CN101493520B - 一种基于二维Gamma分布的SAR图像变化检测方法 - Google Patents
一种基于二维Gamma分布的SAR图像变化检测方法 Download PDFInfo
- Publication number
- CN101493520B CN101493520B CN2009100770212A CN200910077021A CN101493520B CN 101493520 B CN101493520 B CN 101493520B CN 2009100770212 A CN2009100770212 A CN 2009100770212A CN 200910077021 A CN200910077021 A CN 200910077021A CN 101493520 B CN101493520 B CN 101493520B
- Authority
- CN
- China
- Prior art keywords
- image
- gamma distribution
- clutter
- dimensional gamma
- dimensional
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 45
- 230000008859 change Effects 0.000 title claims abstract description 22
- 238000000034 method Methods 0.000 claims abstract description 16
- 238000010606 normalization Methods 0.000 claims abstract description 11
- 238000001914 filtration Methods 0.000 claims abstract description 7
- 230000014509 gene expression Effects 0.000 claims description 6
- 238000012360 testing method Methods 0.000 claims description 6
- 238000013100 final test Methods 0.000 claims description 3
- 238000005315 distribution function Methods 0.000 claims 1
- 230000005764 inhibitory process Effects 0.000 claims 1
- 230000001105 regulatory effect Effects 0.000 claims 1
- 238000013341 scale-up Methods 0.000 claims 1
- 230000001629 suppression Effects 0.000 abstract description 13
- 230000000877 morphologic effect Effects 0.000 abstract description 7
- 238000012545 processing Methods 0.000 abstract description 7
- 230000006870 function Effects 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 4
- PXFBZOLANLWPMH-UHFFFAOYSA-N 16-Epiaffinine Natural products C1C(C2=CC=CC=C2N2)=C2C(=O)CC2C(=CC)CN(C)C1C2CO PXFBZOLANLWPMH-UHFFFAOYSA-N 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 238000003657 Likelihood-ratio test Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000011426 transformation method Methods 0.000 description 1
Images
Landscapes
- Radar Systems Or Details Thereof (AREA)
Abstract
一种基于二维Gamma分布的SAR图像变化检测方法,包括以下步骤:根据输入的SAR待测图像和参考图像数据,利用矩估计法估计二维Gamma分布的参数;根据Neyman-Pearson准则构造似然比统计量,在二维Gamma分布的基础上利用图像数据相关性进行杂波抑制,得到杂波抑制后的图像;对杂波抑制后的图像进行CFAR归一化,并设定全局阈值将图像二值化,得到初步的检测结果;对检测后得到的二值图像进行形态学处理、计数滤波及目标聚类,进一步消除孤立虚警点,得到最终的检测结果;本发明在低虚警率的基础上达到了较高的检测率,适合在各种杂波环境,特别是强杂波环境下检测人造目标。
Description
技术领域
本发明属于SAR图像处理领域,涉及一种基于二维Gamma分布的SAR图像变化检测方法。
背景技术
合成孔径雷达(Synthetic Aperture Radar,SAR)本身是一种利用微波感知的主动式传感器,它不受天气、光照等条件限制,可对感兴趣目标进行全天候、全天时的侦察;此外,由于微波具有一定的穿透探测能力,可以探测到一定深度地表下的或是其他经过伪装或掩盖的目标,这使得SAR在目标探测方面具有巨大的应用潜力。
在杂波较强的环境中,单一的CFAR目标检测技术受到了较大的制约。随着高分辨、短周期重复观测等技术走向成熟,变化检测技术得到了快速的发展,应用于目标检测的变化检测技术也成为了重要的研究方向。为了在大场景中检测出人造目标,像元级的直接比较检测法是比较可行且可靠的一类方法,即直接比较同一位置上不同时相的像元特征值来检测变化,通常先通过数学变换的方式产生差异图像,再对差异图像进行阈值化处理,从中提取变化区域。
在这类变化检测方法中,较常用的基于一维分布模型的图像差值法或比值法虽然简单易行,但是无法充分利用不同时相图像数据的相关性;而在利用二维分布模型的检测方法中,基于二维Gaussian分布的杂波抑制变化检测法虽然利用图像相关性进行杂波抑制,但是SAR图像一般并不是简单地服从Gaussian分布,因此这种方法存在着分布模型的拟合精度问题;而基于二维Gamma分布的相关系数变化检测法,虽然利用了拟合精度较高的分布模型,但是仅利用相关系数作为判决依据,难以设定合理的检测阈值。
发明内容
本发明的要解决的技术问题是:克服现有技术的不足,提供一种基于二维Gamma分布的SAR图像变化检测方法,该方法利用拟合精度较高的二维Gamma分布模型改善算法的检测性能;根据Newman-Pearson准则构造似然比统计量抑制杂波,减小背景图像强散射区域中虚警目标的产生;同时,利用CFAR对抑制杂波后的图像进行归一化,阈值设置简单快捷。
本发明的解决其技术问题所采用的技术方案为:一种基于二维Gamma分布的SAR图像变化检测方法,其特征在于以二维Gamma分布为基础,构造似然比统计量抑制杂波,并通过CFAR归一化设置检测阈值并进行形态学处理,从而在大场景中检测出人造目标,其具体步骤如下:
(1)根据输入的SAR待测图像和参考图像数据,利用矩估计法估计二维Gamma分布的参数;
(2)根据Neyman-Pearson准则构造似然比统计量,在二维Gamma分布的基础上利用图像数据相关性进行杂波抑制,得到杂波抑制后的图像;
(3)对杂波抑制后的图像进行CFAR归一化,并设定全局阈值将图像二值化,得到初步的检测结果;
(4)对检测后得到的二值图像进行形态学处理、计数滤波及目标聚类,进一步消除孤立虚警点,得到最终的检测结果;
所述的步骤(4)中,为进一步消孤立虚警点,首先对二值化的检测结果进行腐蚀膨胀操作;再根据目标尺寸大小与SAR图像分辨率进行计数滤波;最后再进行目标聚类,得到最终的检测结果;
所述的步骤(2)中,采用如下方式进行杂波抑制:
其中z1和z2分别为待测图像和参考图像数据,参数c与二维.Gamma分布参数有关,而参数ζ为根据图像强度值数量级调节的比例系数,典型取值为:
本发明的原理是:根据乘性噪声模型,SAR多视强度图像服从一维Gamma分布。由于同一场景不同时相的SAR图像间具有一定的相关性,因此选择二维Gamma分布作为待测图像和参考图像数据的联合分布模型。在此基础上,根据Neyman-Pearson准则构造似然比统计量,即等效地利用了待测图像和参考图像的相关性进行了杂波抑制。对杂波抑制后的图像进行CFAR归一化,并设定全局阈值,则可实现变化检测的目的。
本发明与现有技术相比的优点在于:较之于基于一维分布的SAR图像差值法或比值法,本发明更加充分地利用了不同时相图像数据之间的相关性;较之于基于二维Gaussian分布的杂波抑制变化检测法,本发明采用了更加适合SAR图像的二维Gamma分布,通过拟合精度较高的分布模型来改善检测性能;最后,较之于基于二维Gamma分布的相关系数变化检测法,本发明并不只是简单地利用相关系数作为判决依据,而是利用相关性抑制杂波,同时CFAR归一化也使本发明的阈值设定更加合理、方便、快捷。
附图说明
图1为本发明的SAR图像变化检测方法流程图;
图2为CFAR归一化的模板示意图;
图3为形态学处理、计数滤波和目标聚类的流程图。
具体实施方式
下面结合附图及具体实施方式详细介绍本发明。
如图1所示,本发明的基于二维Gamma分布的SAR图像变化检测方法的具体实施步骤如下:
(1)、根据输入的SAR待测图像和参考图像数据,利用矩估计法估计二维Gamma分布的参数。对于多维向量x=(x1,…,xd)T,若任意xi的边缘分布都服从一维Gamma分布,则认为向量x服从多维Gamma分布。但是服从这一条件的分布族是非常庞大的,因此本发明采用S.barlev和P.bernardoff的定义方式(矩母函数和拉普拉斯变换)进行进一步限制,定义如下:
假设P(z)为关于多维向量Z=(z1,…,zd)的多项式,若对于任意的都可表示为Azj+B,其中A和B为关于其它zi(i≠j)的多项式,则多项式P(z)被称为是仿射的。若随机向量x=(x1,…,xd)T的矩母函数(也称为拉普拉斯变换)定义如式(1),则称该随机向量服从形状参数为q、尺度参数为P的多维Gamma分布,记为x~G(q,P)。
其中q≥0,P为一仿射多项式。当d=2时,对应的是二维的情况,此时相应的矩母函数为:
Ψ(z1,z2)=(1+p1z1+p2z2+p12z1z2)-q (2)
其中p1>0,p2>0,p12>0,p1p2-p12≥0,由此可得二维Gamma分布的概率密度函数表达式为:
其中函数fq(z)与合流超几何函数相关,定义如式(4):
对矩母函数进行泰勒级数展开,有:
用(f1,f2,f3,f4,f5)表示E(x),则可推出如下的关系式:
由此,可进一步推出参数p1、p2和p12的估计式如下:
式中E(·)表示数学期望,var(·)表示方差,cov(·,·)表示协方差,因此参数p1、p2反映了单个变量幅度的大小,而p12则反映了两变量间相关性程度。
(2)、根据Neyman-Pearson准则构造似然比统计量,在二维Gamma分布的基础上利用图像数据相关性进行杂波抑制,得到杂波抑制后的图像。对于不同时刻获得的SAR图像数据,假定目标、杂波和噪声模型表示如下:
其中下标分别对应着两个不同时刻获得的回波信号。同时,对于有无变化发生作如下假设:
H0:z=q (no change)
(10)
H1:z=s+q (change)
式中z表示SAR图像数据,q=c+n表示背景杂波和噪声。即只有背景杂波和噪声,而没有目标时,表示没有变化发生;当有目标存在时,表示有变化发生。为了在固定的虚警率下达到最大的检测概率,根据N-P准则,采用似然比检验的方法,构造统计量如下:
其中P表示图像数据z分别在H0和H1下的条件概率。此时,根据二维Gamma分布,可得不同假设条件下相应的概率密度函数表达式为:
其中
而p1、p2和p12是待估计的二维Gamma分布的参数,q则为已知的SAR图像视数。去除一些与变量z无关的项,式(11)可进一步等效为:
此时,虽然目标信号s是未知的,但是对于目标与场景的关系来说,不外乎两种情况:目标存在与目标不存在。因此可以简单地假设目标信号模型为:
为了便于说明,不妨假设目标只出现在待测图像中而非参考图像中,取式(16)中的前者,即s=[1 0]T。但由于图像数据z与目标信号s直接进行加减处理,考虑到数量级可能的差异,可将目标信号模型乘以一个相应的系数,如下:
其中η为比例系数,可适当调节,典型值可取0.5。将目标信号代入式(15)中,可简化为:
其中z1和z2分别为待测图像和参考图像数据,参数c与二维Gamma分布参数有关,而参数ζ为根据图像强度值数量级调节的比例系数,典型取值为:
式中E(·)表示数学期望。
根据式(18)等号左端的处理方式,利用参考图像数据对待测图像进行遍历,则可得到杂波抑制后的结果。
(3)、对杂波抑制后的图像进行CFAR归一化,并设定全局阈值将图像二值化,得到初步的检测结果。为了进一步确定全局阈值λ,本发明利用图2的CFAR检测模板对杂波抑制后的图像进行归一化,从而达到恒虚警的目的。以每一个待检测的像素为中心,按照式(20)归一化并进行判决:
其中x为杂波抑制后的图像数据,E和σ分别为空心滑窗内样本数据的均值和标准差。通过CFAR归一化处理可以方便快捷的设置全局阈值,得到初步的检测结果。
(4)、对检测后得到的二值图像进行形态学处理、计数滤波及目标聚类,进一步消除孤立虚警点,得到最终的检测结果。在SAR图像中,由于乘性斑点噪声的影响,在初步检测得到的二值图像中,往往会存在一些孤立的虚警点。同时,在高分辨的SAR图像中,目标呈分布式,一个目标往往占有多个分布单元;而目标本身散射特性的起伏使得对应于同一目标的像素点往往不能形成连通区域,造成目标的误判。因此本发明按照附图3所示的流程图通过一些形态学的方法对检测结果进行后处理。首先进行形态学处理,此处采用腐蚀膨胀操作,填补连通区域、消除一些孤立的点目标;接着根据目标尺寸大小与SAR图像的分辨率,进行计数滤波,进一步消除虚警点;最后再进行目标聚类,若任意两不连通区域距离小于门限,则认为其属于同一个目标,进行目标合并,从而得到最终的检测结果。
本发明说明书中未作详细描述的内容属于本领域专业技术人员公知的现有技术。
尽管为说明目的公开了本发明的最佳实施例和附图,但是本领域的技术人员可以理解:在不脱离本发明及所附的权利要求的精神和范围内,各种替换、变化和修改都是可能的。因此,本发明所保护的技术方案不应局限于最佳实施例和附图所公开的内容。
Claims (3)
1.一种基于二维Gamma分布的SAR图像变化检测方法,其特征在于:包括以下几个步骤:
(1)根据输入的SAR待测图像和参考图像数据,利用矩估计法估计二维Gamma分布的参数;
(2)根据Neyman-Pearson准则构造似然比统计量,在二维Gamma分布的基础上利用图像数据相关性进行杂波抑制,得到杂波抑制后的图像;
(3)对杂波抑制后的图像进行CFAR归一化,并设定全局阈值将图像二值化,得到初步的检测结果;
(4)对检测后得到的二值图像进行形态学处理、计数滤波及目标聚类,进一步消除孤立虚警点,得到最终的检测结果;
所述的步骤(4)中,为进一步消除孤立虚警点,首先对二值化的检测结果进行腐蚀膨胀操作;再根据目标尺寸大小与SAR图像分辨率进行计数滤波;最后再进行目标聚类,得到最终的检测结果;
所述的步骤(2)中,采用如下方式进行杂波抑制:
H0:z=q
式中z表示SAR图像数据,q=c+n表示背景杂波和噪声;
其中z1和z2分别为待测图像和参考图像数据,参数c与二维Gamma分布参数有关,而参数ζ为根据图像强度值数量级调节的比例系数,典型取值为:
式中E(·)表示数学期望;p1、p2和p12是待估计的二维Gamma分布的参数,q则为已知的SAR图像视数,λ为全局阈值。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009100770212A CN101493520B (zh) | 2009-01-16 | 2009-01-16 | 一种基于二维Gamma分布的SAR图像变化检测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009100770212A CN101493520B (zh) | 2009-01-16 | 2009-01-16 | 一种基于二维Gamma分布的SAR图像变化检测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101493520A CN101493520A (zh) | 2009-07-29 |
CN101493520B true CN101493520B (zh) | 2012-07-11 |
Family
ID=40924211
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009100770212A Expired - Fee Related CN101493520B (zh) | 2009-01-16 | 2009-01-16 | 一种基于二维Gamma分布的SAR图像变化检测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101493520B (zh) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101770027B (zh) * | 2010-02-05 | 2012-05-16 | 河海大学 | 基于InSAR与GPS数据融合的地表三维形变监测方法 |
CN101923711B (zh) * | 2010-07-16 | 2012-06-20 | 西安电子科技大学 | 基于邻域相似性及掩模增强的sar图像变化检测方法 |
CN101975940B (zh) * | 2010-09-27 | 2012-11-28 | 北京理工大学 | 基于分割组合的sar图像自适应恒虚警率目标检测方法 |
CN102175993A (zh) * | 2011-01-28 | 2011-09-07 | 华中科技大学 | 基于卫星sar影像的雷达景象匹配特征参考图制备方法 |
CN103065320A (zh) * | 2013-01-09 | 2013-04-24 | 西安电子科技大学 | 基于恒虚警阈值的sar图像变化检测方法 |
CN103926585B (zh) * | 2014-04-30 | 2016-08-24 | 电子科技大学 | 一种基于认知的协同探测网Gamma起伏目标检测方法 |
CN104778719B (zh) * | 2015-05-07 | 2017-10-24 | 西安电子科技大学 | 基于二阶统计量扰动分析的sar图像变化检测方法 |
CN105046706B (zh) * | 2015-07-13 | 2019-01-29 | 北京化工大学 | 基于有理多项式函数拟合海杂波的sar图像船只检测方法 |
CN105205828B (zh) * | 2015-10-20 | 2019-03-19 | 江南大学 | 基于最优Gabor滤波器的经编织物瑕疵检测方法 |
CN108010070B (zh) * | 2017-05-27 | 2018-12-14 | 北京航空航天大学 | 一种基于sar序贯图像的场景变化检测方法及装置 |
CN109272534B (zh) * | 2018-05-16 | 2022-03-04 | 西安电子科技大学 | 基于多粒度级联森林模型的sar图像变化检测方法 |
CN109523627B (zh) * | 2018-10-24 | 2023-07-18 | 重庆大学 | 一种基于泰勒指数表达式型面结构光的三维重建方法 |
CN111624567B (zh) * | 2019-02-28 | 2023-01-24 | 杭州海康威视数字技术股份有限公司 | 一种恒虚警检测方法及装置 |
CN111161341B (zh) * | 2019-12-31 | 2023-03-31 | 中山大学 | 基于isar图像的目标尺寸提取方法 |
CN111398958B (zh) * | 2020-04-03 | 2022-06-14 | 兰州大学 | 一种确定地面沉降与黄土填挖方区建筑高度相关性的方法 |
JP7503445B2 (ja) | 2020-08-04 | 2024-06-20 | 三菱電機ソフトウエア株式会社 | 差分抽出装置及び差分抽出プログラム |
CN114185043B (zh) * | 2021-11-12 | 2024-09-27 | 中山大学 | 一种基于图像栈的uwb sar图像目标变化检测方法 |
CN114240805B (zh) * | 2022-02-24 | 2022-05-27 | 中国科学院空天信息创新研究院 | 一种多角度sar动态成像检测方法及装置 |
CN118052081B (zh) * | 2024-04-16 | 2024-06-28 | 西安空间无线电技术研究所 | 一种高轨sar系统参数设计方法 |
-
2009
- 2009-01-16 CN CN2009100770212A patent/CN101493520B/zh not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN101493520A (zh) | 2009-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101493520B (zh) | 一种基于二维Gamma分布的SAR图像变化检测方法 | |
CN105427314B (zh) | 基于贝叶斯显著性的sar图像目标检测方法 | |
CN103971364B (zh) | 基于加权Gabor小波特征和两级聚类的遥感图像变化检测方法 | |
CN103729854B (zh) | 一种基于张量模型的红外弱小目标检测方法 | |
CN101634709A (zh) | 基于多尺度积和主成分分析的sar图像变化检测方法 | |
CN102982537B (zh) | 一种检测场景变换的方法和系统 | |
CN106600602B (zh) | 基于聚类自适应窗高光谱图像异常检测方法 | |
CN106599808A (zh) | 一种基于全波形激光雷达数据的隐蔽目标提取方法 | |
CN102044072A (zh) | 基于统计模型的sar图像融合处理方法 | |
CN105549009B (zh) | 一种基于超像素的sar图像cfar目标检测方法 | |
Liu et al. | Moving dim and small target detection in multiframe infrared sequence with low SCR based on temporal profile similarity | |
CN102867309A (zh) | 基于混合模型的sar图像变化检测方法 | |
CN106842143A (zh) | 基于滤波的雷达目标快速cfar检测方法 | |
CN109709526B (zh) | 一种知识辅助分组广义似然比检测方法 | |
CN105956622B (zh) | 基于多特征联合建模的极化sar影像分类方法 | |
CN103093432B (zh) | 基于极化分解和图像块相似性的极化sar图像降斑方法 | |
CN103679172B (zh) | 一种通过转动红外探测器检测地面远距离运动目标的方法 | |
CN106353743B (zh) | 匹配于等效形状参数的近最优雷达目标检测方法 | |
CN102621535B (zh) | 一种高效的协方差矩阵结构估计方法 | |
CN111695461A (zh) | 一种基于图频特性的雷达杂波智能分类方法 | |
CN114037897A (zh) | 基于点线奇异性融合的极化sar图像变化检测方法 | |
Fan et al. | A modified framework for ship detection from compact polarization SAR image | |
CN106204664B (zh) | 基于sar-lark特征的sar舰船目标检测方法 | |
CN104346812B (zh) | 基于鲁棒背景估计方法的高光谱图像局部目标检测方法 | |
CN108932520B (zh) | 结合先验概率估计的sar影像水体概率制图方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120711 Termination date: 20130116 |
|
CF01 | Termination of patent right due to non-payment of annual fee |