质区域,则有:σg(m,n)=μg(m,n)·σu。表明:在同质区域里,图像的局域标准差同均值呈正比,满足线性关系而在异质场景中则不满足这个关系,此时标准差的数值受散射回波方差的影响,是随机的变化的,并与均值无关也就是说,在同质区域内,条件概率P(σij)的值很大相对的,在异质区域,P(σij)的数值很低,因此,可以利用表示μj和σi之间依存关系的条件概率P(σij)来衡量SAR图像中的异质性同样的,在同质区域中,当μj和σi具有很强的依存关系时,也可以通过其联合概率分布状况来描述该区域的同质性
由于Bruno Aiazzi的方法没有给出一个确定的定量化指标来衡量异质性强弱,只是通过对条件概率密度分布中散点的离散程度进行目测,根据目视效果对目标区域的异质性进行主观评判
发明内容
本发明的目的是提出了一种合成孔径雷达图像自适应斑点噪声抑制方法,方法中提出了一种新的表征SAR图像局域异质性的定量化指标——异质性熵,并详细说明了局域异质性熵的计算方法和处理流程,由于异质性熵利用图像全局的概率统计分布,可以很好的测量出边沿细节和纹理信息的变化,因此可以更准确地对图像局部的同质性与异质性进行准确判断并自适应地采取不同的降噪处理措施,能够实现对SAR图像中的斑点噪声进行有效抑制,并保持了图像中的纹理细节信息,使图像在不牺牲空间分辨力的前提下有效地将目标从背景中区分出来,达到既保持边沿细节和纹理信息又有效抑制斑点噪声的效果
一种合成孔径雷达图像自适应斑点噪声抑制方法,包括以下实现步骤:
步骤1:在雷达图像上设定滑动窗口和子滑动窗口,采用嵌套窗口技术扫描滑动窗口,设定并估计出子窗口中心点的局部统计特性量:均值μj和标准差σi,并对均值μj和标准差σi分别进行256阶的量化;对量化后的均值μj和标准差σi计算其在滑动窗口内的概率分布
步骤2:利用二维联合直方图产生256×256阶的均值μj和标准差σi联合分布矩阵,并在矩阵中用3×3窗口进行判断,将窗口周围8个邻域像素值均为0的散点作为孤立散点
步骤3:计算联合分布矩阵的各孤立散点的概率密度,得到各孤立散点的联合概率分布矩阵P(σi,μj)。
步骤4:根据公式 p ( i | j ) = p ( i , j ) p ( j ) = p ( i , j ) Σ i p ( i , j ) , 计算得到各孤立散点的条件概率分布矩阵P(σij)。
步骤5:计算该滑动窗口的异质性熵 H e = - Σ ij T ij P ( σ i , μ j ) l og 2 P ( σ i | μ j ) ; 其中,Tij表示为滑动窗口特殊散点的个数
步骤6:采用嵌套窗口技术,按步骤1~步骤5扫描全幅图像;求出全幅图像的异质性熵矩阵
步骤7:根据异质性熵He矩阵的矩阵直方图特性选取2个异质性熵值陡降的区域,并设定为门限值Hemin与Hemax
步骤8:设目标滑动窗口((2p+1)×(2p+1))中心点像素值为I,滤波后中心点像素输出值为
Figure A20071012210500061
,该区域的异质性熵值为Hex
如果Hex≤Hemin,应采取平滑滤波,用滑动窗口的中心点均值取代原中心像素值I,即 R ^ = I ‾ ,此处
Figure A20071012210500064
表示滑动窗口的中心点像素均值;
如果Heminn≤Hex≤Hemax,应采取自适应滤波,即滤波后中心点像素输出值
R ^ = I · ( 1 - σ u 2 I ‾ 2 / σ i 2 1 + σ u 2 ) + I ‾ ( 1 - 1 - σ u 2 I ‾ 2 / σ i 2 1 + σ u 2 ) ;
其中已知SAR图像的处理视数为L, σ u = 1 L ;
如果Hemax≤Hex,则原中心像素应保持不变,不做处理,即 R ^ = I .
所述步骤5中异质性熵的计算公式为: H e = - Σ ij T ij P ( σ i , μ j ) log 2 P ( σ i | μ j ) , 表示为某局部区域给定均值μj时,得到标准差为σi的平均不确定性;Tij表示为滑动窗口特殊散点的个数;P(σij)为各孤立散点均值μj时,得到标准差为σi的条件概率;P(σi,μj)为各孤立散点均值μj、标准差为σi的联合概率
所属步骤5中异质性熵的计算公式的Tij表示为滑动窗口中每块(2q+1)×(2q+1)的子滑动窗口区域满足均值为μj,标准差为σi的孤立散点个数
所述步骤1中采用嵌套窗口技术用一个(2p+1)×(2p+1)的滑动窗口在图像上滑动,并在窗口中设定一个(2q+1)×(2q+1)的子滑动窗口,其中p>q,且p、q均为整数;子滑动窗口在滑动窗口内逐行滑动并将估计出的均值μj和标准差σi分别进行256阶的量化,直至滑动窗口内能被子滑动窗口扫描的点全部被扫描完毕。
所述步骤6中采用嵌套窗口技术滑动窗口在图像上逐行滑动,子滑动窗口再在滑动窗口内滑动,进行步骤1~步骤5的操作,如此循环,直至全幅图像被扫描完毕。
本发明一种合成孔径雷达图像自适应斑点噪声抑制方法的优点在于:
(1)基于对图像中局域异质性熵的测量,能够对图像局域中是否存在边沿细节或纹理信息进行自适应判断,从而有效地将目标从背景中区分出来。
(2)通过对局域异质性熵进行阈值判断,可以针对滑动窗内局域图像的不同类型采用相应的降噪处理方法,达到既保持边沿细节和纹理信息又有效抑制斑点噪声的效果,在目视效果主观评价和边沿保持系数(FOM)客观评价指标上都具有明显的优势。
附图说明
图1是本发明一种合成孔径雷达图像自适应斑点噪声抑制方法的流程图;
图2是本发明一种合成孔径雷达图像自适应斑点噪声抑制方法的弱异质性SAR图像不同噪声抑制方法边沿保持系数(FOM)效果图;
图3是本发明一种合成孔径雷达图像自适应斑点噪声抑制方法的强异质性SAR图像不同噪声抑制方法边沿保持系数(FOM)效果图
具体实施方式
下面将结合附图对本发明作进一步的详细说明
本发明提出了一种合成孔径雷达图像自适应斑点噪声抑制方法,方法中提出了一种新的表征SAR图像局域异质性的定量化指标——异质性熵,通过实现局域异质性熵的计算方法和处理流程,利用异质性熵测量的方法,从而判别局域图像中是否存在纹理信息或边沿细节,因此可以更准确地对图像局部同质异质性进行准确判断并自适应地采取不同的降噪处理措施,有效地平滑斑点噪声,并且具有良好的保持边沿细节和纹理信息的效果
本发明提出了新的表征SAR图像局域异质性的定量化指标——异质性熵的计算方法,以Bruno Aiazzi基于信息论提出的定性分析异质性的方法为基础提出。
本发明为了更加直观的描述SAR图像中局部区域的异质性,提出了异质性熵这一定量化指标,能够实现对条件概率密度分布中散点的离散程度进行客观评价,进而提出了一种异质性熵矩阵的计算方法,并在此基础上提出了一种基于异质性熵的一种自适应的SAR图像斑点噪声抑制方法。
如图1所示,本发明是一种合成孔径雷达图像自适应斑点噪声抑制方法,步骤如下:
(1)用一个(2p+1)×(2p+1)的滑动窗口在图像上滑动,并在滑动窗口中设定一个(2q+1)×(2q+1)的子滑动窗口,其中p>q,且p、q均为整数;子滑动窗口在滑动窗口内逐行滑动的同时,设定并估计出子窗口中心点的局部统计特性量:均值μj和标准差σi,并对均值μj和标准差σi分别进行256阶的量化,直至滑动窗口内能被子滑动窗口扫描的点全部被扫描完毕;对量化后的均值μj和标准差σi计算其在滑动窗口内的概率分布。
取p=5,q=1,即利用3×3的计算窗口在11×11的滤波窗口中进行滑动,并计算每个3×3计算窗口中心点的局部统计特性量均值μj和标准差σi,每个3×3滑动子窗口在11×11的滑动窗口嵌套滑动共得到9×9=81个均值μj和标准差σi,i,j=1,2,…,81。这些μj和σi经过256阶量化形成2维联合分布矩阵,即:
其中,纵坐标表示均值σi,横坐标表示标准差μj,点(μk,σk)表示第k对满足标准差为μk=3,均值为σk=254的个数,这样的点最多有81个。
(2)利用二维联合直方图产生256×256阶的均值μj和标准差σi联合分布矩阵,并取矩阵中8邻域像素值均为0的散点作为孤立散点;
均值μj和标准差σi联合分布矩阵是具有256×256个元素,其中大部分元素取值为零,若某个点周围8个邻域像素的值均为零,如 0 0 0 0 ( μ x , σ x ) 0 0 0 0 , 则该点(μx,σx)为孤立散射点
(3)计算联合分布矩阵的各散点的概率密度,得到各散点的联合概率分布矩阵P(σi,μj);
在本例中生成81个均值μj和标准差σi,i,j=1,2,…,81=1,2,…,81,如(1)中矩阵所示,(μk,σk)=(3,254),且判断(μk,σk)的8邻域均为0,即该点为散点,若81组均值μj和标准差σi值中,还有(μm,σm)=(3,254)(μn,σn)=(3,254),则满足均值μj为3,标准差σi为254的数据对一共有3对,则联合矩阵(3,254)这点上的概率应为3/81=0.037,即P(σk,μk)=P(σm,μm)=P(σn,μn)=0.037。
(4)根据公式 p ( i | j ) = p ( i , j ) p ( j ) = p ( i , j ) Σ i p ( i , j ) , 计算得到各散点的条件概率分布矩阵P(σij);
本实施例中,81个均值μj中,和μk均值相同的共有7个,所以 P ( μ K ) = 7 81 , 继而该点的条件概率 P ( σ k | μ k ) = p ( σ k , μ k ) p ( μ k ) = 3 / 81 7 / 81 = 3 7 , 其他的(μj,σi)点按此方法求出条件概率,从而得到条件概率分布矩阵
(5)计算滑动窗口的异质性熵:
H e = - Σ ij T ij P ( σ i , μ j ) l og 2 P ( σ i | μ j ) ; ,表示为某局部区域给定均值μj时,得到标准差为σi的平均不确定性,当区域处于同质时,由于均值和标准差的线性关系,可知不确定性很小,而异质区域不确定性则大;Tij表示为滑动窗区域中每块(2q+1)×(2q+1)的子滑动窗满足均值为μj,标准差为σi的个数,可作为加权统计出滑动窗区域的不确定性关系,因此可衡量出滑动窗区域的异质性当异质性大时,He值大,当异质性小时,He值小。当图像全部匀质时, - Σ ij P ( σ i , μ j ) l og 2 P ( σ i | μ j ) ; 趋近于0,因此He≈0。
本实施例中,该11×11滑动窗满足均值为μj=3,标准差为σi=254的散点个数有3个,因此Tij=3,P(σi,μj)=0.037,P(σij)=3/7,由于本实施例中只有这一组数据,则最终He=3×0.037×(3/7)=0.0476。如果滑动窗口中还有类似数据,将其按照公式加权计算,相加得到最终结果He
每个滑动窗计算出的异质性熵He形成描述整幅图像异质性的异质性熵矩阵
(6)采用嵌套窗口技术,滑动窗口在图像上逐行滑动,子滑动窗口再在滑动窗口内滑动,进行步骤1~步骤5的操作,如此循环,直至全幅图像被扫描完毕;求出全幅图像的异质性熵矩阵
(7)根据异质性熵He矩阵的矩阵直方图特性选取2个异质性熵值陡降的区域,并设定为门限值Hemin与Hemax
本实施例中有256个11×11的滑动窗口,会得到256个异质性熵值从而形成一个16×16异质性熵矩阵这个矩阵的直方图可以将这256个异质性熵值按照数据段的不同分段,从直方图的数据分布可得:256个异质性熵值在0.000~0.009之间的有32个,0.009~0.2777之间的有80个,0.2777~1之间的有144个。因此,可以得出两个陡降点分别在0.01附近和0.2777附近,得设Hemin=0.009,Hemax=0.2777。
(8)设目标滑动窗口((2p+1)×(2p+1))中心点像素值为I,滤波后中心点像素输出值为
Figure A20071012210500101
,该区域的异质性熵值为Hex
如果Hex≤Hemin,说明该区域为匀质区域,应采取平滑滤波,用滑动窗口的中心点均值
Figure A20071012210500102
取代原中心像素值I,即中心点像素输出值 R ^ = I ‾ , 此处表示滑动窗口的中心点均值;
如果Hemin≤Hex≤Hemax说明该区域存在弱纹理或边沿等异质性信息,应采取自适应滤波,即滤波后中心点像素输出值
Figure A20071012210500105
R ^ = I · ( 1 - σ u 2 I ‾ 2 / σ i 2 1 + σ u 2 ) + I ‾ ( 1 - 1 - σ u 2 I ‾ 2 / σ i 2 1 + σ u 2 ) ;
其中,已知SAR图像视数L, σ u = 1 L ;
如果Hemax≤Hex说明该区域为强异质性区域,原中心像素应保持不变,不做处理,即滤波后中心点像素输出值 R ^ = I .
采用Pratt提出的边沿保持系数FOM指标来客观评估算法对图像边沿的保持程度边沿保持系数FOM计算公式如下:
FOM = 1 max ( N ^ , N ideal ) Σ i = 1 N ^ 1 1 + d i 2 α
其中,
Figure A200710122105001010
和Nideal分别是滤波后图像和原图像的边沿像素值,di是第i个实际边沿点与最近的原图像边沿点的欧几里德距离,α一般取常数
Figure A200710122105001011
则得到的边沿保持系数FOM值介于0和1之间边沿保持效果越好,边沿保持系数FOM值越接近于1。
在本实施例中,已得到图像某一特定局域的异质性熵Hex=0.15,则该异质性熵值Hex处于门限值Hemin,Hemax之间,因此该区域存在弱纹理或边沿等异质性信息,应采取自适应滤波,在目标滑动窗口滑动过程中,取原中心点像素为I=56,11×11滑动窗口的中心点均值为 I ‾ = 87 , 标准差为σi=55,SAR图像视数为L=4,则 σ u = 1 L = 1 2 , 代入公式,求得滤波后中心点像素输出值
R ^ = I · ( 1 - σ u 2 I ‾ 2 / σ i 2 1 + σ u 2 ) + I ‾ ( 1 - 1 - σ u 2 I ‾ 2 / σ i 2 1 + σ u 2 ) = 56 × [ 1 - ( 1 / 2 ) 2 · 87 2 / 55 2 1 + ( 1 / 2 ) 2 ] + 87 × [ 1 - 1 - ( 1 / 2 ) 2 · 87 2 / 55 2 1 + ( 1 / 2 ) 2 ]
= 56 × ( 0.4417 ) + 87 × ( 1 - 0.4417 ) = 73.3073 , 即得到滤波后中心点像素输出值
Figure A200710122105001016
为73.3073,代替原中心点像素值I。
本算法与目前常用的4种典型斑点噪声抑制方法进行了性能比较,如图2所示,针对一个弱异质性SAR图像,利用上述5种斑点噪声抑制方法进行处理,并对经过噪声抑制处理后的图像进行边沿保持系数的效果评估。本发明提出的斑点噪声抑制方法同经典方法相比,在边沿保持系数(FOM)客观评价指标上具有明显的优势,能够有效地将目标从背景噪声中区分出来。
如图3所示,针对一个强异质性SAR图像,利用上述5种斑点噪声抑制方法进行处理,并对经过噪声抑制处理后的图像进行边沿保持系数的效果评估。本发明提出的斑点噪声抑制方法同经典方法相比,在边沿保持系数(FOM)客观评价指标上具有明显的优势,能够有效地将目标从背景噪声中区分出来。

Claims (5)

1.一种合成孔径雷达图像自适应斑点噪声抑制方法,其特征在于,包括以下实现步骤:
步骤一:在雷达图像上设定滑动窗口和子滑动窗口,采用嵌套窗口技术扫描滑动窗口,设定并估计出子窗口中心点的局部统计特性量:均值μj和标准差σi,并对均值μj和标准差σj分别进行256阶的量化;对量化后的均值μj和标准差σi计算其在滑动窗口内的概率分布;
步骤二:利用二维联合直方图产生256×256阶的均值μj和标准差σi联合分布矩阵,并在矩阵中用3×3窗口进行判断,将窗口周围8个邻域像素值均为O的散点作为孤立散点;
步骤三:计算联合分布矩阵的各孤立散点的概率密度,得到各孤立散点的联合概率分布矩阵P(σi,μj);
步骤四:根据公式 p ( i | j ) = p ( i , j ) p ( j ) = p ( i . j ) Σ i p ( i , j ) , 计算得到各孤立散点的条件概率分布矩阵P(σij);
步骤五:计算该滑动窗口的异质性熵 H e = - Σ ij T ij P ( σ i , μ j ) log 2 P ( σ i | μ j ) ; 其中,Tij表示为滑动窗口特殊散点的个数;
步骤六:采用嵌套窗口技术,按步骤一至步骤五扫描全幅图像;求出全幅图像的异质性熵矩阵;
步骤七:根据异质性熵He矩阵的矩阵直方图特性选取2个异质性熵值陡降的区域,并设定为门限值Hemin与Hemax
步骤八:设目标滑动窗口((2p+1)×(2p+1))中心点像素值为I,滤波后中心点像素输出值为
Figure A2007101221050002C3
,该区域的异质性熵值为Hex
如果Hex≤Hemin,应采取平滑滤波,用滑动窗口的中心点均值取代原中心像素值I,即 R ^ = I ‾ ,此处
Figure A2007101221050002C6
表示滑动窗口的中心点像素均值;
如果Hemin≤Hex≤Hemax,应采取自适应滤波,即滤波后中心点像素输出值
Figure A2007101221050002C7
R ^ = I · ( 1 - σ u 2 I ‾ 2 / σ i 2 1 + σ u 2 ) + I ‾ ( 1 - 1 - σ u 2 I ‾ 2 / σ i 2 1 + σ u 2 ) ;
其中已知SAR图像的处理视数为L, σ u = 1 L ;
如果Hemax≤Hex,则原中心像素应保持不变,不做处理,即 R ^ = I .
2.根据权利要求1所述的一种合成孔径雷达图像自适应斑点噪声抑制方法,其特征在于:所述步骤五中异质性熵的计算公式为: H e = - Σ ij T ij P ( σ i , μ j ) lo g 2 P ( σ i | μ j ) , 表示为某局部区域给定均值μj时,得到标准差为σi的平均不确定性;
其中,Tij表示为滑动窗口特殊散点的个数;P(σij)为各孤立散点均值μj时,得到标准差为σi的条件概率;P(σi,μj)为各孤立散点均值μj标准差为σi的联合概率。
3.根据权利要求1和2所述的一种合成孔径雷达图像自适应斑点噪声抑制方法,其特征在于:所述步骤五中异质性熵的计算公式的Tij表示为滑动窗口中每块(2q+1)×(2q+1)的子滑动窗口区域满足均值为μj,标准差为σi的孤立散点个数。
4.根据权利要求1所述的一种合成孔径雷达图像自适应斑点噪声抑制方法,其特征在于:所述步骤一中采用嵌套窗口技术用一个(2p+1)×(2p+1)的滑动窗口在图像上滑动,并在窗口中设定一个(2q+1)×(2q+1)的子滑动窗口,其中p>q,且p、q均为整数;子滑动窗口在滑动窗口内逐行滑动并将估计出的均值μj和标准差σi分别进行256阶的量化,直至滑动窗口内能被子滑动窗口扫描的点全部被扫描完毕。
5.根据权利要求1所述的一种合成孔径雷达图像自适应斑点噪声抑制方法,其特征在于:所述步骤六中采用嵌套窗口技术使滑动窗口在图像上逐行滑动,子滑动窗口再在滑动窗口内滑动,进行步骤一至步骤五的操作,如此循环,直至全幅图像被扫描完毕。
CNB2007101221054A 2007-09-21 2007-09-21 一种合成孔径雷达图像自适应斑点噪声抑制方法 Expired - Fee Related CN100510774C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2007101221054A CN100510774C (zh) 2007-09-21 2007-09-21 一种合成孔径雷达图像自适应斑点噪声抑制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2007101221054A CN100510774C (zh) 2007-09-21 2007-09-21 一种合成孔径雷达图像自适应斑点噪声抑制方法

Publications (2)

Publication Number Publication Date
CN101126810A true CN101126810A (zh) 2008-02-20
CN100510774C CN100510774C (zh) 2009-07-08

Family

ID=39094883

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2007101221054A Expired - Fee Related CN100510774C (zh) 2007-09-21 2007-09-21 一种合成孔径雷达图像自适应斑点噪声抑制方法

Country Status (1)

Country Link
CN (1) CN100510774C (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101819274A (zh) * 2010-03-25 2010-09-01 北京航空航天大学 用于合成孔径雷达前斜视子孔径成像处理的扩展非线性变标方法
CN101976433A (zh) * 2010-09-09 2011-02-16 西安电子科技大学 一种对极化sar数据相干斑噪声的抑制方法
CN102034227A (zh) * 2010-12-29 2011-04-27 四川九洲电器集团有限责任公司 一种图像去噪的方法
CN102044072A (zh) * 2010-11-29 2011-05-04 北京航空航天大学 基于统计模型的sar图像融合处理方法
CN101539627B (zh) * 2009-04-14 2011-05-25 北京航空航天大学 一种电离层立体探测星载sar成像处理平台的构建方法
CN101482969B (zh) * 2009-01-16 2011-06-01 西安电子科技大学 基于同质点计算的sar图像去斑方法
CN102721949A (zh) * 2012-06-19 2012-10-10 北京航空航天大学 一种通用模式下星载sar等效噪声系数的计算方法
CN101571593B (zh) * 2008-04-30 2012-11-21 北京航空航天大学 一种星载sar图像的严密共线方程模型
CN104166141A (zh) * 2014-08-11 2014-11-26 中国电子科技集团公司第三十八研究所 基于子带合成的多输入多输出合成孔径雷达系统设计方法
CN104182945A (zh) * 2014-08-30 2014-12-03 西安电子科技大学 基于非局部双边滤波的极化sar相干斑噪声抑制方法
CN103996175B (zh) * 2014-05-13 2017-02-15 西安电子科技大学 森林或城市区域高分辨干涉相位滤波方法
CN109146803A (zh) * 2018-07-26 2019-01-04 北京航空航天大学 基于多角度图像的sar图像辐射分辨率提升方法及装置
CN110082764A (zh) * 2019-04-26 2019-08-02 西安电子科技大学 基于稳健正则化层析方法的sar图像成像方法
CN110378397A (zh) * 2019-06-27 2019-10-25 深圳大学 一种驾驶风格识别方法及装置
CN115829883A (zh) * 2023-02-16 2023-03-21 汶上县恒安钢结构有限公司 一种异性金属结构件表面图像去噪方法

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101571593B (zh) * 2008-04-30 2012-11-21 北京航空航天大学 一种星载sar图像的严密共线方程模型
CN101482969B (zh) * 2009-01-16 2011-06-01 西安电子科技大学 基于同质点计算的sar图像去斑方法
CN101539627B (zh) * 2009-04-14 2011-05-25 北京航空航天大学 一种电离层立体探测星载sar成像处理平台的构建方法
CN101819274B (zh) * 2010-03-25 2012-07-04 北京航空航天大学 用于合成孔径雷达前斜视子孔径成像处理的扩展非线性变标方法
CN101819274A (zh) * 2010-03-25 2010-09-01 北京航空航天大学 用于合成孔径雷达前斜视子孔径成像处理的扩展非线性变标方法
CN101976433A (zh) * 2010-09-09 2011-02-16 西安电子科技大学 一种对极化sar数据相干斑噪声的抑制方法
CN101976433B (zh) * 2010-09-09 2012-07-04 西安电子科技大学 一种对极化sar数据相干斑噪声的抑制方法
CN102044072A (zh) * 2010-11-29 2011-05-04 北京航空航天大学 基于统计模型的sar图像融合处理方法
CN102034227A (zh) * 2010-12-29 2011-04-27 四川九洲电器集团有限责任公司 一种图像去噪的方法
CN102721949A (zh) * 2012-06-19 2012-10-10 北京航空航天大学 一种通用模式下星载sar等效噪声系数的计算方法
CN102721949B (zh) * 2012-06-19 2013-11-27 北京航空航天大学 一种通用模式下星载sar等效噪声系数的计算方法
CN103996175B (zh) * 2014-05-13 2017-02-15 西安电子科技大学 森林或城市区域高分辨干涉相位滤波方法
CN104166141A (zh) * 2014-08-11 2014-11-26 中国电子科技集团公司第三十八研究所 基于子带合成的多输入多输出合成孔径雷达系统设计方法
CN104182945A (zh) * 2014-08-30 2014-12-03 西安电子科技大学 基于非局部双边滤波的极化sar相干斑噪声抑制方法
CN109146803A (zh) * 2018-07-26 2019-01-04 北京航空航天大学 基于多角度图像的sar图像辐射分辨率提升方法及装置
CN110082764A (zh) * 2019-04-26 2019-08-02 西安电子科技大学 基于稳健正则化层析方法的sar图像成像方法
CN110378397A (zh) * 2019-06-27 2019-10-25 深圳大学 一种驾驶风格识别方法及装置
CN115829883A (zh) * 2023-02-16 2023-03-21 汶上县恒安钢结构有限公司 一种异性金属结构件表面图像去噪方法

Also Published As

Publication number Publication date
CN100510774C (zh) 2009-07-08

Similar Documents

Publication Publication Date Title
CN100510774C (zh) 一种合成孔径雷达图像自适应斑点噪声抑制方法
CN105549009B (zh) 一种基于超像素的sar图像cfar目标检测方法
CN108805835B (zh) 基于截断统计特征的sar图像双边滤波方法
CN108133468B (zh) 自适应参数增强和尾迹辅助检测的恒虚警率舰船检测方法
KR101255736B1 (ko) 단일편파 레이더를 이용한 기상 및 비기상 에코 분류 방법
CN111861905B (zh) 基于Gamma-Lee滤波的SAR影像斑点噪声抑制方法
CN110765912B (zh) 一种基于统计约束和Mask R-CNN的SAR图片船舶目标检测方法
Lin et al. Rain identification in ASCAT winds using singularity analysis
CN111353968B (zh) 一种基于盲元检测与分析的红外图像质量评价方法
CN103632369A (zh) 块平均清晰度组合无参考水下图像通用性质量检测方法
CN111507047A (zh) 一种基于SP-CUnet的逆散射成像方法
CN105116412B (zh) 一种宽带雷达isar图像性能定量判别方法
Fang et al. Image quality assessment on image haze removal
CN104680536A (zh) 利用改进的非局部均值算法对sar图像变化的检测方法
Wang et al. Application of mixture regression for improved polarimetric SAR speckle filtering
CN102254185B (zh) 基于对比度敏感函数的背景杂波量化方法
Luo et al. An underwater-imaging-model-inspired no-reference quality metric for images in multi-colored environments
CN112881983B (zh) 基于双边截断统计特性的sar图像舰船cfar检测方法
CN106526545A (zh) 一种鲁棒cfar检测器的检测方法
CN112215832B (zh) Sar尾迹图像质量评估及自适应探测参数调整方法
CN111583267A (zh) 基于广义模糊c均值聚类的快速sar图像旁瓣抑制方法
CN112698330B (zh) 基于比值对数积的极化sar图像非局部均值方法
CN108537807B (zh) 一种基于高分四号卫星影像改进的边缘增强检测方法
CN112734666B (zh) 基于相似值的sar图像相干斑非局部均值抑制方法
CN104952052A (zh) 一种对emccd图像进行增强的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090708

Termination date: 20130921